
AutoPDL: Automatic Prompt Optimization for LLM Agents 1

Anonymous1 2

1
Anonymous Institution 3

Abstract The performance of large language models (LLMs) depends on how they are prompted, 4

with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, 5

ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Man- 6

ually tuning this combination is tedious, error-prone, and non-transferable across LLMs or 7

tasks. Therefore, this paper proposes AutoPDL, an automated approach to discover good 8

LLM agent configurations. Our method frames this as a structured AutoML problem over 9

a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, 10

using successive halving to efficiently navigate this space. We introduce a library imple- 11

menting common prompting patterns using the PDL prompt programming language. Au- 12

toPDL solutions are human-readable, editable, and executable PDL programs that use this 13

library. This approach also enables source-to-source optimization, allowing human-in-the- 14

loop refinement and reuse. Evaluations across three tasks and six LLMs (ranging from 8B 15

to 70B parameters) show consistent accuracy gains (9.5 ± 17.5 percentage points), up to 16

68.9pp, and reveal that selected prompting strategies vary across models and tasks. 17

1 Introduction 18

Large languagemodels (LLMs) and LLM-based agents excel at a variety of tasks, including question 19

answering, math word problems, and programming. The performance of an LLM depends heavily 20

on how it is prompted, and there are a variety of popular prompting patterns. These include zero- 21

shot or few-shot (Brown et al. 2020) prompting with chain-of-thought (CoT) (Wei et al. 2022), as 22

well as agentic patterns such as ReAct (Yao et al. 2023) or ReWOO (Xu et al. 2023). However, given 23

a dataset 𝐷test with a loss function L, e.g., error rate, it is not clear which pattern will do best. 24

Furthermore, besides the pattern 𝐴, performance also depends on the prompt 𝑝 , including few- 25

shot samples and instructions. The problem is thus to find a combination 𝐴∗𝑝 of a pattern along 26

with an optimized prompt that minimizes L. This is usually done via manual prompt engineering, 27

but that is tedious and has to be repeated if a new LLM comes along. Therefore, this paper explores 28

how to find 𝐴∗𝑝 using automated machine learning (AutoML). And for users to trust the result or 29

to tweak it further, 𝐴∗𝑝 itself should be easy to read and edit. 30

Agent frameworks, such as CrewAI (Moura 2023) or AutoGen (Wu et al. 2023), contain pre- 31

built agent patterns with prompts optimized for proprietary frontier models and common tasks. 32

Unfortunately, their prompts are deeply buried (Schluntz et al. 2024), making them hard to modify 33

and adapt to non-frontier models or novel tasks. Moreover, the prompting pattern is fixed to a 34

variation of ReAct, limiting flexibility in customizing the prompt structure. Prompt optimizers, 35

such as DSPy (Khattab et al. 2023), optimize few-shot samples for in-context learning (ICL) and/or 36

instructions in the prompt 𝑝 . Unfortunately, they do not automatically select the prompting pat- 37

tern 𝐴 and do not return human-readable code. 38

We formulate the problem of finding a good pattern and corresponding prompt by defining and 39

then exploring a combined search space. We were inspired by the AutoML literature on combined 40

search spaces of machine-learning algorithms and their hyperparameters (Thornton et al. 2013), 41

except that (i) instead of discrete or continuous hyperparameters, we explore textual ICL samples, 42

instructions, and prompting patterns; (ii) instead of classification or regression tasks, we tackle 43

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

generative tasks; and (iii) instead of model training or fine-tuning, we focus on in-context learning. 44

We assume a dataset with a validation set 𝐷valid, test set 𝐷test, as well as an example bank 𝐷train for 45

few-shot samples. As usual, to avoid over-fitting, we assume these are disjoint from each other. 46

The problem statement is to find 𝐴∗𝑝 = argmin

𝐴𝑝 ∈AP

L(𝐴𝑝 , 𝐷valid), where: 47

• 𝐴 ∈ A = {Zero-Shot, CoT, ReWOO, ReAct} is the prompting pattern, and 48

• 𝑝 = ⟨𝑛,𝑑train, instr⟩ ∈ P is the prompt, comprising a number 𝑛 ≤ |𝐷train | of few-shot samples, 49

the actual few-shot samples 𝑑train ∈ (𝐷train)𝑛 , and an instruction instr ∈ I . 50

To avoid getting stuck in local minima while saving compute and finding a solution with a low 51

loss, we explore the search space AP using successive halving (Jamieson et al. 2016). To make 52

the initial search space AP user-interpretable, and the final solution 𝐴∗𝑝 both human readable 53

and executable, we express them in a YAML-based prompting language, PDL (Vaziri et al. 2024). 54

PDL’s structured format makes it easy to modify both the initial search space and the optimized 55

program, and ensures the final solution remains directly executable. We introduce a library for 56

PDL that implements each of the common prompting patterns in A. The initial search space AP 57

is a YAML file with various choice points for AutoML to decide. And the solution 𝐴∗𝑝 is a custom- 58

tailored PDL program optimized for the given task, as given by the dataset and loss function. The 59

developer can read or even tweak either or both as desired. 60

We evaluate our optimizer on three tasks (question answering, math, and programming), using 61

six LLMs sized between 8B and 70B parameters. We find that the optimizer often gives accuracy 62

boosts in the 6–30% range, in some cases higher. Given the same task, different patterns𝐴 ∈ A do 63

best for different models. Conversely, given the samemodel, different patterns do best for different 64

tasks. Besides this variability in the chosen pattern 𝐴, our experiments also revealed variability 65

in the optimized prompts 𝑝 = ⟨𝑛,𝑑train, instr⟩. We also found that when training data for a task is 66

missing, data from a related but different dataset can help. Also, while most of our experiments use 67

moderate-sized open models, we also show our optimized solutions can benefit frontier models. 68

This paper makes three primary contributions: 69

1. Jointly searching pattern and prompt: prior work in prompt optimization has not investigated 70

searching joint search spaces, including agentic patterns. 71

2. No one size fits all: we find that different models sometimes have differing optimal prompt pat- 72

terns for the same benchmark, suggesting that there is not one single optimal prompt pattern. 73

3. Source-to-source optimization: we propose the first source-to-source optimizer for LLM prompt 74

programs, where both the initial search space and the final solution are prompt programs in the 75

same language, making the final solution both human-readable and executable. 76

Overall, this paper shows how to apply AutoML to automatically discover agentic or non- 77

agentic LLM prompts and patterns optimized for a given task. 78

2 Background 79

This paper uses PDL (Vaziri et al. 2024) as a representation for exploring the search space of pro- 80

grams. PDL programs are declarative and combine human readability with ease of execution. They 81

represent the composition of calls to LLMs and tools, abstracting away the plumbing necessary for 82

such compositions. The output of the optimizer is also a PDL program, rather than simple textual 83

prompts, so it is fully executable and could be further refined by a developer. 84

