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ABSTRACT

LLM-as-a-Judge has been widely applied to evaluate and compare different LLM
alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its
reliability have emerged, due to LLM judges’ biases and inconsistent decision-
making. Previous research has developed evaluation frameworks to assess relia-
bility of LLM judges and their alignment with human preferences. However, the
employed evaluation metrics often lack adequate explainability and fail to address
LLM internal inconsistency. Additionally, existing studies inadequately explore
the impact of various prompt templates when applying LLM-as-a-Judge methods,
leading to potentially inconsistent comparisons between different alignment algo-
rithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment
tasks by defining more theoretically interpretable evaluation metrics and explic-
itly mitigating LLM internal inconsistency from reliability metrics. We develop
an open-source framework to evaluate, compare, and visualize the reliability and
alignment of LLM judges, which facilitates practitioners to choose LLM judges
for alignment tasks. In the experiments, we examine effects of diverse prompt
templates on LLM-judge reliability and also demonstrate our developed frame-
work by comparing various LLM judges on two common alignment datasets (i.e.,
TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a sig-
nificant impact of prompt templates on LLM judge performance, as well as a
mediocre alignment level between the tested LLM judges and human evaluators.

1 INTRODUCTION

Commercial LLMs (e.g., GPT-4 (Achiam et al., 2023)) have been widely used as the surrogates for
human evaluators, referred to as LLM-as-a-Judge (Gu et al., 2024; Li et al., 2024a;b), to perform
pairwise evaluation on numerous LLM alignment tasks, such as summarization and multiturn con-
versations. Since these commercial models have already been extensively trained with advanced
alignment techniques (Achiam et al., 2023; Touvron et al., 2023), they are capable of approximating
human preferences (Rafailov et al., 2024b; Zheng et al., 2024).

While it is plausible to utilize these models as surrogates for human judges, biases and inconsis-
tencies are frequently observed in their judgment results, despite the application of various bias-
mitigation techniques (Rafailov et al., 2024a;b). This necessitates a systematic investigation of LLM
judge reliability and alignment with human preferences in the context of LLM alignment tasks.

Previous studies have evaluated LLM-as-a-Judge methods on various language generation tasks
(Wang et al., 2023b; Saito et al., 2023; Dubois et al., 2024a; Panickssery et al., 2024; Shi et al.,
2024; Thakur et al., 2024; Chiang & Lee, 2023; Liu et al., 2023; Wang et al., 2023a; Zhu et al.;
Wang et al., 2023c; Li et al., 2023; Zheng et al., 2024; Li et al., 2024c; Chiang et al., 2024; Dubois
et al., 2024b). However, these studies encounter three main limitations:
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• Lacking theoretical interpretability for bias definitions (e.g. position bias and length bias).

• Not considering internal inconsistencies (i.e., system noise) by assuming LLM judges make
deterministic decisions across identical experiments.

• Focusing on evaluating various LLMs, while the effects of prompt templates have been
insufficiently examined.

In this study, we aim to address these limitations and advance the systematic evaluation of LLM-as-
a-Judge on LLM alignment tasks. Our main contributions in this work are:

• We improve the theoretical explainability of evaluation metrics for assessing LLM-judge
position and length bias, by (1) defining them within a unified accuracy-based framework,
(2) explicitly defining the LLM internal self-inconsistency as flipping noise and mitigating
its impact, as well as (3) formally analyzing the relationship between position and length
bias after mitigation.

• We develop a open-sourced framework to evaluate, compare, and visualize the alignment
and reliability of LLM judges, allowing for a wide range of LLMs and user-defined prompt
templates. In the experiments, we leverage the developed framework to test a wide range
of prompt templates with diverse formats and investigate their impact on LLM judge per-
formance.

• Our results indicate a significant impact of prompt templates on LLM judge performance,
underscoring the need for a thorough and careful comparison of various LLMs and prompt
templates before employing the LLM-as-a-Judge methodology.

2 BACKGROUND AND RELATED WORK

In this section, we define the pairwise evaluation task conducted by both human and LLM judges,
and examine self-inconsistency and biases inherent in LLM judges. Additionally, we review relevant
literature on position bias and length bias.

Human-based Pairwise Evaluation Given a set of N questions, each paired with responses gener-
ated by separate LLMs, the human judge is asked to select the better response based on predefined
criteria, such as coherence and helpfulness. Let N1 and N2 be the numbers that the first and sec-
ond answer are chosen. The win rate of the first and the second LLM is defined as w1,2 =

N1

N and
w2,1=1−w1,2=

N2

N .

LLM-based Pairwise Evaluation LLM judges are subjected to the same evaluation procedures as
human judges. However, compared with humans, LLMs are more sensitive to instructions (i.e.,
prompt templates) (Stureborg et al., 2024; Zhu et al.). Thus, in this study, we define an LLM-judge
as the combination of a specific LLM and a particular prompt template.

LLM-Judge Self-Inconsistency Previous studies have observed that LLM judges (Shi et al., 2024;
Stureborg et al., 2024) may produce inconsistent judgments even when presented with identical
prompts. This is caused by non-greedy decoding strategies leveraged by LLMs, such as top-p and
top-k, which generate non-deterministic outputs. The non-deterministic level is controlled by the
temperature parameter. In this work, we refer to these inconsistencies as self-inconsistency or sys-
tem noise in LLM judges and model and quantify them using the term flipping noise (Section 4).

LLM-Judge Position and Length Bias Positioin bias refers to LLM-judge’s systematic preference
for a specific response position (the first or the second in the pairwise evaluation task). Wang et al.
(2023b) and Lee et al. (2023) observed the position bias when using GPT-4 (Achiam et al., 2023) and
PaLM 2 (Anil et al., 2023) as the judge for the pairwise comparison between candidate LLMs. They
measured the position bias by the ratio of inconsistent decisions made by LLM judges after swapping
response positions. Differently, Liusie et al. (2023) and Zheng et al. (2024) defined the position bias
as the disparity of selection probabilities after reversing the response order. Length bias refers to
LLM judge’s systematic preference for longer responses even when their qualities are similar to
shorter versions. Saito et al. (2023) observed a discrepancy between LLMs and human preferences
regarding response length. They employed accuracy parity—related to human preferences for longer
responses and shorter responses—to measure relative length bias.
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In contrast to above studies, our work theorectically examines the impact of LLM judge self-
inconsistency on position bias and length bias metrics, and provides practical methods to mitigate
this effect. We also provide a theoretical analysis and validation of our defined metrics to enhance
their interpretability. Additionally, we investigate the relationship between these biases and accu-
racy, revealing significant insights. Finally, our study includes an extensive evaluation of position
and length bias across a diverse set of LLM judges with various prompt templates.

3 NOTATION

Let D = {hn|n = 1. . .N} be a human-preference dataset containing N data cases. An individual
data case hn=(x(n), y

(n)
c , y

(n)
r ) represents a prompt-responses pair with a human preference label,

where x(n) is a prompt (e.g., a post for summarization), y(n)c is the preferred LLM response and
y
(n)
r is the less preferred response, both by human evaluators. We assume each case is drawn from

the distribution hn ∼ p(h|θ), where θ represents the underlying human preferences depending on
human annotators helping construct the dataset. We drop the data case index n for brevity when the
context is clear.

4 EXPLAINABLE EVALUATION METRICS AND FLIPPING NOISE

Accuracy Accuracy measures the alignment level of LLM judges with human preferences. For-
mally, we denote θl as the underlying preference by some LLM-judge l, and accuracy evaluates how
closely θl is to θ, where θ is the human preference defined in Section 3.

There are two versions of the accuracy metric: Accboth and Accrandom. We assume the LLM judge
decides on each data case by considering two response orders: h= (x, yc, yr) and h′ = (x, yr, yc).
The LLM judge then selects the preferred response y and y′ from each order h and h′, where y, y′∈
{yc, yr}. Broadly, we denote the set of LLM judging results as J = {sn|n = 1 . . . N}, where each
result sn = (y(n), y′(n)) represents the selection outcome from both response orders across all the
data cases in the dataset D. Then the accuracy metrics Accboth and Accrandom can be defined over the
judging set J as follows:

Accboth =
1

N

N∑
n=1

1
(
y(n) = y(n)

c ∧ y′(n) = y(n)
c

)
, Accrandom =

1

N

N∑
n=1

1
(
y
(n)
random = y(n)

c

)
where yrandom is randomly chosen from {y, y′} with the probability of 0.5.

