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Abstract
As multi-agent reinforcement learning (MARL)
progresses towards solving larger and more com-
plex problems, it becomes increasingly impor-
tant that algorithms exhibit the key properties of
(1) strong performance, (2) memory efficiency,
and (3) scalability. In this work, we introduce
Sable, a performant, memory-efficient, and scal-
able sequence modelling approach to MARL.
Sable works by adapting the retention mecha-
nism in Retentive Networks (Sun et al., 2023)
to achieve computationally efficient processing of
multi-agent observations with long context mem-
ory for temporal reasoning. Through extensive
evaluations across six diverse environments, we
demonstrate how Sable is able to significantly
outperform existing state-of-the-art methods
in a large number of diverse tasks (34 out of
45 tested). Furthermore, Sable maintains perfor-
mance as we scale the number of agents, handling
environments with more than a thousand agents
while exhibiting a linear increase in memory us-
age. Finally, we conduct ablation studies to iso-
late the source of Sable’s performance gains and
confirm its efficient computational memory us-
age. All experimental data, hyperparameters,
and code for a frozen version of Sable used in
this paper are available on our website. An
improved and maintained version of Sable is
available in Mava.

1. Introduction
Large-scale practical applications of multi-agent reinforce-
ment learning (MARL), such as autonomous driving (Lian
& Deshmukh, 2006; Zhou et al., 2021; Li et al., 2022) and
electricity grid control (Kamboj et al., 2011; Li et al., 2016),
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Figure 1. Performance, memory, and scaling properties of Sable
compared to the Multi-Agent Transformer (MAT) (Wen et al.,
2022), the previous state-of-the-art, aggregated over 45 coop-
erative MARL tasks. Left: Sable ranks best in 34 out of 45 tasks,
outperforming all other MARL algorithms tested across 6 envi-
ronments: RWARE, LBF, MABrax, SMAX, Connector, and MPE.
MAT ranked best of 3/45. Middle: Sable exhibits superior through-
put, processing up to 6.5 times more steps per second compared to
MAT as we scale to 512 agents. Right: Sable scales efficiently to
thousands of agents, maintaining stable performance, while using
GPU memory significantly more efficiently than MAT.

require decision-making systems that have strong perfor-
mance for accurate control, are memory efficient to maxi-
mize compute hardware and are able scale to a large number
of agents representing the different components of a com-
plex system.

Although many existing MARL approaches exhibit one or
two of the above properties, a solution effectively encom-
passing all three remains elusive.

To elaborate, we briefly consider the current spectrum of
MARL, from fully decentralised training, or independent
learning systems, to fully centralised learning. We consider
these paradigms in terms of their potential to exhibit:

1. Strong performance: the general ability to solve tasks
at a moderate scale.

2. Memory efficiency: the hardware memory require-
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ments to perform joint policy inference at execution
time.

3. Scalability: the ability to maintain good performance
as the number of agents in the system grows large.

Independent learning (IL) — memory efficient but not
performant or scalable. On the one end of the spectrum lies
IL, or decentralised methods, where agents act and learn
independently. As intuitively expected, the earliest work
in MARL uses this approach (Tan, 1993; 1997). However,
even early on, clear limitations were highlighted due to
non-stationarity from the perspective of each learning agent
(Claus & Boutilier, 1998), failing to solve even simple tasks.
When deep neural networks were introduced into more mod-
ern MARL algorithms, these algorithms also followed the
IL paradigm (Tampuu et al., 2017; Witt et al., 2020), with
reasonable results. IL algorithms demonstrate proficiency
in handling many agents in a memory-efficient way by typi-
cally using shared parameters and conditioning on an agent
identifier. However, at scale, the performance of IL remains
suboptimal compared to more centralised approaches (Pa-
poudakis et al., 2021; Yu et al., 2022; Wen et al., 2022).

Centralised training with decentralised execution
(CTDE) — performant and memory efficient but not yet
scalable. As a solution to the failings of independent learn-
ing and lying between decentralised and centralised meth-
ods, is CTDE (Kraemer & Banerjee, 2016). Here, cen-
tralisation improves learning by removing non-stationarity,
while decentralised execution maintains memory-efficient
deployment. CTDE follows two main branches: value-
based and actor-critic. In value-based methods, centralisa-
tion is achieved through a joint value function used during
training which has a factorisation structure adhering to the
individual-global-max (IGM) principle. This means that
if each agent acts greedily at execution time it is equiva-
lent to the team acting greedily according to the joint value
function. Seminal work along this line includes VDN (Sune-
hag et al., 2017) and QMIX (Rashid et al., 2018), with
many follow-up works investigating value decomposition
in MARL (Son et al., 2019; Rashid et al., 2020b; Wang
et al., 2020a; Son et al., 2020; Yang et al., 2020; Rashid
et al., 2020a). In actor-critic methods, a centralised critic
is used during training and at execution time policies are
deployed independently. Many popular single-agent actor-
critic algorithms have multi-agent CTDE versions including
MADDPG (Lowe et al., 2017), MAA2C (Papoudakis et al.,
2020), and MAPPO (Yu et al., 2022), and have been com-
bined with factorised critics (Wang et al., 2020b; Peng et al.,
2021). Although CTDE helps during training to achieve bet-
ter performance at execution time, centralised training may
remain prohibitively expensive, especially if the size of the
global state is agent dependent. Furthermore, independent
policies, even when trained jointly, are often limited in their

coordination capabilities when deployed at a larger scale
(Long et al., 2020; Christianos et al., 2021; Guresti & Ure,
2021).

Another line of work in CTDE has focused on develop-
ing more theoretically principled algorithms. In particular,
Kuba et al. (2022a) develop trust region learning methods
which are subsequently extended by Kuba et al. (2022b)
into a mirror learning framework for MARL, culminat-
ing in the Fundamental Theorem of Heterogeneous-Agent
Mirror Learning (Theorem 1). The theorem states that
for specifically designed methods that utilise a particular
heterogeneous-agent update scheme during policy optimi-
sation, monotonic improvement and convergence are guar-
anteed. Stemming from this work, a class of heterogeneous
agent RL algorithms has been proposed including HATRPO,
HAPPO, HAA2C, HADDPG, and HASAC (Zhong et al.,
2024; Liu et al., 2023b). Although theoretically sound, these
algorithms generally suffer from the same drawbacks as con-
ventional CTDE methods in terms of practical performance
at scale, for similar reasons (Guo et al., 2024).

Centralised learning (CL) — strong performance but not
yet memory efficient or scalable. On the other end of the
spectrum lie centralised algorithms. These include classi-
cal RL algorithms that treat MARL as a single-agent prob-
lem with an expanded action space, as well as approaches
that condition on global information during execution, e.g.
graph-based communication methods (Zhu et al., 2022). A
particularly interesting line of work in this setting has been
to re-frame MARL as a (typically offline) sequence model-
ing problem (Chen et al., 2021; Meng et al., 2021; Tseng
et al., 2022; Zhang et al., 2022; Liu et al., 2023a; Forsberg
et al., 2024) and employ the use of transformers (Vaswani
et al., 2017; Hu et al., 2021; Gallici et al., 2023; Yang et al.,
2024) to learn effective control policies. One such approach
for online learning is the Multi-Agent Transformer (MAT)
(Wen et al., 2022) which is currently the state-of-the-art for
cooperative MARL. Although MAT is highly performant, it
has limitations: (1) it lacks the ability to scale to truly large
multi-agent systems due to the inherent memory limitations
of the attention mechanism (Katharopoulos et al., 2020),
and (2) it is not able to condition on observation histories.

Our work — state-of-the-art performance, memory efficient
and scalable. We seek to develop an approach capable of
strong performance while being memory efficient and able
to scale to many agents. To achieve this, we take inspiration
from the centralised MAT architecture and recent work in
linear recurrent models in RL (Lu et al., 2024; Morad et al.,
2024) to develop an efficient online sequence modelling
approach to MARL. Our method is a centralised algorithm,
yet it is scalable and memory efficient. Our key innovation
to obtain strong performance and scalability is to replace the
attention mechanism in MAT with an RL-adapted version
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of retention, from Retentive Networks (RetNets) (Sun et al.,
2023). We call our approach Sable.

Sable is able to handle settings with up to a thousand agents
and can process entire episode sequences as stateful memory,
crucial for learning in partially observable settings. Through
comprehensive benchmarks across 45 different tasks, we
empirically verify that Sable significantly outperforms the
current state-of-the-art in a large number of tasks (34 out
of 45). This includes outperforming MAT (see Figure 1),
the current best sequence model for MARL, while having
memory efficiency comparable to independent PPO, which
is fully decentralised, achieving the best of both ends of the
MARL spectrum. In other words, Sable is a centralised al-
gorithm with strong performance without the drawbacks of
a centralised design, which is typically far less memory effi-
cient and scalable when compared to fully decentralised and
CTDE methods. Although concurrent work has explored
using linear recurrent sequence models as world models in
RL (Cohen et al., 2024; Wang et al., 2024), Sable is the first
demonstration of successfully using RetNets for learning
control policies. We summarise our contributions below:

• RetNet innovations for RL We propose the first
RetNet-based architecture suitable for online RL. We
develop a novel encoder-decoder RetNet with a cross-
retention mechanism and adapt the decay matrix with
resettable hidden states over temporal sequences. This
is to ensure correct information handling from expe-
rience gathered across episode boundaries, a unique
architectural change required for successful RL train-
ing in RetNets.

• A new sequence model for MARL We combine the
above innovations into a novel MARL architecture
which achieves state-of-the-art performance, can rea-
son over multiple timesteps, is memory efficient, and
scales to over a thousand agents.

• Comprehensive benchmarking results Our evalu-
ations across 45 tasks from 6 diverse environments
provide nearly double the experimental data for com-
parison as dedicated benchmarking work (Papoudakis
et al., 2020; Yu et al., 2022; Bettini et al., 2024), gives
the first set of comprehensive results on newly pro-
posed JAX-based environments (Bonnet et al., 2023;
Rutherford et al., 2023) and is substantially more than
what has been historically provided in recently pub-
lished work (Gorsane et al., 2022).

• Data and code We publicly release all our experi-
mental data and code, with scripts to reproduce all our
findings. We also hope this will make it easy for the
research community to build on this work.

2. Background
Problem Formulation We model cooperative MARL as
a Dec-POMDP (Kaelbling et al., 1998) specified by the
tuple ⟨N ,S, {Ai}i∈N , P,R, {Ωi}i∈N , {Oi}i∈N , γ⟩. At
each timestep t, the system is in state st ∈ S. Each agent
i ∈ N selects an action ait ∈ Ai, based on its observation
oit ∈ Ωi, contributing to a joint action at ∈ A =

∏
i∈N Ai.

Executing at in the environment gives a shared reward
rt = R(st,at), transitions the system to a new state
st+1 ∼ P (·|st,at), and provides each agent i with a new
observation oit+1 ∼ Oi(·|st+1,at). To support the full
spectrum of MARL, our observation function Oi is defined
to be general in the following sense: it is a function that
maps from the underlying global state and joint action to the
agent’s probability distribution over the power set of con-
catenated observations, given asOi : S ×A→ ∆(P(Ωi)),
where P(Ωi) is the power set of the observation space Ωi

and ∆(P(Ωi)) represents the set of all probability distribu-
tions over P(Ωi). This means that for independent obser-
vations, the probabilities are only non-zero over singleton
sets (i.e. single observations) and for centralised observa-
tions, it has full support (i.e. includes probability mass on all
possible combinations). For more detail, see Appendix A.
The goal is to learn a joint policy π(a|o), over an episode
horizon T , that maximises the expected sum of discounted
rewards, J(π) = Eπ

[∑T
t=0 γ

trt

]
.

Retention Retention as used in Retentive networks (Ret-
Nets) introduced by (Sun et al., 2023), eliminates the
softmax operator from attention and instead incorporates a
time-decaying causal mask (decay matrix) with GroupNorm
(Wu & He, 2018) and a swish gate (Hendrycks & Gimpel,
2016; Ramachandran et al., 2017) to retain non-linearity.
This reformulation allows for the same computation to be
expressed in three distinct but equivalent forms:

1. Recurrent which operates on a single input token at a
time via a hidden state

hs = κhs−1 +KT
sVs

Ret(xs) = Qshs, s = 1, . . . , S
(1)

where Qs,Ks, Vs are per-token query, key, and value ma-
trices, respectively. Each of these is computed by applying
learned projection matrices WQ, WK , and WV on the em-
bedded input sequence x. The decay factor κ ∈ (0, 1)
determines the rate at which information from earlier parts
of the sequence is retained.

2. Parallel which operates on a batch of tokens in parallel,
akin to attention, given as

Ret(x) = (QKT ⊙D)V, Dsm =

{
κs−m, if s ≥ m

0, if s < m,

(2)
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Figure 2. Sable architecture and execution. The encoder receives all agent observations o1t , ..., oNt from the current timestep t along with
a hidden state henc

t−1 representing past timesteps and produces encoded observations ô1t , ..., ôNt , observation-values v(ô1t ), ..., v(ôNt ) and
a new hidden state henc

t . The decoder performs recurrent retention over the current action am−1
t , followed by cross attention with the

encoded observations, producing the next action am
t . The initial hidden states for recurrence over agents in the decoder at the current

timestep are (hdec1
t−1 , hdec2

t−1 ) and by the end of the decoding process, it generates the updated hidden states (hdec1
t , hdec2

t ).

where D is referred to as the decay matrix.