Figure 1 shows a simple PDL program that uses a tool to answer a query. PDL is based on the 85

premise that interactions with an LLM are mainly for the purpose of generating data. So, it allows 86

users to specify the shape of data to be generated in a declarative way (in YAML), and is agnostic 87

2

1 text:
2 - role: tools
3 text: ${ tools }
4 - "Out of 1400 participants, 400 passed the test. What percentage is that?\n"
5 - def: actions
6 model: replicate/ibm-granite/granite-3.1-8b-instruct
7 parser: json
8 spec: [{ name: str, arguments: { expr: str }}]
9 - i f : ${ actions[0].name == "calc" }
10 then:
11 lang: python
12 code: result = ${ actions[0].arguments.expr }

Figure 1: Basic example of a PDL program.

of any programming language. The first line of Figure 1 specifies that we are creating some text. 88

The next block in the itemized list defines the tools prompt. Line 3 contains a use of variable tools, 89

expressed as a Jinja expression. This variable is defined as the JSON Schema specification of a 90

calculator tool (not shown in this figure, for the full program see Appendix A.1). Line 4 is the 91

user query prompt. We do not specify the role explicitly as this is the default role for prompts. 92

Lines 5 through 8 show a model call. In PDL, the background context is accumulated implicitly, 93

so the output of all blocks executed so far will be passed to the LLM as a list of input messages. 94

The result of the model call is assigned to the variable actions (line 5). The model to be called 95

is specified on line 6 (PDL is based on LiteLLM,
1
so this is a LiteLLM model id). Finally, lines 7 96

and 8 say that we parse the output of the model as JSON and type-check it according to the type 97

on line 8. Furthermore, when the inferencing server supports it, model calls with a schema use 98

constrained decoding (Willard et al. 2023), enforcing syntactically correct JSON.
2

99

On line 9, an if-statement checks whether the output of the LLM asks for the calculator tool. If 100

so, we use a Python code block to compute the requested tool call (lines 11 and 12). When we exe- 101

cute this program using the PDL interpreter, we obtain all the model inputs, followed by the model 102

output, and finally the output of the tool call. PDL has a rich set of control structures to allow writ- 103

ing a variety of prompting patterns, as well as functions to support libraries. For instance, Figure 3 104

shows a function call on line 4. In this paper, we consider the problem of automatically tuning 105

prompts and choosing prompting patterns for a given dataset. The following section explains our 106

approach in further detail. 107

3 AutoPDL Approach 108

Figure 2 gives an overview of our approach. Referring to the numbers in the arrows: 109

(1) The input task is given by two disjoint datasets 𝐷train and 𝐷valid and a loss function L. 110

The datasets comprise ⟨𝑥,𝑦⟩ instances, where 𝑥 is a question, 𝑦 is the corresponding answer, and 111

both are text strings. The loss function evaluates the quality of an answer 𝑦. (2) The search space 112

specification AP is a YAML file with the optimization variables and their possible values, along 113

with some hyperparameters. For example, num_demonstrations: [0, 3, 5] indicates that each candidate 114

will have zero, three, or five ICL samples randomly drawn from 𝐷train. In the case of zero demon- 115

strations, this is equivalent to the zero-shot baseline. If zero is an option, we bias our candidate 116

sampling to always include one zero-shot candidate, just in case that baseline turns out to be the 117

best-performing configuration. 118

(3) The pattern library consists of four PDL functions. Zero-shot is a baseline that simply 119

prompts the LLM with 𝑥 and expects it to return 𝑦. CoT refers to chain-of-thought (Wei et al. 120

2022) with in-context learning (Brown et al. 2020): the input includes a few 𝑥𝑖𝑦𝑖 pairs before the 121

actual question 𝑥 , and the output includes some reasoning thought tho before the actual answer 𝑦. 122

1
https://github.com/BerriAI/litellm

2
PDL additionally makes use of the heuristic json-repair package.

3

Dtrain

Dvalid

Dtest

loss
function

x1 y1

…
xn yn

x

tho
y

x y

traj1

…
trajn

x

tho
act1

…
actm

obs1

…
obsm

y

traj1

…
trajn

x

tho
act

obs y

Zero-
Shot

CoT

ReWOO

ReAct

Pattern LibraryInput
Task

Search Space Specification

Solution

Successive Halving Optimizer

c1

…
ck

ℓ1

…
ℓk

Ap*
1

5

2

4

3

variables:
prompt_pattern: [cot, react, rewoo]
num_demonstrations: [0, 3, 5]
system_prompt: [granite_tools, llama3, granite_llama]

initial_test_set_size: 16
max_test_set_size: 1000
num_candidates: 100
parallelism: 5

defs:
prompt_pattern: react
num_demonstrations: 5
system_prompt: granite_tools
demonstrations:

data:
- - question: Rita put a $120 elliptical machine […]
- thought: The down payment Rita made was […]
- action: '{"name":"Calculator","arguments":[…]'
- observation: 60
- […]

Figure 2: Overview of our approach.

ReWOO (Xu et al. 2023) refers to reasoning without observations. Here, the few-shot samples are 123

trajectories traj𝑖 , and the first LLM call generates reasoning thought tho and multiple actions act𝑖 . 124

The PDL code executes each of the actions as a tool call to obtain the corresponding observations 125

obs𝑖 . A final model call generates the answer 𝑦 based on the observations. Finally, the ReAct 126

pattern (Yao et al. 2023) starts with few-shot trajectory examples traj𝑖 and the question 𝑥 , then 127

enters a TAO (thought, action, observation) loop. In each loop iteration, the LLM generates tho 128

and act, then the PDL code executes the action as a tool call, and feeds the tool output back as an 129

observation obs. A special Finish action breaks out of the loop to return the answer 𝑦. 130

1 text:
2 - include: ../../tools.pdl
3 - include: ../../ReAct.pdl
4 - ca l l : ${ react }
5 def: ANSWER
6 args:
7 task: "Question: ${ question }"
8 model: ${ model }
9 tools: ${ tools }
10 trajectories: ${ demonstrations }
11 - "\nThe answer is ${ ANSWER.answer }"

Figure 3: Basic example of PDL program

using the ReAct pattern.