Flipping Noise As mentioned in Section 2, LLM outputs are generally non-deterministic, which
can lead to inconsistent judgments even when the same LLM judge is presented with the identical
data case h = (x, yc, yr). To better model this behavior, we first assume the LLM judge’s outputs
are always deterministic (i.e., no self-inconsistency), representing its decision as a binary variable
X ∈ {0, 1}, where X = 1 indicates LLM judge’s selection of the human-preferred response yc and
X=0 indicates otherwise. Under this assumption, re-evaluating the same case h would always yield
the same decision (e.g., selecting yc with X=1).

However, if we consider self-inconsistency, the LLM judge may instead select the alternative re-
sponse yr upon re-evaluation. We refer to this as “flipping” its original decision. We define the
discrepancy between the LLM judge’s actual decision (considering self-inconsistency) and its
original decision (assuming no self-inconsistency) as flipping noise, which quantifies the im-
pact of self-inconsistency. We introduce another binary variable, Z ∈ {0, 1}, to represent the LLM
judge’s actual decision, which may differ from its original value X due to flipping noise. In real-
world scenarios where self-inconsistency is unavoidable, we can only observe the noisy decision Z,
not the idealized X.

Formally, we can represent the relationship between LLM judge’s original decision and actual deci-
sion as follows:

Z =

{
1−X, p [1−X|X] = q

X, p [X|X] = 1− q
(1)
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where q is the probability that the LLM judge’s decision is flipped. For a completely deterministic
LLM judge, q=0.

Position Bias (PB) As a reminder, we define accuracy based on two sets of responses with reversed
orders, namely (yc, yr) and (yr, yc), for the same prompt x. To assess accuracy, we require the LLM
judge to be evaluated in both orders. Here, we employ the same setting to define position bias.

First of all, we define p [X = 1|(yc, yr)] as the probability that the LLM-judge’s original result
aligns with the human selection for the response order (yc, yr), and p [X = 1|(yr, yc)] as the prob-
ability that the LLM-judge’s result aligns with the human selection when the order is reversed. It
is important to note these two probabilities are essentially accuracy metrics for the two response
positions.

We first consider a special case where the LLM judge makes a fully consistent decision (i.e. q = 0,
Z = X), and is completely insensitive to the response position order (i.e. exhibits no position bias).
This implies that accuracy should be invariant regarding response positions: p [X = 1|(yc, yr)] −
p [X = 1|(yr, yc)] = 0.

Additionally, if the LLM-judge exhibits position bias favoring the first position over the second, it
will select yc more frequently in (yc, yr) and yr more frequently in (yr, yc), compared to the scenario
with no position bias. Thus, the accuracy p [X = 1|(yc, yr)] will increase and p [X=1|(yr, yc)] will
decrease, resulting in p [X=1|(yc, yr)]− p [X=1|(yr, yc)] > 0. The same rationale applies when the
second position is preferred.

Based on these intuitions, we define position bias as:
PB = p [X = 1|(yc, yr)]− p [X = 1|(yr, yc)] (2)

where the absolute value |PB| measures the degree of position bias, with positive and negative values
indicating preferences for the first and second positions, respectively.

Finally, we address the general case in which the LLM-judge makes non-deterministic decisions and
exhibits position bias. Here, only noisy observation Z defined in Eq. 1 is observable, instead of X .
Thus, to mitigate the impact of self-inconsistency and determine the original underlying position
bias as defined by Eq. 2, we first compute the accuracy of both positions based on Z, and then
apply the de-noise process according to the following relationships between accuracy based on X
and accuracy based on Z.

p [X = 1|(yc, yr)] =
p [Z = 1|(yc, yr)]− qcr

1− 2 · qcr
, qcr = p [1−X|X, (yc, yr)]

p [X = 1|(yr, yc)] =
p [Z = 1|(yr, yc)]− qrc

1− 2 · qrc
, qrc = p [1−X|X, (yr, yc)]

where qcr and qrc are the probabilities that the LLM judge’s decision is flipped for response order
(yc, yr) and (yr, yc), respectively. In the appendix A.4, we derive the above relationships, validate
the position bias measurement based on de-noised accuracies, and provide a practical method for
their computation.

Length Bias (LB) Previous studies have indicated that human evaluators exhibit the length bias
when assessing responses (Zheng et al., 2024; Saito et al., 2023). If LLM judges are employed as
surrogates for human judges, it is expected they have the same length bias in general. Thus, this
study aims to measure the relative length bias of LLM-judges compared with human evaluators,
rather than their absolute length bias. For brevity, we use “length bias” to refer to the relative length
bias in the paper.

For each data case (x, yc, yr), we denote ∆l = lc− lr as the length difference between yc and yr,
where lc and lr are the length of yc and yr, respectively. Additionally, we denote p [X=1|∆l> 0] as
the probability that the LLM-judge’s result aligns with the human selection when the human selected
response yc is longer than yr, and p [X=1|∆l≤ 0] as the probability that the LLM-judge’s result
align when the length relationship is reversed. Moreover, these two probabilities are defined within
the same accuracy framework, analogous to the definition of position bias.

Following the same rationale as in the position bias section, we define length bias as
LB= p [X=1|∆l> 0]− p [X=1|∆l≤ 0] (3)
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where |LB| measures how significantly the LLM judge exhibits different length bias compared to hu-
man judges and the sign of LB indicates it biases more towards longer response or shorter responses
than human judges, respectively.

In cases where flipping noise cannot be neglected, analogous to the approach for position bias, we
first compute accuracies from noisy observations Z: p [Z=1|∆l> 0] and p [Z=1|∆l≤ 0]. We then
apply a de-noising process to mitigate the impact of self-inconsistency based on the relationships
between accuracy derived from X and accuracy derived from Z as follows:

p [X = 1|∆l > 0] =
p [Z = 1|∆l> 0]− q∆l>0

1− 2 · q∆l>0
, q∆l>0 = p [1−X|X,∆l> 0]

p [X = 1|∆l ≤ 0] =
p [Z = 1|∆l≤ 0]− q∆l≤0

1− 2 · q∆l≤0
, q∆l≤0 = p [1−X|X,∆l≤ 0]

where q∆l>0 and q∆l≤0 are the probabilities that the LLM judge’s decision is flipped for the con-
ditions ∆l > 0 and ∆l ≤ 0, respectively. In the appendix A.4, we derive the above relationships,
validate the length bias measurement based on de-noised accuracies, and provide a practical method
for their computation.

Further Analysis To enhance the interpretability of the position and length bias metrics, we fur-
ther analyze their inter-relationship theoretically. Our findings are summarized below and formally
proven in the appendix A.4.

Finding 1 Position bias definition in Eq. 2 is intrinsically length bias-mitigated.

Finding 2 Length bias measurement in Eq. 3 is entangled with position bias. Employing Aboth for
accuracy helps mitigate the influence of positional bias in the assessment of length bias.

5 EVALUATION FRAMEWORK

In this study, we introduce an evaluation framework that integrates our proposed methods for com-
puting metrics, including accuracy (Accboth, Accrandom), position bias and length bias. The frame-
work is developed and open-sourced to help researchers and practitioners select either prede-
fined or user-customized LLM judges for alignment tasks based on aforementioned evaluation
metrics and their specific needs.

The pipeline of the framework, as depicted in Fig. 1, is structured into four modular components:
1) Data Sampler, 2) LLM Judges, 3) Metrics Computation, and 4) Metrics Visualization. The func-
tionality of each component is detailed as follows.