3. Chunkwise which is a hybrid between the parallel and
recurrent forms and allows for efficient long-sequence mod-
eling. The approach involves splitting the sequence into i
smaller chunks, each of length B, and can be written as:

Q[i]=QB(i−1):Bi,K[i]=KB(i−1):Bi,V[i]=VB(i−1):Bi

hi = KT
[i](V[i] ⊙ ζ) + κBhi−1,

ζjk = κB−j−1, ∀ k ∈ {1 . . . B}
Ret(x[i]) = (Q[i]K

T
[i] ⊙D)V[i] + (Q[i]hi−1)⊙ ξ,

ξjk = κj+1, ∀ k ∈ {1 . . . B}. (3)

The above equivalent representations enable two key advan-
tages over transformers: (1) it allows for constant memory
usage during inference while still leveraging modern hard-
ware accelerators for parallel training, and (2) it facilitates
efficient handling of long sequences by using the chunkwise
representation during training, which can be re-expressed in
a recurrent form during inference.

3. Method
In this section, we introduce Sable, our approach to MARL
as sequence modelling using a modified version of retention
suitable for RL. Sable enables parallel training and memory-
efficient execution at scale, with the ability to capture tem-

poral dependencies across entire episodes. We explain how
Sable operates during both training and execution, how we
adapt retention to work in MARL, and provide different
strategies for scaling depending on the problem setting.

Execution Sable interacts with the environment for a de-
fined rollout length, L, before each training phase. During
this interaction, the encoder (left in Figure 2) uses a chunk-
wise representation, processing the observation of all agents
at each timestep in parallel. A hidden state henc maintains
a memory of past observations and is reset at the end of
each episode. During execution, the decay matrix, D, is set
to all ones, allowing for full self-retention over all agents’
observations within the same timestep. These adjustments
to retention, particularly the absence of decay across agents
and the resetting of memory at episode termination, result
in the following encoder formulation during execution:

Ret(õt) = Qth
enc
t , t = l, . . . , l + L

where henc
t = δ(κhenc

t−1 +KT
t Vt),

δ =

{
0, if the episode has ended
1, if the episode is ongoing

(4)

where Qt,Kt, Vt are query, key, and value matrices of all
agents’ observations at timestep t within the rollout that
started at lth timestep and õt is the embedded observation
sequence.
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Algorithm 1 Sable

Require: rollout length (L), updates (U ), agents (N ), epochs (K), minibatches (M )
1: hact

joint ← hact
enc, h

act
dec ← 0 ▷ Initialize hidden state for encoder and decoder to zeros

2: for Update = 1, 2, . . . , U do
3: htrain

joint ← hact
joint ▷ Store initial hidden states for training

4: for t = 1, 2, . . . , L do
5: ôt,vt, h

act
enc ← encoder.chunkwise(ot, h

act
enc)

6: for i = 1, 2, . . . , N do
7: ait, π

i
old(a

i
t|ôit), hact

dec ← decoder.recurrent(ôit, a
i−1
t , hact

dec) ▷ Auto-regressively decode actions
8: end for
9: Step environment using at and store (ot,at, dt, rt,πold(at|ôt)) in buffer B

10: if episode terminates then hjoint ← 0 else hjoint ← κhjoint

11: end for

12: Use GAE to compute advantage estimates Â and value targets v̂
13: for epoch = 1, 2, . . . ,K do
14: Sample trajectories τ = (ob1:L ,ab1:L , db1:L , rb1:L ,πold(ab1:L |ôb1:L)) from B, shuffling along the agent dimension
15: for minibatch = 1, 2, . . . ,M do
16: Generate Denc, Ddec given Equations 9 and 10, and db1:L
17: ô1:L,vb1:L ← encoder.chunkwise(ob1:L , h

train
enc , Denc)

18: π(ab1:L |ôb1:L)← decoder.chunkwise(ab1:L , ô1:L, h
train
dec , Ddec)

19: θ ← θ +∇θ LPPO(θ, Â1:L, ô1:L,a1:L)

20: ϕ← ϕ−∇ϕ LMSE(ϕ, rb1:L ,vb1:L , v̂b1:L)

21: end for
22: end for
23: end for

The decoder (right in Figure 2) operates recurrently
over both agents and timesteps, decoding actions auto-
regressively per timestep as follows:

Ret(ãit) = Qi
tĥi,

where ĥi = ĥi−1 + (Ki
t)

TV i
t , i = 1, . . . , N,

(5)

with ĥ1 = hdec
t−1 + (K1

t )
TV 1

t and hdec
t = δ(κĥN ). Here,

Qi
t,K

i
t , V

i
t are query, key and value matrices and ãit the

embedded action of the ith agent at timestep t. The hidden
state hdec is carried across timesteps, decaying at the end
of each timestep and resetting to zero when an episode
ends. Within each timestep, the intermediate variable ĥi is
sequentially passed from one agent to the next and is used
exclusively in the retention calculation. Pseudocode for the
execution phase can be found in Lines 4-11 of Algorithm 1.

Training During training, Sable samples entire trajecto-
ries τ from an on-policy buffer and randomly permutes the
order of agents within timesteps. The encoder takes as input
a sequence of flattened agent-timestep observations from
an entire trajectory: [o1l , o

2
l , ..., o

N−1
l+L , oNl+L], representing

a sequence of observations that start at timestep l. The
decoder takes a similar sequence of actions instead of obser-
vations as input. The encoder and decoder outputs are then
used to update the network via the clipped PPO objective
function (Schulman et al., 2017). This objective, combined
with auto-regressive action selection, puts Sable in the class

of algorithms that lie on the continuum of Heterogeneous-
Agent Mirror Learning (HAML), with proven convergence
guarantees (Kuba et al., 2022b).

Sable uses the chunkwise representation for both encoding
and decoding during training, allowing it to process entire
trajectories in parallel while using a hidden state to maintain
the memory of previous trajectories. Pseudocode for the
training phase can be found in Lines 12-22 of Algorithm 1.

Sable’s chunkwise formulation processes trajectories τ , of
length L, containing N agents, by dividing them into smaller
segments of length C. It applies a decay factor κ over time
and resets the memory using matrices D, ζ , and ξ at the end
of each episode, resulting in a chunkwise training equation
for each chunk i.

Q[τi] = QC(i−1):Ci

K[τi] = KC(i−1):Ci

V[τi] = VC(i−1):Ci

hi = KT
[τi]

(
V[τi] ⊙ ζ

)
+ δκ⌊L/C⌋hi−1

ζ = DN ·⌊L/C⌋,1:N ·⌊L/C⌋

Ret(x[τi]) =
(
Q[τi]K

T
[τi]
⊙D

)
V[τi] +

(
Q[τi]hi

)
⊙ ξ

where ξj =

{
κ⌊j/N⌋+1, if j ≤ Ntd0

0, if j > Ntd0

.

(6)
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The floor operator in ξ, ⌊i/N⌋, ensures that all agents from
the same timestep share the same decay values. The input
x[τ ] is the sequence of observations from τ for the encoder
and the sequence of actions for the decoder. We represent
the index of the first terminal timestep in x[τ ] as td0

and
use hτ to denote the hidden state at the end of the current
trajectory τ . Finally, the matrix D is a modified version of
the decay matrix from standard retention, with dimensions
(NL,NL), which we define in more detail below.

In practice, rather than computing h during training, we
reuse the hidden states from the final step of the previous
execution trajectory τprev, which means that we replace
hτprev with henc

l−1 in the case of the encoder and hdec
l−1 in the

case of the decoder.

Adapting the decay matrix for MARL In order for Ret-
Nets to work in RL, we make three key adaptations to the
decay matrix used during training. First, we ensure that
each agent’s observations are decayed by the same amount
within each timestep. Second, we ensure that the decay
matrix accounts for episode termination so that information
is not allowed to flow over episode boundaries. Third, we
construct an agent block-wise decay matrix for the encoder
to ensure that there is full self-retention over agents within
each timestep. A more detailed discussion on the construc-
tion of the decay matrices as well as an illustrative example
are given in Appendix E.

Scaling and efficient memory usage In practical appli-
cations, there might be different axes of interest in terms
of memory usage. For example, scaling the number of
agents in the system, or efficiently handling the sequence
length that can be processed at training time, i.e. the number
of timesteps per update. We propose slightly different ap-
proaches for efficient memory use and scaling across each
axis.

Scaling the number of agents. Scaling to thousands of
agents requires a significant amount of memory. Therefore,
in this setting, we use MAT-style single-timestep sequences
to optimise memory usage and reserve chunking to be ap-
plied across agents. This requires only changing the encoder
during execution, as the decoder is already recurrent over
both agents and timesteps. However, this change to the en-
coder makes it unable to perform full self-retention across
agents, as it cannot be applied across chunks. During train-
ing, the process mirrors that of execution but is applied to
both the encoder and decoder.

Scaling the trajectory context length. Since the training
sequence will grow proportional to NL in the case where
Sable maintains memory over trajectories, training could
become computationally infeasible for tasks requiring long
rollouts. In order to accommodate this, we chunk the flat-

tened agent-timestep observation along the time axis dur-
ing training with the constraint that agents from the same
timestep must always be in the same chunk. This allows
Sable to process chunks of rollouts several factors smaller
than the entire rollout length while maintaining a memory
of the full sequence during processing.

Code Our implementation of Sable is in JAX (Bradbury
et al., 2023). All code for the version of Sable used in this
paper is available on our website, while an improved and
maintained version of Sable is available in Mava.

4. Experiments
We validate the performance, memory efficiency and scala-
bility of Sable by comparing it against several SOTA base-
line algorithms from the literature. These baselines can
broadly be divided into two groups. The first group consists
of heterogeneous agent algorithms that leverage the advan-
tage decomposition theorem. To the best of our knowledge,
the Multi-Agent Transformer (MAT) (Wen et al., 2022)
represents the current SOTA for cooperative MARL on dis-
crete environments, and Heterogeneous Agent Soft Actor-
Critic (HASAC) (Liu et al., 2023b) the current SOTA on
continuous environments. The second group includes well-
established baseline algorithms, including IPPO (Witt et al.,
2020), MAPPO (Yu et al., 2022), QMIX (Rashid et al.,
2020a) and MASAC. For all baselines, we use the JAX-
based MARL library Mava (de Kock et al., 2023).

Evaluation protocol We train each algorithm for 10 in-
dependent trials for each task. Each training run is allowed
20 million environment timesteps with 122 evenly spaced
evaluation intervals. At each evaluation, we record the mean
episode return over 32 episodes and, where relevant, any
additional environment specific metrics (e.g. win rates). In
line with the recommendations of Gorsane et al. (2022), we
also record the absolute performance. For task-level aggre-
gation, we report the mean with 95% confidence intervals
while for aggregations over entire environment suites, we re-
port the min-max normalised inter-quartile mean with 95%
stratified bootstrap confidence intervals. Following from
Agarwal et al. (2021), we consider algorithm X to have a
significant improvement over algorithm Y if the probabil-
ity of improvement score and all its associated confidence
interval values are greater than 0.5. All our evaluation ag-
gregations, metric calculations, and plotting leverage the
MARL-eval library from Gorsane et al. (2022).

Environments We evaluate Sable on several JAX-based
benchmark environments including Robotic Warehouse
(RWARE) (Papoudakis et al., 2021), Level-based forag-
ing (LBF) (Christianos et al., 2020), Connector (Bonnet
et al., 2023), The StarCraft Multi-Agent Challenge in
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Figure 3. Sample efficiency curves and probability of improvement scores aggregated per environment suite. For each environment, results
are aggregated over all tasks and the min–max normalized inter-quartile mean with 95% stratified bootstrap confidence intervals are
shown. Inset plots indicate the overall aggregated probability of improvement for Sable compared to other baselines for that specific
environment. A score of more than 0.5 where confidence intervals are also greater than 0.5 indicates statistically significant improvement
over a baseline for a given environment (Agarwal et al., 2021).

Table 1. Per environment episode return. Inter-quartile mean of the absolute episode returns with 95% stratified bootstrap confidence
intervals. Bold values indicate the highest score per environment, and an asterisk indicates that a score overlaps with the highest score
within one confidence interval.

