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Abstract
Affine-coupling models (Dinh et al., 2014; 2016)
are a common type of normalizing flows, for
which the Jacobian of the latent-to-observable-
variable transformation is triangular, allowing the
likelihood to be computed in linear time. De-
spite the widespread usage of affine couplings, the
special structure of the architecture makes under-
standing their representational power challenging.
The question of universal approximation was only
recently resolved by three parallel papers (Huang
et al., 2020; Zhang et al., 2020; Koehler et al.,
2020) – who showed reasonably regular distribu-
tions can be approximated arbitrarily well using
affine couplings – albeit with networks with a
nearly-singular Jacobian. As ill-conditioned Jaco-
bians are an obstacle for likelihood-based training,
the fundamental question remains: which distribu-
tions can be approximated using well-conditioned
affine coupling flows? In this paper, we show that
any log-concave distribution can be approximated
using well-conditioned affine-coupling flows. In
terms of proof techniques, we uncover deep con-
nections between affine coupling architectures,
underdamped Langevin dynamics (a stochastic
differential equation often used to sample from
Gibbs measures) and Hénon maps (a structured
dynamical system that appears in the study of
symplectic diffeomorphisms). In terms of inform-
ing practice, we approximate a padded version
of the input distribution with iid Gaussians – a
strategy which (Koehler et al., 2020) empirically
observed to result in better-conditioned flows, but
had hitherto no theoretical grounding. Our proof
can thus be seen as providing theoretical evidence
for the benefits of Gaussian padding when train-
ing normalizing flows.
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1. Introduction
Normalizing flows (Dinh et al., 2014; Rezende & Mohamed,
2015) are a class of generative models parametrizing a distri-
bution in Rd as the pushfoward of a simple distribution (e.g.
Gaussian) through an invertible map gθ : Rd → Rd with
trainable parameter θ. The fact that gθ is invertible allows
us to write down an explicit expression for the density of
a point x through the change-of-variables formula, namely
pθ(x) = φ(g−1

θ (x))det(Dg−1
θ (x)), where φ denotes the

density of the standard Gaussian. For different choices of
parametric families for gθ, one gets different families of
normalizing flows, e.g. affine coupling flows (Dinh et al.,
2014; 2016; Kingma & Dhariwal, 2018), Gaussianization
flows (Meng et al., 2020), sum-of-squares polynomial flows
(Jaini et al., 2019).

In this paper we focus on affine coupling flows – arguably
the family that has been most successfully scaled up to
high resolution datasets (Kingma & Dhariwal, 2018). The
parametrization of gθ is chosen to be a composition of so-
called affine coupling blocks, which are maps f : Rd → Rd,
s.t. f(xS , x[d]\S) = (xS , x[d]\S � s(xS) + t(xS)), where
� denotes entrywise multiplication and s, t are (typically
simple) neural networks. The choice of parametrization is
motivated by the fact that the Jacobian of each affine block
is triangular, so that the determinant can be calculated in
linear time.

Despite the empirical success of this architecture, theoreti-
cal understanding remains elusive. The most basic questions
revolve around the representational power of such models.
Even the question of universal approximation was only re-
cently answered by three concurrent papers (Huang et al.,
2020; Zhang et al., 2020; Koehler et al., 2020)—though in a
less-than-satisfactory manner, in light of how normalizing
flows are trained. Namely, (Huang et al., 2020; Zhang et al.,
2020) show that any (reasonably well-behaved) distribution
p, once padded with zeros and treated as a distribution in
Rd+d′ , can be arbitrarily closely approximated by an affine
coupling flow. While such padding can be operationalized
as an algorithm by padding the training image with zeros, it
is never done in practice, as it results in an ill-conditioned
Jacobian. This is expected, as the map that always sends the
last d′ coordinates to 0 is not injective. (Koehler et al., 2020)
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prove universal approximation without padding; however
their construction also gives rise to a poorly conditioned
Jacobian: namely, to approximate a distribution p to within
accuracy ε in the Wasserstein-1 distance, the Jacobian of the
network they construct will have smallest singular value on
the order of ε.

Importantly, for all these constructions, the condition num-
ber of the resulting affine coupling map is poor no matter
how nice the underlying distribution it’s trying to approx-
imate is. In other words, the source of this phenomenon
isn’t that the underlying distribution is low-dimensional or
otherwise degenerate. Thus the question arises:

Question: Can well-behaved distributions be approxi-
mated by an affine coupling flow with a well-conditioned
Jacobian?