Once inputs (1), (2), and (3) are in place, the succes- 131

sive halving optimizer runs in a loop. The algorithm is 132

given § A.2. It starts with a small subset 𝐷𝑣 ⊂ 𝐷valid 133

and many candidates C = {𝑐1, . . . , 𝑐𝑘 } ⊆ AP sampled 134

from the search space. Each iteration uses 𝐷𝑣 to evalu- 135

ate the corresponding losses ℓ1, . . . , ℓ𝑘 . Then each iter- 136

ation keeps the
𝑘
2
candidates with the smallest L while 137

doubling the size of the validation subset 𝐷𝑣 . (4) After 138

the last iteration, the best remaining candidate is the so- 139

lution 𝐴∗𝑝 . This solution is a set of PDL definitions with 140

concrete values for the optimization variables, e.g., in 141

Figure 2, num_demonstrations: 5 and demonstrations: ... a list of 142

ReAct trajectories. (5) This program can be used on the test set 𝐷test. For instance, Figure 3 shows 143

a call to the ReAct function that passes ${demonstrations} from 𝐴∗𝑝 as an argument. 144

4 Methodology 145

This section describes the datasets used, the tools available to agents, and our experimental setup, 146

including how we construct agent trajectories that demonstrate tool use for each dataset. 147

4.1 Datasets 148

We selected datasets that are widely used in the literature, span diverse tools and domains, and 149

are representative of tool categories frequently studied in prior work (e.g., calculator, search, code 150

4

execution). In our experiments, each dataset has three disjoint splits: 𝐷train to sample few-shot 151

samples from, 𝐷valid to evaluate candidates during optimization, and 𝐷test to evaluate the final 152

chosen solution upon completion of optimization. 153

GSM8K. The Grade School Math (Cobbe et al. 2021) dataset consists of over eight thousand grade 154

school math problems. We sample 1,000 problems without replacement from the train set to use as 155

our 𝐷valid set, and 1,000 from the test set to use as our 𝐷test. This leaves a 𝐷train of 6,449 problems. 156

Each problem consists of a word problem 𝑥 such as “What is fifteen more than a quarter of 48?”, a 157

sequence tho of reasoning steps, and finally a plain numeric answer𝑦 following a special delimiter. 158

For the CoT prompt pattern, we include these reasoning steps directly in the demonstrations. 159

GSM-Hard. Gao et al. (2023) introduce a derivative of GSM8K with variables randomly changed 160

to large numbers. We split the single set into equally sized 𝐷valid and 𝐷test (𝑛 = 594), and use the 161

GSM8K training set described above for 𝐷train (cross transfer). Unfortunately, GSM-Hard had 132 162

samples where the ground truth was incorrect, and hence we excluded those samples. 163

FEVER. FEVER (Thorne et al. 2018) is a question-answering dataset structured around fact ver- 164

ification. The original dataset contained 185,445 claims that are true, false, or unverifiable, and 165

associated with human annotated supporting, refuting, or neutral sentences and their Wikipedia 166

article of origin. We follow the widely used derivative of this benchmark in BIG-bench (Srivastava 167

et al. 2023), which reformulates it into a true-or-false task by removing unverifiable claims. We 168

sample 1,000 claims from the train set as 𝐷valid and 1,000 from the test set as 𝐷test. This leaves a 169

𝐷train of 5,676 claims. BIG-bench also does not include the supporting or refuting sentences, which 170

we recover by joining on the original dataset, for use e.g., as CoT demonstrations. 171

MBPP+. MBPP (Austin et al. 2021) is a dataset of mostly basic Python problems, with each exam- 172

ple consisting of a natural language problem specification 𝑥 for a self-contained function 𝑦, along 173

with a single test case. Each problem has an extended set of test cases used for evaluation, which 174

are not shown to the model. Liu et al. (2023) found that MBPP test cases are incomplete, allowing 175

proposed solutions to pass as correct, despite not matching the problem specification. Therefore, 176

our experiments are based on MBPP+, which contains a subset of the problems, but a more com- 177

plete set of test cases for each problem. Our ReAct implementation follows Wang et al. (2024). We 178

do not implement ReWOO as it is not reactive, i.e., cannot include execution feedback. 179

4.2 Tools 180

Our prompt library represents actions, i.e., tool calls, following the JSON tool calling schema (Ab- 181

delaziz et al. 2024). An action is represented as a JSON object with name and arguments mapping. 182

For example, {"action": "Calc", "arguments": {"expr": "48/4"}} represents a call to a calculator with the 183

expression to evaluate. The PDL functions implementing the patterns (see Figure 2) accept a list 184

of tool definitions as an argument. Each element of that list is itself a PDL function. As both the 185

agents and tools are implemented in PDL, the set of tools for a given task could itself be made a 186

search space dimension, which we leave to future work. 187

Calculator. For math datasets, we give the agentic approaches access to the Calc tool. This tool 188

evaluates a cleaned (e.g., replacement of ^ with ∗∗) expression with SymPy, returning the result. 189

In case of error, the function returns a warning that the expression was invalid, which may help 190

the agent recover from invalid input. 191

Search. For fact verification, we provide access to the Search tool, which returns the summary 192

of the first Wikipedia search result for the query. If no results are found, a hint to try again is 193

returned, or if the title is too ambiguous, a list of possible disambiguations. 194

5

https://github.com/sympy/sympy

Execute. We implement a programming agent for the code generation task, which can execute 195

arbitrary code surrounded in XML-style <execute> tags. This tool executes the code in a Python 196

shell, which returns the result of the final expression. This allows the agent to test its proposed 197

solution against the given test case before submitting its solution. 198

Finish. The most basic action is the Finish action, or <solution> tag for the coding agent. This 199

ends the agent’s trajectory and results in the agent returning the value as the solution. 200

4.3 Experimental Setup 201

We evaluate the efficacy of our approach by running an optimization process to completion for 202

each model & dataset pair, and subsequently comparing the task accuracy. As a baseline, we 203

evaluate each model in a zero-shot setting. This setting reflects the minimal effort approach by a 204

user or developer, where they do not include any demonstrations with their query or task. As no 205

model we investigate was specifically trained to create agentic trajectories in a zero-shot setting, 206

it is not feasible to create a zero-shot setting under ReAct or ReWOO. 207

For the optimization process, we used an initial candidate set C of 100 candidates per experi- 208

ment. We fixed the size of the initial validation subset 𝐷𝑣 ⊂ 𝐷valid to 16, and the reduction factor 209

𝜂 to 2. We define L(𝑐𝑖 , 𝐷𝑣) = −Accuracy(𝑐𝑖 , 𝐷𝑣) for a given candidate 𝑐𝑖 . Additionally, a variable 210

Demonstrations that holds the demonstrations or trajectories, defined as𝐷𝑡 ⊂ 𝐷train where |𝐷𝑡 | = 211

number of demonstrations, is sampled with replacement for each candidate. The number of pos- 212

sible values for Demonstrations is combinatorially large and depends on the dataset 𝐷train used. 213