Environment Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

RWARE 0.81(0.79,0.83) 0.69(0.67,0.71) 0.51(0.47,0.54) 0.15(0.11,0.2) / / /
MABrax 0.56(0.53,0.58) 0.45(0.42,0.47) 0.6(0.57,0.64) 0.5(0.49,0.52) 0.82(0.77,0.86) 0.8∗(0.76,0.83) /
SMAX 0.94(0.92,0.95) 0.92∗

(0.91,0.94) 0.86(0.84,0.87) 0.93∗
(0.91,0.94) / / / 0.86(0.84,0.88)

Connector 0.95(0.95,0.95) 0.88(0.88,0.89) 0.91(0.91,0.92) 0.93(0.92,0.93) / / /
LBF 1.0(1.0,1.0) 0.99(0.98,0.99) 1.0(1.0,1.0) 0.99∗(0.99,1.0) / / /
MPE 0.95(0.94,0.95) 0.69(0.68,0.71) 0.81(0.8,0.81) 0.79(0.78,0.8) 0.76(0.72,0.8) 0.79(0.76,0.82) /

JAX (SMAX) (Rutherford et al., 2023), Multi-agent Brax
(MABrax) (Peng et al., 2021) and the Multi-agent Particle
Environment (MPE) (Lowe et al., 2017). All environments
have discrete action spaces with dense rewards, except for
MABrax and MPE, which have continuous action spaces
and RWARE which has sparse rewards. Furthermore, we
compare to HASAC and MASAC only on continuous tasks
given their superiority in this setting, and QMIX only on
SMAX as it has been shown to perform suboptimally in
other discrete environments (most notably in sparse reward
settings such as RWARE) (Papoudakis et al., 2020). Fi-
nally, we highlight that our evaluation suite comprised of
45 tasks represents nearly double the amount of tasks used
by prior benchmarking work (Papoudakis et al., 2020) and
substantially more than conventional research work recently

published in MARL (Gorsane et al., 2022).

Hyperparameters All baseline algorithms as well as
Sable were tuned on each task with a tuning budget of
40 trials using the Tree-structured Parzen Estimator (TPE)
Bayesian optimisation algorithm from the Optuna library
(Akiba et al., 2019). For a discussion on how to access all
task hyperparameters and for all tuning search spaces, we
refer the reader to Appendix D.

4.1. Performance

In Figure 1, we report the amount of times that an algorithm
had a significant probability of improvement over all other
algorithms on a given task. Furthermore, we present the
per environment aggregated sample efficiency curves, prob-
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ability of improvement scores and episode returns in Figure
3 and Table 1. Our experimental evidence shows Sable
achieving state-of-the-art performance across a wide range
of tasks. Specifically, Sable exceeds baseline performance
on 34 out of 45 tasks. The only environment where this is
not the case is on MABrax. For continuous robotic control
tasks SAC is a particularly strong baseline, typically outper-
forming on-policy methods such as PPO (Haarnoja et al.,
2018; Huang et al., 2024; Freeman et al., 2021a). Given that
Sable uses the PPO objective for training, this performance
is unsurprising. However, Sable still manages to achieve the
best performance in the continuous control tasks on MPE.
We note that previous benchmarking and evaluation work
(Papoudakis et al., 2020; Gorsane et al., 2022) has recom-
mended training off-policy algorithms for a factor of 10 less
environment interactions than on-policy algorithms due to
more gradient updates for the same number of environment
interactions. In our case, we find that off-policy systems
do roughly 15 times more gradient updates for the same
amount of environment interactions. If we had done this,
the performance of HASAC, MASAC and QMIX would
have been less performant than reported here. Additional
tabular results, task and environment level aggregated plots
are given in Appendix C.

4.2. Memory usage and scalability

We assess Sable’s ability to efficiently utilise computational
memory, focusing primarily on scaling across the agent axis.

Challenges in testing scalability using standard envi-
ronments Testing scalability and memory efficiency in
standard MARL environments poses challenges, as many en-
vironments such as SMAX, MPE and Connector, expand the
observation space as the number of agents grows. MABrax
has uniquely assigned roles per agent making it difficult to
scale up and RWARE does not have a straightforward way to
ensure task difficulty as the number of agents increases. For
these reasons, the above environments are difficult to use
when testing algorithmic scalability without significantly
modifying the original environment code. Among these,
LBF is unique because it is easier to adjust by reducing
agents’ field of view (FOV) while maintaining a reasonable
state size and offering faster training. However, other than
the FOV, it still requires modifications to ensure a fixed
observation size, see Appendix B.3 for more details. De-
spite these adjustments, LBF could not fully demonstrate
Sable’s scaling capability, as it could not scale past 128
agents due to becoming prohibitively slow. Therefore, to
explore scaling up to a thousand agents, we introduce Neom,
a fully cooperative environment specifically designed to test
algorithms on larger numbers of agents.

A new environment for testing agent scalability in coop-
erative MARL A task in Neom is characterised by a peri-
odic, discretised 1-dimensional pattern that is repeated for a
given number of agents. Each agent observes whether it is
in the correct position and the previous actions it has taken.
Agents receive a shared reward which is calculated as the
Manhattan distance between the team’s current pattern and
the underlying task pattern. We design three task patterns:
(1) simple-sine: {0.5, 0.7, 0.8, 0.7, 0.5, 0.3, 0.2, 0.3},
(2) half-1-half-0: {1, 0}, (3) quick-flip:
{0.5, 0,−0.5, 0}. For more details, see Appendix B.7.

Experimental setup We evaluate the performance of
Sable, MAT, and IPPO on the LBF and Neom environments.
For LBF, experiments involve tasks with 32, 64, and 128
agents, while for Neom we include tasks with 32, 512 and
1024 agents. To measure the memory usage efficiency on
both LBF and Neom environments on the agents’ axis, we
select 32 as the fixed chunk size, which corresponds to the
smallest number of agents used in our experiments.

Results From the results in Figure 4, we observe the fol-
lowing. First, Sable and IPPO exhibit similar memory scal-
ing trends, with IPPO’s lower memory usage attributable
to its much smaller networks. However, while IPPO scales
well from a memory perspective, it is unable to learn effec-
tively with many agents. It achieves high initial rewards, but
its performance degrades as training progresses. Second, we
find that Sable can consistently outperform MAT. Although
the margin is small, this performance is achieved while main-
taining comparable computational memory usage to IPPO,
whereas MAT scales poorly and requires more than the
maximum available GPU memory (80GB) on Neom tasks
with 1024 agents. Notably, for Neom with 1024 agents,
Sable sustains a stable mean episode return of around 25,
indicating that approximately 40% to 50% of the agents
successfully reached the target location. This result is sig-
nificant given the shared reward structure, which poses a
difficult coordination challenge for such a large population
of agents.

4.3. Ablations

We aim to better understand the source of Sable’s perfor-
mance gains compared to MAT. There are two specific im-
plementation details that Sable inherits from the retention
mechanism that can easily be transferred to attention, and
therefore to MAT. The first is using root mean square nor-
malization (RMSNorm) (Zhang & Sennrich, 2019) instead
of layer normalization (Lei Ba et al., 2016) and the second
is using SwiGLU layers (Shazeer, 2020; Ramachandran
et al., 2017) instead of feed forward layers. Other than
implementation details, the difference between MAT and
Sable is that Sable uses retention instead of attention and it
conditions on histories instead of on single timesteps. To
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(g) Neom - 512 agents
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(h) Neom - 1024 agents

Figure 4. Memory usage and agent scalability. When scaling to many agents, Sable is able to achieve superior converged performance
while maintaining memory efficiency. MAT runs out of memory on Neom - 1024 agents and thus it’s curve is omitted from (h).
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Figure 5. Ablation studies on RWARE and SMAX. (a) Comparing Sable with MAT with modifications from Sable’s implementation details.
(b) Showing the relationship between chunk size, performance and memory usage on RWARE.

determine the reason for the performance difference be-
tween Sable and MAT, we adapt MAT to use the above
implementation changes, both independently and simultane-
ously and we compare MAT to a version of Sable with no
memory that only conditions on the current timestep. We
test all three variants of MAT and the Sable variant on two
RWARE tasks (tiny-4ag and medium-4ag) and two
SMAX tasks (3s5z and smacv2 5 units) and compare
them with the original implementation. We tune all methods
using the same protocol as the main results.

In Figure 5a, we see that the above implementation details
do make a difference to MAT’s performance. In RWARE,
MAT’s variants slightly increase in both performance and
sample efficiency. However, Sable still achieves signifi-
cantly higher performance while maintaining a similar sam-
ple efficiency. The same cannot be said for Sable without
memory which performs similarly to the default MAT and
significantly worse than MAT with the implementation im-
provements. In SMAX, we observe a marked increase in
sample efficiency for MAT equaling the sample efficiency
of Sable and outperforming Sable’s sample efficiency with-
out memory, but no increase in overall performance. This
is likely due to the fact that both MAT and Sable already
achieve close to the maximum performance in these SMAX
environments. In summary, we find that these implementa-
tion details do matter and improve the performance and sam-

ple efficiency of MAT, although not to the level of Sable’s
performance. When we compared MAT, Sable, and Sable
without memory, we discovered that Sable’s performance
improvement stems from its ability to use temporal memory,
rather than from the retention mechanism itself. This is
evident because Sable without memory (which performs
similarly to MAT) differs from Sable only in how the input
sequence is structured.

In Figure 5b, we see that even when dividing the rollout
trajectories into chunks that are up to a factor of 16 smaller
than the full rollout length, Sable’s performance remains
consistent, while its memory usage decreases.

5. Conclusion
In this work, we introduced Sable, a novel cooperative
MARL algorithm that achieves significant advancements
in memory efficiency, agent scalability and performance.
Sable’s ability to condition on entire episodes provides it
with enhanced temporal processing, leading to strong perfor-
mance. This is evidenced by our extensive evaluation, where
Sable significantly outperforms other leading approaches.
Moreover, Sable’s memory efficiency complements its per-
formance by addressing the significant challenge of scaling
MARL algorithms as it is able to maintain stable perfor-
mance even when scaled to over a thousand agents.
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Appendix

A. Background
A.1. A general Dec-POMDP observation function to simultaneously support IL, CTDE and CL

For a specific agent i, let Ωi be its set of possible atomic observations. These atomic observations oi ∈ Ωi could themselves
be complex entities (e.g., embedded and/or concatenated observations from shared information across different agents or the
environment state). The actual observation perceived by agent i is a set ωi ⊆ Ωi, meaning ωi ∈ P(Ωi), where P(Ωi) is the
power set of Ωi. The observation function for agent i, denoted by Oi, maps from the global state s and the joint action a to
a probability distribution over the power set of agent i’s atomic observations, P(Ωi). This can be written as:

Oi : S ×A→ ∆(P(Ωi)),

where ∆(P(Ωi)) represents the set of all probability distributions over P(Ωi). The probability that agent i observes the
specific set ωi ∈ P(Ωi) given the global state s and joint action a is denoted by Oi(ωi|s,a). This formulation allows for
handling different learning and execution setups in MARL:

Independent observations (for IL and CTDE during execution): In this case, the probabilities Oi(ωi|s,a) are non-zero
only for singleton sets (i.e., when agent i observes exactly one atomic observation, which is its local observation). Formally,
for any s ∈ S and a ∈ A:

if Oi(ωi|s,a) > 0, then |ωi| = 1.

This means that ωi = {oi} for some oi ∈ Ωi. Consequently, for any ωi ∈ P(Ωi) such that |ωi| ≠ 1,Oi(ωi|s,a) = 0.

Centralised observations (for CTDE during training and CL): In this case, the observation function Oi has full support
over P(Ωi). This implies that the probability mass can be distributed across all possible subsets of Ωi. Formally,

∀ωi ∈ P(Ωi), it is possible that Oi(ωi|s,a) > 0.

This allows an agent to potentially observe a single piece of (local) information, or multiple pieces of information obtained
via information sharing between agents and/or the environment state.

Note that although we support all possible settings in our work, including centralised training and execution, our problem
setting remains partially observable and aligned with the definition of a Dec-POMDP (Oliehoek et al., 2016). The general
problem setting we consider is a cooperative task with shared rewards where the global state is not factorised across
individual agent observations. That is, even if at execution the agents can condition on other agents’ observations through
attention/retention for CL, this does not reconstruct the full state, and therefore remains a partial (but aggregated) observation.

As a concrete example, consider a two-agent grid world where agents receive a joint reward when they simultaneously reach
a goal G.

# # # # # # #
# . A2 . . G #
# . # . . . #
# . . . . . #
# A1 . . # . #
# # # # # # #

A1 then has a partial observation of the grid, which can be given as

# . .
# A1 .
# # #

while A2 has partial observation
# # #
. A2 .
. # .
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An aggregation over these observations does not reconstruct the true global state which implies that the problem remains 1)
partially observable and 2) cooperative due to the shared reward.

Finally, we point out that for CL, it is of course true that the observation function provides more information per agent
compared to CTDE and IL methods during execution time. However, this is at the cost of increased inference time
requirements (time and compute). It is exactly this drawback of centralised learning that we address in our work by
introducing Sable.

B. Environment details
B.1. Robot Warehouse

Figure 6. Environment rendering for Robot Warehouse. Task name: tiny-2ag.

The Robot Warehouse (RWARE) environment simulates a warehouse where robots autonomously navigate, fetching and
delivering requested goods from specific shelves to workstations and then returning them. Inspired by real-world autonomous
delivery depots, the goal in RWARE is for a team of robots to deliver as many randomly placed items as possible within a
given time budget.

The version used in this paper is a JAX-based implementation of the original RWARE environment (Papoudakis et al., 2021)
from the Jumanji environment suite (Bonnet et al., 2023). For this reason, there is a minor difference in how collisions are
handled. The original implementation has some logic to resolve collisions, whereas the Jumanji implementation simply ends
an episode if two agents collide.

Naming convention The tasks in the RWARE environment are named according to the following convention:

<size>-<num agents>ag<diff>

Each field in the naming convention has specific options:

• <size>: Represents the size of the Warehouse which defines the number of rows and columns of groups of shelves
within the warehouse (e.g. tiny, small, medium, large).

