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ABSTRACT

Artificial Intelligence (AI) drives advancements across fields, enabling capabil-
ities previously unattainable. Modern intelligent systems integrate increasingly
specialized tasks, such as improving tumor classification with tissue recognition
or advancing driving assistance with lane detection. Typically, new tasks are ad-
dressed by training single-task models or re-training multitask models, which be-
comes impractical when prior data is unavailable or new data is limited. This pa-
per introduces Continual Multitask Learning (CMTL), a novel problem category
critical for future intelligent systems yet overlooked in current research. CMTL
presents unique challenges beyond the scope of traditional Continual Learning
(CL) and Multitask Learning (MTL). To address these challenges, we propose
Learning with Preserving (LwP), a novel approach for CMTL that retains previ-
ously learned knowledge while supporting diverse tasks. LwP employs a Dynam-
ically Weighted Distance Preservation loss function to maintain representation in-
tegrity, enabling learning across tasks without a replay buffer. We extensively
evaluate LwP on three benchmark datasets across two modalities—inertial mea-
surement units of multivariate time series data for quality of exercises assessment
and image datasets. Results demonstrate that LwP outperforms existing continual
learning baselines, effectively mitigates catastrophic forgetting, and highlights its
robustness and generalizability in CMTL scenarios.

1 INTRODUCTION

Artificial intelligence is driving progress across numerous critical fields, enabling innovations that
were once beyond reach. Increasingly, more specialized and detailed tasks are being integrated into
existing intelligent systems, enhancing their capabilities. For example, in medical imaging, tumor
classification may evolve to include incremental annotation of tumor shape recognition and tissue
density analysis Kaustaban et al. (2022); Freeman et al. (2021). Similarly, intelligent driving assis-
tance systems advance from basic object detection to identifying lanes and recognizing traffic signs
Shaheen et al. (2022). Traditionally, additional tasks are integrated by training new single-task mod-
els or retraining multitask models, which fall short when previous data is inaccessible or new data is
limited. Compiling comprehensive datasets with all labels simultaneously is often unfeasible due to
data privacy, resource constraints, or the sequential nature of data collection and annotation. There-
fore, labels arrive sequentially, requiring a suitable learning paradigm. Recent works in continual
and multitask learning, such as Mirzadeh et al. (2020) and Liao et al. (2022), 1 have addressed these
challenges by integrating aspects of continual and multitask learning. However, these approaches
often assume access to all tasks or do not generalize new tasks with previous ones. In this paper,
we propose Continual Multitask Learning (CMTL), a new problem category where input originates
from same dataset across tasks, but each task introduces distinct data to label spaces. This reflects
real-world scenarios where data drawn from a specific domain are annotated with different attributes
over time, requiring models to generate inferences for all the learned attributes for each input. CMTL
poses additional challenges compared to traditional Continual Learning (CL) and Multitask Learn-
ing (MTL). It requires models to retain knowledge from previous tasks (a CL challenge) and develop
shared representations beneficial to multiple tasks (an MTL goal), all while handling new tasks se-
quentially without access to previous data. In traditional CL, especially task-incremental learning,

1Further discussion in Appendix A
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Figure 1: Comparison among CL, MTL, and CMTL. Two key differences of CMTL compared to
the other two scenarios are: (1) inputs stem from a consistent underlying distribution, with labels
representing features that any input might have, much like in MTL, and (2) labels are provided
sequentially, akin to CL. Models must generalize shared representations while minimizing catas-
trophic forgetting.

models handle a single task where new classes or labels are introduced over time—like recogniz-
ing additional colors in image classification—within the same domain. In contrast, CMTL involves
learning different tasks sequentially (e.g., color, shape, size), requiring models to adapt to new task
domains while preserving shared representations, as shown in Figure 1. Unlike CL, which focuses
on learning new tasks and mitigating catastrophic forgetting Wang et al. (2023; 2022), and MTL,
which learns multiple tasks simultaneously, CMTL balances both challenges in a sequential frame-
work. This introduces complexities such as task interference and the need for models to generalize
across tasks not available concurrently.

Although CMTL can be classified as a subcategory of Task-incremental Learning (Task-IL) Van
De Ven et al. (2022), conventional CL approaches often fail to surpass the performance of multitask
models or even simple single-task models under these conditions De Lange et al. (2021); Yoon et al.
(2019). Our experiments corroborate this, as shown in Table 1 in Section 4. We hypothesize this
shortfall arises because traditional CL methods treat new tasks in isolation, focusing narrowly on
task-specific distinctions without considering the broader feature space.

To address these challenges, we bridge the gap by introducing Learning with Preserving (LwP). In
this novel approach, we preserve previously learned knowledge in a way that remains applicable and
beneficial across diverse tasks that may share underlying knowledge structures. This enhancement
is designed to maintain both implicitly and explicitly acquired knowledge, ensuring that the learned
representations are rich and generalizable enough to facilitate learning in future tasks without in-
terference. The main contributions of this paper can be summarized as follows: a) We propose a
new scenario of continual learning, CMTL, highlighting its unique challenges and significance in
practical applications where labels arrive sequentially and comprehensive datasets are impractical.
b) We introduce Learning with Preserving (LwP), a novel framework along with a preserving loss
function that maintains and distills the integrity of the latent space, ensuring it is conducive to learn-
ing across prior and future tasks without relying on a replay buffer. c) We demonstrate, through
extensive evaluation across two modalities — IMU sensing data (assessing the quality of exercise)
and image datasets — that our method outperforms existing baselines, including traditional CL and
MTL models, and showcases capabilities in CMTL scenarios.

2 PROBLEM FORMULATION: CONTINUAL MULTITASK LEARNING

We propose a subcategory of incremental learning scenarios that closely resemble multitask learning
settings. We consider a sequential learning scenario involving T tasks {Tt}Tt=1. Each task Tt is
associated with a label space Yt and involves learning a mapping ft : X → Yt. The input space X
is common across all tasks, with input data x ∈ X drawn from an identical distribution PX . At each
time step t, we receive a dataset Dt = {(xi, y

t
i)}

nt
i=1 sampled from distribution Dt, where xi ∼ PX

is an input sample, yti ∈ Yt is the corresponding label for task Tt. Note that for time t, only label yti
is available. Other labels yji for j ̸= t cannot be observed at time t.

Our goal is to find a predictor φ(x; θs, θt) : X → Y1 × Y2 × · · · × YT parameterized by a set of
shared parameters θs and task-specific parameters θt, such that
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Figure 2: Overview of the LwP training framework on a human face dataset. While learning task
T 1 (wearing hat) with Lcur, the model preserves prior knowledge (sunglasses) through supervised
pseudolabeling Lold and implicit knowledge retention via LDWDP.

L(θs, {θt}Tt=1) :=

T∑
t=1

E(x,yt)←Dt

[
ℓ
(
yt,φ(x, t; θs, θt)

)]
, (1)

is minimized for some loss function ℓ(·, ·).