Finally, upon completion of an optimization process, the optimal candidate is evaluated on 𝐷𝑡𝑒𝑠𝑡 . 214

Constructing Trajectories. As we are also optimizing over agentic trajectories, we also need a 215

set of trajectories to sample few-shot samples from. To achieve this, we create a basic agentic 216

trajectory traj𝑖 for each training example ⟨𝑥𝑖 , 𝑦𝑖⟩, following a rule-based transformation. We design 217

and apply a template to each dataset, which is relatively simple and easy to implement for other 218

datasets (details are provided in § A.4). Prior work has introduced approaches to bootstrapping 219

trajectories e.g., in software engineering (Pan et al. 2024), tool use demonstrations (Li et al. 2025), 220

and reasoning paths (Zelikman et al. 2022), which could be applied to this problem. While we 221

acknowledge the shortcomings of manual template construction, we argue this approach has two 222

strengths: it is generalizable in the sense that templates can be mixed and matched, and that 223

the trajectories are directly based on the datasets used. Additionally, we wanted to work with 224

commonly used datasets that cover a variety of tools and domains, rather than emerging datasets 225

containing trajectories or tool use demonstrations. 226

Models. We aim to study models of various abilities, e.g., natural language or code, various cre- 227

ators, and various sizes, ranging from single digit billions of parameters, up to the edge of feasibility 228

on consumer hardware. We include six models available on inference service IBM watsonx in our 229

study. We select two generalist natural language models, Llama 3.1 8B and Llama 3.1 70B, from 230

the open-source and widely studied LLaMa family (Dubey et al. 2024). We further select three 231

models from Mishra et al. (2024), which predate Dubey et al. (2024) by approximately 3 months. 232

We select Granite 13B Instruct V2 as a generalist model, and Granite 20B and 34B Code In- 233

struct as code models. The number of models we evaluate is limited by cost in $/token terms and 234

execution time. By studying various models, we demonstrate the generalizability of our approach. 235

Alternative Setups. We evaluate two alternative experimental setups. First, to investigate low- 236

resource scenarios, we examine whether performance on one dataset can be improved by using 237

demonstrations𝐷train from a similar dataset, while optimizing w.r.t. 𝐷valid. For this experiment, we 238

investigate whether performance on GSM-Hard can be improved by using demonstrations from 239

GSM8K, while optimizing w.r.t. GSM-Hard 𝐷valid. Second, to explore saving optimization costs, 240

6

https://www.ibm.com/watsonx

we assess whether optimized prompt programs of one model can transfer well to a frontier model. 241

The intuition is that while that might not be the best program for the frontier model, it might at 242

least improve somewhat over the baseline. To this end, we evaluate the optimized PDL programs 243

of LLaMa 3.1 70B on OpenAI’s gpt-4o-mini-2024-07-18, for each dataset. 244

5 Results 245

This section describes the results of our empirical study to evaluate our AutoPDL approach and 246

answer the following research questions: 247

RQ 1: To what extent does AutoPDL improve accuracy, and how much does the best solution vary by

task and model?
248

RQ1 asks to what degree our AutoPDL approach can improve model performance over their 249

zero-shot baseline across a variety of commonly used benchmarks. We also seek to identify trends, 250

if any, in optimal configurations, e.g., whether more few-shots is always better, or whether certain 251

prompt patterns are particularly suited to certain problem domains. 252

RQ 2: CanAutoPDLmake up for amissing few-shot example bank for a given task by reusing the example

bank from a similar task?
253

RQ2 investigates whether optimizing on one dataset using demonstrations from another, re- 254

lated, dataset can result in higher performance than using no demonstrations (zero-shot). This RQ 255

addresses a low-resource scenario in which a limited pool of demonstrations exists in one dataset, 256

but a dataset from a similar domain has a large pool. 257

RQ 3: Do solutions found by AutoPDL improve performance on frontier models, even when optimized

for open-source models?

258

It can be expensive to run optimization against commercial frontier-model APIs. RQ3 assesses 259

whether optimized prompt programs are transferable to different (and likely stronger) models than 260

those they were optimized with. 261

Table 1 reports the results of our optimization and evaluation procedure. Across models and 262

datasets, we generally find some improvement over the zero-shot baseline with few-shot chain- 263

of-thought, or agentic patterns ReAct or ReWOO. 264

FEVER. We observed the minimum improvement in Granite 3.1 8B, with a 0.7 percentage 265

point (pp) improvement, and a maximal improvement of 68.9pp for Granite 13B Instruct V2. 266

In terms of prompt pattern, CoT and ReWOO are represented, with CoT being the most frequent. 267

ReAct was not the optimal for any of the models. Interestingly, the largest model (LLaMa 3.1 268

70B) benefited by 56.6pp from 3-shot CoT. FEVER runtimes are generally higher than the other 269

benchmarks, likely due to the large number of tokens involved by including Wikipedia content. 270

GSM8K. The highest improvement recorded (12.7pp) was for LLaMa 3.1 70B using 5-shot CoT, 271

while the minimum improvement of 1.3pp was in Granite 3.1 8B using 5-shot ReAct. ReWOOwas 272

not the optimal for any model. For Granite 20B Code and Granite 34B Code, no improvement 273

over the zero-shot baseline was identified. This was somewhat surprising, as generally including 274

even some few-shot samples improves performance in LLMs. 275

MBPP+. The majority of models benefited from execution feedback, as 4 out of 6 had ReAct as the 276

optimal prompt pattern (ReWOO was excluded as described in § 4.3). The greatest improvement 277

of 8pp was in Granite 13B Instruct V2, likely due to its poor programming performance as 278

a generalist, non-code model. In contrast, the smaller LLaMa 3.1 8B model had high zero-shot 279

performance of 61.2%, yet still improved by 6.2pp with ReAct. No improvement was observed for 280