• <num agents>: Indicates the number of agents.

• <diff>: Optional field indicating the difficulty of the task, where ‘easy’ and ‘hard’ imply 2N and N/2 requests
(shelves to deliver) respectively, with N being the number of agents. The default is to have N requests.

In this environment, we introduced an extra grid size named “xlarge” which expands the default “large” size. Specifically, it
increases the number of rows in groups of shelves from three to four, while maintaining the same number of columns.

Observation space In this environment, observations are limited to partial visibility where agents can only perceive their
surroundings within a 3x3 square grid centred on their position. Within this area, agents have access to detailed information
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including their position and orientation, as well as the positions and orientations of other agents. Additionally, they can
observe shelves and determine whether these shelves contain a package for delivery.

Action space The action space is discrete and consists of five total actions that allow for navigation within the grid and
delivering the requested shelves. These actions include no operation (stop), turning left, turning right, moving forward, and
either loading or unloading a shelf.

Reward Agents receive a reward of 1 for each successful delivery of a requested shelf, coloured in green in Figure 6, to a
designated goal (in black) and 0 otherwise. Achieving this reward demands a sequence of successful actions, making it
notably sparse.

B.2. SMAX

Figure 7. Environment rendering for SMAX. Task name: 2s3z.

SMAX, introduced by Rutherford et al. (2023), is a re-implementation of the StarCraft Multi-agent Challenge (SMAC)
(Samvelyan et al., 2019) environment using JAX for improved computational efficiency. This redesign eliminates the
necessity of running the StarCraft II game engine, thus results on this environment are not directly comparable to results on
the original SMAC. In this environment, agents collaborate in teams composed of diverse units to win the real-time strategy
game StarCraft. For an in-depth understanding of the environment’s mechanics, we refer the reader to the original paper
(Samvelyan et al., 2019).

Observation space Each agent observes all allies and enemies within its field of view, including itself. The observed
attributes include position, health, unit type, weapon cooldown, and previous action.

Action space Discrete action space that includes 5 movement actions: four cardinal directions, a stop action, and a shoot
action for each visible enemy.

Reward In SMAX, unlike SMAC, the reward system is designed to equally incentivise tactical combat and overall victory.
Agents earn 50% of their total return from hitting enemies and the other 50% from winning the episode which ensures that
immediate actions and ultimate success are equally important.

B.3. Level Based Foraging

In the Level-Based Foraging environment (LBF), agents are assigned different levels and navigate a grid world where the
goal is to collect food items by cooperating with other agents if required. Agents can only consume food if the combined
level of the agents adjacent to a given item of food exceeds the level of the food item. Agents are awarded points when food
is collected.

The version used in the paper is a JAX-based implementation of the original LBF environment (Christianos et al., 2020)
from the Jumanji environment suite (Bonnet et al., 2023). To the best of our knowledge, there are no differences between
Jumanji’s implementation and the original implementation.
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Figure 8. Environment rendering for Level-Based Foraging. Task name: 2s-8x8-2p-2f.

Naming convention The tasks in the LBF environment are named according to the following convention:

<obs>-<x size>x<y size>-<n agents>p-<food>f<force c>

Each field in the naming convention has specific options:

• <obs>: Denotes the field of view (FOV) for all agents. If not specified, the agents can see the full grid.

• <x size>: Size of the grid along the horizontal axis.

• <y size>: Size of the grid along the vertical axis.

• <n agents>: Number of agents.

• <food>: Number of food items.

• <force c>: Optional field indicating a forced cooperative task. In this mode, the levels of all the food items are
intentionally set equal to the sum of the levels of all the agents involved. This implies that the successful acquisition of
a food item requires a high degree of cooperation between the agents since no agent is able to collect a food item by
itself.

Observation space As shown in Figure 8, the 8x8 grid includes 2 agents and 2 foods. In this case, the agent has a limited
FOV labelled ”2s”, indicating a 5x5 grid centred on itself where it can only observe the positions and levels of the items in
its sight range.

Action space The action space in the LBF is discrete, comprising six actions: no-operation (stop), picking up a food item
(apple), and movements in the four cardinal directions (left, right, up, down).

Reward The reward is equal to the sum of the levels of collected food divided by the level of the agents that collected
them.

Adapting the LBF environment for scalability experiments In the original Level-Based Foraging (LBF) implementation,
agents processed complete grid information, including items outside their FOV, managed by masking non-visible items with
the placeholder (-1, -1, 0), where each element of this triplet stands for (x, y, level). To improve computational efficiency,
we revised the implementation to completely remove non-visible elements from the observation data, significantly reducing
the observation size and ensuring agents process only relevant information within their FOV.

For instance, with a standardised FOV of 2, as illustrated in Figure 8, an agent sees a 5x5 grid centred around itself.
Non-visible items are now excluded from the observation array which makes it easy to convert the agent’s vector observation
with level one from [1, 2, 3, -1, -1, 0, 2, 2, 1, -1, -1, 0] to [ 1, 2, 3, 2, 2, 1]. However,
in tasks with numerous interacting agents, where the dynamics of visible items consistently change, fixed array sizes are
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required. We address this by defining the maximum number of visible items as (2× FOV + 1)2, filling any excess with
masked triplets to keep uniform array dimensions.

We designed three scenarios to test scalability on LBF using the standardised FOV of 2, ensuring a maximum of 25
visible items within the 5x5 grid, including each agent’s information. To manage agent density as the environment
scales, we created the following configurations for our experiments: 2s-32x32-32p-16f, 2s-45x45-64p-32f, and
2s-64x64-128p-64f.

B.4. Connector

Figure 9. Environment rendering for Connector. Task name: con-10x10-10a.

The Connector environment consists of multiple agents spawned randomly into a grid world, with each agent representing a
start and end position that needs to be connected. The goal of the environment is to connect each start and end position in as
few steps as possible. However, when an agent moves, it leaves behind a path that is impassable by all agents. Thus, agents
need to cooperate to allow the team to connect to their targets without blocking other agents.

Naming convention In our work, we follow this naming convention for the Connector tasks:

con-<x size>x<y size>-<num agents>a

Each field in the naming convention means:

• <x size>: Size of the grid along the horizontal axis.

• <y size>: Size of the grid along the vertical axis.

• <num agents>: Indicates the number of agents.

Observation space All agents view an n× n square centred around their current location, within their field of view, they
can see trails left by other agents along with the target locations of all agents. They also observe their current (x, y) position
and their target’s (x, y) position.

Action space The action space is discrete, consisting of five movement actions within the grid world: up, down, left, right,
and no-operation (stop).

Reward Agents receive +1 on the step where they connect and −0.03 otherwise. No reward is given after connecting.

B.5. Mutli-Agent Particle Environments

The Multi-Agent Particle Environments (MPE) comprises physics-based environments within a 2D world, where particles
(agents) move, interact with fixed landmarks, and communicate. We focus exclusively on the ”simple-spread” tasks, the
only non-communication, non-adversarial setting in the suite, where agents cooperate instead. In this setting, agents aim to
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Figure 10. Environment rendering for Multi-Agent Particle. Task name: simple spread 3ag.

cover landmarks to gain positive rewards and avoid collisions, which result in penalties. We employ a JAX-based clone of
the original environment from the JaxMARL suite (Rutherford et al., 2023).

Contrary to the suggestions made by Gorsane et al. (2022), we only experiment on the simple-spread for the previous
reasons, thus, we go beyond only the recommended version of simple-spread (simple-spread-3ag) and also test
on 5 and 10 agents variants.

Naming convention In our case, the simple-spread tasks used in the MPE environment are named according to the
following convention:

simple spread <num agents>ag

<num agents>: Indicates the number of agents in the simple spread task, where we set the number of landmarks equal to
the number of agents.

Observation space Agents observe their own position and velocity as well as other agents’ positions and landmark
positions.

Action space Continuous action space with 4 actions. Each action represents the velocity in all cardinal directions.

Reward Agents are rewarded based on how far the closest agent is to each landmark and receive a penalty if they collide
with other agents.

B.6. MaBRAX

MaBrax (Rutherford et al., 2023) is an implementation of the MaMuJoCo environment (Peng et al., 2021) in JAX, from the
JAXMARL repository. The difference is that it uses BRAX (Freeman et al., 2021b) as the underlying physics engine instead
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of MuJoCo. Both MaMuJoCo and MaBrax are continuous control robotic environments, where the robots are split up so
that certain joints are controlled by different agents. For example, in ant 4x2, each agent controls a different leg of the ant.
The splitting of joints is the same in both MaBrax and MaMuJoCo.

The goal is to move the agent forward as far and as fast as possible. The reward is based on how far the agent moved and
how much energy it took for the agent to move forward.

Observation space Observations are separated into local and global observations. Globally, all agents observe the position
and velocity of the root body. Locally, agents observe the position and velocity of their joints as well as the position and
velocity of their neighboring joints.

Action space A continuous space where each agent controls some number of joints n. Each of the n actions is bounded in
the range [−1, 1] and the value controls the torque applied to a corresponding joint.

Reward Agents receive the reward from the single-agent version of the environment. Positive reward is given if the agent
moves forward and negative reward is given when energy is used to move the joints. Thus, agents are incentivised to move
forward as efficiently as possible.

B.7. Neom
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Figure 11. A random initialization of the Neom environment.
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Figure 12. A solved version of the neom environment.

Neom tasks require agents to match a periodic, discretised 1D pattern that is repeated across the given number of agents.
These tasks are specifically designed to assess the agents’ ability to synchronise and reproduce specified patterns in a
coordinated manner and in a limited time frame.
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Naming convention The tasks in the Neom environment are named according to the following convention:

<pattern-type>-<num agents>ag

Each field in the naming convention has specific options:

• <pattern-type>: Represents the selected pattern for the agents to create ( ”simple-sine”, ”half-1-half-0”, and
”quick-flip”).

• <num agents>: Indicates the number of agents.

Observation space The observation space consists of a binary indicator showing whether the agent is in the correct
position, concatenated with the agent’s previous actions.

Action space The action space consists of unique elements in the pattern, with each element defining actions:

• simple-sine: {0.2, 0.3, 0.5, 0.7, 0.8}

• half-1-half-0: {1, 0}

• quick-flip: {0.5, 0, -0.5}

Reward The reward function is calculated using the mean Manhattan distance between the team’s current pattern and
the target pattern. The reward ranges from 1 for a perfect match to -1 for the maximum difference, with normalization
applied. Additionally, if the pattern is correct, the agents receive a bonus that starts at a maximum value of 9.0 and gradually
decreases as the episode progresses, based on how much time has passed.

C. Further experimental results
C.1. Additional per-task and per-environment results

In Figure 13, we give all task-level aggregated results. In all cases, we report the mean with 95% bootstrap confidence
intervals over 10 independent runs. In Figure 14, we give the performance profiles for all environment suites.

C.2. Additional tabular results

When reporting tabular results, it can be challenging to represent information from an entire training run as a single value
for a given independent trial. For this reason we give all tabular results for different aggregations. In all cases here, the
aggregation method we refer to is the method that was used to aggregate a given training run into a point estimate. For
aggregation over these point estimates, we always compute the mean over independent trials along with the 95% bootstrap
confidence interval.

C.2.1. MEAN OVER THE FULL TIMESERIES
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Figure 13. Mean episode return with 95% bootstrap confidence intervals on all tasks.
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Figure 14. Per environment performance profiles.