Data Sampler

LLM Judges

Metrics
Computation

Metrics
Visualization

Human
preference

labels

Prompts and
responses

Accuracy,
position bias,
length bias

Human
Preference Data

Distribution

Judging 
results

Figure 1: LLM-as-a-Judge Evaluation Framework

Data Sampler: When dealing with a large human preference dataset and a limited budget for us-
ing commercial LLM models, it becomes necessary to sample a manageable-size subset from the
full dataset for LLM judge evaluation. Our framework employs a stratified sampling strategy to
ensure that the subset maintains the same proportion of different conditions (e.g. length difference
distribution) as the original dataset.

LLM Judges: As defined in Section 2, an LLM judge refers to the combination of a particular LLM
and a specific prompt template. Given an LLM judge, this module is responsible for generating
textual judging decisions for each sampled data case and subsequently converting them into a binary
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outcome for metrics computation. This module allows the flexible creation of varied LLM judges
by configuring different LLMs and prompt templates for evaluation.

Metrics Computation: This module computes alignment and reliability evaluation metrics (i.e.
accuracy, position bias, and length bias) using the judging results from the LLM Judge module and
the human preference labels provided by the dataset, based on the computational methods described
in the Method section.

Metrics Visualization: This module visualizes both the individual computed metrics and their inter-
relationships, providing comprehensive insights for comparing LLM judges and aiding in the selec-
tion of the most suitable LLM judge for specific LLM-alignment tasks.

6 EXPERIMENTS

Data Selection We demonstrate our evaluation framework using two datasets that are commonly
used to evaluate LLM alignment algorithms: TL;DR summarization dataset (Völske et al., 2017;
Stiennon et al., 2020) and HH-RLHF-Helpfulness dataset (Bai et al., 2022). Both datasets contain
a prompt (a post for the summarization dataset; a conversation history between humans and LLM
assistants for HH-RLHF dataset) with two responses generated by distinct LLMs for each sample.
Also, human preference labels are available to indicate which response is more aligned with human
preference. Both datasets have already been partitioned into train and test sets by the authors in the
original studies.

In our experiments, it is highly time-consuming and expensive to evaluate LLM judges on all the
data cases of both datasets (143,356 for summarization and 124,243 for HH-RLHF-Helpfulness), so
we randomly sample a subset from each dataset to perform all the evaluation experiments. Com-
pared with the summarization dataset, the HH-RLHF-Helpfulness dataset has a much smaller test
set (6,240 vs. 70,228), thus, we select a subset from the TL;DR summarization test set following the
previous study (Rafailov et al., 2024b) and a subset from the entire HH-RLHF-Helpfulness dataset.
Moreover, multiple data cases may share the same prompt (post or conversation history) with dis-
tinct response pairs. To make our collected datasets as diverse as possible, only one pair is kept for
this prompt and others are removed. After this step, each unique prompt corresponds to only one
unique answer pair. Then we randomly sample the prompts and their associated responses five times
without replacement, resulting in five non-overlapping splits. Since measuring length bias requires
dividing all the data cases into two conditions: whether longer responses are preferred by humans
or not, we leverage the stratified sampling to preserve the same ratio of these two conditions as in
the entire dataset.

Overall, both datasets used in our experiments contain 200 distinct samples for each split, which
results in 1000 samples in total. The summarization and HH-RLHF-Helpfulness datasets have a
stratified ratio (# of humans prefer longer responses: # of humans prefer shorter responses) of 115:85
and 111:89 respectively.

LLM Judges Our LLM judges integrate a range of varied commercial large language models and
prompt templates. Particularly, we assess GPT-4o, GPT-4o-mini and GPT-3.5-turbo with 8 tem-
plates on the summarization dataset and 10 templates on the HH-RLHF-Helpfulness dataset. Thus,
there are 3×8=24 LLM judges for the summarization dataset and 3×10=30 LLM judges for the
HH-RLHF-Helpfulness dataset.

GPT-4o is one of the most advanced models which has the latest checkpoint on 08/06/2024, GPT-4o-
mini is the most cost-efficient model, while GPT-3.5-turbo is from the last OpenAI model generation
and serves as the baseline in our experiments. Our preliminary studies suggest that GPT-4o exhibits
comparable performance to GPT-4 in judging decision-making, but at a cost that is 4 to 6 times
lower. Due to limited budget, we select GPT-4o for evaluation over GPT-4 from the list of commer-
cial LLMs, despite GPT-4 being the most widely-used model in LLM alignment studies before the
release of GPT-4o.

All the considered templates were actually used in the pairwise comparison tasks to evaluate differ-
ent LLM alignment algorithms by papers of year 2023 and 2024, and we make sure they all have
dissimilar prompt formats. Furthermore, since our evaluation datasets have no “tied” labels from
human annotations, which indicate two responses are equally preferred, we remove sentences from
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the prompt templates which allow LLM judges to select “tied” labels. Please refer to the appendix
A.1 for template examples of each dataset, as well as a complete list of the papers from which all
the templates in this study are derived.

Temperature Parameter Selection Temperature parameter determines how deterministic LLM out-
puts are, which might affect the performance of LLM-judges. However, few previous studies that
use LLMs as judges explicitly explain how and why they choose the temperature in their exper-
iments. In this study, we assess the impact of the temperature parameter on the self-consistency
(i.e. 1-flipping probability q) and accuracies of the large language models, which helps to select the
temperature before evaluating LLM-judge performance using other metrics.

In detail, we investigate five temperature settings: 0.0, 0.1, 0.3, 0.5, and 0.7. For each temperature
setting, we concatenate data samples in all 5 splits (1000 samples in total) and repeatedly ask LLM
judges to select the better response K=5 times for each sample. We compute the self-consistency
for both response positions (yc, yr) and (yr, yc) separately, as well as Accboth across all the samples.

Through preliminary experiments, we found the impact of different temperatures is the same to
the same LLM with different prompt templates, so in the large-scale experiments, only the prompt
templates from DPO paper (Rafailov et al., 2024b) are utilized for both datasets.

Metrics Computation To compute the flipping probability, same as selecting the temperature
parameter, we let LLM judges select their preferred response from each sample repeatedly for K =
5 times. However, since we need to compute this probability for every LLM judge (24 for the
summarization dataset and 30 for the HH-RLHF-Helpfulness dataset), we only leverage the first
split of each dataset due to limited budget and assume they remain consistent on all five splits.
For each sample, the flipping probabilities qcr and qrc for both positions (yc, yr) and (yr, yc) are
computed separately to estimate de-noised position bias, and the flipping probabilities q∆l>0 and
q∆l≤0 are computed as well to calculate de-noised length bias. To compute accuracy, position
bias, and length bias, we compute each metric on all the splits (S = 5). In the result, we report the
mean and standard deviation of LLM judge performances across these five splits.

7 RESULTS

Temperature Table 1 contains the results of self-consistent rate (SCR) and accuracy with various
temperatures. The self-consistent rate, given by 1− q as defined in Eq. 1, measures the probability
that the LLM’s judgments are consistent across identical inputs. Since different LLMs show the
same trend on both datasets, we only include GPT-4o here for the demonstration. Results regarding
other LLMs are included in the appendix A.3.

From the table, we observe that higher temperatures result in lower self-consistency for both posi-
tions, while accuracy is not significantly affected by temperatures. Specifically, even when the tem-
perature is set to 0.0, complete self-consistency (i.e. SCR=1.0) remains unachievable. Furthermore,
self-consistency varies with different positions, thereby necessitating the separate measurement of
flipping probabilities related to flipping noise associated with each position.

Finally, we aim to demonstrate the generalizability of our evaluation framework by employing a
value that is not a special case, such as 0.0. Thus, we select 0.1 as the temperature in all of our
experiments, which has the highest level of self-consistency compared with higher temperatures.