Granite 3.1 8B and LLaMa 3.1 70B. 281

7

Dataset Model
Accuracy

Pattern Runtime
(HH:mm)Zero-Shot Optimized Delta

FEVER

Granite 3.1 8B 78.3% 79.0% +0.7pp ReWOO (5 shot) 08:55

Granite 13B Instruct V2 6.5% 75.4% +68.9pp ReWOO (3 shot) 08:12

Granite 20B Code 39.7% 64.2% +24.5pp CoT (3 shot) 05:06

Granite 34B Code 56.4% 65.6% +9.2pp CoT (3 shot) 03:47

LLaMA 3.1 8B 68.5% 78.0% +9.5pp CoT (3 shot) 05:24

LLaMA 3.1 70B 29.7% 86.3% +56.6pp CoT (3 shot) 04:57

GSM8K

Granite 3.1 8B 74.5% 75.8% +1.3pp ReAct (5 shot, Granite Tools) 01:29

Granite 13B Instruct V2 23.2% 30.3% +7.1pp CoT (5 shot) 02:24

Granite 20B Code 68.8% 68.8% +0.0pp Zero-Shot (Baseline) 05:06

Granite 34B Code 72.3% 72.3% +0.0pp Zero-Shot (Baseline) 03:19

LLaMA 3.1 8B 78.4% 84.8% +6.4pp CoT (3 shot) 03:24

LLaMA 3.1 70B 82.1% 94.8% +12.7pp CoT (5 shot) 04:09

MBPP+

Granite 3.1 8B 68.8% 68.8% +0.0pp Zero-Shot (Baseline) 02:07

Granite 13B Instruct V2 10.7% 18.8% +8.0pp ReAct (3 shot) 02:55

Granite 20B Code 57.6% 60.7% +3.1pp ReAct (5 shot) 02:57

Granite 34B Code 58.9% 59.8% +0.9pp ReAct (3 shot) 04:52

LLaMA 3.1 8B 61.2% 67.4% +6.2pp ReAct (5 shot) 01:25

LLaMA 3.1 70B 73.2% 73.2% +0.0pp Zero-Shot (Baseline) 01:38

Table 1: Model accuracies across datasets for baseline (zero-shot) and optimized versions.

Dataset Model
Accuracy

Pattern Runtime
(HH:mm)Zero-Shot Optimized Delta

GSM-Hard

Granite 3.1 8B 44.0% 44.0% +0.0pp Zero-Shot (Baseline) 04:57

Granite 13B Instruct V2 4.4% 5.6% +1.2pp CoT (3 shot) 03:30

Granite 20B Code 28.8% 28.8% +0.0pp Zero-Shot (Baseline) 08:26

Granite 34B Code 27.9% 30.0% +2.0pp ReWOO (5 shot) 05:49

LLaMA 3.1 8B 31.6% 32.3% +0.7pp ReWOO (5 shot) 04:44

LLaMA 3.1 70B 46.6% 56.6% +9.9pp ReAct (5 shot, Granite LLaMa) 06:10

Table 2: Model accuracies on GSM-Hard for cross optimization experiment.

Missing Few-Shot Example Bank. We optimized the PDL program for GSM-Hard, using GSM8K 282

demonstrations, and report results in Table 2. We found that inmost cases, GSM8K demonstrations 283

were at least not harmful for models on GSM-Hard, with up to 9.9pp improvement for LLaMa 3.1 284

70B using 5-shot ReAct (Granite LLaMa instructions). As the largest evaluated model, LLaMa 3.1 285

70B likely generalizes best and makes effective use of the calculator tool. 286

Dataset Model
Accuracy

Pattern
Zero-Shot Optimized Delta

FEVER GPT-4o-mini 83.7% 87.7% +4.0pp CoT (3 shot)

GSM-Hard GPT-4o-mini 45.6% 54.9% +9.3pp ReAct (5 shot, Granite LLaMa)

GSM8K GPT-4o-mini 77.8% 90.9% +13.1pp CoT (5 shot)

MBPP+ GPT-4o-mini 72.3% 72.3% +0.0pp Zero-Shot (Baseline)

Table 3: Model Accuracy for GPT-4o-mini cross experiment results

Commercial Frontier Model. To assess whether performance gains in one model can be 287

achieved in another, we evaluate the optimized PDL programs of LLaMa 3.1 70B on OpenAI’s 288

gpt-4o-mini-2024-07-18 and report results in Table 3. For all dataset/prompt pattern pairs which 289

resulted in improvement for LLaMa 3.1 70B, we found a surprising improvement in GPT4o-mini 290

of at least 4pp on FEVER using 3-shot CoT, 9.3pp on GSM-Hard (using GSM8K demonstrations) 291

with 5-shot ReAct (Granite LLaMa instructions), and up to 13.1pp on GSM8K using 5-shot CoT. 292

This suggests that optimizing for an open-source model can also benefit a closed-source model. 293

8

6 Related Work 294

The closest related work is on prompt optimization. APE starts with an LLM-generated set of can- 295

didate prompts, then performs rejection sampling based on evaluation on a subset of data (Zhou 296

et al. 2023). Unlike our approach, APE does not optimize few-shot samples. CEDAR uses a demon- 297

stration pool, from which it retrieves few-shot examples at query time (Nashid et al. 2023). Unlike 298

our approach, these few-shot samples are retrieved on a per-inference basis, not optimized ahead- 299

of-time. DSPy optimizes instructions and few-shot samples for a chain of LLM calls (Khattab et al. 300

2023) (not just a single call like APE or CEDAR). Also, DSPy takes away control over the exact 301

prompt from the programmer, which our approach preserves. Similarly to DSPy, TextGrad also 302

optimizes a chain of LLM calls, by using LLMs to back-propagate modifications to instructions 303

in prompts (Yuksekgonul et al. 2024). However, unlike our approach, neither of these optimize 304

agentic patterns. EvoAgent optimizes the instructions of a population of agents via crossover, 305

mutation, and selection (Yuan et al. 2024). It then forms an ensemble from the final, fittest, popu- 306

lation. GPTSwarm represents each agent as a graph, then freezes intra-agent edges and optimizes 307

the placement of additional inter-agent edges (Zhuge et al. 2024). Unlike our approach, neither 308

EvoAgent nor GPTSwarm optimize the agentic pattern inside individual agents, nor do they opti- 309

mize few-shot samples. 310

Another closely related field of study is AutoML. Auto-sklearn (Feurer et al. 2015) used 311

Bayesian optimization to jointly perform both algorithm selection and hyperparameters of a scikit- 312

learn pipeline (Buitinck et al. 2013). While different, we see some analogy between algorithms and 313

agentic patterns, and between hyperparameters and few-shot samples. DAUB first evaluates many 314

candidate models on a small amount of data, then successively reduces candidates and increases 315

data to ultimately pick a strong model (Sabharwal et al. 2016). While both randomized search and 316

Bayesian optimization are popular in AutoML, there are also more intricate approaches. For in- 317

stance, TPOT uses genetic algorithms (Olson et al. 2016), and AlphaD3M uses Monte-Carlo tree 318

search (Drori et al. 2018). We chose to start with a simpler technique that depends less on a well- 319

behaved optimization space. 320

7 Conclusion 321

We present our AutoPDL approach for jointly optimizing prompting patterns and textual prompts 322

for large language models, addressing the challenges associated with manual prompt engineering. 323