24



Sable: a Performant, Efficient and Scalable Sequence Model for MARL

Table 2. Mean episode return over training with 95% bootstrap confidence intervals for all tasks. Bold values indicate the highest score
per task and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 15.33(14.91,15.69) 11.32(9.93,12.47) 7.20(4.83,9.28) 4.01(1.92,6.01) / / /
tiny-2ag-hard 12.03(11.37,12.56) 8.30(6.14,10.11) 9.43(9.04,9.93) 4.28(1.74,7.05) / / /
tiny-4ag 29.95(29.10,30.85) 22.93(22.71,23.16) 16.15(13.47,18.29) 9.93(7.53,11.76) / / /
tiny-4ag-hard 20.65(18.83,21.87) 13.10(6.99,18.96)∗ 14.15(13.60,14.72) 5.94(2.44,9.61) / / /
small-4ag 9.90(6.22,13.14)

∗ 11.70(11.44,11.98) 6.18(5.57,6.63) 2.57(0.94,4.29) / / /
small-4ag-hard 7.10(6.28,7.79) 5.77(4.28,6.88)∗ 4.68(4.48,4.90) 1.27(0.35,2.22) / / /
medium-4ag 7.71(6.45,8.60) 3.74(2.23,5.28) 4.04(2.71,5.13) 1.27(0.73,1.75) / / /
medium-4ag-hard 3.49(2.69,4.18) 2.11(1.22,2.97)∗ 1.03(0.31,1.84) 1.41(0.56,2.26) / / /
large-4ag 3.90(2.75,4.80) 3.48(3.10,3.80)∗ 1.26(0.66,1.84) 1.19(0.46,1.93) / / /
large-4ag-hard 1.84(1.12,2.49) 1.20(0.58,1.83)∗ 0.00(0.00,0.00) 0.01(0.00,0.01) / / /
xlarge-4ag 2.03(1.11,2.90)

∗ 2.85(2.51,3.13) 1.34(0.87,1.76) 0.00(0.00,0.01) / / /
xlarge-4ag-hard 0.40(0.01,0.99) 0.16(0.00,0.46)∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
medium-6ag 8.72(7.45,9.69) 8.65(7.77,9.34)∗ 6.39(6.02,6.74) 2.29(1.05,3.50) / / /
large-8ag 7.97(7.79,8.16) 10.13(9.75,10.45) 5.08(4.63,5.54) 2.97(1.72,4.16) / / /
large-8ag-hard 5.87(5.54,6.18) 4.75(4.20,5.24) 1.42(0.56,2.35) 1.59(0.81,2.35) / / /

M
aB

ra
x

hopper 3x1 1421.60(1406.21,1439.54) 1394.73(1341.52,1442.51) 1463.84(1375.77,1552.98)
∗ 1358.66(1321.78,1398.55) 1553.56(1365.02,1712.54)∗ 1556.21(1509.13,1608.98) /

halfcheetah 6x1 2092.89(1938.95,2223.71) 1899.52(1635.11,2133.49) 2335.33(2225.48,2456.97) 2272.93(2123.10,2402.57) 2833.44(2663.34,3017.65)∗ 3229.46(2988.55,3484.62) /
walker2d 2x3 663.16(588.64,741.08) 763.42(672.33,861.29) 1330.90(1186.47,1467.49)

∗ 623.44(569.29,671.57) 1448.05(1323.51,1584.77) 1200.39(1104.48,1289.15) /
ant 4x2 2004.15(1826.76,2192.74) 1564.84(1397.74,1672.30) 2138.03(2016.37,2258.42) 2998.59(2824.27,3163.46) 3553.26(3204.93,3899.81)∗ 3964.94(3641.01,4260.67) /
humanoid 9—8 2066.41(2010.90,2117.48) 390.82(385.95,395.77) 463.74(462.19,465.39) 453.42(447.78,459.02) 4029.01(3763.57,4206.90) 3095.01(2899.63,3294.38) /

Sm
ax

2s3z 1.96(1.96,1.96) 1.64(1.63,1.66) 1.93(1.92,1.93) 1.78(1.74,1.81) / / 1.80(1.78,1.81)

3s5z 1.91(1.91,1.91) 1.69(1.66,1.72) 1.84(1.84,1.85) 1.81(1.80,1.83) / / 1.68(1.67,1.69)

3s vs 5z 1.85(1.85,1.86) 1.64(1.61,1.67) 1.66(1.65,1.67) 1.51(1.48,1.55) / / 1.68(1.66,1.70)

6h vs 8z 1.92(1.92,1.93)
∗ 1.93(1.93,1.94) 1.74(1.73,1.76) 1.70(1.68,1.73) / / 1.53(1.31,1.69)

5m vs 6m 1.18(0.95,1.42) 1.17(0.99,1.36) 0.81(0.65,0.99) 1.58(1.50,1.65) / / 1.35(1.22,1.48)

10m vs 11m 1.61(1.44,1.76)
∗ 1.30(1.26,1.35) 1.16(1.11,1.20) 1.63(1.59,1.67) / / 1.39(1.33,1.43)

3s5z vs 3s6z 1.62(1.59,1.65) 1.56(1.49,1.61)∗ 1.38(1.35,1.42) 1.38(1.32,1.44) / / 1.42(1.38,1.46)

27m vs 30m 1.93(1.91,1.95) 1.61(1.56,1.66) 1.63(1.58,1.67) 1.71(1.62,1.79) / / 1.28(1.17,1.40)

smacv2 5 units 1.62(1.61,1.63) 1.61(1.60,1.62)∗ 1.54(1.53,1.55) 1.55(1.54,1.56) / / 1.50(1.49,1.51)

smacv2 10 units 1.33(1.29,1.36) 1.42(1.42,1.43) 1.48(1.48,1.49) 1.33(1.31,1.34) / / 1.30(1.28,1.32)

smacv2 20 units 1.11(1.05,1.16) 1.23(1.22,1.24) 1.22(1.21,1.24)∗ 0.87(0.85,0.88) / / 0.85(0.80,0.91)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.85) 0.67(0.66,0.67) 0.81(0.81,0.82) 0.81(0.81,0.82) / / /
con-7x7x5a 0.79(0.79,0.79) 0.66(0.66,0.66) 0.73(0.73,0.73) 0.74(0.74,0.74) / / /
con-10x10x10a 0.71(0.71,0.71) 0.18(0.15,0.19) 0.40(0.39,0.41) 0.49(0.49,0.49) / / /
con-15x15x23a 0.64(0.64,0.64) -0.13(−0.16,−0.10) 0.16(0.14,0.18) 0.24(0.23,0.25) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 0.95(0.94,0.95) 0.97(0.97,0.97) 0.97(0.96,0.97) / / /
2s-8x8-2p-2f-coop 1.00(0.99,1.00) 0.93(0.93,0.94) 0.97(0.96,0.97) 0.96(0.96,0.97) / / /
10x10-3p-3f 0.99(0.99,0.99) 0.98(0.98,0.98) 0.95(0.94,0.95) 0.95(0.94,0.95) / / /
2s-10x10-3p-3f 0.98(0.98,0.98) 0.91(0.91,0.91) 0.94(0.93,0.94) 0.93(0.93,0.94) / / /
15x15-3p-5f 0.86(0.85,0.87) 0.73(0.72,0.74) 0.73(0.70,0.75) 0.66(0.65,0.68) / / /
15x15-4p-3f 0.97(0.97,0.97) 0.94(0.94,0.94) 0.93(0.92,0.93) 0.92(0.91,0.93) / / /
15x15-4p-5f 0.92(0.92,0.93) 0.84(0.84,0.85) 0.80(0.79,0.81) 0.82(0.81,0.83) / / /

M
PE

simple spread 3ag -6.81(−6.90,−6.71) -9.89(−10.16,−9.66) -9.43(−9.48,−9.39) -11.18(−11.52,−10.81) -5.86(−5.94,−5.77) -6.21(−6.48,−5.98) /
simple spread 5ag -18.50(−18.92,−18.04) -29.75(−30.35,−29.06) -24.25(−24.34,−24.17) -24.33(−24.44,−24.23) -25.59(−27.15,−23.58) -20.89(−22.54,−19.49) /
simple spread 10ag -40.06(−40.22,−39.90) -57.64(−58.21,−57.05) -42.82(−43.08,−42.60) -43.30(−43.46,−43.17) -54.09(−54.42,−53.75) -52.08(−52.68,−51.24) /
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Sable: a Performant, Efficient and Scalable Sequence Model for MARL

C.2.2. MAX OVER FULL TIMESERIES

Table 3. Maximum episode return over training with 95% bootstrap confidence intervals for all tasks. Bold values indicate the highest
score per task and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 22.11(21.32,22.94) 17.94(17.12,18.85) 13.49(9.14,16.90) 8.47(4.15,12.72) / / /
tiny-2ag-hard 16.81(16.43,17.24) 14.14(12.37,15.32) 14.60(14.17,15.06) 6.81(3.08,10.68) / / /
tiny-4ag 46.82(45.40,48.08) 30.69(30.33,31.08) 30.98(28.71,33.13) 20.60(16.25,23.58) / / /
tiny-4ag-hard 33.89(32.67,34.94) 22.20(13.73,29.64) 22.17(21.36,23.12) 10.67(4.65,16.65) / / /
small-4ag 17.98(11.37,22.72)

∗ 19.49(19.20,19.77) 11.99(11.58,12.44) 4.29(1.57,7.27) / / /
small-4ag-hard 13.28(12.48,14.08) 10.72(8.28,12.19) 10.43(10.08,10.76) 2.59(0.80,4.57) / / /
medium-4ag 13.93(12.79,14.75) 8.12(5.52,10.55) 8.78(6.27,10.66) 2.81(1.80,3.75) / / /
medium-4ag-hard 7.37(6.43,8.21) 5.04(3.23,6.59)∗ 3.17(1.25,5.18) 2.05(0.82,3.29) / / /
large-4ag 6.92(5.67,7.87) 5.38(5.17,5.59) 3.23(1.74,4.62) 1.96(0.78,3.14) / / /
large-4ag-hard 3.82(2.49,4.90) 2.50(1.24,3.72)∗ 0.05(0.04,0.07) 0.10(0.05,0.15) / / /
xlarge-4ag 4.03(2.47,5.40)

∗ 5.18(4.81,5.50) 3.98(3.16,4.67) 0.04(0.02,0.06) / / /
xlarge-4ag-hard 0.82(0.07,1.94) 0.46(0.04,1.19)∗ 0.04(0.02,0.05) 0.02(0.01,0.02) / / /
medium-6ag 14.76(13.86,15.45)

∗ 15.28(14.87,15.69) 13.64(13.43,13.87) 3.90(1.85,5.91) / / /
large-8ag 12.68(12.42,13.01) 16.40(15.97,16.83) 9.33(8.88,9.80) 5.42(3.47,6.91) / / /
large-8ag-hard 10.24(9.94,10.51) 9.84(9.43,10.25)

∗ 3.88(1.75,6.11) 4.10(2.32,5.68) / / /

M
aB

ra
x

hopper 3x1 2210.18(2153.99,2277.06) 1965.98(1885.27,2034.57) 2043.15(1835.76,2244.53) 1684.45(1603.88,1766.18) 2250.96(1922.39,2489.34)∗ 2423.96(2379.64,2465.84) /
halfcheetah 6x1 2768.53(2652.18,2878.64) 2718.06(2527.29,2917.67) 2916.22(2761.25,3090.70) 2790.42(2588.79,2972.60) 3313.08(3065.48,3575.75)∗ 3725.47(3381.70,4059.25) /
walker2d 2x3 1078.64(903.36,1255.63) 1301.76(1095.03,1495.67) 2658.69(2289.04,3013.49) 1093.07(1071.24,1123.98) 2642.20(2447.12,2830.37)∗ 2238.50(2007.02,2493.15)

∗ /
ant 4x2 3697.15(3298.29,4093.04) 2822.87(2591.03,3027.88) 3846.86(3622.78,4060.76) 5200.05(4946.75,5447.66) 5454.61(4933.16,5977.32)∗ 5797.08(5484.28,6112.50) /
humanoid 9—8 3795.88(3656.46,3900.63) 434.35(427.70,442.07) 551.26(546.73,556.93) 556.80(545.92,567.29) 6257.01(5880.06,6514.80) 4950.08(4544.66,5402.46) /

Sm
ax

2s3z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)

3s5z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)

3s vs 5z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)

6h vs 8z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 1.87(1.63,2.00)∗

5m vs 6m 1.61(1.31,1.90) 1.72(1.45,1.97) 1.18(0.87,1.51) 2.00(1.99,2.00) / / 1.87(1.78,1.96)
10m vs 11m 1.88(1.75,2.00)

∗ 1.92(1.81,2.00)∗ 1.49(1.43,1.55) 1.98(1.97,2.00)
∗ / / 2.00(2.00,2.00)

3s5z vs 3s6z 2.00(2.00,2.00) 1.99(1.98,2.00)∗ 1.99(1.98,2.00)∗ 1.98(1.97,1.99) / / 1.91(1.87,1.94)
27m vs 30m 2.00(2.00,2.00) 1.96(1.92,1.99) 1.95(1.91,1.99) 1.98(1.95,2.00)

∗ / / 1.82(1.76,1.89)
smacv2 5 units 1.96(1.94,1.97) 1.92(1.90,1.94)∗ 1.93(1.91,1.95)∗ 1.90(1.89,1.90) / / 1.88(1.86,1.90)
smacv2 10 units 1.79(1.78,1.81) 1.80(1.78,1.82) 1.90(1.88,1.92) 1.81(1.78,1.83) / / 1.79(1.77,1.82)
smacv2 20 units 1.70(1.64,1.77) 1.69(1.65,1.72)∗ 1.69(1.65,1.73)∗ 1.29(1.27,1.32) / / 1.28(1.15,1.40)

C
on

ne
ct

or con-5x5x3a 0.89(0.89,0.90) 0.88(0.87,0.88)∗ 0.89(0.88,0.89) 0.89(0.88,0.89) / / /
con-7x7x5a 0.85(0.85,0.85) 0.82(0.81,0.83) 0.83(0.82,0.83) 0.83(0.83,0.84) / / /
con-10x10x10a 0.79(0.78,0.80) 0.34(0.32,0.37) 0.58(0.57,0.59) 0.64(0.63,0.65) / / /
con-15x15x23a 0.74(0.74,0.75) 0.02(0.00,0.03) 0.34(0.32,0.35) 0.43(0.42,0.44) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
15x15-3p-5f 1.00(1.00,1.00) 0.98(0.97,0.99) 0.99(0.98,1.00)∗ 0.96(0.94,0.97) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
15x15-4p-5f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /

M
PE

simple spread 3ag -4.32(−4.46,−4.16) -5.85(−5.98,−5.73) -5.96(−6.07,−5.84) -7.35(−7.71,−6.92) -4.61(−4.68,−4.54) -4.56(−4.68,−4.46)
∗ /

simple spread 5ag -11.97(−12.50,−11.43) -23.97(−25.04,−22.70) -20.98(−21.22,−20.70) -20.54(−20.71,−20.37) -18.74(−21.05,−16.15) -16.53(−18.18,−15.19) /
simple spread 10ag -35.32(−35.63,−35.02) -48.12(−49.24,−47.17) -38.94(−39.28,−38.55) -39.55(−39.82,−39.28) -49.39(−49.80,−48.93) -47.76(−48.61,−46.40) /
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Sable: a Performant, Efficient and Scalable Sequence Model for MARL