TL;DR Summarization HH-RLHF-Helpfulness

Temperature SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

0.0 0.977 0.971 0.665 (0.003) 0.974 0.967 0.573 (0.005)
0.1 0.973 0.967 0.666 (0.004) 0.966 0.957 0.575 (0.005)
0.3 0.963 0.956 0.668 (0.003) 0.950 0.944 0.574 (0.005)
0.5 0.953 0.949 0.663 (0.003) 0.942 0.926 0.579 (0.009)
0.7 0.946 0.927 0.657 (0.000) 0.934 0.914 0.577 (0.006)

Table 1: Self-consistent rate (SCR) and accuracy (Acc) of tested temperatures for the TL;DR
summarization and HH-RLHF-Helpfulness datasets. Results are demonstrated using GPT-4o and
prompt templates from the DPO paper Rafailov et al. (2024b).
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Accuracy Figure 2a and Figure 2b show accuracies (Accboth) of LLM judges on both datasets, where
identical colors represent the same prompt template within the same dataset (the same coloring rule
is applied to all the result figures except for Figure 4). As we can see, different LLM judges have
distinct accuracy, which means they have varied alignment levels with human preferences. Also, it
demonstrates the performance of an LLM judge is highly sensitive to prompt templates.

Notably, several LLM judges have very low accuracies (Accboth < 0.2). Thus, it is significantly
important to carefully evaluate and compare different LLM judges before actually using them to
evaluate LLM alignment algorithms. Moreover, we find that all the accuracies on both datasets are
below 0.7, which shows the mediocre alignment level and demonstrates that human evaluation is
necessary to precisely compare different LLM alignment systems.

Compared with GPT-3.5-turbo, both GPT-4o and GPT-4o-mini have higher accuracies no matter
which prompt template is used. It demonstrates that the superior internal capacities of recent LLMs,
compared to older versions, are independent of the prompt templates used.

Figure 2c and Figure 2d show accuracy (Accrandom) of LLM judges on both datasets. Compared
with Figure 2a and 2b (i.e. Accboth), the gap between GPT-3.5-turbo and the others shrinks. This is
because Accrandom involves randomly selecting a position when LLM judge selection is inconsistent
across two positions, thereby not reflecting the internal capabilities of LLM judges. Consequently,
Accrandom is a less effective metric for assessing LLM judge performance compared to Accboth. Based
on this, only Accboth is used to demonstrate the relationship between accuracy and position bias as
well as length bias in the following sections.

(a) TL;DR (b) HH-RLHF

(c) TL;DR (d) HH-RLHF

Figure 2: Accuracy Accboth (top two) and Accrandom (bottom two) for TL;DR summarization and HH-
RLHF-Helpfulness dataset. Please refer to the appendix A.1 for details on the prompt templates used in
all the result figures throughout this section.

Position Bias Position biases of all the LLM judges are shown in Figure 3a and 3b, where positive
values mean judges prefer the first position while negative values mean judges prefer the second
position. We observe that varying prompt templates can cause the same large language model to
exhibit preferential biases towards different positions. Also, different large language models can
show opposite position preferences using the same template. Thus, the position bias/preference
depends on both LLMs themselves and also prompt templates.

Additionally, we illustrate the relationship between accuracy and the absolute value of position bias
in Figure 4a and Figure 4b. Here, an absolute value of position bias reflect the bias level without
specifying the preferred position. To enhance the clarity of the observation, we present the perfor-
mance across all splits rather than as mean values and use color based solely on LLMs, rather than
LLM judges (LLMs + templates). Our evaluation results reveal a significant negative correlation
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between accuracy and the level of position bias. The underlying reason might be that an LLM judge
with stronger judging ability (higher Accboth) generally possesses a greater understanding ability,
allowing for a more accurate and consistent selection from different response orders given the exact
same context.

(a) TL;DR (b) HH-RLHF

(c) TL;DR (d) HH-RLHF

Figure 3: Position bias (top two) and length bias (bottom two) for TL;DR summarization and HH-RLHF-
Helpfulness datasets.

(a) TL;DR (b) HH-RLHF

(c) TL;DR (d) HH-RLHF

Figure 4: |PB| vs. Accboth (top two) and |LB| vs. Accboth (bottom two) for TL;DR summarization
and HH-RLHF-Helpfulness datasets. |PB| and |LB| represent the absolute value of position bias and
length bias, respectively.

9
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Length Bias Figure 3c and 3d display the (relative) length bias of all the judges across both datasets.
Positive values indicate a stronger preference for longer responses compared to human evaluators,
while negative values indicate a stronger preference for shorter responses. The figure shows that all
the tested LLM judges have stronger preferences for longer responses compared to human judges,
which is consistent with previous studies (Zheng et al., 2024; Saito et al., 2023). Furthermore,
compared to the summarization task, LLM judges exhibit a greater degree of length bias on the
multi-turn conversation task (HH-RLHF-Helpfulness dataset).

Generally, longer responses tend to provide more detailed and comprehensive answers, which are
more favored by humans compared to shorter ones (Hart & Sarma, 2014; Harper et al., 2008).
We suspect that the length bias results from the over-alignment of commercial models with human
preferences. Different from position bias, length bias does not have a negative correlation with
accuracy (Please refer to Figure 4c and 4d).

8 LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations in this study and outline the directions for future research.

First, our current studies focus on commercial LLMs (e.g., GPT-3.5, GPT-4o, and GPT-4o-mini)
rather than open-source LLMs. This is due to the fact that commercial LLMs remain the predom-
inant choice in LLM-as-a-judge methods used in LLM alignment studies, making their reliability
evaluation more urgent compared to open-source LLMs.

Second, our evaluation studies concentrate on LLM-as-a-Judge methods, although open-source re-
ward models (RMs) also hold the potential to serve as judges on LLM alignment tasks (Wang et al.,
2024b). Compared to general LLMs, which are primarily used for text generation, reward models
do not exhibit position bias and their judging results are consistently deterministic. Nevertheless, the
accuracy and length bias metrics and evaluation framework we have introduced are still applicable
for assessing “RM-as-a-Judge” methods.

In the future, we plan to expand our evaluation study to include powerful open-source LLM models,
such as Llama 3.1 (Dubey et al., 2024), and open-source reward models, such as Nemotron-4-340B-
Reward (Wang et al., 2024b), across a broader range of datasets, including RewardBench (Lambert
et al., 2024).

9 CONCLUSIONS

In this study, we introduced a set of reliability metrics, including accuracy, position bias, and length
bias, with improved theoretical interpretability. We explicitly modeled and measured the LLM in-
ternal self-inconsistency using flipping noise, and mitigate its impact on position bias and length
bias. We developed a framework to evaluate, compare, and visualize the reliability of LLM judges
and their human-preference alignment to provide informative observations that help choose LLM
judges for alignment tasks. In the experiments, we demonstrated our framework by evaluating three
advanced commercial LLMs with diverse prompt templates on two datasets that are commonly used
for LLM alignment tasks. We reported the evaluation results and findings to provide a reference for
choosing appropriate LLM judges for LLM alignment studies in practice. In the future, we con-
sider expanding our evaluation study to powerful open-source LLMs and reward models on more
alignment benchmark datasets.
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A APPENDIX

A.1 LIST OF PROMPT TEMPLATES IN THIS STUDY

Template Name Paper Link Publish Time
guo (Guo et al., 2024) https://arxiv.org/pdf/2402.04792 02/2024
scheurer (Scheurer et al., 2023) https://arxiv.org/pdf/2303.16755 02/2024
liusie (Liusie et al., 2023) https://arxiv.org/pdf/2307.07889 02/2024
wang (Wang et al., 2024a) https://arxiv.org/pdf/2401.06080 01/2024
zheng (Zheng et al., 2024) https://arxiv.org/pdf/2306.05685 12/2023
wu (Wu & Aji, 2023) https://arxiv.org/pdf/2307.03025 11/2023
chen (Cheng et al., 2023) https://arxiv.org/pdf/2304.00723 09/2023
rafailov (Rafailov et al., 2024b) https://arxiv.org/pdf/2305.18290 07/2023

Table 2: Prompt templates used for the TL;DR summarization dataset.

Template Name Paper Link Publication Time
cheng (Cheng et al., 2023) https://arxiv.org/pdf/2311.08045 06/2024
zeng (Zeng et al., 2024) https://arxiv.org/pdf/2312.07401 04/2024
shen (Shen et al., 2024) https://arxiv.org/pdf/2403.07708v2 02/2024
guo (Guo et al., 2024) https://arxiv.org/pdf/2402.04792 02/2024
zheng (Zheng et al., 2024) https://arxiv.org/pdf/2306.05685 12/2023
mehta (Mehta et al., 2023) https://arxiv.org/pdf/2312.00267 12/2023
wu (Wu & Aji, 2023) https://arxiv.org/pdf/2307.03025 11/2023
bai (Bai et al., 2024) https://arxiv.org/pdf/2306.04181 11/2023
rafailov (Rafailov et al., 2024b) https://arxiv.org/pdf/2305.18290 07/2023
xu (Xu et al., 2023) https://arxiv.org/pdf/2305.18201 05/2023

Table 3: Prompt templates used for the HH-RLHF-Helpfulness dataset.

