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Abstract
Information-theoretical complexity metrics are auxiliary hypotheses that link theories of parsing and
grammar to potentially observable measurements such as reading times and neural signals. This review
article considers two such metrics, Surprisal and Entropy Reduction, which are respectively built upon
the two most natural notions of ‘information value’ for an observed event (Blachman 1968). This review
sketches their conceptual background and touches on their relationship to other theories in cognitive
science. It characterizes them as ‘lenses’ through which theorists ‘see’ the information-processing conse-
quences of linguistic grammars. While these metrics are not themselves parsing algorithms, the review
identifies candidate mechanisms that have been proposed for both of them.

1. A Mathematical Theory

Information theory, in the sense of Shannon (1948), is a mathematical theory. This means that
basic concepts such as ‘message’ are not further defined but rather may receive a variety of
interpretations: a sequence of dots and dashes as in Morse code or a sequence of light
intensities as in black andwhite television, to take just two examples from Shannon’s paper. This
mathematical theory, originating in telecommunications, has turned out to be widely applicable
across many different fields. In the language sciences, including linguistics, it has been enjoying a
revival since the 1990s. This revival makes it clear that information theory indeed applies quite
generally to questions of language structure, acquisition and processing. Malouf (forthcoming)
provides an extensive bibliography. This review focuses more narrowly on COMPLEXITYMETRICS
in language comprehension. These are linking hypotheses that relate theories of syntactic
parsing to empirical data such as reading times or blood oxygen levels in the brain.1 For many
researchers, they are appealing precisely because they suggest a way of understanding the par-
ticularities of human language processing in terms of a general mathematical theory.

2. Complexity Metrics and Incrementality

Generally speaking, a complexity metric is something that quantifies how difficult it is to per-
ceive a linguistic expression. This characterization includes any rule that relates theorized parsing
mechanisms to word-by-word measures of comprehension diff iculty.2 Kaplan’s (1972)
‘number of transitions made or attempted’ (page 89) is a classic example. But there
are many others: the number of unresolved case-roles at a given point (Morrill 2000;
Stabler 1994), the number of phrase structure nodes in memory (Frazier 1985; Yngve
1960), or the latency of a memory retrieval operation motivated by a syntactic depen-
dency (Lewis and Vasishth 2005). The length of this catalog testif ies to the important
role that complexity metrics have always played in relating theorized mechanisms to ob-
servable data. One commonality among the metrics just cited is the fact that they make
per-word, rather than per-sentence predictions. It is this ‘incremental’ feature that is
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important for online comprehension studies. By contrast, the ordered list of construction
types given in Caplan, Baker, and Dehaut (1985: 123) or the ranking of larger and
smaller domains suggested in Hawkins (2010) both offer their predictions at the level
of the sentence, rather than the word. They are complexity metrics but not incremental
ones.

3. Deriving Predictions About Potential Observations

Surprisal and Entropy Reduction are incremental complexity metrics that predict how difficult
each word should be as it is perceived in time. They are information-theoretical insofar as they
view sentences as random events. From this technical perspective, words are symbols that appear
with a certain probability. The revelation of each newword-symbol as being the particular sym-
bol that it is constitutes a sub-event with a quantifiable information value. Both metrics suppose
that greater information value should relate to greater processing difficulty. However they differ
in the precise formulation of ‘information value’ that they apply. Both can be thought
of as summaries of the transition between a word and its successor, but they are
mathematically different and can derive contrasting empirical consequences e.g. on rel-
ative clauses (see Section 5.4). In typical psycholinguistic modeling practice, one com-
putes the value of the metric at each word-position in a stimulus sentence. These
predictions are then compared with observed measures of comprehension effort, such
as reading times, scalp potentials, or blood oxygen levels in particular brain areas. If
the per-word information values match up well with the observed measures then we
say that the observed data support the conjunction of the complexity metric and what-
ever defined the probabilities in the first place.
Of course the key issue is what defines the probabilities. This boils down to the question of

language model, to which we now turn.