By formulating the optimization as a discrete search over both agentic and non-agentic patterns, 324

combined with instructions and few-shot samples, we leveraged successive halving to efficiently 325

navigate this search space. Our evaluation across various datasets (FEVER, GSM8K, GSM-Hard, 326

and MBPP+) and multiple models (LLaMA, Granite, GPT4o-mini) demonstrates substantial accu- 327

racy improvements, up to 68.9 percentage points, and affirms that no single prompting strategy 328

universally outperforms others across tasks and models. Additionally, generating code in a YAML- 329

based prompt programming language (PDL) makes it executable, easy to modify, and readable by 330

humans, supporting practical adoption and adaptation. 331

References 332

Abdelaziz, I., Basu, K., Agarwal, M., Kumaravel, S., Stallone, M., Panda, R., Rizk, Y., Bhargav, G., 333

Crouse, M., Gunasekara, C., Ikbal, S., Joshi, S., Karanam, H., Kumar, V., Munawar, A., Neelam, 334

S., Raghu, D., Sharma, U., Soria, A. M., Sreedhar, D., Venkateswaran, P., Unuvar, M., Cox, D., 335

Roukos, S., Lastras, L., and Kapanipathi, P. (2024). Granite-Function Calling Model: Introducing 336

Function Calling Abilities via Multi-task Learning of Granular Tasks. url: https://arxiv.org/abs/ 337

2407.00121 (cit. on p. 5). 338

9

https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry, M., 339

Le, Q., and Sutton, C. (15, 2021). Program Synthesis with Large Language Models. url: http : 340

//arxiv.org/abs/2108.07732 (visited on 09/25/2022). Pre-published (cit. on p. 5). 341

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, 342

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., 343

Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, 344

S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. 345

(2020). Language Models are Few-Shot Learners. url: https://arxiv.org/abs/2005.14165 (cit. on 346

pp. 1, 3). 347

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, 348

P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., and Varoquaux, G. 349

(2013). API Design for Machine Learning Software: Experiences from the scikit-learn Project. url: 350

https://arxiv.org/abs/1309.0238 (cit. on p. 9). 351

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, 352

J., Nakano, R., Hesse, C., and Schulman, J. (17, 2021). Training Verifiers to Solve Math Word 353

Problems. url: http://arxiv.org/abs/2110.14168 (visited on 10/02/2022). Pre-published (cit. on 354

p. 5). 355

Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R. d. P., Ono, J. P., Cho, K., Silva, C., and Freire, J. 356

(2018). “AlphaD3M:Machine Learning Pipeline Synthesis”. In:Workshop on Automatic Machine 357

Learning (AutoML) (cit. on p. 9). 358

Dubey, A. et al. (15, 2024). The Llama 3 Herd of Models. url: http : / /arxiv.org/abs/2407 .21783. 359

Pre-published (cit. on p. 6). 360

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). “Efficient 361

and Robust Automated Machine Learning”. In: Conference on Neural Information Processing 362

Systems (NIPS), pp. 2962–2970 (cit. on p. 9). 363

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., and Neubig, G. (2023). “PAL: 364

Program-aided Language Models”. In: International Conference on Machine Learning (ICML), 365

pp. 10764–10799 (cit. on p. 5). 366

Jamieson, K. and Talwalkar, A. (2016). “Non-stochastic Best Arm Identification and Hyperparame- 367

ter Optimization”. In: Conference on Artificial Intelligence and Statistics (AISTATS), pp. 240–248 368

(cit. on pp. 2, 14). 369

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., Santhanam, K., Vardhamanan, S., Haq, S., 370

Sharma, A., Joshi, T. T., Moazam, H., Miller, H., Zaharia, M., and Potts, C. (2023). DSPy: Com- 371

piling Declarative Language Model Calls into Self-Improving Pipelines. url: https://arxiv.org/ 372

abs/2310.03714 (cit. on pp. 1, 9). 373

Li, C., Xue, M., Zhang, Z., Yang, J., Zhang, B., Wang, X., Yu, B., Hui, B., Lin, J., and Liu, D. (2025). 374

START: Self-taught Reasoner with Tools. url: https://arxiv.org/abs/2503.04625 (cit. on pp. 6, 15). 375

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. (15, 2023). “Is Your Code Generated by ChatGPT Really 376

Correct? Rigorous Evaluation of Large Language Models for Code Generation”. Advances in 377

Neural Information Processing Systems, 36, pp. 21558–21572 (cit. on p. 5). 378

Mishra, M., Stallone, M., Zhang, G., Shen, Y., Prasad, A., Soria, A. M., Merler, M., Selvam, P., Suren- 379

dran, S., Singh, S., Sethi, M., Dang, X.-H., Li, P., Wu, K.-L., Zawad, S., Coleman, A., White, M., 380

Lewis, M., Pavuluri, R., Koyfman, Y., Lublinsky, B., de Bayser, M., Abdelaziz, I., Basu, K., Agar- 381

wal, M., Zhou, Y., Johnson, C., Goyal, A., Patel, H., Shah, Y., Zerfos, P., Ludwig, H., Munawar, A., 382

10

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1309.0238
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2503.04625

Crouse, M., Kapanipathi, P., Salaria, S., Calio, B., Wen, S., Seelam, S., Belgodere, B., Fonseca, C., 383

Singhee, A., Desai, N., Cox, D. D., Puri, R., and Panda, R. (7, 2024).Granite CodeModels: A Family 384

of Open FoundationModels for Code Intelligence. Version 1. url: http://arxiv.org/abs/2405.04324. 385

Pre-published (cit. on p. 6). 386

Moura, J. (2023). CrewAI: Framework for orchestrating role-playing, autonomous AI agents. url: 387

https://github.com/crewAIInc/crewAI (cit. on p. 1). 388

Nashid, N., Sintaha, M., andMesbah, A. (2023). “Retrieval-Based Prompt Selection for Code-Related 389

Few-Shot Learning”. In: International Conference on Software Engineering (ICSE), pp. 2450–2462 390

(cit. on p. 9). 391

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., and Moore, J. H. (2016). 392

“Automating Biomedical Data Science Through Tree-Based Pipeline Optimization”. In: Euro- 393

pean Conference on the Applications of Evolutionary Computation (EvoApplications), pp. 123–137 394

(cit. on p. 9). 395

Pan, J., Wang, X., Neubig, G., Jaitly, N., Ji, H., Suhr, A., and Zhang, Y. (30, 2024). Training Software 396