C.2.3. FINAL VALUE OF THE TIMESERIES

Table 4. Final episode return over training with 95% bootstrap confidence intervals for all tasks. Bold values indicate the highest score per
task and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 20.92(19.85,22.02) 17.26(16.10,18.48) 12.01(8.12,15.07) 7.65(3.76,11.51) / / /
tiny-2ag-hard 16.14(15.80,16.46) 13.52(11.68,14.66) 13.77(13.32,14.18) 6.07(2.66,9.66) / / /
tiny-4ag 43.65(42.24,45.10) 28.31(27.52,29.07) 26.60(24.54,28.54) 17.70(13.62,21.07) / / /
tiny-4ag-hard 30.63(28.88,32.44) 20.63(12.79,27.37) 19.11(18.34,19.88) 9.32(3.98,14.58) / / /
small-4ag 17.08(10.82,21.56)

∗ 18.60(17.99,19.12) 10.72(9.87,11.61) 3.82(1.35,6.42) / / /
small-4ag-hard 12.47(11.73,13.20) 9.35(7.17,10.71) 9.13(8.85,9.39) 2.28(0.71,4.03) / / /
medium-4ag 13.05(12.08,13.79) 7.38(5.09,9.45) 7.40(5.32,9.00) 2.59(1.59,3.51) / / /
medium-4ag-hard 6.80(5.93,7.61) 4.69(3.00,6.16)∗ 2.88(1.13,4.67) 1.86(0.73,2.98) / / /
large-4ag 6.30(5.07,7.25) 4.49(4.16,4.81) 3.07(1.61,4.43) 1.82(0.71,2.97) / / /
large-4ag-hard 3.48(2.24,4.53) 2.37(1.14,3.54)∗ 0.00(0.00,0.00) 0.04(0.01,0.08) / / /
xlarge-4ag 3.77(2.32,5.03)

∗ 4.71(4.44,4.96) 3.67(2.82,4.37) 0.01(0.00,0.02) / / /
xlarge-4ag-hard 0.74(0.02,1.81) 0.37(0.01,1.02)∗ 0.00(0.00,0.01) 0.00(0.00,0.00) / / /
medium-6ag 12.43(11.33,13.28)

∗ 13.12(12.52,13.68) 12.34(11.73,12.99)
∗ 3.62(1.71,5.49) / / /

large-8ag 10.62(9.77,11.47) 15.08(14.58,15.65) 8.42(7.80,9.05) 4.97(3.17,6.35) / / /
large-8ag-hard 9.52(9.27,9.78) 9.21(8.74,9.66)∗ 3.58(1.60,5.62) 3.43(1.93,4.79) / / /

M
aB

ra
x

hopper 3x1 2090.31(2032.93,2146.79) 1891.11(1806.49,1971.11) 1869.63(1648.22,2081.73)
∗ 1562.81(1495.04,1631.14) 1460.16(970.98,1939.99) 1493.91(1132.95,1824.75) /

halfcheetah 6x1 2388.03(1885.96,2751.80) 2552.63(2139.07,2884.05) 2914.90(2762.87,3084.95) 2779.89(2580.41,2957.09) 3272.96(3019.66,3540.14)∗ 3633.09(3277.97,3977.98) /
walker2d 2x3 1026.17(866.81,1193.51) 1128.18(953.49,1289.64) 2506.84(2141.45,2856.99) 407.46(368.42,451.87) 1564.60(1261.78,1895.57) 1285.74(938.79,1605.32) /
ant 4x2 3006.37(2411.98,3579.62) 2299.52(1882.49,2637.99) 3346.00(2995.72,3682.63) 4397.34(3823.41,4901.51)∗ 4821.93(4277.66,5350.59) 4627.60(4270.06,4979.85)∗ /
humanoid 9—8 3368.27(3139.82,3557.73) 385.01(371.68,399.06) 520.27(507.95,535.05) 521.47(500.32,540.73) 5046.19(4316.12,5668.46) 3928.96(3210.23,4559.54)∗ /

Sm
ax

2s3z 2.00(2.00,2.00) 1.99(1.98,2.00)∗ 1.99(1.98,2.00)∗ 1.99(1.98,2.00)∗ / / 2.00(1.99,2.00)

3s5z 1.99(1.97,2.00)
∗ 2.00(1.99,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 1.99(1.98,2.00)∗

3s vs 5z 1.98(1.97,1.99)
∗ 1.95(1.93,1.97)∗ 1.99(1.97,2.00) 1.99(1.98,2.00) / / 1.94(1.92,1.97)∗

6h vs 8z 2.00(2.00,2.00) 1.99(1.98,2.00)∗ 2.00(1.99,2.00) 1.99(1.98,2.00)
∗ / / 1.59(1.28,1.85)

5m vs 6m 1.25(0.90,1.62) 1.61(1.29,1.90)∗ 1.07(0.78,1.41) 1.89(1.86,1.93) / / 1.74(1.62,1.86)∗

10m vs 11m 1.84(1.68,1.98)
∗ 1.87(1.74,1.96)∗ 1.29(1.21,1.37) 1.73(1.64,1.82) / / 1.93(1.90,1.96)

3s5z vs 3s6z 1.94(1.91,1.97) 1.92(1.88,1.95)∗ 1.92(1.86,1.97)∗ 1.91(1.86,1.95)∗ / / 1.68(1.60,1.75)
27m vs 30m 2.00(2.00,2.00) 1.91(1.87,1.95) 1.86(1.81,1.91) 1.91(1.83,1.97) / / 1.42(1.22,1.63)
smacv2 5 units 1.80(1.78,1.83) 1.79(1.75,1.83)∗ 1.70(1.66,1.74) 1.73(1.69,1.77) / / 1.70(1.66,1.74)
smacv2 10 units 1.59(1.55,1.65) 1.64(1.56,1.70) 1.77(1.74,1.80) 1.61(1.54,1.67) / / 1.58(1.51,1.65)
smacv2 20 units 1.48(1.41,1.56)

∗ 1.49(1.43,1.56)∗ 1.53(1.46,1.59) 1.11(1.05,1.18) / / 1.01(0.87,1.15)

C
on

ne
ct

or con-5x5x3a 0.86(0.84,0.87) 0.81(0.78,0.84)∗ 0.83(0.82,0.85)∗ 0.84(0.83,0.85)∗ / / /
con-7x7x5a 0.80(0.79,0.82) 0.75(0.73,0.77) 0.76(0.75,0.78) 0.77(0.74,0.79)

∗ / / /
con-10x10x10a 0.73(0.72,0.75) 0.24(0.19,0.29) 0.47(0.44,0.50) 0.56(0.55,0.57) / / /
con-15x15x23a 0.70(0.68,0.72) -0.14(−0.21,−0.08) 0.21(0.16,0.26) 0.36(0.32,0.39) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 0.99(0.99,1.00)∗ 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(0.99,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 1.00(0.99,1.00) 0.97(0.96,0.98) 1.00(1.00,1.00) 0.99(0.99,1.00)

∗ / / /
15x15-3p-5f 0.97(0.96,0.99) 0.93(0.91,0.95) 0.96(0.95,0.98)∗ 0.92(0.89,0.94) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(0.99,1.00) 0.99(0.98,1.00)∗ 0.99(0.98,1.00)∗ / / /
15x15-4p-5f 0.99(0.99,1.00) 0.97(0.95,0.99)∗ 0.97(0.95,0.99)∗ 0.97(0.95,0.98) / / /

M
PE

simple spread 3ag -5.05(−5.32,−4.76) -6.78(−7.06,−6.48) -6.85(−7.22,−6.51) -8.49(−9.19,−7.77) -5.13(−5.26,−4.96)
∗ -6.06(−7.26,−5.15)

∗ /
simple spread 5ag -12.61(−13.11,−12.15) -25.37(−26.60,−23.99) -22.56(−23.05,−22.04) -21.79(−22.27,−21.30) -19.99(−22.78,−17.03) -17.94(−19.39,−16.69) /
simple spread 10ag -36.75(−37.17,−36.32) -49.44(−50.46,−48.36) -41.06(−42.03,−39.98) -41.40(−42.22,−40.53) -52.86(−54.17,−51.69) -50.17(−51.32,−48.47) /
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Sable: a Performant, Efficient and Scalable Sequence Model for MARL

C.2.4. ABSOLUTE METRIC

Table 5. Absolute episode return over training with 95% bootstrap confidence intervals for all tasks. Bold values indicate the highest score
per task and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 21.17(20.42,21.95) 17.06(16.10,18.09) 12.28(8.20,15.48) 7.61(3.68,11.46) / / /
tiny-2ag-hard 15.93(15.50,16.41) 13.44(11.74,14.58) 13.60(13.19,14.08) 6.15(2.76,9.74) / / /
tiny-4ag 43.56(41.80,45.10) 28.19(27.57,28.82) 26.29(24.38,27.92) 16.98(13.42,19.44) / / /
tiny-4ag-hard 30.97(29.91,31.96) 20.54(12.70,27.44) 19.01(18.23,19.85) 9.06(3.98,14.05) / / /
small-4ag 16.47(10.45,20.80)

∗ 18.27(17.92,18.57) 10.52(10.10,11.03) 3.69(1.32,6.27) / / /
small-4ag-hard 12.02(11.28,12.78) 9.68(7.46,10.98) 9.44(9.23,9.66) 2.27(0.69,4.03) / / /
medium-4ag 12.74(11.72,13.41) 7.62(5.17,9.91) 7.82(5.60,9.49) 2.58(1.68,3.41) / / /
medium-4ag-hard 6.79(5.89,7.54) 4.64(2.96,6.09)∗ 2.80(1.13,4.55) 1.89(0.75,3.05) / / /
large-4ag 6.22(5.03,7.14) 4.61(4.46,4.78) 3.02(1.58,4.39) 1.84(0.73,2.96) / / /
large-4ag-hard 3.46(2.22,4.46) 2.28(1.09,3.40)∗ 0.00(0.00,0.01) 0.05(0.01,0.09) / / /
xlarge-4ag 3.76(2.27,5.09)

∗ 4.71(4.42,4.96) 3.73(2.94,4.40) 0.01(0.00,0.02) / / /
xlarge-4ag-hard 0.70(0.01,1.74) 0.39(0.01,1.07)∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
medium-6ag 12.97(12.26,13.52)

∗ 13.32(12.93,13.70) 12.13(11.82,12.48) 3.47(1.65,5.24) / / /
large-8ag 11.01(10.70,11.33) 14.72(14.27,15.24) 8.35(7.95,8.77) 4.87(3.10,6.20) / / /
large-8ag-hard 9.22(8.93,9.52) 9.07(8.61,9.49)∗ 3.38(1.51,5.35) 3.63(2.04,5.02) / / /

M
aB

ra
x

hopper 3x1 2053.29(2012.38,2099.07) 1901.02(1822.85,1963.89) 1933.73(1752.82,2108.94) 1608.52(1545.00,1673.47) 2253.33(1924.08,2492.43)∗ 2459.92(2400.82,2520.81) /
halfcheetah 6x1 2717.51(2592.24,2830.35) 2709.90(2515.66,2911.42) 2912.64(2758.24,3086.38) 2784.17(2585.20,2963.31) 3311.72(3068.37,3567.81)∗ 3739.89(3398.86,4071.03) /
walker2d 2x3 1051.15(889.00,1216.13) 1177.26(998.46,1353.89) 2483.05(2117.17,2838.47)∗ 1086.30(1064.04,1117.18) 2636.95(2421.05,2867.14) 2310.41(2075.84,2555.89)

∗ /
ant 4x2 3185.75(2794.94,3599.22) 2428.97(2197.26,2615.22) 3307.23(3105.04,3504.37) 4366.81(4080.06,4636.39) 4751.03(4281.89,5223.50)∗ 5069.32(4679.84,5442.11) /
humanoid 9—8 3449.78(3279.82,3618.87) 397.25(392.76,401.83) 515.45(509.01,520.98) 512.65(500.90,524.68) 6302.42(5818.37,6646.02) 4983.49(4625.08,5392.85) /

Sm
ax

2s3z 2.00(2.00,2.00) 1.99(1.99,2.00)∗ 2.00(1.99,2.00) 2.00(2.00,2.00) / / 2.00(1.99,2.00)

3s5z 2.00(1.99,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)

3s vs 5z 1.98(1.98,1.99)
∗ 1.96(1.95,1.97) 1.98(1.98,1.99)∗ 1.99(1.98,1.99) / / 1.95(1.93,1.97)

6h vs 8z 2.00(2.00,2.00) 1.99(1.98,1.99)∗ 2.00(1.99,2.00) 1.99(1.99,2.00)
∗ / / 1.85(1.64,1.96)

5m vs 6m 1.47(1.13,1.80) 1.60(1.29,1.88) 1.05(0.75,1.39) 1.91(1.90,1.92) / / 1.75(1.62,1.87)
10m vs 11m 1.80(1.62,1.98)