3 LEARNING WITH PRESERVING

3.1 OVERVIEW

We introduce LwP, a versatile framework designed to effectively manage CMTL scenarios, as de-
picted in Figure 2. This framework incorporates neural network functions fθs(x) to create a shared
representation z, along with gθt(z), which represents task-specific layers for task t and utilizes z to
generate predictions for the tth task. This requirement is essential for the model to acquire a shared
and generalizable representation space in z.

When training the current task t, we preserve and freeze the previous model to generate pseudolabels
for all the previous t−1 tasks. The current model, which is a duplicate of the previous one, includes
an additional task-specific layer that will take z as input and learn to predict the current task label
yt using an appropriate supervised loss. Concurrently, the outputs for the previous tasks aim to
minimize their supervised loss objectives utilizing pseudolabels from the preceding model.

Following this, we present our key novelty and apply the Dynamically Weighted Distance Preser-
vation (DWDP) loss to preserve the knowledge that has been implicitly learned. Overall, the total
objective function for the model while learning task t is defined as:

Llwp = λcLcur(yt, ŷt) + λoLold(ỹo, ŷo) + λdLDWDP(z
[t], z[t−1], yt) (2)

where

LDWDP =
1

N2

N∑
i=1

N∑
j=1

mij

(
d(z

[t−1]
i , z

[t−1]
j )− d(z

[t]
i , z

[t]
j )
)2

,

mij =

{
1, if y[t]i = y

[t]
j ,

0, otherwise,

z
[t]
i = f

θ
[t]
s
(xi).

d(zi, zj) : Rd × Rd → R represents either a distance or similarity metric, with λc, λo and λd as
hyperparameters. yt and ŷt denote ground truth and model output of the current task label while
ỹo and ŷo denoting previous model’s outputs (pseudolabels) and current model’s outputs for old
tasks, respectively. Lcur and Lold represent appropriate supervised learning losses for respective
tasks, such as cross entropy or mean squared error. Note that the previous model θ[t−1] is frozen to
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Sample Feature T0 Projected Feature T1 Projected Feature T2 Projected Feature

Add T0 Add T1 Add T2

Figure 3: Development of representation space over T . LwP preserves the structure as new tasks
are learned.

produce stationary pseudolabels and z. In other words, in addition to using pseudolabel to maintain
performance on old tasks, we introduce a regularization term aimed at preserving the structure of
shared representations by reducing the differences in pairwise similarities (distances) between the
model’s previous task and the current one if the pairs have the same label for the current task.

3.2 PRESERVING IMPLICIT KNOWLEDGE

In the context of CMTL, if θt, the task-specific parameters, are simply linear projection layers ap-
plied to the final layer of the shared parameters θs, we observe that Learning without Forgetting
(LwF) Li & Hoiem (2017b) is interpreted as an approximation of the multitask learning objective
that encourages the formation of more informative and generalized representation space in z.

Motivated by this observation, we show that LDWDP is a result of incorporating implicitly learned
knowledge as an optimization objective. We define such knowledge as the capability of the model’s
representation to provide an approximate solution to some unknown problem. Therefore, in order to
preserve implicitly learned knowledge, we intend to find a loss function that can preserve approxi-
mate solutions for any problems that can be defined in z.

In order to preserve all approximate solutions from the representation space alone, we exploit that
kernel methods with the Gaussian kernel are universal approximators Hammer & Gersmann (2003).

Given two sets of representations Z,Z ′ ∈ Rn×d, where each row corresponds to z, our objective
is to ensure that Z ′ maps to the same Reproducing Kernel Hilbert Space (RKHS) as Z under the
Gaussian kernel. To achieve this, we derive a loss function Lpres that encourages the alignment of
the pairwise similarities encoded by the Gaussian kernel in both representation spaces.

The Gaussian kernel is defined as k(zi, zj) = exp
(
−∥zi−zj∥2

2σ2

)
, where zi, zj ∈ Rd are repre-

sentations, and σ > 0 is the bandwidth parameter controlling the kernel’s sensitivity to distance.
The Gaussian kernel is a positive definite function, inducing an RKHS H with an implicit feature
mapping ϕ : Rd → H such that k(zi, zj) = ⟨ϕ(zi),ϕ(zj)⟩H.

For a set of representations Z, the Gram matrix K(Z) ∈ Rn×n is constructed with entries Kij(Z) =
k(zi, zj). Similarly, we construct K(Z ′) for Z ′. Our goal is to align K(Z) and K(Z ′) such that
the pairwise similarities in Z ′ match those in Z. This alignment ensures that Z and Z ′ are mapped
to the same locations in the RKHS up to an isometry.

To formalize the alignment objective, we define the loss function Lpres as the squared Frobenius
norm of the difference between the two kernel matrices:

Lpres(Z,Z ′) = ∥K(Z)−K(Z ′)∥2F =

n∑
i=1

n∑
j=1

(
k(zi, zj)− k(z′i, z

′
j)
)2

. (3)

Minimizing Lpres with respect to Z ′ (while keeping Z fixed) encourages the kernel matrices to
become identical, i.e., K(Z ′) ≈ K(Z). This implies that for all pairs (i, j), k(z′i, z

′
j) ≈ k(zi, zj).

By minimizing Lpres, we effectively align the images of Z and Z ′ under the feature map ϕ:

⟨ϕ(zi),ϕ(zj)⟩H ≈ ⟨ϕ(z′i),ϕ(z′j)⟩H, ∀i, j. (4)
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Figure 4: The impact of LDWDP on a two-dimensional toy dataset, where y1 (O vs. X) indicates
an XOR problem and y2 (blue vs. red) signifies a concentric circle problem. The figure shows the
representation space after training on y2 without LDWDP (left) and with LDWDP (right). The latter
successfully preserves the cluster structures of the former representation, which is advantageous for
learning y1 in subsequent phases.

This alignment implies that there exists an isometry T : H → H such that:

ϕ(z′i) = T (ϕ(zi)), ∀i. (5)

For any function f ∈ H, there exists a weight vector w ∈ H such that f(z) = ⟨w,ϕ(z)⟩H. The
evaluation of f at z′i becomes:

f(z′i) = ⟨w,ϕ(z′i)⟩H = ⟨w,T (ϕ(zi))⟩H. (6)

Because T is an isometry, its adjoint T ∗ is also an isometry, and we can write:

f(z′i) = ⟨T ∗w,ϕ(zi)⟩H. (7)

Define w′ = T ∗w and f ′(z) = ⟨w′,ϕ(z)⟩H. Then:

f(z′i) = f ′(zi), ∀i. (8)

Thus, Z ′ becomes an alternative representation that is functionally equivalent to Z in terms of any
operations performed within the RKHS induced by the Gaussian kernel. Now, consider a learning
problem defined on Z:

min
f∈H

1

n

n∑
i=1

ℓ(f(zi), yi) + Ω(f), (9)

and the corresponding problem on Z ′:

min
f∈H

1

n

n∑
i=1

ℓ(f(z′i), yi) + Ω(f). (10)

Using the relationship f(z′i) = f ′(zi), the loss terms satisfy ℓ(f(z′i), yi) = ℓ(f ′(zi), yi). Since
∥f∥H = ∥f ′∥H, the regularization terms are equal: Ω(f) = Ω(f ′). Thus, the risk functionals for
the problems on Z and Z ′ are equivalent when considering f and f ′:

1

n

n∑
i=1

ℓ(f(z′i), yi) + Ω(f) =
1

n

n∑
i=1

ℓ(f ′(zi), yi) + Ω(f ′). (11)

Because the risk functionals are equivalent, the optimal solutions f∗ obtained on Z ′ correspond to
the optimal solutions f ′∗ on Z via the isometry T ∗:
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f∗(z′i) = f ′∗(zi). (12)

This means any model trained on Z can be transformed to a model on Z ′ with identical performance,
and vice versa.