In this paper, we answer the above question in the affirmative
for a broad class of distributions – log-concave distributions
– if we pad the input distribution not with zeroes, but with
independent Gaussians. This gives theoretical grounding
of an empirical observation in (Koehler et al., 2020) that
Gaussian padding works better than zero-padding, as well
as no padding.

The practical relevance of this question is in providing guid-
ance on the type of distributions we can hope to fit via
training using an affine coupling flow. Theoretically, our
techniques uncover some deep connections between affine
coupling flows and two other (seeming unrelated) areas of
mathematics: stochastic differential equations (more pre-
cisely underdamped Langevin dynamics, a “momentum”
variant of the standard overdamped Langevin dynamics)
and dynamical systems (more precisely, a family of dynami-
cal systems called Hénon-like maps).

2. Overview of results
In order to state our main result, we introduce some notation
and definitions.

2.1. Notation

Definition 1. An affine coupling block is a map f : Rd →
Rd, s.t. f(xS , x[d]\S) = (xS , x[d]\S � s(xS) + t(xS)) for
some set of coordinates S, where � denotes entrywise mul-
tiplication and s, t are trainable (generally non-linear) func-
tions. An affine coupling network is a finite sequence of
affine coupling blocks. Note that the partition (S, [d] \ S),
as well as s, t may be different between blocks. We say that
the non-linearities are in a class F (e.g., neural networks,
polynomials, etc.) if s, t ∈ F .

The appeal of affine coupling networks comes from the
fact that the Jacobian of each affine block is triangular, so
calculating the determinant is a linear-time operation.

We will be interested in the conditioning of f—that is, an
upper bound on the largest singular value σmax(Df) and
lower bound on the smallest singular value σmin(Df) of
the Jacobian Df of f . Note that this is a slight abuse of
nomenclature – most of the time, “condition number” refers
to the ratio of the largest and smallest singular value. As
training a normalizing flow involves evaluating det(Df),
we in fact want to ensure that neither the smallest nor largest
singular values are extreme.

The class of distributions we will focus on approximating
via affine coupling flows is log-concave distributions:

Definition 2. A distribution p : Rd → R+, p(x) ∝ e−U(x)

is log-concave if ∇2U(x) = −∇2 ln p(x) � 0.

Log-concave distributions are typically used to model dis-
tributions with Gaussian-like tail behavior. What we will
leverage about this class of distributions is that a special
stochastic differential equation (SDE), called underdamped
Langevin dynamics, is well-behaved in an analytic sense.
Finally, we recall the definitions of positive definite matri-
ces and Wasserstein distance, and introduce a notation for
truncated distributions.

Definition 3. We say that a symmetric matrix is positive
semidefinite (PSD) if all of its eigenvalues are non-negative.
For symmetric matrices A,B, we write A � B if and only
if A−B is PSD.

Definition 4. Given two probability measures µ, ν over a
metric space (M,d), the Wasserstein-1 distance between
them, denoted W1(µ, ν), is defined as

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

d(x, y) dγ(x, y)

where Γ(µ, ν) is the set of couplings, i.e. measures on M ×
M with marginals µ, ν respectively. For two probability
distributions p, q, we denote by W1(p, q) the Wasserstein-1
distance between their associated measures. In this paper,
we set M = Rd and d(x, y) = ‖x− y‖2.

Definition 5. Given a distribution q and a compact set C, we
denote by q|C the distribution q truncated to the set C. The
truncated measure is defined as q|C(A) = 1

q(C)q(A ∩ C).

2.2. Main result

Our main result states that we can approximate any log-
concave distribution in Wasserstein-1 distance by a well-
conditioned affine-coupling flow network. Precisely, we
show:

Theorem 1. Let p(x) : Rd → R+ be of the form p(x) ∝
e−U(x), such that:

1. U ∈ C2, i.e.,∇2U(x) exists and is continuous.
2. ln p satisfies Id � −∇2 ln p(x) � κId.
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Furthermore, let p0 := p×N (0, Id). Then, for every ε > 0,
there exists a compact set C ⊂ R2d and an invertible affine-
coupling network f : R2d → R2d with polynomial non-
linearities, such that

W1(f#(N (0, I2d)|C), p0) ≤ ε.

Furthermore, the map defined by this affine-coupling net-
work f is well conditioned over C, that is, there are positive
constants A(κ), B(κ) = κO(1) such that for any unit vector
w,

A(κ) ≤ ‖Dwf(x, v)‖ ≤ B(κ)

for all (x, v) ∈ C, where Dw is the directional derivative
in the direction w. In particular, the condition number of
Df(x, v) is bounded by B(κ)

A(κ) = κO(1) for all (x, v) ∈ C.