Examples of Prompt Templates
(TL;DR Summarization Dataset)

Template from Rafailov et al. Rafailov et al. (2024b)
Which of the following summaries does a better job of summarizing
the most important points in the given forum post, without
including unimportant or irrelevant details? A good summary is
both precise and concise.

Post: <post>

Summary A: <summary A>

Summary B: <summary B>

FIRST provide a one-sentence comparison of the two summaries,
explaining which you prefer and why. SECOND, on a new line, state
only "A" or "B" to indicate your choice. Your response should use
the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

Template from Wang et al. Wang et al. (2024a)
As a neutral observer, your task is to assess the responses
provided by two TL;DR summarizations according to the same
SUBREDDIT prompt shown below. Begin by comparing the two
responses and provide a brief explanation. Avoid any biases based
on position and ensure that the order in which the responses were
presented does not influence your decision. Do not let the length
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of the responses influence your evaluation. Do not favor certain
names of the assistants. Strive to be as objective as possible.
You need to choose only one of the two answers and respond by
either A or B.

{prompt}

A. {answer a}

B. {answer b}

Which one is better? A or B?

Examples of Prompt Templates
(HH-RLHF-Helpfulness Dataset)

Template from Rafailov et al. Rafailov et al. (2024b)
For the following query to a chatbot, which response is more
helpful?

Query: {the user query}

Response A:
{either the test method or baseline}

Response B:
{the other response}

FIRST provide a one-sentence comparison of the two responses and
explain which you feel is more helpful. SECOND, on a new line,
state only "A" or "B" to indicate which response is more helpful.
Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

Template from Shen et al. Shen et al. (2024)
Please act as an impartial judge and evaluate the quality of
the responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows the
user’s instructions better and provides more tailored responses to
the user’s questions.
A helpful response should directly address the human questions
without going off-topic. A detailed response is only helpful when
it always focuses on the question and does not provide irrelevant
information. A helpful response should also be consistent with
the conversation context.
For example, if the human is going to close the conversation, then
a good response should tend to close the conversation, too, rather
than continuing to provide more information. If the response is
cut off, evaluate the response based on the existing content,
and do not choose a response purely because it is not cut off.
Begin your evaluation by comparing the two responses and provide
a short explanation. Avoid any positional biases and ensure
that the order in which the responses were presented does not
influence your decision. Do not allow the length of the responses
to influence your evaluation. Do not favor specific names of the
assistants.
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Be as objective as possible. After providing your explanation,
output your final verdict by strictly following this format:
[[A]] if assistant A is better, [[B]] if assistant B is better.
Please make sure the last word is your choice.
--User Question--
{prompt}
--The Start of Assistant A’s Answer--
{response 1}
--The End of Assistant A’s Answer--
--The Start of Assistant B’s Answer--
{response 2}
--The End of Assistant B’s Answer--

A.2 HUMAN PREFERENCE DATA USED IN THIS STUDY

Disclaimer: the examples may contain contents that are profane, vulgar, or offensive.

Example from the TL;DR Summarization dataset

Post:
"SUBREDDIT: r/relationship advice
TITLE: [17/m] in a sticky situation with her [17/f], my Asian
parents, and the school administration
POST: Over two years ago my girlfriend and I started dating in
secret. We were in secret because my parents are (racist?) in
the way that they only want me to date people from an Asian
background like me, and she is white. Eventually, because our
school is super small and rumors spread like crazy, the staff
found out maybe about a year ago. We went and made sure they
knew not to go to our parents, and they all agreed. Fast forward
to now and the principal and guidance counselor have called my
parents and spilled the entire story to them. They apparently
even had to use generic words like "girlfriend and her mom"
instead of saying names to get around privacy rules. After
talking it over with some of our close friends, no one has any
insight or heard of anything that could cause them to do this, and
it’s very uncharacteristic of them. My parents have told me that
the school administration has said things such as, "She’s in a
lower social class, he can do better," "She’s bringing his grades
down" (I have a 4.0 GPA), etc. While my parents have also said
things such as "She’s white trash," and "She’s a gold digger," I
know for sure that those are both incorrect. Heck, my parents
haven’t even spoken to her for more than 3 minutes. Now that
the jig is up, I’m not sure what to do. Do I secretly talk to
her and risk losing everything except food and school supplies
for the next year if I get caught? Do I make arrangements to get
back together in a year? Or Do I just give up and accept it as
over? All of this stress is really getting to me, and I have no
idea what the best choice is. Thanks for reading all of that, and
giving me any feedback!
TL;DR: ’

Chosen Summary by Human Evaluators:
"[17/m] in a sticky situation with her [17/f], my Asian parents,
and the school administration"

Rejected Summary by Human Evaluators:
"My parents found out my girlfriend and I are dating and the
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school administration has told them she is ’white trash’ and ’a
gold digger’"

Example from the HH-RLHF-Helpfulness dataset

Single-turn Conversation Example
Conversation:
"Human: What are the rules to basketball?
Assistant: "

Chosen Response by Human Evaluators:
"Well, it’s played by two teams of five people each. Each team
tries to get the ball through the other team’s hoop. The team
that scores more points than their opponent is the winner."

Rejected Response by Human Evaluators:
"The goal is to shoot the basketball through the hoop, in the most
skillful way."

Multi-turn Conversation Example
Conversation:
"Human: Have you heard of Santana?
Assistant: Yes! "Evil Ways", and "Smooth", right?
Human: I like "Smooth". Have you heard of it?
Assistant: Yes, it’s a great song! I like how the vocal is
nice and slow at first, then faster at the end. It’s one of my
favorite Santana songs.
Human: Someone else sang the song. Santana played guitar
accompanying the song. Do you know the name of the singer?
Assistant: Oh yeah, I know who sang "Smooth". He’s a great
singer. His name is Chris Standring.
Human: Both of your responses were inaccurate. The singer who
sang "Smooth" is Rob Thomas.
Assistant: "

Chosen Response by Human Evaluators:
"Oh, I’m sorry. I didn’t recognize Rob Thomas. "Smooth" is a
great song. Did you know Rob Thomas was a cast member of the band
One Tree Hill?"

Rejected Response by Human Evaluators:
"I thought Rob Thomas was a pop star? I thought he played guitar
and drums."

A.3 ADDITIONAL RESULTS

Temperature Results

Rankings of Prompt Templates and LLM Judges
To facilitate selecting appropriate LLM judges for each LLM-alignment dataset (i.e. TL;DR sum-
marization and HH-RLHF-Helpfulness), we rank all the prompt templates for each LLM used in our
study (i.e. GPT-3.5-turbo, GPT-4o and GPT-4-mini) separately, as well as all the LLM-judges (LLM
+ template) for each dataset. We display top five templates or LLM-judges and report their Accboth,
Accrandom, position bias and length bias (Table 7 - 10 for TL;DR Summarization and Table 11 - 14
for HH-RLHF-Helpfulness). Specifically, the rankings are based on Accboth, which is because:
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TL;DR Summarization HH-RLHF-Helpfulness

Temperature SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

0.0 0.976 0.972 0.659 (0.002) 0.973 0.973 0.585 (0.002)
0.1 0.972 0.968 0.660 (0.003) 0.965 0.966 0.585 (0.003)
0.3 0.964 0.963 0.661 (0.006) 0.947 0.944 0.586 (0.003)
0.5 0.954 0.951 0.655 (0.003) 0.942 0.926 0.579 (0.009)
0.7 0.939 0.941 0.650 (0.004) 0.924 0.916 0.578 (0.008)

Table 4: Self-consistent rate (SCR) and accuracy (Acc) related to the tested temperatures for TL;DR
summarization and HH-RLHF-Helpfulness datasets. Results are demonstrated using GPT-4o and
the prompt template chen (Chen et al., 2023) for the summarization dataset and the template zeng
(Zeng et al., 2023) for the HH-RLHF-Helpfulness dataset, respectively. The conclusions are the
same as those using prompt templates from the templates rafailov (Rafailov et al., 2024b) for both
datasets.