Through empirical observation, we have determined that maintaining the squared Euclidean distance
instead of k directly leads to enhanced performance. This is likely because the non-exponentiated
distance metric more effectively retains the global structure of the representation space. Refer to
Appendix 4.6 for the experimental data. Additionally, in Appendix C, we show that the difference
in RBF kernel values is bounded by the difference in the squared L2 norm.

Hereby we define a family of such losses that preserve some distance (or similarity) metric between
pairs of representations as the following:

Lpres(z, z
′) =

1

N2

N∑
i=1

N∑
j=1

(
d(zi, zj)− d(z′i, z

′
j)
)2

, (13)

where d represents either a distance or a similarity function. Note that it no longer needs to be a
kernel to include a broader variety of metrics.

3.3 DYNAMIC WEIGHTING

Lpres is designed to maintain the implicitly learned knowledge of the input data in the representation
space. However, in scenarios where there are distinct classes or labels, this loss can conflict with
other objectives, such as separating distinct classes.

To address this issue, we introduce the Dynamically Weighted Distance Preservation (DWDP) Loss,
LDWDP. This loss function adapts the preservation loss by applying a dynamic mask mij , which
controls the contribution of each pairwise comparison based on their label similarity. The intuition
behind this modification is to deactivate the preservation requirement for pairs with different labels,
thus preventing conflicts with the separation objectives.

The dynamic mask mij is defined as follows:

mij =

{
1, if y[t]i = y

[t]
j ,

0, otherwise,
(14)

where y[t] represents the labels of the current task.

Thus, the DWDP Loss is then given by:

LDWDP(z
[t−1], z[t], y[t]) =

1

N2

N∑
i=1

N∑
j=1

mij

(
d(z

[t−1]
i , z

[t−1]
j )− d(z

[t]
i , z

[t]
j )
)2

(15)

Consequently, this modification alleviates the objective conflict issue at the cost of reducing the
scope for preservation to intraclass sets of the current task. Our detailed pseudo-code algorithm is
presented in Appendix B.

4 EVALUATION

4.1 OVERVIEW

We present a set of experiments designed to rigorously validate our approach using three benchmark
datasets that span multiple modalities. 1) We conduct a comprehensive performance evaluation of
our method, LwP, comparing it to state-of-the-art CL techniques. This assessment focuses on the
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average accuracy across all tasks after training is completed. 2) We analyze the extent of catastrophic
forgetting in each model, employing the Backward Transfer (BWT) metric Lopez-Paz & Ranzato
(2017a) to quantify the accuracy degradation over successive tasks. 3) We benchmark the rate of
performance improvement per train iteration not only against other baseline CL models but also
against MTL oracles, which serve as an upper bound for the problem. 4) We explore the effects of
dynamic weighting and various distance/similarity functions, d, as proposed in other studies, on the
performance metrics of LwP.

Additionally, in the Appendix D, we explain more detailed setup including attributes and conduct
further evaluations through additional experiments. A detailed comparison with MTL methods is
presented in Appendix D.2. Furthermore, we supply supplemental diagrams that illustrate the pro-
gression of the accuracy over time for both the PhysiQ and FairFace datasets, which can be found
in Appendix D.3. Appendix D.4 elaborates on the influence of the number of training examples on
the overall performance of each model. In Appendix D.5, we benchmark the rate of performance
improvement per train iteration not only against other baseline CL models but also against MTL
methods. In Appendix D.6, we analyze the impact of model size and image size on the performance
of all the methods. Additionally, in Appendix D.7, we explore training the first 5 tasks of the CelebA
dataset using an MTL scheme, followed by a CL setting for the remaining 5 tasks.

4.2 EXPERIMENT SETUP

Datasets We utilize three datasets from two distinct modalities, each structured for task-
incremental learning. In this setting, each task is only exposed to a subset of training samples:

The CelebA dataset Liu et al. (2018), consisting of 200,000 images with 40 facial attributes. For our
work, we focus on 10 of the most balanced attributes. The train dataset is equally subdivided for
each task, leading to 20,000 images per task. For simplicity, input images are resized to 32x32.

The PhysiQ dataset Wang & Ma (2023), which contains approximately 4,500 samples collected
using inertial measurement units (IMUs) to capture the quality of physical exercises. The data is
collected on accelerometer and gyroscope modality of 50 Hz sampling rate for 31 participants with
three attributes. Each task corresponds to one of these attributes with around 1,500 samples.

The Fairface dataset Karkkainen & Joo (2021), which includes 100,000 images with three attributes.
Following the same subdivison procedure, the dataset results in containing approximately 33,333
images with a resolution of 128x128 per task. Not only the tasks differ from those of CelebA, but
also the images are not resized in order to show our approach is scalable.

Baselines Our primary emphasis is on CL baselines since integrating many MTL methods into
CMTL often requires substantial modifications to accommodate the incremental characteristics of
CMTL. For CL, we compare against Online Bias Correction (OBC) Chrysakis & Moens (2023),
Dual View Consistency (DVC) Gu et al. (2022), Dark Experience Replay (DER) Buzzega et al.
(2020), DER++ Boschini et al. (2022), Function Distance Regularization (FDR) Benjamin et al.
(2019), Experience Replay (ER) Robins (1995); Ratcliff (1990), Gradient-based Sample Selection
(GSS) Aljundi et al. (2019b), online Elastic Weight Consolidation (oEWC) Kirkpatrick et al. (2017),
Synaptic Intelligence (SI) Zenke et al. (2017), and Learning without Forgetting (LwF) Li & Hoiem
(2017b). In addition, we compare our approach with MTL methods, which are detailed in Appendix
D.2. These include the basic MTL approach of training all tasks simultaneously with different
predictors Caruana (1997), as well as more advanced techniques like PCGrad Yu et al. (2020),
Impartial MTL (IMTL) Liu et al. (2021), and NashMTL Navon et al. (2022). We also include a
single task learning (STL) baseline, where each task is learned separately. For the choice of distance
metric d, we test common options such as Euclidean distance and cosine similarity, as well as loss
functions designed to preserve relational knowledge, such as those proposed in RKD Park et al.
(2019) and Co2L Cha et al. (2021).

