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Abstract— We propose a model-based reinforcement learning
approach for robust and adaptive long-horizon navigation in
rough terrain environments. Offline, we train an adaptive
dynamics model using a wide range of simulated systems.
This model can adapt to any new system using state-transition
observations from that system. Predictions from the model cap-
ture uncertainty about the system’s exact dynamics stemming
from insufficient observations. Online, we use a divergence
constrained path planner to find routes that are robust to the
robot’s current understanding of dynamics. In our results, we
show this allows for long-horizon driving strategies that are
conservative when state-transition observations are limited but
have improved performance after giving few state-transition
observations.

I. INTRODUCTION

Autonomous rough terrain navigation in off-road environ-
ments is challenging as it requires careful reasoning about
how the robot should traverse different obstacles and uneven
terrain. For this task, robust long-horizon decision making
is crucial as failing to consider long term consequences of
immediate actions may result in the robot getting trapped
in a dead end. Furthermore, the robot’s dynamics may be
highly divergent due to the precarious nature of driving
over uneven terrain. As such, robustness towards potential
prediction uncertainty is essential to prevent ill-informed
actions from leading to failure or catastrophic damage.

In addition to these challenges, off-road driving often
involves a diverse range of terrains that each uniquely
impact vehicle dynamics. The robot must be mindful of
these different effects and properly accommodate its driving
strategy to match. For instance, in environments with loose
dirt, the vehicle’s tires may not provide enough traction.

To begin to address these issues, in [1], the authors
propose a method for robust adaptation to new real-world
dynamics through the use of adaptive probabilistic dynamics
models trained solely in simulation. By varying simulated
dynamics during training, the adaptive dynamics model is
trained to tailor predictions towards any particular system
dynamics using state-transition observations previously col-
lected under those dynamics. Furthermore, the predictions
from the probabilistic model captures uncertainty stemming
from insufficient observations leading to an ambiguous un-
derstanding of dynamics. The authors used the model within
an uncertainty aware model predictive control framework,
specifically Risk-Aware Model Predictive Path Integral [2].
The resulting controls framework allows the robot to drive
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Fig. 1: A low-traction and high-traction robot navigating a stair
obstacle. Before adaptation, both systems choose a safe route that
avoids driving directly up the stairs (top). The model was adapted
to each system using data collected through one demonstration
(middle). After adaptation, the planner matches the route to the
capabilities of each system, with the high-traction system’s route
going directly up the stairs (bottom). The reference trajectory
chosen by the planner (or manually for demonstration) is shown
in red. The goal is shown in green. Robot’s actual path is overlaid.

conservatively and robustly upon initialization, when it has
a poor understanding of dynamic, but also increase driving
performance as it collects more observations to adapt the
model and improve its understanding.

Furthermore, in [3], the authors propose a model-based re-
inforcement learning framework for long horizon navigation
in rough terrain. This framework assumes minimal changes
to the vehicle’s dynamics and collects a large driving dataset
to train a model to predict the dynamics when driving over
uneven terrain. Online, the framework uses a “divergence
constraint” [4] to select a long-horizon plan through the
terrain that is robust to modeling uncertainty.

In this workshop paper, we extend and combine these
concepts to result in a long-horizon rough terrain navigation
framework that can quickly and robustly adapt to new system
dynamics. Similar to [1], our approach leverages a wide
range of simulated systems, each with different dynamics,



to train a dynamics model that can probabilistically adapt
to new system given state-transition observations. However,
we adopt a similar dynamics model architecture from [3]
to allow the model to predict the driving dynamics when
driving over uneven terrain. Similar to [3], we use the
predictive model and the divergence constraint to find robust
routes through rough terrain environments. We show in
our experimental results that this approach enables effective
rough terrain navigation that can robustly adapt to new
dynamics. Furthermore, this approach balances robustness
with adaptability, Fig. 1.