Engineering Agents and Verifiers with SWE-Gym. url: http://arxiv.org/abs/2412.21139 (visited 397

on 03/28/2025). Pre-published (cit. on p. 6). 398

Sabharwal, A., Samulowitz, H., and Tesauro, G. (2016). “Selecting Near-Optimal Learners via Incre- 399

mental Data Allocation”. In: Conference on Artificial Intelligence (AAAI), pp. 2007–2015 (cit. on 400

p. 9). 401

Schluntz, E. and Zhang, B. (2024). Building effective agents. url: https : / /www.anthropic . com/ 402

research/building-effective-agents (cit. on p. 1). 403

Srivastava, A. et al. (19, 2023). “Beyond the Imitation Game: Quantifying and Extrapolating the 404

Capabilities of Language Models”. Transactions on Machine Learning Research (cit. on p. 5). 405

Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A. (18, 2018). FEVER: A Large-Scale 406

Dataset for Fact Extraction and VERification. url: http://arxiv.org/abs/1803.05355 (visited on 407

06/20/2024). Pre-published (cit. on p. 5). 408

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). “Auto-WEKA: Combined Selec- 409

tion and Hyperparameter Optimization of Classification Algorithms”. In: Conference on Knowl- 410

edge Discovery and Data Mining (KDD), pp. 847–855 (cit. on p. 1). 411

Vaziri, M., Mandel, L., Spiess, C., and Hirzel, M. (24, 2024). PDL: A Declarative Prompt Programming 412

Language. url: http://arxiv.org/abs/2410.19135. Pre-published (cit. on p. 2). 413

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H., and Ji, H. (12, 2024). MINT: Evaluating 414

LLMs in Multi-turn Interaction with Tools and Language Feedback. url: http://arxiv.org/abs/ 415

2309.10691 (visited on 08/27/2024). Pre-published (cit. on pp. 5, 14, 15). 416

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and Zhou, D. (2022). 417

“Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. In: Advances in 418

Neural Information Processing Systems (NeurIPS), pp. 24824–24837 (cit. on pp. 1, 3). 419

Willard, B. T. and Louf, R. (2023). Efficient Guided Generation for Large Language Models. url: 420

https://arxiv.org/abs/2307.09702 (cit. on p. 3). 421

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang, L., Zhang, X., Zhang, S., Liu, J., Awadal- 422

lah, A. H., White, R. W., Burger, D., and Wang, C. (2023). AutoGen: Enabling Next-Gen LLM 423

Applications via Multi-Agent Conversation. url: https://arxiv.org/abs/2308.08155 (cit. on p. 1). 424

11

http://arxiv.org/abs/2405.04324
https://github.com/crewAIInc/crewAI
http://arxiv.org/abs/2412.21139
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
http://arxiv.org/abs/1803.05355
http://arxiv.org/abs/2410.19135
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2308.08155

Xu, B., Peng, Z., Lei, B., Mukherjee, S., and Xu, D. (2023). ReWOO: Decoupling Reasoning from 425

Observations for Efficient Augmented Language Models. url: https://arxiv.org/abs/2305.18323 426

(cit. on pp. 1, 4). 427

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K. R., and Cao, Y. (2023). “ReAct: Syner- 428

gizing Reasoning and Acting in Language Models”. In: International Conference on Learning 429

Representations (ICLR) (cit. on pp. 1, 4). 430

Yuan, S., Song, K., Chen, J., Tan, X., Li, D., and Yang, D. (2024). EvoAgent: Towards Automatic Multi- 431

Agent Generation via Evolutionary Algorithms. url: https://arxiv.org/abs/2406.14228 (cit. on 432

p. 9). 433

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang, Z., Guestrin, C., and Zou, J. (2024). TextGrad: 434

Automatic “Differentiation” via Text. url: http://arxiv.org/abs/2406.07496 (cit. on p. 9). 435

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. (20, 2022). STaR: Bootstrapping Reasoning With 436

Reasoning. url: http://arxiv.org/abs/2203.14465 (visited on 06/26/2024). Pre-published (cit. on 437

p. 6). 438

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. (2023). “Large Language 439

Models are Human-Level Prompt Engineers”. In: International Conference on Learning Repre- 440

sentations (ICLR) (cit. on p. 9). 441

Zhuge, M., Wang, W., Kirsch, L., Faccio, F., Khizbullin, D., and Schmidhuber, J. (2024). “GPTSwarm: 442

Language Agents as Optimizable Graphs”. In: International Conference on Machine Learning 443

(ICML) (cit. on p. 9). 444

12

https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2406.14228
http://arxiv.org/abs/2406.07496
http://arxiv.org/abs/2203.14465

A Supplemental Material 445

A.1 Tool Calling Code 446

1 description: tool use
2 defs:
3 tools:
4 data:
5 - name: calc
6 description: Calculator function
7 arguments:
8 expr:
9 type: string
10 description: Arithmetic expression to calculate
11 text:
12 - role: system
13 text: You are Granite, developed by IBM. You are a helpful AI assistant
14 with access to the following tools. When a tool is required to answer
15 the user's query, respond with <|tool_call|> followed by a JSON list of
16 tools used. If a tool does not exist in the provided list of tools,
17 notify the user that you do not have the ability to fulfill the request.
18 contribute: [context]
19 - role: tools
20 text: ${ tools }
21 contribute: [context]
22 - "Out of 1400 participants, 400 passed the test. What percentage is that?\n"
23 - def: actions
24 model: replicate/ibm-granite/granite-3.1-8b-instruct
25 parser: json
26 spec: [{ name: str, arguments: { expr: str }}]
27 - "\n"
28 - i f : ${ actions[0].name == "calc" }
29 then:
30 lang: python
31 code: result = ${ actions[0].arguments.expr }

Figure 4: Basic example of a PDL program.

A.2 Optimization 447

Algorithm 1 Successive Halving for PDL Optimization

Require: Program candidate set C, validation dataset 𝐷valid, initial validation subset size 𝑣min, re-

duction factor 𝜂 > 1

1: 𝑣 ← 𝑣min

2: while |C | > 1 and 𝑣 ≤ |𝐷valid | do
3: for each candidate 𝑐𝑖 ∈ C do
4: Compute loss ℓ𝑖 ← L(𝑐𝑖 , 𝐷𝑣), where 𝐷𝑣 ⊂ 𝐷valid and |𝐷𝑣 | = 𝑣

5: end for
6: C ← top ⌈|C |/𝜂⌉ candidates with lowest loss

7: 𝑣 ← 2 · 𝑣
8: end while
9: return Candidate in C with lowest loss

Figure 5: Illustration of the Successive Halving algorithm used to optimize the PDL program by prun-

ing poor candidates on progressively larger validation subsets.