We make several remarks regarding the statement of the
theorem:
Remark 1. The Gaussian padding (i.e. setting p0 =
p × N (0, Id)) is essential for our proofs. All the other
prior works on the universal approximation properties of
normalizing flows (with or without padding) result in ill-
conditioned affine coupling networks. This gives theoretical
backing of empirical observations on the benefits of Gaus-
sian padding in (Koehler et al., 2020).
Remark 2. The choice of non-linearities s, t being polyno-
mials is for the sake of convenience in our proofs. Using
standard universal approximation results, they can also be
chosen to be neural networks with a smooth activation func-
tion.
Remark 3. The JacobianDf has both upper-bounded largest
singular value, and lower-bounded smallest singular value—
which of course bounds the determinant det(Df). As re-
marked in Section 2.1, merely bounding the ratio of the two
quantities would not suffice for this. Moreover, the bound
we prove only depends on properties of the distribution (i.e.,
κ), and does not worsen as ε → 0, in contrast to (Koehler
et al., 2020).
Remark 4. The region C where the pushforward of the Gaus-
sian through f and p0 are close is introduced solely for tech-
nical reasons—essentially, standard results in analysis for
approximating smooth functions by polynomials can only
be used if the approximation needs to hold on a compact
set. Note that C can be made arbitrarily large by making ε
arbitrarily small.
Remark 5. We do not provide a bound on the number of
affine coupling blocks, although a bound can be extracted
from our proofs.

3. Proof Sketch of Theorem 1
We wish to construct an affine coupling network that (ap-
proximately) pushes forward a Gaussian p∗ = N (0, I2d) to

the distribution we wish to model with Gaussian padding,
i.e. p0 = p×N (0, Id). Because the inverse of an affine cou-
pling network is an affine coupling network, we can invert
the problem, and instead attempt to map p0 to N(0, I2d). 1

There is a natural map that takes p0 to p∗ = N(0, I2d),
namely, underdamped Langevin dynamics (1). Hence,
our proof strategy involves understanding and simulating
underdamped Langevin dynamics with the initial distri-
bution p0 = p × N (0, Id), and the target distribution
p∗ = N (0, I2d), and comprises of two important steps.

First, we show that the flow-map for underdamped Langevin
is well-conditioned. Here, by flow-map, we mean the map
which assigns each x to its evolution over a certain amount
of time t according to the equations specified by (1):{

dxt = −ζvtdt
dvt = −γζvtdt−∇U(xt)dt+

√
2γ dBt.

(1)

The stationary distribution of the SDEs (limiting distribution
as t→∞) is given by p∗(x, v) ∝ e−U(x)− ζ2 ‖v‖

2

.

The convergence of (1) can be bounded when the distribu-
tion p(x) ∝ exp(−U(x)) satisfies an analytic condition,
namely has a bounded log-Sobolev constant. For brevity,
we omit the definition of a log-Sobolev inequality, since we
will only need the following fact:

Fact 1 ((Bakry & Émery, 1985; Bakry et al., 2013)). Let the
distributions p(x) ∝ exp(−U(x)) be such that U(x) � λI .
Then, p has log-Sobolev constant bounded by λ.

In fact, our proofs leverage a less well-known deterministic
form of the updates which is equivalent to (1). Precisely,
we convert (1) to an equivalent ODE (with time-dependent
coefficients). The proof of this fact (via a straightforward
comparison of the Fokker-Planck equation) can be found in
(Ma et al., 2019).

Theorem 2. Let pt(xt, vt) be the probability distribution
of running (1) for time t. If started from (x0, v0) ∼ p0, the
probability distribution of the solution (xt, vt) to the ODEs

d

dt

[
xt
vt

]
=

[
O Id
−Id −γId

]
(∇ ln pt −∇ ln p∗) (2)

is also pt(xt, vt).

With this in mind, we show the following fact about the
conditioning of the underdamped Langevin flow:

Lemma 1. Consider underdamped Langevin dynamics (1)
with ζ = 1, friction coefficient γ < 2 and starting distribu-
tion p which satisfies all the assumptions in Theorem 1. Let
Tt denote the flow map from time 0 to time t induced by (1).

1As an aside, a similar strategy is taken in practice by recent
SDE-based generative models ((Song et al., 2020)).
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Then for any x0, v0 ∈ Rd and unit vector w, the directional
derivative of Tt at x0, v0 in direction w satisfies

‖DwTt(x0)‖ ≥
(

1 +
2 + γ

2− γ
(κ− 1)

)−2/γ

,

‖DwTt(x0)‖ ≤
(

1 +
2 + γ

2− γ
(κ− 1)

)2/γ

.