II. BACKGROUND

The robust and adaptive driving approach in [1] follow
the model-based reinforcement learning (MBRL) paradigm,
where a dynamics model is first learned then used for
controls. However, unlike most other MBRL frameworks,
this approach trains the dynamics model solely in simulation
and uses minimal real world data to adapt it to the true
dynamics of the real world system. The dynamics model
used consists of two modules: the System Identification
Transformer and the Adaptive Dynamics Model.

System Identification Transformer (SIT): Given prior
state transition observations (consisting of the robot state si,
action ai, and next state si+1) collected under the system’s
current dynamics, Ht = {(si, ai, si+1)|i < t − 1}, the SIT,
denoted by Tθ, extracts an understanding about the system’s
dynamics as a succinct latent context vector, ct = Tθ(Ht).

Adaptive Dynamics Model (ADM): The ADM, denoted
by Pθ, probabilistically models the system’s stochastic state
transition dynamics given the current context vector ct from
the SIT, which encodes an understanding of dynamics,

ŝt+1 ∼ Pθ(st+1|st, at, ct), (1)

where ŝt+1 is the predicted next state.
Model Training: Training of the SIT and ADM are done

solely in simulation. During training, simulation parameters
are randomized to generate many different systems with
varying dynamics. While all the training systems differ from
each other, they all share the same morphology as the target
(real world) system. The SIT and ADM are trained jointly
using a negative log-likelihood loss for predicted state-
transition distributions. As a result of training on randomized
systems, the SIT and ADM can work in tandem to extract
an understanding of dynamics and probabilistically predict
state-transitions for new unseen systems, including the real
world system, given prior state-transition observations.

Robust Model Predictive Controls: Online, a Risk-
Aware Model Predictive Path Integral is used to robustly
control the robot under the current probabilistic understand-
ing of vehicle dynamics captured by the SIT and ADM. By
continuously collecting new state-transition observations and
updating the context vector at each time step, the probabilis-
tic understanding of dynamics can continually improve and
adapt to the system’s exact dynamics. In scenarios where
prior state-transition observations only provide an ambigu-
ous understanding of dynamics, e.g. upon initialization, the

controls framework results in a more robust and conservative
driving strategy. As knowledge of system dynamics improves
with more observations, the control framework results in
a higher performing driving strategy tailored towards the
particular system’s dynamics.

Divergence Constrained Rough Terrain Navigation:
In [3], the authors collect training data offline to train a
neural network to predict the robot’s state transition when
driving over uneven terrain, denoted as Pθ(st+1|st, at). In
this framework, the robot’s state also includes a robot-
centric terrain height map in st, which is cropped from the
global map based on the robot’s position and orientation.
The neural network dynamics model uses a Convolutional
Neural Network (CNN) to process the robot-centric height
map for each prediction. The output of the neural network
is a predicted state-transition distribution, from which a new
robot state can be sampled, including a newly cropped robot-
centric height map.

During decision making, the system chains predictions
from the model to predict the robot’s trajectory as a nominal
trajectory (taking the mean prediction at each time step) and
a particle distribution (propagating a set of particles sampling
from the predicted distribution). For each prediction, the
framework calculates a divergence metric defined as

u(d̄, D̂) = max
t

1

I

I∑
i=1

∥ŝit − s̄t∥22, (2)

where s̄t is a predicted state on the nominal trajectory and ŝit
is a particle prediction. The framework performs trajectory
optimization, constraining solutions to have low divergence
to ensure that the robot can robustly track the nominal
trajectory given the uncertainty in the learned model.

III. METHOD

For this work, following [1], we train a probabilistic
dynamics model consisting of a SIT and ADM. Following
[3], both models are conditioned on a terrain height map to
account for the effects that uneven terrain has on dynamics.
We then use a divergence constraint to choose trajectories
that the robot can track robustly under model prediction
uncertainty. In this framework, we opt to use the divergence
constraint within an RRT planning framework [4] instead of
within trajectory optimization [3]. An expanded explanation
of the approach is included in [5, Chapter 5].