13

Figure 5 describes our optimization algorithm, based on successive halving (Jamieson et al. 448

2016). The algorithm accepts a candidate set sampled from possible configurations and demon- 449

strations, a validation dataset to optimize against, an initial validation subset size, and a reduction 450

factor. AutoPDL allows the user to specify these options in a YAML configuration file, and ulti- 451

mately saves its result as a PDL program. This source-to-source transformation enables the user 452

to modify both the search space, and the resulting optimized PDL program, allowing further mod- 453

ification and execution. 454

A.3 Search Space 455

The search space is the Cartesian product of the following discrete variables, each taking one value 456

per candidate: 457

(1) 𝐴 ∈ A = {Zero-Shot, CoT, ReWOO, ReAct}, i.e., the overall prompting pattern to apply. 458

(2) Number of demonstrations ∈ 0, 3, 5. We selected these options as a representative sweep 459

across no supervision, moderate few-shot use, and an upper-end case (in terms of token win- 460

dow). We limited the search space to three options to avoid combinatorial explosion and limit 461

experiment cost. 462

(3) If𝐴 = ReAct, System prompt ∈ Granite Tools, LLaMa 3, Granite LLaMa. As the system prompt 463

instructs the model how to format tool calls, it only has an effect on benchmarks with JSON 464

tool calling (FEVER, GSM8K, and GSM-Hard) for candidates with the ReAct prompt pattern. 465

We note that only for MBPP+, ReWOO is not included as a prompt pattern, and that we always 466

include two trajectories displaying iterative refinement, i.e., an example of an solution failing 467

the example test case, followed by a passing solution, in line with Wang et al. (2024). This 468

effectively increases the number of trajectories to |𝑡𝑟𝑎 𝑗 | + 2. 469

A.4 Agent Trajectory Construction 470

To achieve this, we create a basic agentic trajectory traj𝑖 for each training example ⟨𝑥𝑖 , 𝑦𝑖⟩, follow- 471

ing a rule-based transformation outlined below. 472

GSM8K. To demonstrate tool use in ReAct, we instead derive a trajectory traj as follows. We 473

exploit the fact that there is at most one expression per reasoning step, by iterating through the 474

steps. At each step, we append a ‘thought’ to the trajectory, consisting of the text leading up to 475

the math expression, concatenated with a reflection ‘I need to calculate’. We append a calculator 476

tool call with the expression, and an ‘observation’, i.e., the result of the expression. Finally, we 477

append a thought ‘The answer is ...’, containing the ground truth answer, followed by the finish 478

action with the answer. We follow the same procedure to create ReWOO trajectories, except we 479

use slightly different wording, e.g., ‘Calculate xyz’ in place of ‘I need to calculate xyz’, and omit 480

the final thought and action. Additionally, we use string substitution to replace any assumed 481

expression results in the trajectory with the corresponding variable. 482

FEVER. To produce agent trajectories, we iterate over each article associated with a claim, append 483

a thought ‘I need to search for ...’, followed by the action, an observation containing the article 484

summary, and finally a thought containing all the relevant sentences associated with that article 485

for that claim, which we repeat for each article associated with a claim. This procedure is not 486

ideal as there is no inherent order to the articles or sentences, even though there may be a natural 487

ordering following the annotator’s Wikipedia navigation. Finally, we append a thought ‘The claim 488

is true/false’ and the finish action, both with the ground truth answer. For chain-of-thought, we 489

perform the same procedure except we only include the concatenated evidence sentences, as there 490

is no tool use. 491

14

MBPP+. To generate sample agent trajectories from the training set, we follow the agent pattern 492

(without feedback) in-context examples by Wang et al. (2024), which consists of the problem 𝑥 , a 493

thought such as “The intersection is elements that are in both lists”, an execute action that contains 494

proposed code and an assertion calling the proposed method with the test case input from the 495

prompt and comparing its output. This is then followed by an observation containing the execution 496

result, i.e., either “[Executed Successfully with No Output]” or a stack traceback. This allows 497

the agent to iterate on solutions (up to five times in our implementation). We use the full MBPP 498

train set of 374 problems as 𝐷train, and split the MBPP+ dataset into 𝐷valid and 𝐷test based on 499

problem id membership in MBPP, leaving 39 and 224 validation and test problems respectively. 500

To generate synthetic trajectories from the training set, we start with the natural language 501

specification and single test case (the prompt), append the thought “I should run a solution on 502

the test case before proposing a solution.”, followed by the ground truth solution and substitute 503

in the prompt test case following the pattern [solution]res = ...; assert res == ..., 504

”Expected ... but got ”.format(res). Subsequently, we append the observation “[Executed 505

Successfully with No Output]”, the thought “There is no more AssertionError. I can 506

now submit the solution.”, and finally the solution action with the ground truth solution. 507

This naive approach allows us to provide demonstration trajectories, albeit simplistic ones that 508

assume the first solution is correct. Sampling a reflection or thought from a strong model may 509

be beneficial (Li et al. 2025), but we restrict our trajectories to rule based transformations. As 510

ReWOO is not reactive, i.e., without execution feedback, it does not make sense for MBPP. Hence, 511

we exclude it from our experiments. 512

A.5 Results Plot 513

0 20 40 60 80 100
Granite 13B Instruct V2

LLaMA 3.1 70B
LLaMA 3.1 8B

Granite 34B Code
Granite 20B Code

Granite 3.1 8B

M
od

el

FEVER

0 20 40 60 80 100

MBPP+

0 20 40 60 80 100

GSM-Hard

0 20 40 60 80 100

GSM8K

Figure 6: Comparison of optimized prompt program performance across models and datasets. Each

barbell shows the accuracy improvement, if any, over the zero-shot baseline.

In Figure 6, we visualize the results from Table 1 and Table 2. 514

15

A.6 Accuracy vs. iterations 515

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FEVER MBPP+ GSM-Hard

Granite 3.1 8B

GSM8K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Granite 13B Instruct V2

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Granite 20B Code

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Granite 34B Code

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LLaM
A 3.1 70B

0 1 2 3 4 5
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 1 2 3 4 5
Iteration

0 1 2 3 4 5
Iteration

0 1 2 3 4 5
Iteration

LLaM
A 3.1 8B

Figure 7: Accuracy vs. iterations with 95% CI.

In Figure 7, we visualize the accuracy across candidates versus the iterations of the optimiza- 516

tion process, including a 95% confidence interval depicting the spread in accuracy across candi- 517

dates. As the iterations increase, the number of candidates decreases, while the size of the valida- 518

tion set 𝐷𝑣 increases. 519

16

	Introduction
	Background
	AutoPDL Approach
	Methodology
	Datasets
	Tools
	Experimental Setup

	Results
	Related Work
	Conclusion
	Supplemental Material
	Tool Calling Code
	Optimization
	Search Space
	Agent Trajectory Construction
	Results Plot
	Accuracy vs. iterations