TL;DR Summarization HH-RLHF-Helpfulness

Temperature SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

0.0 0.989 0.991 0.631 (0.001) 0.987 0.990 0.589 (0.003)
0.1 0.986 0.985 0.630 (0.001) 0.983 0.988 0.591 (0.003)
0.3 0.974 0.982 0.627 (0.003) 0.970 0.968 0.593 (0.003)
0.5 0.972 0.978 0.629 (0.004) 0.965 0.967 0.587 (0.003)
0.7 0.961 0.973 0.622 (0.003) 0.960 0.957 0.585 (0.006)

Table 5: Self-consistent rate (SCR) and accuracy (Acc) related to the tested temperatures for TL;DR
summarization and HH-RLHF-Helpfulness datasets. Results are demonstrated using GPT-4o-mini
and prompt templates rafailov (Rafailov et al., 2024b) for both datasets.

TL;DR Summarization HH-RLHF-Helpfulness

Temperature SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

SCR
(yc, yr)

SCR
(yr, yc)

Acc
(Accboth)

0.0 0.948 0.936 0.554 (0.004) 0.970 0.951 0.371 (0.003)
0.1 0.925 0.907 0.548 (0.008) 0.964 0.948 0.369 (0.002)
0.3 0.876 0.856 0.538 (0.003) 0.941 0.906 0.373 (0.006)
0.5 0.824 0.807 0.516 (0.008) 0.925 0.889 0.375 (0.010)
0.7 0.780 0.772 0.498 (0.006) 0.901 0.853 0.382 (0.008)

Table 6: Self-consistent rate (SCR) and accuracy (Acc) related to the tested temperatures for the
TL;DR summarization and HH-RLHF-Helpfulness datasets. Results are demonstrated using GPT-
3.5-turbo and prompt templates rafailov (Rafailov et al., 2024b) for both datasets. GPT-3.5-turbo
is much more sensitive to temperatures compared with GPT-4o and GPT-4o-mini.
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• While position and length biases are critical metrics for assessing the reliability of LLM-
based judges, accuracy is the metric that directly reflects their alignment with human pref-
erences. Accuracy can be viewed as a measure of the reliability of the “win rate” derived
from LLM-judge evaluation results in practice.

• In the primary study, our findings indicate that Accboth more accurately represents the eval-
uative capabilities of LLM judges compared to Accrandom.

TL;DR Summarization (GPT-3.5-turbo)
Template Accboth Accrandom Position Bias Length Bias

guo 0.566 (0.020) 0.675 (0.019) -0.047 (0.017) 0.174 (0.039)
rafailov 0.547 (0.022) 0.668 (0.040) 0.049 (0.018) 0.152 (0.045)

chen 0.516 (0.028) 0.652 (0.030) -0.291 (0.020) 0.085 (0.050)
liusie 0.496 (0.044) 0.654 (0.038) 0.204 (0.032) 0.237 (0.078)
wang 0.464 (0.023) 0.640 (0.027) 0.240 (0.039) 0.089 (0.094)

Table 7: Rankings of prompt templates for GPT-3.5-turbo on the TL;DR summarization dataset.

TL;DR Summarization (GPT-4o)
Template Accboth Accrandom Position Bias Length Bias

rafailov 0.667 (0.011) 0.737 (0.014) 0.022 (0.015) 0.197 (0.031)
chen 0.658 (0.028) 0.734 (0.029) -0.081 (0.023) 0.117 (0.055)
guo 0.655 (0.011) 0.733 (0.024) -0.140 (0.014) 0.193 (0.038)

liusie 0.632 (0.023) 0.724 (0.019) -0.154 (0.041) 0.084 (0.056)
wang 0.601 (0.015) 0.695 (0.016) 0.108 (0.022) 0.137 (0.066)

Table 8: Rankings of prompt templates for GPT-4o on the TL;DR summarization dataset.

TL;DR Summarization (GPT-4o-mini)
Template Accboth Accrandom Position Bias Length Bias

rafailov 0.631 (0.014) 0.701 (0.023) -0.060 (0.027) 0.162 (0.038)
guo 0.619 (0.032) 0.715 (0.010) 0.090 (0.036) 0.257 (0.068)
chen 0.615 (0.021) 0.692 (0.031) 0.010 (0.014) 0.104 (0.049)
liusie 0.563 (0.018) 0.684 (0.026) -0.122 (0.030) 0.169 (0.061)
zheng 0.516 (0.015) 0.667 (0.020) 0.280 (0.030) 0.544 (0.086)

Table 9: Rankings of prompt templates for GPT-4o-mini on the TL;DR summarization dataset.

A.4 DERIVATIONS, PROOFS, AND COMPUTATIONAL METHODS

Position Bias (PB)

1) Proof: Position bias definition is intrinsically length bias-mitigated.

In this proof, we demonstrate that the impact of length bias has been effectively mitigated from the
measurement of position bias using the definition in the main paper.

To prove this, we analyze two separate conditions: (1) the LLM judge prefers the first position,
(2) the LLM judge prefers the second position. In each case, we first establish that the de-noising
process reduces the four possible outcome combinations in Table 15 into three as shown in Table 16.
Subsequently, we demonstrate that the measurement of position bias, utilizing de-noised accuracy,
effectively mitigates the length bias.

For the purpose of this proof, we assume that (noisy) outcomes are influenced by four factors:
response quality, position bias, length bias, and flipping noise. This assumption will be relaxed at
the end of the proof. Additionally, we assume that human evaluators serve as the gold standard,
consistently selecting the response of higher quality.

Before formally prove the claim, we remind readers that the position bias is defined based on the
setting where the LLM judge decides on two reversed response orders for each data case: h =

19



Published at Building Trust Workshop at ICLR 2025

TL;DR Summarization (All LLMs)
Template / LLM Accboth Accrandom Position Bias Length Bias

rafailov / gpt-4o 0.667 (0.011) 0.737 (0.014) 0.022 (0.015) 0.197 (0.031)
chen / gpt-4o 0.658 (0.028) 0.734 (0.029) -0.081 (0.023) 0.117 (0.055)
guo / gpt-4o 0.655 (0.011) 0.733 (0.024) -0.140 (0.014) 0.193 (0.038)

liusie / gpt-4o 0.632 (0.023) 0.724 (0.019) -0.154 (0.041) 0.084 (0.056)
rafailov / gpt-4o-mini 0.631 (0.014) 0.701 (0.023) -0.060 (0.027) 0.162 (0.038)

Table 10: Rankings of LLM judges (model+prompt template) on the TL;DR summarization dataset.

HH-RLHF-Helpfulness (GPT-3.5-turbo)
Template Accboth Accrandom Position Bias Length Bias

zeng 0.536 (0.012) 0.654 (0.023) 0.013 (0.036) 0.531 (0.044)
guo 0.506 (0.025) 0.651 (0.016) 0.029 (0.060) 0.280 (0.062)
bai 0.458 (0.022) 0.659 (0.032) 0.317 (0.033) 0.342 (0.043)

zheng 0.423 (0.018) 0.594 (0.009) 0.368 (0.035) 0.581 (0.051)
xu 0.386 (0.027) 0.622 (0.030) 0.488 (0.037) 0.309 (0.050)

Table 11: Rankings of prompt templates for GPT-3.5-turbo on the HH-RLHF-Helpfulness dataset.