∗ 1.86(1.70,1.97)∗ 1.28(1.22,1.32) 1.89(1.87,1.91) / / 1.96(1.93,1.98)

3s5z vs 3s6z 1.94(1.93,1.95) 1.93(1.91,1.95)∗ 1.90(1.86,1.93)∗ 1.89(1.87,1.92) / / 1.79(1.75,1.82)
27m vs 30m 2.00(1.99,2.00) 1.87(1.80,1.92) 1.81(1.74,1.87) 1.91(1.84,1.98) / / 1.70(1.63,1.78)
smacv2 5 units 1.72(1.70,1.74) 1.77(1.75,1.78) 1.70(1.68,1.71) 1.69(1.68,1.71) / / 1.68(1.65,1.70)
smacv2 10 units 1.52(1.48,1.56) 1.62(1.59,1.65) 1.70(1.68,1.71) 1.54(1.53,1.56) / / 1.60(1.56,1.63)
smacv2 20 units 1.47(1.40,1.52)

∗ 1.49(1.46,1.53) 1.42(1.38,1.45) 1.07(1.03,1.10) / / 1.11(0.99,1.23)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.86) 0.81(0.80,0.82) 0.83(0.82,0.84) 0.83(0.83,0.84) / / /
con-7x7x5a 0.79(0.79,0.80) 0.75(0.74,0.76) 0.75(0.74,0.76) 0.76(0.75,0.77) / / /
con-10x10x10a 0.74(0.74,0.74) 0.65(0.63,0.67) 0.70(0.70,0.70) 0.71(0.71,0.72) / / /
con-15x15x23a 0.70(0.70,0.71) 0.25(0.18,0.31) 0.63(0.62,0.64) 0.67(0.67,0.67) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(0.99,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 0.99(0.99,1.00)∗ 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 0.99(0.99,1.00)

∗ 0.97(0.96,0.97) 1.00(1.00,1.00) 0.99(0.99,0.99) / / /
15x15-3p-5f 0.96(0.96,0.97)

∗ 0.91(0.90,0.92) 0.97(0.95,0.97) 0.90(0.88,0.92) / / /
15x15-4p-3f 1.00(1.00,1.00) 0.99(0.99,1.00)∗ 1.00(0.99,1.00) 1.00(0.99,1.00) / / /
15x15-4p-5f 0.99(0.99,0.99) 0.97(0.96,0.97) 0.98(0.97,0.98) 0.97(0.97,0.97) / / /

M
PE

simple spread 3ag -4.92(−5.11,−4.74) -6.59(−6.74,−6.46) -6.72(−6.86,−6.59) -8.35(−8.84,−7.81) -5.27(−5.34,−5.20) -5.29(−5.44,−5.14) /
simple spread 5ag -12.75(−13.32,−12.20) -25.30(−26.32,−24.19) -22.84(−22.98,−22.70) -21.97(−22.27,−21.68) -19.89(−22.41,−17.11) -17.85(−19.71,−16.43) /
simple spread 10ag -36.93(−37.13,−36.73) -50.07(−51.20,−49.10) -41.83(−42.15,−41.52) -42.08(−42.37,−41.82) -51.01(−51.52,−50.54) -49.71(−50.72,−48.23) /
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C.2.5. INTER-QUARTILE MEAN OVER TIMESERIES

Table 6. Inter-quartile mean episode return over training with 95% bootstrap confidence intervals for all tasks. Bold values indicate the
highest score per task and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 17.68(17.17,18.07) 12.67(10.68,14.29) 7.80(5.01,10.43) 4.19(2.01,6.30) / / /
tiny-2ag-hard 13.67(12.92,14.25) 9.40(6.53,11.75) 11.40(10.89,12.06) 4.99(1.97,8.29) / / /
tiny-4ag 32.81(31.85,33.78) 25.69(25.51,25.87) 17.36(13.72,20.10) 10.47(7.72,12.55) / / /
tiny-4ag-hard 23.12(20.86,24.59) 14.17(7.18,21.05)∗ 15.71(15.08,16.35) 6.53(2.40,10.77) / / /
small-4ag 10.75(6.44,14.54)

∗ 13.39(13.02,13.78) 6.75(5.82,7.40) 2.83(1.07,4.71) / / /
small-4ag-hard 7.64(6.67,8.44) 6.40(4.64,7.80)∗ 4.81(4.50,5.13) 1.39(0.35,2.43) / / /
medium-4ag 8.34(6.75,9.50) 3.82(2.11,5.59) 4.27(2.78,5.57) 1.28(0.70,1.83) / / /
medium-4ag-hard 3.69(2.69,4.51) 2.05(1.06,3.07)∗ 0.89(0.21,1.69) 1.68(0.66,2.71)∗ / / /
large-4ag 4.28(2.82,5.39) 3.91(3.49,4.25)∗ 1.16(0.57,1.77) 1.42(0.55,2.32) / / /
large-4ag-hard 1.96(1.10,2.79) 1.27(0.55,1.96)∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
xlarge-4ag 2.21(1.14,3.22)

∗ 3.24(2.77,3.63) 1.06(0.58,1.57) 0.00(0.00,0.00) / / /
xlarge-4ag-hard 0.44(0.00,1.08) 0.14(0.00,0.41)∗ 0.00(0.00,0.00)∗ 0.00(0.00,0.00)∗ / / /
medium-6ag 9.58(7.95,10.82) 9.44(8.27,10.35)

∗ 6.72(6.21,7.19) 2.47(1.10,3.86) / / /
large-8ag 9.06(8.87,9.25) 11.26(10.89,11.58) 5.84(5.24,6.43) 3.18(1.63,4.73) / / /
large-8ag-hard 6.76(6.36,7.12) 5.11(4.19,5.91) 1.27(0.47,2.21) 1.52(0.65,2.40) / / /

M
aB

ra
x

hopper 3x1 1469.95(1455.05,1487.71)
∗ 1433.88(1363.94,1495.89)

∗ 1536.67(1441.48,1636.33)
∗ 1437.85(1391.41,1486.83)

∗ 1621.99(1419.72,1802.02) 1613.30(1550.07,1682.11)∗ /
halfcheetah 6x1 2216.42(2059.24,2355.54) 2034.59(1753.67,2284.10) 2485.63(2357.15,2622.30) 2493.34(2311.06,2654.75) 2930.42(2752.13,3123.16)∗ 3376.90(3107.51,3660.88) /
walker2d 2x3 668.68(593.98,748.42) 766.61(672.31,875.02) 1294.99(1165.42,1420.19)

∗ 571.58(509.62,629.28) 1470.89(1345.06,1611.62) 1229.26(1128.54,1322.44) /
ant 4x2 2087.42(1907.36,2285.86) 1585.95(1401.20,1705.86) 2196.26(2048.08,2340.83) 3210.00(3012.26,3390.20) 3828.43(3404.10,4259.06)∗ 4150.12(3787.47,4476.47) /
humanoid 9—8 2200.64(2142.08,2260.57) 390.75(385.77,395.82) 471.11(469.67,472.49) 458.76(452.74,465.10) 4181.90(3909.18,4369.39) 3255.90(3045.68,3467.54) /

Sm
ax

2s3z 2.00(2.00,2.00) 1.90(1.87,1.91) 2.00(2.00,2.00) 1.99(1.98,1.99) / / 1.99(1.98,1.99)
3s5z 2.00(2.00,2.00) 1.93(1.90,1.95) 1.99(1.99,2.00)∗ 2.00(2.00,2.00) / / 1.98(1.98,1.99)
3s vs 5z 1.98(1.97,1.98) 1.87(1.84,1.90) 1.92(1.91,1.93) 1.75(1.70,1.80) / / 1.90(1.89,1.91)
6h vs 8z 2.00(2.00,2.00) 1.99(1.99,1.99) 1.99(1.98,1.99) 1.94(1.92,1.96) / / 1.62(1.38,1.80)
5m vs 6m 1.26(0.97,1.56) 1.19(0.95,1.45) 0.87(0.68,1.09) 1.75(1.64,1.83) / / 1.59(1.40,1.77)∗

10m vs 11m 1.73(1.53,1.92) 1.31(1.26,1.35) 1.19(1.13,1.23) 1.72(1.66,1.77)∗ / / 1.59(1.49,1.67)∗

3s5z vs 3s6z 1.81(1.77,1.84) 1.76(1.66,1.83)∗ 1.52(1.47,1.57) 1.52(1.44,1.61) / / 1.62(1.57,1.66)
27m vs 30m 1.99(1.97,2.00) 1.75(1.69,1.82) 1.73(1.67,1.78) 1.83(1.72,1.92) / / 1.42(1.26,1.58)
smacv2 5 units 1.70(1.69,1.71) 1.67(1.66,1.68) 1.63(1.63,1.64) 1.63(1.63,1.64) / / 1.61(1.60,1.61)
smacv2 10 units 1.40(1.35,1.44) 1.49(1.48,1.50) 1.59(1.58,1.60) 1.38(1.36,1.39) / / 1.41(1.38,1.43)
smacv2 20 units 1.11(1.05,1.19) 1.32(1.30,1.33) 1.29(1.28,1.30)∗ 0.89(0.87,0.91) / / 0.87(0.82,0.92)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.85) 0.75(0.74,0.76) 0.83(0.83,0.83) 0.83(0.83,0.83) / / /
con-7x7x5a 0.79(0.79,0.80) 0.72(0.71,0.72) 0.75(0.75,0.75) 0.76(0.76,0.76) / / /
con-10x10x10a 0.73(0.73,0.73) 0.19(0.17,0.21) 0.43(0.42,0.44) 0.52(0.52,0.53) / / /
con-15x15x23a 0.69(0.68,0.69) -0.11(−0.14,−0.08) 0.18(0.17,0.20) 0.26(0.24,0.27) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 0.99(0.99,0.99) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 0.99(0.99,1.00) 0.95(0.95,0.95) 0.98(0.98,0.99)∗ 0.98(0.97,0.98) / / /
15x15-3p-5f 0.92(0.91,0.93) 0.77(0.76,0.79) 0.80(0.77,0.83) 0.73(0.71,0.75) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(0.99,1.00) / / /
15x15-4p-5f 0.98(0.97,0.98) 0.91(0.91,0.92) 0.88(0.87,0.89) 0.91(0.90,0.92) / / /

M
PE

simple spread 3ag -5.60(−5.69,−5.50) -8.22(−8.57,−7.95) -8.16(−8.22,−8.10) -10.02(−10.43,−9.57) -5.36(−5.42,−5.30) -5.71(−5.96,−5.49) /
simple spread 5ag -17.15(−17.65,−16.62) -29.51(−30.20,−28.72) -23.65(−23.73,−23.57) -23.47(−23.59,−23.36) -24.98(−26.88,−22.52) -18.96(−20.85,−17.33)

∗ /
simple spread 10ag -38.81(−38.94,−38.68) -57.15(−57.80,−56.47) -42.25(−42.52,−42.02) -42.52(−42.69,−42.37) -53.31(−53.61,−53.01) -51.13(−51.74,−50.23) /

D. Hyperparameters
We make all hyperparameters as well as instructions for rerunning all benchmarks available along with the code provided at
the following link: https://sites.google.com/view/sable-marl. For all on-policy algorithms on all tasks, we always use 128
effective vectorised environments. For HASAC and MASAC we use 64 vectorised environments, while for QMIX we use
32 vectorised environments. We leverage the design architecture of Mava which can distribute the end-to-end RL training
loop over multiple devices using the pmap JAX transformation and also vectorise it using the vmap JAX transformation.
For IPPO, MAPPO and Sable we train systems with and without memory. For IPPO and MAPPO this means that networks
include a Gated Recurrent Unit (GRU) (Cho, 2014) layer for memory and for Sable this means training over full episode
trajectories at a time or only one timestep at a time. For MASAC and HASAC (Liu et al., 2023b) we only train policies
using MLPs and for QMIX (Rashid et al., 2020a) we only train a system with memory due to the original implementations
of these algorithms doing so.

In cases where systems are trained with and without memory, we report results for the version of the system that performs
the best on a given task. In all hyperparameter tables, a parameter marked with an asterisk “*” implies that it is only relevant
for the memory version of a given algorithm.

D.1. Hyperparameter Optimisation

We use the same default parameters and parameter search spaces for a given algorithm on all tasks. All algorithms are
tuned for 40 trials on each task using the Tree-structured Parzen Estimator (TPE) Bayesian optimisation algorithm from the
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Table 7. Default hyperparameters for Sable.
Parameter Value
Activation function GeLU
Normalise Aavantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True

Table 8. Default hyperparameters for MAT.
Parameter Value
Activation function GeLU
Normalise advantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True

Optuna library (Akiba et al., 2019).