4. Language Models

Information-theoretical complexity metrics like Surprisal and Entropy Reduction are
defined in terms of probability distributions having to do with the transition from one
word to the next. The specification of these distributions is called a language model.
The word ‘language’ in this name alludes to the classic conceptualization of a language
as a set of strings of words (e.g. Chomsky 1956). In this narrow sense, a language model
is simply an assignment of probability to each string in this set. The question is, how to
define these probabilities?
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Perhaps the most straightforward way to assign probabilities to strings is to probabilisti-
cally generate each word, one after the other. Under this arrangement, the probability
of a successor word is defined in terms of the previous words that have already been
generated. The general view is that of a table keeping track of (a) the last n-1 words,
(b) the nth word and (c) its conditional probability, P(wi | wi� 1 wi� 2 ⋯ wi� (n� 1)).
Rows of this table, namely combinations of possible successor words sharing the same
left-context, serve to define a discrete distribution. One can then ask how surprising is
a specific word wi, how uncertain is the distribution as a whole, et cetera.
This view is appealingly straightforward, but as a scientific proposal, it leaves much to

be desired. In fact, it is exactly the Markov model of language that Chomsky (1956)
criticized. The core of Chomsky’s critique is that, in real human language, words
© 2016 The Author
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capture. In cases of grammatical agreement, coordination or relative clause formation,
for instance, the presence or absence of an upcoming word depends upon words that
may be quite far back in the stream. If the dependency is not fulfilled, the probability
should be essentially zero. For dependencies wider than n, it will be impossible for an
nth-order Markov model to assign realistic probabilities.3 The problem is not a matter
of degree. Rather, it is the Markov property itself that fails to be fulfilled by natural
language.
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To overcome this problem, speech recognition pioneers like Jelinek and Lafferty (1991)
turned to probabilistic grammars. In a probabilistic grammar,4 conditional probabilities
are associated with rewriting rules, so that derivation is now a branching process as
shown in Figure 1. This Figure shows two derivations which share a common initial
subtring, john loves. In one derivation, the symbol VP is rewritten by a rule
VP→V NP, whereas in the other, VP is rewritten by a different rule VP → V GerundP.
Estimating the probabilities associated with these rule alternatives can be done, for in-
stance, using parsed corpora as in Hale (2001) and Levy (2008a).
Viewing derivation as a branching process in this way means that derivation trees are

values of a random variable, X. Conditioning on a particular initial substring, such as
john loves, isolates a particular subset of these derivations. This is analogous to selecting
rows in a conditional probability table, except that the subset may itself be infinite. A prob-
abilistic grammar defines a distribution on this subset just as it does for the entire language.
It is this distribution, or rather, before/after pairs of distributions on either side of the latest
Fig. 1. Two derivations that share the same initial substring. The probability of an initial substring is the sum of the proba-
bilities of all derivations of that substring on a given probabilistic grammar, e.g. P(john loves) is defined to be P(d1) + P(d2)
+⋯ for all derivations di whose yield begins with john loves.

© 2016 The Author
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Fig. 2. Reciprocal and surprisal in the interval (0, 1].

400 John Hale

 1749818x, 2016, 9, D
ow

nloaded from
 https://com

pass.onlinelibrary.w
iley.com

/doi/10.1111/lnc3.12196 by U
niversity O

f G
eorgia L

ibraries,
word, that information-theoretical metrics summarize. The next section applies this per-
spective to Surprisal, before moving on to Entropy Reduction in Section 6.
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The term ‘surprisal’ dates back to Tribus (1961), who used it to talk about the logarithm of the
reciprocal of a probability. It is one way to characterize the information value of an observed
event (Section 6 presents another). For a generic random variable Y, the surprisal of an outcome
Y=y is

log2
1

P yð Þ
� �

(1)

Note that the argument to the logarithm in this expression is the reciprocal of a proba-
bility. Since probabilities are between 0 and 1, the smallest value of this reciprocal corre-
sponds to the largest probability i.e. 1

1. As probabilities get closer to zero, their reciprocal
gets larger and larger. Figure 2 shows this pattern using a dashed line. Taking the loga-
rithm of these reciprocals pulls the curve down a bit but retains the idea of assigning
higher values to lower probabilities.5 In a nutshell, surprisal is higher for low-probability
events.6