Model Architectures We use an untrained ResNet-18 for CelebA and FairFace datasets. Each
task is predicted after a linear projection layer applied to the flattened last shared layer z ∈ R512.
Similarly, for PhysiQ, we use a 3-layer 1DCNN model with z ∈ R128 final shared layer connected
to task-specific linear layers. We evaluate additional architectures and image sizes in Appendix D.6.
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4.3 COMPREHENSIVE COMPARISON

(a) LwP Ours (b) LWF (c) ER (d) GSS (e) FDR

(f) OBC (g) DVC (h) DER (i) DERPP (j) SI (k) oEWC

Figure 5: Matrices showcasing the accuracy progression for various models for Dataset CelebA.
Each column corresponds to an iteration of the task, arranged sequentially from left to right. We
generate the confusion matrices normalized on all the tasks for all the models for consistency.

Table 1: Accuracy Percentage Comparison Across Models and Datasets

Method Type Model CelebA (10 Tasks) PhysiQ (3 Tasks) FairFace (3 Tasks)

STL - 72.230 ± 7.297 87.167 ± 10.102 64.435 ± 3.660

CL

LwF 64.626 ± 10.806 69.952 ± 21.090 61.034 ± 6.162
oEWC 69.666 ± 9.019 82.640 ± 12.166 63.604 ± 3.122
ER 67.598 ± 7.452 76.798 ± 16.347 63.220 ± 4.730
SI 68.735 ± 10.545 83.727 ± 11.828 63.359 ± 3.451
GSS 71.680 ± 8.468 85.741 ± 10.950 64.230 ± 3.918
FDR 69.514 ± 8.917 71.859 ± 18.687 63.709 ± 3.151
DER 70.703 ± 8.388 84.796 ± 11.168 64.114 ± 3.484
DERPP 67.693 ± 9.425 82.838 ± 13.775 63.806 ± 3.694
DVC 71.441 ± 7.640 85.100 ± 10.381 63.848 ± 3.193
OBC 70.829 ± 8.267 83.999 ± 11.377 63.872 ± 3.449

CMTL LwP 73.484 ± 8.019 88.242 ± 12.010 66.482 ± 3.138

In this experiment, we evaluate the performance of Our LwP against several state-of-the-art CL
methods. All methods, except for LwF and LwP, are provided with a buffer size of 512 for the
CelebA and FairFace datasets, and 46 for the PhysiQ dataset, corresponding to approximately 2-3%
of the training set for each dataset. Each model is trained five times using different random seeds.
The standard training protocol consists of 20 epochs, with a batch size of 256 for image-based
datasets and 32 for PhysiQ, coupled with early stopping. For PhysiQ, we only compare the average
accuracy across the final task iteration due to the training instability caused by smaller dataset size.
Table 1 reports the average test accuracy, along with the standard deviation over five runs for each
method and dataset. Fig. 5 visualizes the progression of task accuracy in task iterations (left to
right). Additional results are provided in Appendix D.3

Table 1 highlights that LwP consistently achieves superior performance across all three benchmarks
and is the only method to exceed the Single Task Learning (STL) baseline. This suggests that other
continual learning methods likely experience significant task interference. Additional results with
MTL are provided in Appendix D. Furthermore, our approach is modality-agnostic, as evidenced
by LwP’s ability to generalize across different domains. This is demonstrated by the results on the
PhysiQ dataset from the IMU sensor domain, which underscores LwP’s robustness against chal-
lenges unique to non-image-based tasks.

The results suggest that LwP demonstrates competitive performance compared to existing continual
learning methods across a range of benchmarks in CMTL settings. LwP consistently achieves higher
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accuracy than other approaches, including surpassing the STL baseline, indicating its potential to
reduce task interference and catastrophic forgetting in different modalities.

4.4 BACKWARD TRANSFER

(a) CelebA (b) PhysiQ (c) FairFace

Figure 6: Backward Transfer Diagrams for Various Datasets

The Backward Transfer Lopez-Paz & Ranzato (2017a) is a metric to evaluate the influence of learn-
ing the current task on the performance of previous tasks. A positive backward transfer value in-
dicates that, on average, accuracies on the previous tasks have increased during the current task
iteration and vice versa. It is defined as:

BWT =
1

T − 1

T−1∑
i=1

RT ,i −Ri,i, (16)

where T is the index of the current task, i is an index of previous tasks ranging from 1 to T −1, RT ,i

is the accuracy on task i after training up to task T, and Ri,i is the accuracy on task i after learning.

As illustrated in Fig. 6, we observe that LwP outperforms all baselines in terms of BWT across
all benchmarks. This result is consistent with the visualization shown in Fig. 3, where LwP can
maintain the accuracy of each task since its initial training.

4.5 REPRESENTATION SPACE VISUALIZATION VIA T-SNE

(a) z of LwP, after T0 (b) z of LwP, after T1 (c) z of LwP, after T2

Figure 7: Representation space progression over task iteration. Colors indicate different label values.

Fig. 7 shows the 2D visualization of the representation z for each model trained on the PhysiQ
dataset. It was constructed using the dimensionality reduction algorithm t-SNE van der Maaten &
Hinton (2008) on the PhysiQ test dataset at the end of each task iteration. x and y axes represent the
two new dimensions created by the algorithm to project the high-dimensional data onto a 2D plane.
Note these dimensions do not have an intrinsic meaning and rather constructed to reflect the relative
distances between data points in the high-dimensional space. As demonstrated, the z produced by
LwP maintains coherent cluster formations as it progressively learns new tasks without introducing
considerable distortions when compared to the baseline model. This behavior is comparable to the
example provided with the toy dataset depicted in Fig. 4.

4.6 THE ABLATION STUDY OF EFFECTIVENESS OF THE LOSS FUNCTION

To evaluate the impact of the proposed loss function, we perform experiments by selectively dis-
abling the dynamic weighting feature and comparing it with other loss functions that also aim to
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Table 2: Ablation comparison on LDWDP implementation

Method on PhysiQ LwP (L2) LwP (Cosine) LwP (RBF) IRD (Co2L) RKD
Dynamic Weighting 88.2 ± 12.0 85.4 ± 13.1 84.5 ± 13.7 86.4 ± 11.5 85.1 ± 13.3
W/o Dynamic Weighting 86.0 ± 12.3 84.1 ± 14.4 84.8 ± 14.5 79.9 ± 17.1 85.9 ± 11.9

preserve structures. In our evaluation, we include CO2L Cha et al. (2021), RKD Park et al. (2019),
and two novel variation of baselines: cosine similarity and the RBF kernel as described in eq. 3.

The findings in Table 2 indicate that the loss function with both dynamic weighting and Euclidean
distance consistently surpasses the other options. We believe that the effectiveness of Euclidean
distance with dynamic weighting is due to its loss not being normalized across batches, unlike
previously proposed approaches.