Terrain-Aware System Identification Transformer: The
SIT we train extracts relevant information about the target
system’s dynamics given state-transition observations. We
follow the notation from [3], where states st include the
robot’s position, velocity, and a robot-centric terrain height
map, and actions at include steering and throttle commands.
The architecture we use for the SIT includes a combination of
CNNs [6] and Self Multi-head Attention Networks [7]. For
each robot-centric observation, we first process the robot-
centric heightmap using a shallow ResNet like architecture
[8], where each layer consists of CNNs with a residual
connection. The output of the ResNet is concatenated with



the rest of the robot-centric observations (robot state, action,
and state-transition). All of the processed robot-centric ob-
servations are then fed into a self-attention network, resulting
in a single context vector ct. We opted for a self-attention
network given the variable size of Ht, which grows as more
observations are collected.

Adaptive Dynamics Model: The ADM predicts the
robot’s state-transitions given the context ct from the SIT
network, the robot’s current state, and reference trajectory.
Like the SIT network, the robot state representation includes
the robot’s position, velocity, and a robot-centric height map
which is fed into a CNN. In our implementation, the ADM is
directly learning the closed-loop dynamics of the robot, i.e.
predicting state-transitions based on the reference trajectory
d̄t chosen for the robot to track.

Model Training: We sampled a large set of simulated
systems by randomizing physical parameters, such as tire
contact friction. For each system, we collect 256 time steps
of data, resetting the robot whenever it reaches the end of
the reference trajectory or upon failure.

During model training, we iteratively sample a system
variant from the collected data and trained the SIT and ADM
networks end-to-end. From the 256 time steps of data, we
choose a 32 continuous time step trajectory to predict with
the Adaptive Dynamics Model. We provide the SIT with all
the data collect prior to that randomly chosen 32 time step
trajectory, thus varying the amount of data given to the SIT.

Divergence Constrained Planning: Online, we provide
the SIT with all available state-transition observations to
tailor ADM predictions to the given system. We use the
stochastic ADM predictions within a robust planning frame-
work to find paths through the obstacle field that are robust
towards uncertainty in the current dynamics understanding.

We make the planner robust by using the divergence
constraint from [3] to ensure that solution trajectories can be
robustly tracked under modeling uncertainty. Our framework
consists of an RRT search followed by trajectory pruning to
improve optimality of the solution (Algorithms 1 and 2, in
the Appendix), similar to [9–11]. During RRT tree expansion,
candidate trajectories are only chosen if model predictions
satisfy the divergence constraint. During the pruning phase,
we randomly shorten the solution trajectory by interpolating
between states and replace the solution with the shortened
path if the divergence constraint is still satisfied.

IV. RESULTS

We evaluated the navigation framework’s ability to 1)
choose robust strategies when unsure about the target sys-
tem’s capabilities, and 2) adapt its strategy to the target
system’s capabilities given system observations. We chose
two systems for evaluation. One system had low traction
and could only drive up gentle slopes. The other system
had high traction and could drive up steep slopes and even
some stairs. Here, we qualitatively analyze the framework’s
decision-making process and strategy adaptation.

For each test, we generated feasible trajectories to the
goal using the divergence constrained RRT and trajectory

pruning, then tracked the trajectories using the robot’s low-
level trajectory tracker. For each system, we ran two trials.
One trial before any adaptation data was collected on the
particular system then one trial after giving the SIT data
to adapt the model to the specific system. Adaptation data
was collected through one short trial of the robot tracking a
manually defined trajectory.

The initial trial is similar to Domain Randomization [12],
where the robot’s policy is trained to be robust across a
wide spectrum of systems. Before the model is adapted to
any particular system, its probabilistic predictions capture
possible outcomes for a wide spectrum of systems. The
divergence constrained RRT planner then finds a strategy
that will be effective across this range of dynamics. On the
other hand, after adaptation, the model and resulting driving
strategy is tailored to the particular target system.