To apply this formal def inition, one needs to f ix upon a particular event Y: the ap-
pearance of a word as the next symbol in a string. This implies the existence of two
strings, both anchored at the beginning of a sentence, but where one string is exactly
one symbol longer than the other. These are ‘initial substrings’ of the sort indicated in
bold in Figure 1. Both of them may be associated with conditional probability
distributions using a grammar. As suggested in that Figure, the support of these distri-
butions is precisely the set of derivations that derive them. The total probability mass
that they assign is known as the ‘pref ix probability,’ and it is the ratio of these pref ix
probabilities that gives the transition probability of the next symbol. This ratio defines
P(y) in the surprisal complexity metric. This is written out below in Equation 2 where
these pref ix probabilities are cartooned as sums (∑) either before the successor word or
after it.
© 2016 The Author
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let y be the ratio of prefix probabilities

¼ log2
1

∑after

∑before

0
BB@

1
CCA

¼ log2
∑before
∑after

� �

¼�log2
∑after
∑before

� �

(2)

To illustrate this application of the generic surprisal idea in Equation 1 to grammatical
derivations, as in Equation 2, Figure 3 shows a pair of hypothetical probability distributions
of the sort that might be generated by a probabilistic grammar. Each bar corresponds to a
derivation, such as those in Figure 1. The height of the bars represents each derivation’s
probability. The histogram on the left depicts the distribution at the shorter initial
substring. The arrow at the top symbolizes the transition from one word to the next in
the course of incremental parsing. With the appearance of the next word, the set of
available derivations contracts. Some derivations are incompatible with the new word,
as shown in the histogram on the right which corresponds to the longer substring. Succes-
sive transitions zero-out derivations in this way until, in an unambiguous sentence,
presumably only one is left. Each time this happens, the probability assigned to the missing
bars is lost.7 With surprisal, the total amount lost corresponds logarithmically to the pre-
dicted comprehension diff iculty.
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erm
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onditions (https://onlinelibr
5.2. Empirical Support for Surprisal

Surprisal has seen broad success across many different methodologies. In eye-tracking, several
different parsing mechanisms and grammar types converge on the idea that people read more
slowly on words whose surprisal value is higher (Boston et al. 2008; Demberg and Keller
2008; Rauzy and Blache 2012, inter alia). Scanpaths recorded this way are more irregular
Fig. 3. Transitioning fromword to word, derivations are ruled out. The probability of this transition itself can be defined as a
ratio of sums, after

before. The log of the reciprocal of this ratio is the surprisal of the next word. The greater the probability mass
ruled out, the higher the surprisal.
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when surprisal is higher (von der Malsburg, Kliegl, and Vasishth 2015). With event related
potentials, similarly, surprisal is positively related to the amplitude of the N400 component
(Frank et al. 2015). And in functional MRI, surprisal from phrase-structured language models
predicts the timecourse of activation in several different brain areas including anterior tempo-
ral lobe (Brennan et al. 2016; Hale et al. 2015; Henderson et al. 2016). Timecourses from
several other brain areas appear to correlate well with surprisal values from n-gram models
(Willems et al. 2015).
Surprisal is successful empirically because it accounts naturally for frequency effects.

Such effects have long been recognized in behavioral studies. To take just one example,
Thibadeau, Just, and Carpenter (1982) found unigram probability to be a useful predic-
tor of eye-fixation duration. Surprisal generalizes this idea from single words to larger
domains, e.g. where n>1. It extends the idea that ‘rare-implies-more-diff icult’ to syn-
tactic phrases. However, there’s more than one way to do it! In making this extension,
several design decisions present themselves. Many of these ref lect classic issues in cogni-
tive science for which the complexity metric itself offers no easy answers. The following
subsections take up two such issues, focusing primarily on their implications for
Surprisal, although many of the same considerations apply equally to Entropy Reduction
(see Section 6).
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5.3.1. Lexicalization