5 RELATED WORK

MTL enhances generalization and computational efficiency by leveraging shared representations
across related tasks Caruana (1997); Sener & Koltun (2018). However, optimizing multiple objec-
tives often presents conflicting gradients. Approaches like the Multiple Gradient Descent Algorithm
(MGDA) Sener & Koltun (2018) seek Pareto optimal solutions through convex combinations of
task-specific gradients, while Gradient Surgery (PCGrad) Yu et al. (2020) projects conflicting gra-
dients onto the normal plane of each other to reduce interference. Navon et al. Navon et al. (2022)
modeled gradient combination as a cooperative bargaining game to ensure fairness among tasks.
Loss balancing is also crucial, with methods like IMTL Liu et al. (2021) incorporating both gradient
and loss balancing mechanisms. CL enables sequential task learning without catastrophic forgetting
Ratcliff (1990); Robins (1995). Techniques like MER Riemer et al. (2018) focus on maximizing
knowledge transfer while minimizing interference, while HAL Chaudhry et al. (2021) anchors past
knowledge to prevent representation drift. Bridging MTL and CL, continual multitask learning aims
to manage performance across sequential and concurrent tasks Wu et al. (2023), using methods like
MC-SGD Mirzadeh et al. (2020) to enhance CL by leveraging linear mode connectivity. Task-free
CL Aljundi et al. (2019a) eliminates task boundaries. More detailed discussions are available in the
Appendix A.

6 CONCLUSION

We explored the limitations of existing continual learning methods in CMTL. Our findings show
that conventional approaches often underperform compared to single-task models, largely due to
their focus on preserving explicit information while neglecting broadly useful, implicit features. To
address this, we introduced Learning with Preserving (LwP) with a dynamically weighted distance
preservation function. This approach maintains the structure of the representation space, preserv-
ing implicit knowledge without needing replay buffers, making it especially valuable in privacy-
sensitive domains like healthcare. Our experiments across various datasets demonstrated that LwP
surpasses state-of-the-art baselines and outperforms single-task models, consistently retaining ac-
curacy and mitigating catastrophic forgetting. The results emphasize the importance of preserving
implicit knowledge and the effectiveness of our loss function. Future work could explore LwP’s
application with non-stationary dataset or unlabeled data (i.e., investigation on KL divergence vs.
LwP performance), and its integration with pre-trained foundation models.
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A RELATED WORKS

A.1 MULTITASK LEARNING

Multitask learning (MTL) has been extensively explored for its ability to leverage shared repre-
sentations across multiple related tasks, thereby enhancing generalization and computational effi-
ciency Caruana (1997); Sener & Koltun (2018); Javaloy & Valera (2021); Gardner et al. (2022);
Kim et al. (2022); Cao et al. (2022); Yang et al. (2024); Liu et al. (2021). In MTL, models are
trained on multiple tasks simultaneously, with the assumption that learning tasks together allows the
model to capture commonalities and differences among tasks, leading to better performance than
training each task separately.

A central challenge in MTL is the optimization of multiple objectives, which often present conflict-
ing gradients that can impede the convergence and performance of the model. To address this, var-
ious gradient balancing approaches have been proposed. Sener and Koltun Sener & Koltun (2018)
introduced the Multiple Gradient Descent Algorithm (MGDA), which seeks Pareto optimal solu-
tions by finding a convex combination of task-specific gradients. Building on this, Yu et al. Yu et al.
(2020) proposed Gradient Surgery (PCGrad), which directly modifies conflicting gradients by pro-
jecting them onto the normal plane of each other to reduce negative interference. More recently,
Navon et al. Navon et al. (2022) approached MTL from a game-theoretic perspective, modeling the
gradient combination step as a cooperative bargaining game and employing the Nash Bargaining
Solution to ensure proportional fairness among tasks.

In addition to gradient balancing, loss balancing is crucial for stable and unbiased learning in MTL.
Liu et al. Liu et al. (2021) introduced IMTL, which incorporates both gradient and loss balancing
mechanisms. Their method, IMTL-G, ensures unbiased updates to task-shared parameters by finding
the geometric angle bisector of task gradients, while IMTL-L automatically learns loss weighting
parameters to harmonize the scales of different task losses.

While these MTL methods have advanced the ability to learn multiple tasks simultaneously, they
typically assume that all task data is available at training time and can be processed jointly. This
assumption does not hold in scenarios where tasks and their associated data arrive sequentially, as
in our defined problem, Continual Multitask Learning (CMTL). In such cases, models must learn
new tasks without access to all previous data, and ideally, they should leverage new tasks to improve
performance on prior tasks.

Our work differs from traditional MTL approaches by addressing the sequential arrival of tasks
and data, where tasks are learned iteratively rather than simultaneously. Unlike MTL methods that
focus on balancing gradients and losses across tasks trained together, our approach must handle the
challenge of incorporating new tasks without retraining on previous tasks’ data. Furthermore, we
introduce mechanisms to utilize new task data to enhance the model’s generalizability on earlier
tasks, which is not considered in standard MTL frameworks.

A.2 CONTINUAL LEARNING (CL)

CL aims to enable models to learn sequentially from a stream of tasks without forgetting previously
acquired knowledge, addressing the challenge of catastrophic forgetting Ratcliff (1990); Robins
(1995). Various methods have been developed to tackle this problem, broadly categorized into
rehearsal-based methods, knowledge distillation, and regularization-based techniques.

Rehearsal-based methods Early works such as Ratcliff (1990); Robins (1995) introduced Expe-
rience Replay (ER), where old data samples are mixed with current ones during training. Building
upon this concept, Robins Robins (1995) explored pseudorehearsal techniques. More recent meth-
ods like Meta-Experience Replay (MER) Riemer et al. (2018) reformulate ER within a meta-learning
framework, aiming to enhance knowledge transfer between past and present tasks while reducing in-
terference. Gradient-based Sample Selection (GSS) Aljundi et al. (2019b) modifies ER by selecting
optimal examples for storage in the memory buffer, improving retention of past knowledge. Another
method, Hindsight Anchor Learning (HAL) Chaudhry et al. (2021), augments ER with an additional
goal to prevent forgetting key data points. Gradient Episodic Memory (GEM) Lopez-Paz & Ranzato
(2017b) and its more efficient variant Averaged-GEM (A-GEM) Chaudhry et al. (2018b) use previ-
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ous training data to impose optimization constraints on the current update, ensuring better retention
of learned information. Additionally, Yoon et al. Yoon et al. (2019) introduced Additive Parameter
Decomposition (APD), an architectural approach that represents the parameters for each task as a
sum of task-shared and task-adaptive parameters. APD ensures scalability and order-robustness by
preventing catastrophic forgetting and addressing order-sensitivity through parameter decomposi-
tion. Lastly, Aljundi et al. Aljundi et al. (2019a) introduce task-free continual learning, eliminating
the need for task boundaries and enabling more flexible adaptation to new tasks without explicit task
identifiers.

These methods, while effective in certain scenarios, rely heavily on storing and replaying data from
previous tasks, which may not be feasible due to privacy concerns or memory constraints. In con-
trast, our approach does not require storing raw data from previous tasks. Instead, we utilize pseu-
dolabels generated by the frozen previous model and introduce a novel regularization term to pre-
serve the structure of shared representations. This enables the model to retain and improve upon
prior knowledge without explicit rehearsal.