HH-RLHF-Helpfulness (GPT-4o)
Template Accboth Accrandom Position Bias Length Bias

guo 0.618 (0.040) 0.694 (0.030) -0.005 (0.013) 0.135 (0.075)
xu 0.610 (0.025) 0.702 (0.019) 0.086 (0.010) 0.029 (0.057)
bai 0.603 (0.027) 0.697 (0.014) 0.034 (0.017) 0.255 (0.067)

cheng 0.589 (0.029) 0.664 (0.029) 0.049 (0.020) 0.364 (0.082)
zeng 0.580 (0.034) 0.674 (0.027) 0.139 (0.023) 0.402 (0.090)

Table 12: Rankings of prompt templates for GPT-4o on the HH-RLHF-Helpfulness dataset.

HH-RLHF-Helpfulness (GPT-4o-mini)
Template Accboth Accrandom Position Bias Length Bias

guo 0.602 (0.036) 0.681 (0.030) -0.028 (0.026) 0.294 (0.059)
rafailov 0.594 (0.014) 0.657 (0.019) 0.047 (0.020) 0.463 (0.039)

zeng 0.587 (0.031) 0.650 (0.029) 0.032 (0.022) 0.494 (0.061)
xu 0.580 (0.018) 0.681 (0.017) 0.036 (0.015) 0.272 (0.065)
bai 0.576 (0.033) 0.665 (0.022) -0.086 (0.010) 0.397 (0.061)

Table 13: Rankings of prompt templates for GPT-4o-mini on the HH-RLHF-Helpfulness dataset.

HH-RLHF-Helpfulness (All LLMs)
Template / LLM Accboth Accrandom Position Bias Length Bias

guo / gpt-4o 0.618 (0.040) 0.694 (0.030) -0.005 (0.013) 0.135 (0.075)
xu / gpt-4o 0.610 (0.025) 0.702 (0.019) 0.086 (0.010) 0.029 (0.057)
bai / gpt-4o 0.603 (0.027) 0.697 (0.014) 0.034 (0.017) 0.255 (0.067)

guo / gpt-4o-mini 0.602 (0.036) 0.681 (0.030) -0.028 (0.026) 0.294 (0.059)
rafailov / gpt-4o-mini 0.594 (0.014) 0.657 (0.019) 0.047 (0.020) 0.463 (0.039)

Table 14: Rankings of LLM judges (model+prompt template) on HH-RLHF-Helpfulness dataset.
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(x, yc, yr) and h′ = (x, yr, yc), which results in two outcomes y and y′ (y, y′ ∈ {yc, yr}). Table
15 presents all possible combinations of outcomes resulting from the LLM-judge’s decisions, where
✓ and ✗ indicate whether a particular response (yc or yr) is chosen or not by the LLM judge,
respectively.

y y′

yc yr yr yc

✓ ✗ ✗ ✓
✗ ✓ ✓ ✗
✓ ✗ ✓ ✗
✗ ✓ ✗ ✓

Table 15: All possible outcomes from LLM judge decisions.

First, we consider the case that the LLM judge demonstrates the position bias that prefers
the first position. Consequently, we can examine the likely causes for each outcome y, y′ =
(yc, yr, yr, yc):

• (✓✗✗✓): The LLM judge has selected the same response as human evaluators on both posi-
tions, either by emphasizing the response quality or due to the length bias (e.g. yc is longer
than yr and the LLM judge prefers longer responses than human evaluators regardless of
the response quality).

• (✗✓✓✗): The LLM-judge is primarily influenced by the length bias since it selects the
response with lower quality yr for both response postions.

• (✓✗✓✗): The LLM judge is predominantly influenced by positional bias, as length bias
alone would only result in the LLM selecting a consistent response (either yc or yr, not
both) across different orders.

• (✗✓✗✓): The primary cause of the observed outcome is likely the flipping noise, given our
assumption that the LLM judge favors the first position. After the denoising process, this
outcome is expected to revert to one of the initial three cases.

• We also observe that the first three cases could arise from flipping noise. However, follow-
ing the de-noising process, these cases will remain among the first three, with no likelihood
of transitioning to the fourth case.

Therefore, if the LLM judge exhibits the position bias towards the first position, the outcomes of the
LLM-judge decisions with no flipping noise on h and h′ are shown in Table 16a. Thus, the PB of
the LLM judge is computed as:

PBfirst =p [X = 1|(yc, yr)]− p [X = 1|(yr, yc)]

= lim
N→∞

1

N

N∑
n=1

1
(
y(n)=y(n)

c

)
− lim

N→∞

1

N

N∑
n=1

1
(
y′(n)=y(n)

c

)
= lim

N→∞

1

N

N∑
n=1

[1(✓✗✗✓)+1 (✓✗✓✗)]− lim
N→∞

1

N

N∑
n=1

1(✓✗✗✓)

= lim
N→∞

1

N

N∑
n=1

1(✓✗✓✗)

= lim
N→∞

1

N

N∑
n=1

1
(
y(n)=y(n)

c ∧ y′(n)=y(n)
r

)
.

This corresponds to the proportion of the third case (✓✗✓✗) in the de-noised judging set, which
may not be directly observable in the presence of flipping noise. It is important to note that this
case arises from position bias rather than length bias, as previously discussed. Therefore, PBfirst is
length-bias mitigated.

Finally, if the observed outcomes are influenced by factors beyond response quality, positional bias,
length bias, and flipping noise, these factors can be categorized into two types: position-dependent
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and position-independent. Position-dependent factors contribute to the positional bias, which has
already been accounted for. Conversely, position-independent factors, similar to length bias, have
been addressed and removed from the position bias.

Second, we consider the case that the LLM judge demonstrates the position bias that prefers
the second position. In this context, we can employ the same analytical approach as in the first case
to investigate the underlying reasons for each outcome and to derive the positional bias accordingly
as follows.

PBsecond = − lim
N→∞

1

N

N∑
n=1

1
(
y(n)=y(n)

r ∧ y′(n)=y(n)
c

)
= − lim

N→∞

1

N

N∑
n=1

1(✗✓✗✓)

In contrast to the first case, when the LLM judge prefers the second position, the third case is
represented as (✗✓✗✓), rather than (✓✗✓✗), as illustrated in Table 16b. Same as the outcome
(✓✗✓✗), the outcome (✗✓✗✓) arises from position bias, rather than length bias. Also, the negative
sign arises because p [X = 1|(yc, yr)] is listed first in the definition.

y y′

yc yr yr yc

✓ ✗ ✗ ✓
✗ ✓ ✓ ✗
✓ ✗ ✓ ✗

(a) Prefer first position

y y′

yc yr yr yc

✓ ✗ ✗ ✓
✗ ✓ ✓ ✗
✗ ✓ ✗ ✓

(b) Prefer second position

Table 16: De-noised outcomes of the LLM judge’s decision in cases where the LLM judge favors
the (a) first and (b) second responses, respectively. Here, ✓ and ✗ indicate whether a response (yc
or yr) is chosen by the LLM judge or not.

2) Derivations of de-noised position bias

The derivations related to the de-noising process of PB are provided as follows. As a reminder, Z is
the noisy observation of X; qcr and qrc are the probabilities that the LLM judge’s decision is flipped
for response order (yc, yr) and (yr, yc). Specifically,

qcr = p [1−X|X, (yc, yr)] ,

qrc = p [1−X|X, (yr, yc)] .

In this study, we assume the flipping probability does not depend on the value of X , which needs fur-
ther investigation. Based on this assumption, the relationship between the accuracy p [X = 1|(yc, yr)]
and p [Z = 1|(yc, yr)] is derived as follows:

p [Z = 1|(yc, yr)] =

X is not flipped︷ ︸︸ ︷
p [X|X, (yc, yr)] · p [X = 1|(yc, yr)]
+ p [1−X|X, (yc, yr)] · p [X = 0|(yc, yr)]︸ ︷︷ ︸

X is flipped

= (1−qcr)·p [X=1|(yc, yr)]
+qcr ·(1− p [X=1|(yc, yr)])

= (1− 2 · qcr) · p [X = 1|(yc, yr)] + qcr

Therefore,

p [X = 1|(yc, yr)] =
p [Z = 1|(yc, yr)]− qcr

1− 2 · qcr
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Accordingly, the relationship between p [X = 1|(yr, yc)] and p [Z = 1|(yr, yc)] is:

p [X = 1|(yr, yc)] =
p [Z = 1|(yr, yc)]− qrc

1− 2 · qrc

3) Position bias computation procedure

Given a dataset D= {hn|n=1. . .N}, a practical method for computing the PB related to an LLM
judge is described as follows:

Step 1: Accuracy (based on Z) Computation

Since LLM judge evaluation results consistently contain flipping noise, even with the temperature
parameter set to 0.0, we first calculate the accuracy for both response positions (yc, yr) and (yr, yc).