Driving Up Stairs: In the first test, the robots were
tasked with driving to the top of a set of stairs surrounded on
both sides by ramps. Both systems were capable of driving
up the ramp, but only the high-traction system could drive
directly up the stairs. While driving up the ramp is a safer
route, driving directly up the stairs is a more direct and lower
cost route. The results of the trials for both systems before
and after adaptation are shown in Fig. 1.

Before adaptation, the path planner always chooses the
more conservative path of driving up the ramp. For both
systems, we collected adaptation data by having the robots
track a trajectory going straight up the stairs. Notice that the
high-traction system was able to climb the stairs and track the
trajectory faithfully, whereas the low-traction system failed
and got stuck at the bottom of the stairs. After adapting
the dynamics model to the low friction system, the strategy
chosen by the planner did not change much and still avoided
going straight up the stairs. However, after adapting to the
high friction system, the planner chose the more aggressive
strategy of driving directly up the stairs, showing a gained
understanding of the robot’s capabilities. Notice that the
conservative strategy of driving up the ramp still required the
robot to drive across the stairs. This means that the planner
must not simply avoid stairs. The model must understand
that ascending stairs may be problematic, while descending
or driving across them is feasible.

Slope Driving Given Stair Demonstration: As another
simple example, we tested the approach on a similar environ-
ment. However, in this scenario, the low-traction system was
unable to drive up the ramps. The robot was placed on one
side of the obstacle with the goal on the other. The direct
route involved driving up and down the ramp sides of the
obstacle, which only the high-traction system was capable
of. The safer, but less direct, route involved driving around
the obstacle to the goal. The results of the trials for both
systems before and after adaptation are shown in Fig. 2.

Similar to the previous results, the path planner initially
chooses the conservative path of driving around the obstacle
for both systems. Again, we collected adaptation data by
having the robots track a single trajectory going up the stairs
which only the high-friction system was able to track. Again,
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Fig. 2: A low-traction robot and high-traction robot navigating
a ramp obstacle. Before adaptation, both systems choose a safe
route that avoids driving directly up the ramp (top). The dynamics
model was adapted to each system using data collected through
one demonstration (middle). After adaptation, the planner matches
the route to the capabilities of each system, with the high-traction
system’s route going directly up the ramp towards the goal (bottom).
The reference trajectory chosen by the planner or manually chosen
(for demonstration) is shown in red. The goal is shown in green.
Robot’s actual path is overlaid.

after demonstration, the planner changed only the plan for
the high-traction system to be more aggressive and direct.
However, in this scenario, the model took an observation
of the two systems on stairs and correctly predicted each
system’s capabilities on a different steep ramp obstacle. This
suggests that the SIT and ADM are not simply memorizing
obstacles, but gaining a generalized understanding of the
system’s capabilities.

V. DISCUSSION

While the results in this work are drawn from relatively
simple toy environments, they highlight some key advantages
of the adaptive rough terrain navigation framework devel-
oped in this work. Many of these key advantages stem from
combining concepts from our previous works [1,3].

First, this framework is capable of non-myopic dynamics-
aware decision making. In situations where the dynamics
model has determined that the robot may be incapable of
driving over the obstacle, the path planner chooses the path
around the obstacle despite it being longer and less direct.
The planner considers the robot’s dynamics capabilities and
does not simply avoid certain obstacles. This can be seen
in the stair example. If the planner just avoided the stairs
completely, the robot would not be able to make it to the
goal. Instead, the planner distinguishes the differences in

traction encountered when ascending the stairs as opposed
to descending or driving across them.

This framework also allows for robust navigation given
the current understanding of the target system’s particular
dynamics and capabilities. In the trials, the planner chose the
more conservative route upon initialization when the target
system observations are virtually non-existent and provide a
vague understanding of the target system’s particular capabil-
ities. Furthermore, the understanding of the target system’s
capabilities is not static but improves as more observations
are collected. This can be seen with the high-traction system.
After collecting observations through one demonstration of
driving up stairs, the planner changes its path to drive directly
up the stairs or ramp, matching the robot’s capabilities.