Knowledge Distillation Methods leveraging Knowledge Distillation Hinton (2015) address the
issue of forgetting by using a previous iteration of the model as a teacher. Learning Without For-
getting (LwF) Li & Hoiem (2017a) generates a softened version of the model’s current outputs
on new data at the onset of each task, minimizing output drift throughout training. iCaRL Re-
buffi et al. (2017) combines distillation with replay techniques, using a memory buffer to train a
nearest-mean-of-exemplars classifier while applying a self-distillation loss to preserve learned rep-
resentations across tasks. Moreover, Li et al. Li et al. (2019) proposed a continual learning method
tailored for sequence-to-sequence tasks, leveraging compositionality to enable knowledge transfer
and prevent catastrophic forgetting. Their approach extends traditional label prediction continual
learning methods to handle more complex tasks like machine translation and instruction learning.

While these methods use knowledge distillation to maintain performance on old tasks, they typically
focus on preserving output logits or feature representations without considering the underlying rela-
tional structure between data points. Our method extends this idea by not only preserving the output
predictions via pseudolabels but also maintaining the pairwise relationships in the representation
space through our Dynamically Weighted Distance Preservation (DWDP) loss. This helps in better
retaining the learned structure and prevents the model from drifting away from previously acquired
knowledge.

Regularization-based techniques These methods modify the loss function to include a penalty
that restricts changes to the model’s parameters. Examples include Elastic Weight Consolidation
(EWC) Duncker et al. (2020), its online variant (oEWC) Kirkpatrick et al. (2017), Synaptic Intel-
ligence (SI) Zenke et al. (2017), and Riemannian Walk (RW) Chaudhry et al. (2018a). In contrast,
architectural methods such as Progressive Neural Networks (PNN) Rusu et al. (2016) incrementally
expand the model by adding new networks for each task, which leads to increased memory usage.
To address this, methods like PackNet Mallya & Lazebnik (2018) and Hard Attention to the Task
(HAT) Serra et al. (2018) reuse the same architecture for multiple tasks, dynamically allocating
resources to prevent performance degradation. Recent advances include a generalized framework
with additional loss functions proposed by Wang et al. Wang et al. (2024). Another promising
architectural method is task-conditioned hypernetworks Von Oswald et al. (2019), which generate
weights for the target network based on task identity. These hypernetworks do not need to recall
all input-output relationships for previously seen tasks, as they instead rehearse task-specific weight
realizations. Moreover, Adel et al. Adel et al. (2019) introduced Continual Learning with Adaptive
Weights (CLAW), which employs a probabilistic modeling approach to adaptively identify which
parts of the network should be shared across tasks in a data-driven manner. This method balances
between modeling each task separately to prevent catastrophic forgetting and sharing components
to allow transfer learning and reduce model size.

Our approach differs from these methods as we do not rely on parameter regularization or expand-
ing architectures. Instead, we focus on preserving the learned representations and their relational
structure between tasks through the DWDP loss, which provides a more scalable solution without
incurring additional memory overhead.
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A.3 CONTINUAL AND MULTITASK LEARNING

Our work distinguishes itself from existing approaches in CMTL by introducing a new problem do-
main where new tasks and their associated datasets arrive incrementally. In this setting, the model
is not only required to adapt to new tasks but also to utilize these new datasets to enhance its per-
formance on previous tasks. Specifically, when new data for additional tasks becomes available, it
is used to further train the existing model. This training process enables the model to reinforce and
improve its understanding of prior tasks, effectively allowing it to remember and perform better on
both past and current tasks.

Building upon the extensive research in multitask learning (MTL) Caruana (1997); Sener & Koltun
(2018); Yu et al. (2020); Navon et al. (2022); Li & Hoiem (2017a) and continual learning (CL) Rat-
cliff (1990); Robins (1995); Riemer et al. (2018); Aljundi et al. (2019b); Chaudhry et al. (2021); Li &
Hoiem (2017a), the emerging field of continual multitask learning seeks to bridge the two paradigms
to effectively manage performance across sequential and concurrent tasks Wu et al. (2023).

One of the most related works to ours, Mirzadeh et al. Mirzadeh et al. (2020), focus on the linear
mode connectivity between solutions obtained through sequential and simultaneous training. While
they demonstrate that a linear path of low error exists for more than twenty tasks and introduce
algorithms like Mode Connectivity SGD (MC-SGD) to enhance continual learning, their work does
not address the use of new tasks to improve performance on previous ones, particularly using a
similar setup to traditional continual learning, which means their works fit more on the realm of CL.

Similarly, Liao et al. Liao et al. (2022) propose MUSCLE, a multitask self-supervised continual
learning framework designed to pre-train deep models on diverse X-ray datasets. This work, similar
to ours, operates in the domain of medical imaging to process classification and segmentation in
different body areas. However, their work differs from ours because their focus is on pre-training
the model on different tasks for better generalization, which they refer to as “multitask continual
learning.” We specifically differentiate our CMTL approach from theirs in that our tasks are seen
iteratively; we do not have access to all tasks at the same time, and the tasks themselves could be
orthogonal to previously seen tasks.

In summary, our approach introduces a novel aspect to CMTL by leveraging new tasks and their data
not only to learn the new tasks but also to generalize on prior tasks, all within an iterative framework
where tasks arrive sequentially and are potentially unrelated. This sets our work apart from existing
CMTL methods, which typically do not utilize new tasks to enhance previous ones in this manner.
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B LEARNING WITH PRESERVING ALGORITHM OVERVIEW

In this section, we present the pseudocode for our algorithm presented in Section 3.

Algorithm 1 Learning with Preserving (LwP)

1: Input: Sequence of tasks {Dt}Tt=1, hyperparameters λc, λo, λd

2: Output: Final model parameters θ[T ]

3: Initialize initial model parameters θ[0]
4: for t = 1 to T do
5: Initialize current model parameters: θ[t] ← θ[t−1]

6: Add new task-specific layer gθt for task t to θ[t]

7: Freeze previous model parameters θ[t−1]
8: for each minibatch {(xi, y

t
i)}Ni=1 from Dt do

9: Compute shared representations: z[t]
i = f

θ
[t]
s
(xi)

10: Compute output for current task: ŷti = g
θ
[t]
t
(z

[t]
i )

11: Compute representations from frozen model: z[t−1]
i = f

θ
[t−1]
s

(xi)

12: for o = 1 to t− 1 do
13: Compute outputs for previous task o:
14: Current model output: ŷoi = g

θ
[t]
o
(z

[t]
i )

15: Pseudolabel from frozen model: ỹoi = g
θ
[t−1]
o

(z
[t−1]
i )

16: end for
17: Compute loss for new task: Lcur ← Lcur(y

t
i , ŷ

t
i)

18: Compute loss for old tasks: Lold ←
∑t−1

o=1 Lold(ỹ
o
i , ŷ

o
i )

19: Compute dynamic mask mij :

mij =

{
1, if yti = ytj ,

0, otherwise

20: Compute DWDP loss:

LDWDP ←
1

N2

N∑
i=1

N∑
j=1

mij

(
d(z

[t−1]
i , z

[t−1]
j )− d(z

[t]
i , z

[t]
j )
)2

21: Compute total loss:

Llwp ← λcLcur + λoLold + λdLDWDP

22: Update parameters θ[t] by minimizing Llwp
23: end for
24: end for
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C JUSTIFICATION ON USING EUCLIDEAN DISTANCE 3.2

Here, we show that preserving the squared Euclidean distances between the data points in Z and Z ′

is sufficient to achieve the same effect.