Linguistics has wrestled since the 1970s with lexicalism, the idea that grammatical analyses
should be sensitive to the idiosyncrasies of words themselves. The decision to be lexicalist or
not carries over directly into information-theoretical complexity metrics. For instance, the
phrase-structured languagemodel of Section 4.2 is partially lexical. This means that some proba-
bilities are contributed by preterminal rules having to do with real words e.g. N→beer or
V→ loves, while others come from phrasal rules like NP→Adj N or PP→PNP that refer only
to syntactic categories. Both types of rules become associated with numerical weights in the
course of fitting a probabilistic grammar (see references in endnote 4). It is also possible,
however, to fit the numerical parameters of a parser or grammar to part-of-speech tag se-
quences. This suppresses the lexical contribution, allowing only the phrasal rules to
contribute to the metric.
Rather than suppressing lexicalism, the other possibility is to embrace it. One can lexicalize

more and more rules, including those classically viewed as independent of particular words
(see the example in Hale 2014, Chapter 2). Such an approach holds out hope of accounting
for detailed lexical effects in human sentence processing (as suggested by Ford, Bresnan, and
Kaplan 1982; MacDonald 1994). However, it does so by entangling the notion of predictability
with that of rare words. Predictability is presumably what is measured in the Cloze task, where
participants must guess successor words given an initial substring as a prompt (Taylor 1953).
On the other hand, lexical frequency or more precisely unigram probability is by definition
based on individual occurrences in a corpus. These two factors seem to be psychologically
separable and might be better understood in isolation from each other (Staub 2015). Another
downside is the greater number of numerical parameters in lexicalized grammars. Allowing
for more interactions between phrases and words makes them more difficult to estimate in
practice.
© 2016 The Author
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5.3.2. Parallel vs. Serial Processing

Another key design decision revolves around approximations of the prefix probability. In
the Hale (2001) formulation, all structural alternatives affect the metric. One might interpret
this in terms of a fully parallel parsing mechanism that considers all possible analysis paths.
Under this regime, an analysis remains in play until it is definitively ruled out by some ob-
served word. This is exactly what happens in garden path sentences, where the ‘pain’ of
committing to the globally correct interpretation is deferred until the disambiguation point.
In this way, surprisal can emulate theories of attachment preferences, such as Frazier and
Fodor’s Garden Path Theory.8

An alternative is to impose some parallelism limit. Parsing accuracy comparisons suggest that
even a restriction to 3 or 4 syntactic analyses leads to good performance on the Wall Street
Journal (Brants and Crocker 2000). In light of this, Boston et al. (2011) parametrically varied
the amount of parallelism available to a particular parser. Eyetracking predictions derived from
this parser via surprisal got better and better as the parser considered more alternative pathways.9

This convergence toward an ideal, where memory is unlimited, suggests that the metric itself is
on the right track.10
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5.4. Empirical Challenge: Relative Clauses

On the other hand, there is data suggesting that surprisal’s simple equation between prob-
ability and difficulty may actually be too simple. The empirical challenge comes from
relative clauses (RCs). In a relative clause, there is a missing element, marked t in Example 3
below.

a: The reporter RC that t attacked the senator½ � admitted the error
b: The reporter RC that the senator attacked t½ � admitted the error (3)

In transformational grammar, one would say that the missing element has been ‘relativized’
leaving a ‘trace’. In a particular language, relativization applies to a delimited subset of
grammatical relations: subject, direct object, indirect object et cetera. These subsets, to
which relativization may apply, are organized into a scale such that processing diff iculty
varies inversely with typological ubiquity in the world’s languages (Keenan and Hawkins
1987). Within psycholinguistics, attention has focused on the first two points of this scale,
subject- and object- extracted RCs. These are shown in Example 3 using stimuli from
King and Just (1991).
Object-extracted RCs as in 3b are rare in natural language corpora, and as a result prob-

abilistic grammars fitted to them end up including a low-probability rule. This is crucial,
because as Figure 2 suggests, lower probability implies higher surprisal. Such a rule would
be used in the derivation of object-extracted RCs only. As a consequence of this difference,
surprisal correctly predicts that 3b should be the more difficult of the two constructions.
But as an INCREMENTAL complexity metric, it is less accurate: the vanilla version of sur-
prisal would predict effort at the point where the low-probability rule becomes obligatory.
This happens at the left-edge of the relative clause (notated [RC in Example 3) rather than
at the embedded verb attacked. This is where Grodner and Gibson (2005) report a reading
time slowdown. While Staub (2010) later found effects at this leftmost position, the general
feeling during the early 2000s was that surprisal had failed to derive an important part of
© 2016 The Author
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the data pattern. Expressing this general feeling, Levy (2008a): page 1166) refers to ‘mixed
results’.