D.1.1. DEFAULT PARAMETERS

For all algorithms, we use the default parameters:

D.1.2. SEARCH SPACES

We always use discrete search spaces and search over the following parameters per algorithm

Table 9. Default hyperparameters for MAPPO and IPPO.
Parameter Value
Critic network layer sizes [128, 128]
Policy network layer sizes [128, 128]
Number of recurrent layers∗ 1
Size of recurrent layer∗ 128
Activation Function ReLU
Normalise advantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True
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Table 10. Default hyperparameters for MASAC and HASAC.
Parameter Value
Q-network layer sizes [128, 128]
Policy network layer sizes [128, 128]
Activation function ReLU
Replay buffer size 100000
Rollout length 8
Maximum gradient norm 10
Add One-hot Agent ID True

Table 11. Default hyperparameters for QMIX.
Parameter Value
Q-network layer sizes [128, 128]
Number of recurrent layers∗ 1
Size of recurrent layer∗ 256
Activation function ReLU
Maximum gradient norm 10
Add one-hot agent ID True
Sample sequence length 20
Hard target update False
Polyak averaging coefficient τ 0.01
Minimum exploration value ϵ 0.05
Exploration value decay rate 0.00001
Rollout length 2
Epochs 2
Add one-hot agent ID True

Table 12. Hyperparameter Search Space for Sable.
Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number retention heads {1, 2, 4}
Number retention blocks {1, 2, 3}
Retention heads κ scaling parameter {0.3, 0.5, 0.8, 1}

Table 13. Hyperparameter Search Space for MAT.
Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number transformer heads {1, 2, 4}
Number transformer blocks {1, 2, 3}
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Table 14. Hyperparameter Search Space for MAPPO and IPPO.
Parameter Value
PPO epochs {2, 4, 8}
Number of minibatches {2, 4, 8}
Entropy coefficient {0, 0.01, 0.00001}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Critic learning rate {1e-4, 2.5e-4, 5e-4}
Policy learning rate {1e-4, 2.5e-4, 5e-4}
Recurrent chunk size {8, 16, 32, 64, 128}

Table 15. Hyperparameter Search Space for MASAC and HASAC.
Parameter Value
Epochs {32, 64, 128}
Batch size {32, 64, 128}
Policy update delay {1, 2, 4}
Policy learning rate {1e-3, 3e-4, 5e-4}
Q-network learning rate {1e-3, 3e-4, 5e-4}
Alpha learning rate {1e-3, 3e-4, 5e-4}
Polyak averaging coefficient τ {0.001, 0.005}
Discount factor γ {0.99, 0.95}
Autotune alpha {True, False}
Target entropy scale {1, 2, 5, 10}
Initial alpha {0.0005, 0.005, 0.1}
Shuffle agents (HASAC only) {True, False}

Table 16. Hyperparameter Search Space for QMIX.
Parameter Value
Batch size {16, 32, 64, 128}
Q-network learning rate {3e-3, 3e-4, 3e-5, 3e-6}
Replay buffer size {2000, 4000, 8000}
Target network update period {100, 200, 400, 800}
Mixer network embedding dimension {32, 64}
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D.2. Computational resources

Experiments were run using various machines that either had NVIDIA Quadro RTX 4000 (8GB), Tesla V100 (32GB) or
A100 (80GB) GPUs as well on TPU v4-8 and v3-8 devices.

E. Sable Implementation Details
E.1. Pseudocode

The following are some useful notes when reading Sable’s pseudocode (Algorithm 1).

Bold inputs represent that the item is joint, in other words, it applies to all agents. For example: a is the joint action and v is
the value of all agents.

The clipped PPO policy objective can be given as:

LPPO(θ, Â,ot,at) = min
(
rt(θ)Ât, clip(rt(θ), 1± ϵ)Ât

)
where rt(θ,ot,at) =

πθ (at|ot)

πθold (at|ot)

(7)

The encoder is optimised using the mean squared error:

LMSE(ϕ,v, v̂) = (vϕ(ot)− v̂t)
2 (8)

where v̂t is the value target computed as v̂t = rt + γv(ot+1). We always compute the advantage estimate and value targets
using generalised advantage estimation (GAE) (Schulman et al., 2015).
We denote dt as a binary flag indicating whether the current episode has ended or not, with dt = 1 signifying episode
termination and dt = 0 indicating continuation.

E.2. Additional Implementation Insights

E.2.1. RETENTIVE ENCODER-DECODER ARCHITECTURE

RetNet is a decoder-only architecture designed with only causal language modelling in mind. This is illustrated by the
assumption in Equations 1, 2 and 3 that the key, query and value inputs are identical, as they are all represented by the
single value x. However, MAT uses an encoder-decoder model to encode observations and decode actions. In order to
extend retention to support the cross-retention used decoder, Sable takes a key, query and value as input to a retention block
in place of X . Additionally, it uses the key as a proxy for X in the swish gate used in multi-scale retention (Sun et al., 2023)
and the query as a proxy for X for the skip connection in the RetNet block (Sun et al., 2023).

E.2.2. ADAPTING THE DECAY MATRIX FOR MARL

Since the decay matrix represents the importance of past observations, it is critical to construct it correctly during training,
taking into account multiple agents and episode terminations, so that no agent is “favoured” and memory doesn’t flow over
episode boundaries. To achieve this, we make three modifications to the original decay matrix formula.

First, in cooperative MARL, a joint action is formed such that all agents act simultaneously from the perspective of the
environment. This means the memory of past observations within the same timestep should be weighted equally between
agents; therefore, Sable uses equal decay values for these observations.

Second, unlike self-supervised learning, RL requires algorithms to handle episode termination. During acting this is trivial
for Sable: hidden states must be reset to zero on the first step of every episode as seen in Equations 4 and 5. However, during
training, resetting needs to be performed over the full trajectory τ in parallel using the decay matrix. If there is a termination
on timestep td, then the decay matrix should be reset from index (Ntd, Ntd). Combining these two modifications, we
obtain the following equation, given a set of terminal timesteps Td, then ∀td ∈ Td:

Dij = Mij ⊙ D̃ij , Mij =

{
0 if i ≥ Ntd > j

1 otherwise
, D̃ij =

{
κ⌊(i−j)/N⌋, if i ≥ j

0, if i < j
(9)
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This updated equation makes sure that Sable does not prioritise certain agents’ past observations because of their arbitrary
ordering and ensures that all observations before the terminal timestep are forgotten.

The final decay matrix modification is only required in the encoder to allow for full self-retention over all agents’ observations
in a single timestep, to match the full self-attention used in MAT’s encoder. Since RetNet is a decoder-only model where the
decay matrix acts as a causal mask, we had to adjust Sable’s architecture to be able to perform self-retention. We do this by
creating N ×N blocks within the decay matrix, where each block represents a timestep of N agents. This leads to the final
modification of the decay matrix specifically for the encoder:

Dij = Mij ⊙ D̂ij , D̂ij =

{
κ⌊(i−j)/N⌋, if ⌊i/N⌋ ≥ ⌊j/N⌋
0, otherwise

(10)

In this case, the floor operator in the first condition creates the blocks that enable full self-retention. Examples of both the
encoder and decoder decay matrices used during training can be found in the appendix E.3.3.

E.2.3. POSITIONAL ENCODING

Positional encodings are crucial for Sable to obtain a notion of time. Previous works in single-agent reinforcement learning
(RL) that utilize transformers or similar architectures (Parisotto et al. (2020); Lu et al. (2024)) have demonstrated the
importance of positional encoding. Empirical results showed that the best method for Sable is absolute positional encoding,
as introduced by Vaswani et al. (2017). In this method, the agent’s timestep is encoded and added to the key, query, and value
during processing. Importantly, we discovered that providing all agents within the same timestep with the same positional
encoding is pivotal for performance. When agents were assigned sequential indices (e.g., agent i at step t receiving index
N × t+ i), as is commonly done with tokens in NLP tasks, the performance was significantly worse.

E.2.4. HANDLING CONTINUOUS AND DISCRETE ACTION SPACES

Similar to PPO, Sable can effectively manage both continuous and discrete action spaces, through the use of different
network heads depending on the action space. For discrete actions, Sable outputs logits that parameterize a Categorical
distribution. In the case of continuous actions, Sable outputs mean values and employs a shared log standard deviation
parameter to define a Gaussian distribution, from which actions are sampled. This approach aligns with PPO’s methodology
for handling both types of action spaces.

E.3. Algorithmic Walkthrough: Concrete Example

Sable processes full episodes as sequences, chunking them into segments of defined rollout lengths. During each training
phase, it processes a chunk and retains hidden states, which are passed forward to subsequent updates. In this section, we
provide a concrete example to illustrate how the algorithm works in practice.

E.3.1. EXAMPLE SETUP

To illustrate Sable’s chunkwise processing, consider a simple environment with 3 agents, and a rollout length (L) of 4
timesteps. The goal of this setup is to demonstrate how Sable processes the execution and training phases of a trajectory τ ,
starting at timestep l. For this example, we will assume that an episode termination happened at l + 1, which means at the
second step of the trajectory.

E.3.2. EXECUTION PHASE

During this phase, Sable interacts with the environment to build the trajectory τ . Each timestep t ∈ {l, ..., l+3} is processed
sequentially. At each timestep t, the encoder takes as input the observation of all the agents at t, along with the hidden
state from the previous timestep, henc

t−1. If t = l, indicating the beginning of the current execution phase, the encoder uses
henc
l−1. The encoder then computes the current observation representations ôt, observation values vt, and updates the hidden

state for the next timestep, henc
t . These observation representations are passed to the decoder alongside hdec

t−1. If t = l, the
decoder initialises with hdec

l−1, similar to the encoder. The decoder processes the input recurrently for each agent, generating
actions one by one based on the previous agent’s action. For the first agent, a start-of-sequence token is sent to the decoder,
signaling that this is the initial agent and prompting the decoder to begin reasoning for its action independently of prior
agents. As each agent’s action is decoded, an intermediate hidden state ĥ is updated, and once the decoder iterates over all
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agents, it generates hdec
t for the timestep t. At the end of each timestep, both the encoder and decoder hidden states are

decayed by the factor κ, reducing the influence of past timesteps. If the episode ends at timestep t (in our case at t = l + 1),
the hidden states are reset to zero; otherwise, they continue to propagate to the next timestep with the decay applied.

E.3.3. TRAINING PHASE

Once the trajectory τ is collected, the observations from all agents and timesteps are concatenated to form a full trajectory
sequence. In this case, the resulting sequence is [o1l , o

2
l , ..., o

2
l+3, o

3
l+3]. Both encoder and decoder compute retention over

this sequence using Equation 6. However, rather than recalculating or initialising Hτprev , the encoder and decoder take as
input the hidden states from the final timestep of the previous execution phase, henc

l−1 and hdec
l−1, respectively. Within the

retention mechanism used during training, the decay matrix D and ξ control the decaying and resetting of information.

The decay matrix, D, has a shape of (NL,NL), which in this case results in a (12,12) matrix, where each element calculates
how much one token retains the information of another token. For example, D5,3 shows how much information o2l+1 retains
from o3l :

Denc =



κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0

0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0

0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0



Ddec =



κ0 0 0 0 0 0 0 0 0 0 0 0
κ0 κ0 0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
0 0 0 0 0 0 κ0 0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0


As shown in this example the decay matrix D, agents within the same timestep share identical decay values, ensuring
consistent retention for all agents within a given timestep. Additionally, the decay matrix resets for agents once an episode
ends. For instance, after the termination at timestep l + 1, subsequent timesteps (D7:12,1:12) no longer retain information
from the prior episode as can be seen from the zeros at D7:12,1:6. The encoder decay matrix, Denc enables full self-retention
over all agents in the same timestep as can be seen through the blocks of equal values within the decay matrix. In contrast,
the decoder decay matrix, Ddec, only allows information to flow backwards in time, so agents can only view the actions of
previous agents as they make decisions sequentially.

The second key variable in the retention mechanism is ξ, which controls how much each token in the sequence retains
information from the hidden state of the previous chunk (henc

l−1 for the encoder and hdec
l−1 for the decoder). The ξ matrix

represents the contribution of past hidden states to the current timestep, ensuring continuity across chunk boundaries. For
this case, ξ is structured as follows:

ξ =



κ1

κ1

κ1

κ2

κ2

κ2

0
0
0
0
0
0


As shown, ξ ensures that after the termination at timestep l + 1, the tokens in subsequent timesteps no longer retain
information from the hidden states of the prior episode.
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E.3.4. HANDLING LONG TIMESTEP SEQUENCES

Consider a trajectory batch τ ′ consisting of 3 agents and 512 timesteps. This results in a sequence length of 512× 3 = 1536.
Given the potential memory limitations of the computational resources, handling such a large sequence may pose challenges
when applying Equation 6, which assumes the entire sequence is processed as input.

To handle these long sequences, we divide the trajectory into i smaller chunks. However, it’s essential to maintain the
condition that each chunk must be organized by timesteps, meaning all agents from the same timestep must belong to the
same chunk. The first chunk will use the hidden state as described earlier (henc

l−1 for the encoder and hdec
l−1 for the decoder).

For subsequent chunks, when chunking the trajectory into smaller chunks of size 4, the input hidden state is recalculated
using the following equation:

hi = KT
[i](V[i] ⊙ ζ) + δκ4hiprev , ζ = D12,1:12

Suppose that a chunk B starts at timestep b and there is a termination at b+ 1. In this case, the decay matrix for B would be
structured similarly to the one used in the example of Section E.3.3. And given that, ζ will be equal the following :

ζ = ( 0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0 )

This structure ensures that only tokens from the current episode contribute to the hidden state, while any information from
the previous episode is ignored. Additionally, the term δκLHBprev

is set to zero, ensuring that once an episode ends, the
associated hidden state does not carry over to the next chunk.
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