Furthermore, adaptations to the divergence constraint in
this work make it relevant to other high-level planning
frameworks and low-level planners than used in [3]. In this
work, we show the divergence constraint used in an RRT-
based decision making framework while using a different
trajectory tracker (pure-pursuit). Although this tracker is
still relatively simple, the modifications to the divergence
constraint does open up many more possibilities.

Currently, the System Identification Transformer trained
is only effective within the two environments shown in
Fig. 1 and 2. Ideally, the SIT could effectively extract an
understanding of the system’s capabilities through observing
the system interacting with any type of obstacles. However,
this would require training it with a large dataset containing
a diverse set of target system observations (H) with many
different combinations of obstacle interactions along with a
diverse set of simulated dynamics. To simplify the problem,
we used only a couple environments for training and testing
to limit the number of obstacles the robot might encounter.

When we tried training the SIT by randomizing the terrain,
following the approach in [3], it was unable to properly
distinguish between different systems. This could be perhaps
due to the sparsity of relevant information in the observation
set H during training. Or perhaps this approach just required
more data, a larger neural network architecture, and more
engineering effort.

Another limitation of our current planning framework is
its inability to vary velocity, thus not fully exploiting the
vehicle dynamics potential, as could be achieved with the
framework in [3]. In our current implementation, the planner
used a fixed velocity to steer between different states. Future
work could allow for velocity variations in the steer function
thus enabling the planner to choose appropriate speeds.

Finally, a potential extension to the work is to incorporate
safety constraints into the planner. Currently, the planner
only constrains solutions to satisfy the divergence constraint,
which mainly focuses on dynamic feasibility given prediction
uncertainty. In the future, the planner can also incorporate
other important considerations such as track boundary, vehi-
cle rollover [13], or later acceleration constraints [1].
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APPENDIX

Algorithm 1: Divergence Constrained RRT Search
Input : Starting State: sstart

Goal Location: sgoal
Target System Observations: H

Output: Solution Trajectory: d̄RRT

// Initialize tree root and initial
prediction distribution at sstart

znew ← NewNode(sstart, D̂last = (sstart, ..., sstart))
T ← InitializeTree(znew)
while znew ̸= goal do

// Generate reference trajectory
to random state

srand ← RandState() or goal with probability
pgoal
znear = (snear, D̂last)← Nearest(T, srand)
d̄← Steer(snear, srand, Texpand)

// Predict Trajectory Distribution
& Divergence

D̂, u← Predict(d̄, D̂last,H)
// Add new node to tree if

divergence constraint satisfied
if u < Umax then

snew, D̂last ← LastTimeStep(d̄, D̂)
znew ← NewNode(s̄new, D̂last)
T ← InsertNode(T, znear, znew)

// Work backward through tree to
find solution reference
trajectory

d̄RRT ← Backward(T, znew)



Algorithm 2: Divergence Constrained Pruning

Input : Initial Solution: d̄RRT

Goal Location: goal
Target System Observations: H

Output: Refined Solution: d̄prune
d̄prune ← d̄RRT

for number of prune iterations do
// Choose random segment to

replace
ts, te ← RandomWindow(d̄prune)
d̄best ← d̄prune[ts : te]

// Iterate through possible
replacements to find best
option

for
d̄sub ∈ CandidateSubTrajs(d̄prune[ts], d̄prune[te])
do

// Predict divergence of
resulting complete
trajectory

d̄cand ← Substitute(d̄prune, ts, te, d̄sub)
u← EvalDivergence(d̄cand,H)
// Choose substitute if

feasible and more optimal
if u < Umax and Cost(d̄sub) < Cost(d̄best)
then

d̄best ← d̄sub

d̄prune ∈ Substitute(d̄prune, ts, te, d̄best)