Squared Euclidean Distance Preservation We define the squared Euclidean distance between
two points zi and zj as:

Dij(Z) = ∥zi − zj∥2. (17)
Similarly, we compute Dij(Z

′) for Z ′.

Our goal is to minimize the difference between the squared distances in Z and Z ′, which we for-
malize with the following loss function:

Ldist(Z,Z ′) =

n∑
i=1

n∑
j=1

(
∥zi − zj∥2 − ∥z′i − z′j∥2

)2
. (18)

Minimizing Ldist with respect to Z ′ encourages the squared distances between all pairs of points in
Z ′ to match those in Z:

∥z′i − z′j∥2 ≈ ∥zi − zj∥2, ∀i, j. (19)

Since the exponential function is Lipschitz continuous on compact subsets, small changes in the
squared distance result in small changes in the kernel value. Specifically, if the squared distances
are preserved within a small error ϵ > 0:∣∣∥zi − zj∥2 − ∥z′i − z′j∥2

∣∣ < ϵ, (20)

then the difference in the kernel values can be bounded:∣∣k(zi, zj)− k(z′i, z
′
j)
∣∣ = ∣∣∣∣∣exp

(
−∥zi − zj∥2

2σ2

)
− exp

(
−
∥z′i − z′j∥2

2σ2

)∣∣∣∣∣ (21)

≤ 1

2σ2
exp

(
−
min(∥zi − zj∥2, ∥z′i − z′j∥2)

2σ2

)∣∣∥zi − zj∥2 − ∥z′i − z′j∥2
∣∣

(22)

≤ 1

2σ2
ϵ (23)

≤ Lkϵ (24)

where Lk is a Lipschitz constant dependent on σ.

Therefore, preserving the squared Euclidean distances between Z and Z ′ implies that the Gaussian
kernel matrices K(Z) and K(Z ′) are approximately equal:

k(zi, zj) ≈ k(z′i, z
′
j), ∀i, j. (25)

D ADDITIONAL DETAILS ON EXPERIMENTAL RESULTS

D.1 HYPERPARAMETERS

In the following section, we provide an extensive description of the hyperparameters utilized during
the training phase. Across all datasets and models, the Adam optimizer Kingma & Ba (2017) was
employed universally. For the CelebA and FairFace datasets, a consistent learning rate of 0.0001
was maintained, coupled with a batch size configuration of 256. In contrast, for the PhysiQ dataset,
a higher learning rate of 0.01 was utilized alongside a smaller batch size of 32. Furthermore, we
adhered to fixed model-specific hyperparameters for all datasets and models to ensure uniformity
and consistency, including the LwP parameters. In the case of LwP, the parameters set as follows:
λn as a value of 1, λo as a value of 1, and λd with a value of 0.01. Additionally, the 10 tasks used
for CelebA are wearing lipsticks, smiling, mouth slightly open, high cheekbones, attractive, heavy
makeup, male, young, wavy hair, and straight hair. PhysiQ dataset includes three attributes assessing
exercise quality: stability, range of motion, and exercise variation.
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Details of all models and their hyperparameter selection have been documented in the codebase. For
in-depth understanding and additional information, please consult our code repository available at
[ANONYMOUS LINK].

D.2 COMPARISON WITH MTL METHODS

Table 3: Comparison of Accuracy across Different Models and Datasets

Method Type Model CelebA PhysiQ FairFace

STL - 72.230 ± 7.297 87.167 ± 10.102 64.435 ± 3.660

MTL

MTL 76.526 ± 7.616 93.536 ± 5.739 71.418 ± 4.169
PCGrad 75.506 ± 8.146 91.910 ± 8.491 70.061 ± 4.892
IMTL 76.280 ± 7.248 92.661 ± 6.617 71.399 ± 3.887
NashMTL 75.506 ± 8.146 91.518 ± 7.118 71.607 ± 3.577

CMTL LwP 73.484 ± 8.019 88.242 ± 12.010 68.545 ± 4.454

All MTL approaches utilize the same model architecture as LwP. Despite being supplied with all
labels for every input data point, the amount of training samples for MTL models matches that seen
by CL models per task iteration. Aligning with earlier studies, MTL approaches frequently represent
the upper bound for all CL models. An interesting discovery is that all MTL models deliver nearly
identical performance on the benchmark.

D.3 ACCURACY PROGRESSION FOR EACH TASK ITERATION

(a) LwP Ours (b) LwF (c) ER (d) GSS (e) FDR

(f) OBC (g) DVC (h) DER (i) DERPP (j) SI (k) oEWC

Figure 8: Confusion matrices for different models on the PhysiQ dataset

Figures 8 and 9 illustrate that the application of LwP reduces the issue of catastrophic forgetting
in the PhysiQ and FairFace datasets as well. This effect is particularly pronounced when applied
to datasets with a large number of samples, such as Fairface and CelebA, in comparison to smaller
datasets such as PhysiQ. These observations imply that LwP is a scalable and effective solution to
mitigate catastrophic forgetting in continual multitask learning models. We further investigate the
effect of the number of training samples on performance in D.4.

D.4 INFLUENCE OF TRAINING SAMPLE

We include experiment results on the influence of number of training samples to the performance,
as shown in Fig. 10a. It shows that our approach outperforms others from 1000 labels and onward,
when trained and tested on the PhysiQ dataset.

Fig. 10b illustrates the Expected Calibration Error (ECE) Nixon et al. (2019) for each model in rela-
tion to the number of training samples. The ECE quantifies how much confidence a model deviates
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(a) LwP Ours (b) LwF (c) ER (d) GSS (e) FDR

(f) OBC (g) DVC (h) DER (i) DERPP (j) SI (k) oEWC

Figure 9: Confusion matrices for different models on the FairFace dataset

(a) Training Sample Accuracy (b) Training Sample ECE

Figure 10: Training Sample Accuracy and ECE. Noted, the red line represents the buffer size is
greater or equal than the batch size, since the buffer size of replay buffer methods is determined by
a percentage of the batch size.

from the actual output distribution, with a lower ECE indicating more accurate confidence assign-
ments for a given classification target. This metric is particularly crucial in safety-critical settings,
where the model must provide reliable confidence output. As neural network models frequently
demonstrate overconfidence Wei et al. (2022), monitoring ECE becomes essential. The figure re-
veals that LwP not only maintains the lowest variance across different seeds but also achieves the
lowest ECE value when the training sample size exceeds roughly 1000.