One way of interpreting these mixed results is to hypothesize that surprisal has a major effect on word-
by-word processing difficulty, but that truly non-local (i.e., long-distance) syntactic dependencies such
as relativization and WH-question formation are handled fundamentally differently […]

The suggestion is to back off to a more complex, two-factor model where surprisal’s role is
somewhat curtailed.11

It is of course possible that some other grammar type or parsing mechanism would yield
better surprisal predictions, by specifying a different order in which the relevant probabilities
take effect. But investigation along this line faltered under the assumption that the embedded
verb is the primary locus of processing difficulty. This mismatch between theory and data
motivated the search for another complexity metric, one that would provide a one-factor
explanation of the difficulty profile in relative clauses.

6. Entropy Reduction
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6.1. Definition

Entropy reduction is that metric. Unlike surprisal’s logarithmic transformation of probability, it
instead formalizes the information value of a word using the notion of ENTROPY. This quantity
is the centerpiece of information theory. Shannon (1948) suggests its name by analogy to
thermodynamics.
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The quantity which uniquely meets the natural requirements that one sets up for ‘information’ turns
out to be exactly that which is known in thermodynamics as entropy.

The entropy of a random variable X is defined below in Equation 4.

H Xð Þ ¼ �
X
x∈X

P xð Þ log2 P xð Þ (4)

The entropy H quantifies uncertainty in X’s probability distribution. For instance, a 100-sided
die has greater uncertainty than a 6-sided die. When outcomes are equiprobable, entropy is at a
maximum.When alternatives are unequally weighted, it is easier to guess the outcome; we be-
come less uncertain. The core intuition of the Entropy Reduction complexity metric is that this
sort of ‘information gain’ should index observable human comprehension difficulty.
Entropy Reduction was inspired by and can be viewed as a generalization of Den and Inoue’s

(1997) Verb Predictability Hypothesis. Whereas Den and Inoue were concerned with the size
of the garden path effect at a sentence-final verb, Entropy Reduction applies to all positions and
all categories. Taking X again to be derivations on a probabilistic grammar, we ask: by how
much does knowledge of the initial substring Y=y reduce uncertainty? The answer is the infor-
mation value I:

I X ; yð Þ ¼ H Xð Þ � H X yÞjð (5)

In Equation 5, the quantityH(X|y) is simply the entropy of the subset of derivations sharing an
initial substring. Analogous to the way prefix probabilities were divided in Section 5.1,
subtractions of these conditional entropies H(X|y) define the informational contributions of
© 2016 The Author
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Fig. 4. The same ‘before’ and ‘after’ distributions as in Figure 3 yield different information values. Entropy reduction is the
downward change, if any, between H(before) and H(after), whereas surprisal is the log-ratio of sums of these distributions.
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particular words. If the conditional entropy goes down from one word to the next, then gram-
matical uncertainty has been reduced. The interpretation is that the comprehender has done
information-processing work. On the other hand, it is also possible for entropy to go up. This
happens when the next word opens up possibilities that are more uncertain than on average. In
such cases, the comprehender has done no work: no progress has been made towards the goal of
a unique reading.12

Figure 4 repeats Figure 3 in order to emphasize the point that surprisal and entropy
reduction yield different information values, even from the same grammatical probability
distributions. The two metrics summarize the transition between distributions in different
ways, leading to different predictions about incremental processing difficulty. Appendix A
provides a worked example showing how contrasting predictions follow from the same
grammar. These specific cases exemplify the general point, developed in Blachman
(1968), that entropy reduction and surprisal are different conceptions of information value.
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6. 2. Empirical Support