Therefore, the condition number of Tt is bounded by(
1 + 2+γ

2−γ (κ− 1)
)4/γ

.

The main idea is to consider how ∇2 ln pt evolves if we
replace (1) by its discretization,

x̃t+η = x̃t + ηṽt

ṽt+η = (1− ηγ)ṽt − ηx̃t + ξt, ξt ∼ N(0, 2ηId).

Because the stationary distribution is a Gaussian,∇U(xt) =
xt in (1) and the above equations take a particularly simple

form: we apply a linear transformation to
[
x̃t
ṽt

]
, and then

add Gaussian noise, which corresponds to convolving the
current distribution by a Gaussian. The core of the approach
is then to track upper and lower bounds for ∇2 ln pt, and
compute how they evolve under this linear transformation
and convolution by a Gaussian.

Second, we break the simulation of underdamped Langevin
dynamics for a certain time t into intervals of size τ , and
show that the inverse flow-map over each τ -sized interval of
time can be approximated well by a composition of affine-
coupling maps. To show this, we consider a more general
system of ODEs than the one in (Turaev, 2002) (in partic-
ular, a non-Hamiltonian system), which can be applied to
underdamped Langevin dynamics:{

dx
dt = ∂

∂vH(x, v, t)
dv
dt = − ∂

∂xH(x, v, t)− γ ∂
∂vH(x, v, t)

(3)

In (Turaev, 2002), the version of the above system where
γ = 0 was proven to be a universal approximator in some
sense: namely, the iterations of this ODE can approximate
any symplectic diffeomorphism: a continuous map which
preserves volumes (i.e. the Jacobian of the map is 1). These
kinds of diffeomorphisms have their genesis in Hamiltonian
formulations of classical mechanics (Abraham & Marsden,
2008). Precisely, after reducing the problem to considering
polynomial H only, we show:
Lemma 2. Let C ⊂ Rn be a compact set. For any function
H(x, v, t) : R2d → R which is polynomial in (x, v), there
exist polynomial functions J, F,G, s.t. the time-(t0, t0 + τ)
flow map of the system{

dx
dt = ∂

∂vH(x, v, t)
dv
dt = − ∂

∂xH(x, v, t)− γ ∂
∂vH(x, v, t)

(4)

is uniformly O(τ2)-close in C1 over C topology to the time-
2π map of the system{

dx
dt = v − τF (v, t)� x
dvj
dt = −Ω2

jxj − τJj(x, t)− τvjGj(x, t)
(5)

Here,� denotes component-wise product, and the constants
inside the O(·) depend on C.

We then show that the inverse flow-map of this system of
ODEs can be approximated by a sequence of affine-coupling
blocks, by considering an Euler discretization of the newly
constructed ODE (5) into small steps of size η i.e.

xn+1 = xn + η(vn − τF (vn, ηn)� xn)

vn+1,j = vn,j − η(Ω2
jxn,j − τJj(xn, ηn)

−τvn,jGj(xn, ηn))

(6)

Note that each step above can be written as a composition
of affine coupling blocks given by

(xn, vn) 7→ (xn, vn+1) 7→ (xn+1, vn+1)

4. Related Work
On the theory front for flow models, most closely related
to our results are the recent works of (Huang et al., 2020;
Zhang et al., 2020; Koehler et al., 2020). The former two
show universal approximation of affine couplings – albeit
if the input is padded with zeros. This of course results in
maps with singular Jacobians, which is why this strategy
isn’t used in practice. (Koehler et al., 2020) show universal
approximation without padding – though their constructions
results in a flow model with condition number 1/ε to get
approximation ε in the Wasserstein sense, regardless of
how well-behaved the distribution to be approximated is.
Furthemore, (Koehler et al., 2020) provide some empirical
evidence that padding with iid Gaussians (as in our paper)
is better than both zero padding (as in (Huang et al., 2020;
Zhang et al., 2020)) and no padding on small-scale data.

5. Conclusion
In this paper, we provide the first guarantees on universal
approximation with well-conditioned affine coupling net-
works. The conditioning of the network is crucial in order
for likelihood-based training to succeed. At the mathe-
matical level, we uncover connections between stochastic
differential equations, dynamical systems and affine cou-
pling flows. Our construction uses Gaussian padding, which
lends support to the empirical observation that this strategy
tends to result in better-conditioned flows (Koehler et al.,
2020). We leave it as an open problem to generalize beyond
log-concave distributions.
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