In order to achieve this, we employ the LLM judge to generate judging result on each data in D by
considering two response orders: h = (x, yc, yr) and h′ = (x, yr, yc). The judge then selects the
preferred response y and y′ from each order h and h′, where y, y′∈{yc, yr}.

Broadly, we denote the set of judging results as J = {sn|n = 1 . . . N}, where each result sn =
(y(n), y′(n)) represents the selection outcome from both response orders, respectively, across all the
data cases in the dataset D. Then the accuracy for each position can be computed as follows:

p̂ [Z=1|(yc, yr)]=
1

N

N∑
n=1

1
(
y(n)=y(n)

c

)
,

p̂ [Z=1|(yr, yc)]=
1

N

N∑
n=1

1
(
y′(n)=y(n)

c

)
.

Step 2: Flipping Probability Estimation

Repeat the identical judging experiments in the Step 1 for extra K−1 times. These K repetitions of
identical judging experiments result in an extended judging result set J ′ = {s′n|n = 1 . . . N}, where
s′n =

(
y
(n)
1 , y

(n)
2 , ..., y

(n)
K , y

′(n)
1 , y

′(n)
2 , ..., y

′(n)
K

)
. The flipping probabilities qcr and qrc for the position

orders (yc, yr) and (yr, yc) are then computed by:

q̂cr= 1− 1

N

N∑
n=1

{
k
(n)
cr

K
· k

(n)
cr −1

K−1
+
K−k

(n)
cr

K
·K−k

(n)
cr −1

K−1

}
,

q̂rc= 1− 1

N

N∑
n=1

{
k
(n)
rc

K
· k

(n)
rc −1

K−1
+
K−k

(n)
rc

K
·K−k

(n)
rc −1

K−1

}
.

where k
(n)
cr =

∑K
k=1 1(y

(n)
k = y

(n)
c ) and k

(n)
rc =

∑K
k=1 1(y

′(n)
k = y

(n)
r ) are the numbers of choosing the

first response in s′(n) for the orders (y(n)c , y
(n)
r ) and (y

(n)
r , y

(n)
c ), respectively.

Step 3: De-noising Process

The position bias is computed as follows:

PB =
p̂ [Z = 1|(yc, yr)]− q̂cr

1− 2 · q̂cr
− p̂ [Z = 1|(yr, yc)]− q̂rc

1− 2 · q̂rc

Length Bias (LB)
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1) Proof: Length bias measurement is entangled with position bias

Here we demonstrate the entanglement between length bias (LB) and position bias (PB) in LB
measurements.

Assume the LLM judge exhibits position bias, namely PB = p [X=1|(yc, yr)]−p [X=1|(yr, yc)] ̸=
0. Let LBcr and LBrc be length biases measured for response order (yc, yr) and (yr, yc) in all the
data cases. Mathematically, they can be formulated as follows:

LBcr=p [X=1|∆l> 0, (yc, yr)]− p [X=1|∆l≤ 0, (yc, yr)] ,

LBrc=p [X=1|∆l> 0, (yr, yc)]− p [X=1|∆l≤ 0, (yr, yc)] .

Due to the position bias, p [X=1|∆l> 0, (yc, yr)] ̸= p [X=1|∆l> 0, (yr, yc)] and
p [X=1|∆l≤ 0, (yc, yr)] ̸= p [X=1|∆l≤ 0, (yr, yc)]. Thus, generally LBcr ̸= LBrc, and LB
is dependent on the response order. The analysis above demonstrates that LB is generally entangled
with PB in its measurement. In the next part, we introduce a method to approximate accuracies
p [X=1|∆l> 0)] and p [X=1|∆l≤ 0)] by mitigating the effect of PB.

2) Accuracy defintion selection

Previous work Zheng et al. (2024); Wang et al. (2023b) suggests both Accboth and Accrandom (refer
to the main paper for the definitions) can effectively mitigate the position bias in accuracy measure-
ment. Here, we demonstrate that Accboth is the better choice than Accrandom in terms of mitigating
the influence of position bias for length bias measurement.

Without loss of generality, we assume the LLM judge has the position bias favoring the first re-
sponse. The possible outcomes of y′ and y′ after the de-noising process can be thus found in Ta-
ble 16a.

When Accboth is used for accuracy, it only depends on the proportion of the first case (✓✗✗✓) in
Table 16a. As discussed previously in the proof section of position bias , this case is not affected by
the position bias. Consequently, employing this measure for accuracy helps mitigate the influence
of positional bias in the assessment of length bias.

When Accrandom is used for accuracy, it depends on the proportion of both the first and the third case
in Table 16a (the second case is not considered as it does not contribute to accuracy). This is because
Accrandom randomly selects y and y′ with a 50% probability, giving the third case a 50% chance of
contributing to the correct selection for accuracy.

As previously discussed, the third case is primarily attributed to position bias and thus cannot
fully mitigate the influence of positional bias, unlike Accboth. Thus, in our study, Accboth is used
to compute accuracy p [X=1|∆l> 0)] and p [X=1|∆l≤ 0)] in our length bias computation
procedures.

3) Length bias computation procedure

Given a dataset D = {hn|n = 1. . .N}, a practical method for computing LB related to an LLM
judge is described as follows:

Step 1: Accuracy (based on Z) Estimation

First, we use the same way as for computing position bias to generate the judging result set J . Then
in order to compute the length bias, we divide the dataset D into two subsets of D: D∆l>0 ={h|∆l >
0, h ∈ D}, and D∆l≤0 ={h|∆l ≤ 0, h ∈ D} and also divide the judging result set J into two subsets
of J : J∆l>0 = {s|∆l > 0, s ∈ J } and J∆l≤0 = {s|∆l ≤ 0, s ∈ J }. The accuracy based on Z can
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then be computed as follows:

p̂ [Z=1|∆l>0]=
1

|J∆l>0|
∑

s∈J∆l>0

1(y=yc∧y′=yc) ,

p̂ [Z=1|∆l≤0]=
1

|J∆l≤0|
∑

s∈J∆l≤0

1(y=yc∧y′=yc) .

Step 2: Flipping Probability Estimation

Analogous to the PB computation procedure, we repeat the identical judging experiments for
extra K − 1 times to get the extended judging set J ′ = {s′n|n = 1 . . . N}, where s′n =(
y
(n)
1 , y

(n)
2 , ..., y

(n)
K , y

′(n)
1 , y

′(n)
2 , ..., y

′(n)
K

)
. Subsequently, we divide J ′ into two subsets: J ′

∆l>0 =

{s′|∆l > 0, s′ ∈ J ′} and J ′
∆l≤0 = {s′|∆l ≤ 0, s′ ∈ J ′}. The flipping probabilities q∆l>0 and q∆l≤0

is then computed as follows:

q̂∆>0= 1− 1

N+

∑
s′∈J ′

∆l>0

{
ks′

K
· ks

′−1

K−1
+
K−ks′

K
·K−ks′−1

K−1

}
,

q̂∆≤0= 1− 1

N−

∑
s′∈J ′

∆l≤0

{
ks′

K
· ks

′−1

K−1
+
K−ks′

K
·K−ks′−1

K−1

}
,

where N+= |J ′
∆l>0| and N−=

∣∣J ′
∆l≤0

∣∣. Additionally, ks′ =
∑K

k=1 1 (yk=yc∧y′
k=yc) represents the

number of times that the LLM judge chooses yc in both position orders for any s′ ∈ J ′, respectively.

Step 3: De-noising Process

The length bias is computed as follows:

LB =
p̂ [Z = 1|∆l> 0]− q̂∆l>0

1− 2 · q̂∆l>0
− p̂ [Z = 1|∆l≤ 0]− q̂∆l≤0

1− 2 · q̂∆l≤0
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