D.5 PERFORMANCE IMPROVEMENT PER ITERATION

(a) First task iteration (b) Last (fifth) task iteration

Figure 11: Average accuracy progression per iteration for CelebA with 5 tasks
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We show that LwP demonstrates a faster improvement per iteration given the same batch size as
other CL and MTL models. Here, we plot the evolution of average accuracy across all tasks seen
on the test set over training iteration for the top performing CL and MTL baselines along with LwP.
We used the CelebA dataset with 5 task splits. To make a fair comparison with CL models, MTL
models were trained on the amount of train data that CL models saw in each iteration with access to
all 5 tasks. The accuracies of MTL models are calculated up to what CL models have learned so far.

Fig. 11a shows how quickly each CL and MTL model learns the first task. This can be understood as
the speed at which the models acquire knowledge when they have no prior information to “recall”.
As shown, LwP learns consistently faster per iteration compared to CL and MTL baselines. As
MTL models simultaneously learn multiple labels, their convergence per iteration is generally slower
compared to CL models in this setting.

Conversely, Fig. 11b illustrates a case where MTL models are trained from the beginning with la-
bels available for all t tasks, whereas CL models, having been pretrained on t − 1 tasks, must now
incrementally learn the tth task while maintaining performance on old tasks. This configuration is
crucial in real-world scenarios where the cost of labeling data typically exceeds that of data collec-
tion, prompting the decision to gather more partially labeled data rather than re-labeling existing
data. Analogous to the prior scenario, the progression of test accuracy over iterations demonstrates
that LwP consistently exceeds other CL models and exhibits performance that is competitive with
MTL models, which are considered the upper bound for continual learning. This highlights the com-
parative benefit of LwP when users face the choice between relabeling existing data and obtaining
new data with different labels.

D.6 EFFECT OF MODEL PARAMETERS AND IMAGE SIZES ON TRAINING PERFORMANCE

Table 4: Accuracy Percentage Comparison Across Models on CelebA Dataset

Method Type Model ResNet50 (32× 32) ResNet101 (32× 32) ResNet50 (224× 224)

CL

LwF 59.277 ± 11.920 58.279 ± 11.202 60.012 ± 14.448
oEWC 66.975 ± 10.110 67.159 ± 10.506 68.511 ± 13.352
ER 65.335 ± 9.298 65.646 ± 8.784 65.973 ± 14.729
SI 66.698 ± 10.030 67.456 ± 9.880 67.747 ± 13.754
GSS 65.926 ± 13.120 65.587 ± 13.142 69.817 ± 18.771
FDR 61.753 ± 11.943 61.720 ± 12.017 65.225 ± 15.545
DER 62.105 ± 12.114 63.797 ± 10.774 69.859 ± 12.690
DERPP 62.814 ± 11.071 62.957 ± 11.577 68.102 ± 13.557
DVC 67.084 ± 10.380 65.340 ± 11.427 70.921 ± 13.823
OBC 64.220 ± 11.237 66.058 ± 10.370 69.319 ± 13.607

CMTL LwP 67.388 ± 11.125 69.432 ± 10.416 85.064 ± 5.388

Table 4 illustrates that the LwP method scales effectively with increased input resolution and model
size. We find that preserving the Gaussian kernel, as shown in eq. 3, results in improved performance
on larger scales, especially with respect to input resolution. In the ResNet50 benchmark utilizing a
224x224 image size, LwP notably surpasses other baselines by achieving an 85% accuracy, which is
about 15% percentage points greater than the runner-up. This suggests that, as the input allows the
model to create more insightful representations, LwP becomes increasingly advantageous because it
can maintain these representations. We also note that the bigger models with the same input size are
not performing as well as the one with resnet18. This is due to the fact that the inputs do not have
enough information to capture generalized patterns, resulting in overfitting.

D.7 TRAINING FROM MTL TO CL

We initially train the model on the first five tasks using a MTL setting, employing ResNet18 as
the encoder with input images of size 64 × 64 × 3. After completing the MTL phase, we extract
the encoder and freeze its weights. This frozen encoder is then used to train classifiers for the first
five tasks in a continual learning CL setting with various models. Subsequently, we train the entire
models for the last five tasks under the same CL framework, utilizing the same frozen encoder on the
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Figure 12: Train the first 5 tasks in MTL setting (meaning all tasks are trained simutaneously using
the basic MTL model then applied the encoder into CL models), then we used the encoder to further
to train in CL setting with different models with ResNet 18 with an image size of 64.

remaining tasks. This approach allows us to assess the effectiveness of our method in transitioning
from MTL to CL while maintaining performance across all tasks.

Our method significantly outperforms other models in terms of accuracy on the CelebA dataset.
Specifically, as shown in Table 5, LwP achieves an average accuracy of 83.652%, surpassing all
other CL methods tested. The closest competitors, oEWC and SI, attain accuracies of 82.250% and
82.194%, respectively. This demonstrates the effectiveness of our approach in leveraging a MTL
pre-trained encoder for subsequent CL tasks.

The superior performance of LwP suggests that initializing the encoder with MTL on the first five
tasks provides a robust foundation for learning new tasks in a continual fashion. Our method ef-
fectively mitigates catastrophic forgetting by preserving essential features learned during the MTL
phase while adapting to new tasks, given the continual tasks are shorter now. This balance between
stability and plasticity still allows LwP to maintain high accuracy in the continual learning tasks.

Table 5: Accuracy Percentage Comparison Across Models on CelebA Dataset, Trained on MTL on
first 5 tasks then CL on last 5 tasks

Method Type Model ResNet18 (64× 64)

CL

LwF 74.057 ± 11.364
oEWC 82.250 ± 6.362
ER 77.245 ± 8.434
SI 82.194 ± 6.460
GSS 80.563 ± 8.239
FDR 81.271 ± 7.738
DER 81.010 ± 8.674
DERPP 78.177 ± 9.532
DVC 81.387 ± 7.821
OBC 80.516 ± 8.446

CMTL LwP 83.652 ± 7.069

Moreover, the lower standard deviation in LwP’s performance indicates consistent results across
different runs, highlighting the reliability of our approach. The results confirm that combining MTL
pre-training with our proposed CL strategy enhances the model’s ability to generalize and adapt to
new tasks without compromising performance on previously learned tasks.

Similarly in Figure 12, we averaged the results across task iterations to evaluate performance over
time. Our method, LwP, demonstrates minimal accuracy loss when training on new tasks, high-
lighting its performance against forgetting. The standard deviation—represented as 20% of the total
for visualization purposes—remains low, indicating consistent performance. Although there is a
slight increase in standard deviation during later tasks, suggesting a potential drop in accuracy due
to forgetting, LwP still preserves knowledge at a superior level compared to other baselines. Even
with the first five tasks trained in a multitask setting, our method maintains the best overall accuracy,
outperforming other models in preserving learned information.
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