Entropy reduction derives the comprehension difficulty profile across a wide range of construc-
tions, including relative clauses (Chen and Hale under review; Hale 2003; Hale 2006; Yun et al.
2015). It has been applied with naturalistic text stimuli (Frank 2013; Wu et al. 2010) as well as
with controlled experimental materials (Linzen and Jaeger 2015). beim Graben and colleagues
(2008, 2000) show how ERP components such as the N400 and P600 can be understood as
entropy reductions in an underlying dynamical system.
Using techniques due to Bar-Hillel, Perles, and Shamir (1964) and Nederhof and Satta

(2008), entropy reduction can be computed for a wide array of formal grammars. Freely avail-
able software (Chen et al. 2014) facilitates this computation, even with expressive grammars that
directly define syntactic movement.
For instance, Yun et al. (2015) model the difficulty profile of Chinese, Japanese and Korean

relative clauses using a grammar that directly represents movement. In these languages with
prenominal relatives, filler/gap dependencies such as the ones between t and reporter in
Example 3 are arranged in such a way that their processing asymmetry cannot be explained
by simple memory-based approaches. Yun et al. (2015, §2) go into considerably greater depth
© 2016 The Author
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on this point, with summaries of the relevant experimental studies and a taxonomy of available
theories. The grammatical approach that these authors propose combines Minimalist syntactic
analyses with the Entropy Reduction complexity metric to derive word-by-word predictions
across all three languages. The pattern in all cases accords with the observation of a Subject
Advantage in RC processing, regardless of whether the RC is prenominal or postnominal.
The explanation depends on language-particular facts, for instance regarding the availability
of argument omission, the tendency of verbs to be transitive or intransitive and the likelihood
of optional modifiers. It echoes Hale (2003) where the explanation of the corresponding
English RCs turned on the possibility of recursive modification e.g. by postnominal RCs.
The common element across this account of prenominal and postnominal RCs is the
complexity metric itself.
On a conceptual level, entropy reduction takes one step away from the externalism of

surprisal by focusing on an internal aspect of parser states, namely their uncertainty. From this
point of view, the distribution over alternative analyses matters in a way that it does not for sur-
prisal. This research program is naturally extended by adding more information about an agent’s
goals, such that these internal probabilities align with expected payoffs, becoming ‘utilities’
(Calvillo and Crocker 2015; Hale 2011; Lewis, Shvartsman, and Singh 2013).
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7. Mechanisms

It is foundational, in cognitive science, to differentiate between levels of explanation. Marr
(1982) distinguishes between a higher ‘computational’ level and a lower ‘algorithmic’ level.
These two levels are simultaneous co-descriptions of the same organism, at greater and lesser
degrees of abstraction. Theories that define what computation the organism is actually doing
are stated at the higher level, while theories of how that computation is effected occupy the
lower level.13

Complexity metrics like Entropy Reduction and Surprisal, then, are computational-level
theories: they specify what the difficulty level of parsing a word should be in terms of structures
defined in a language model. In order to offer a psychological PROCESS MODEL, one must
characterize a mechanism that operates in accordance with these metrics — a compatible
co-description.
Hale (2014, Chapter 8) advances a mechanistic interpretation of surprisal, viewing it as

a consequence of the Chunking Theory of Learning (CTL) (Rosenbloom and Newell
1987). The CTL supposes that cognitive operators can fuse together in the course of
practice. In this way, what used to require multiple steps is now accomplished by a
macro-operator that applies all at once, in one step.14 Analyzing the CTL, Rosenbloom
and Newell show how it necessarily derives power-law practice curves, in environments
where the probability of a ‘pattern’ decreases as the pattern size increases. This is cer-
tainly true in natural language. They remark (page 227) upon the ease with which a
power law can be mimicked by a purely logarithmic function. Of course, this is exactly
what surprisal is (Equation 1).
The suggestion is that what we observe as surprisal ‘effects’ in language could come about

through the operation of a highly general chunking mechanism, the same mechanism that
explains practice in other cognitive domains. Support for this suggestion comes from analyses
of eyetracking data in Hale (2014). These analyses considered triplets of parser actions, aligned
in time to particular words in English and French newspaper text. An independent estimate of
the degree to which these triplets ‘cohere’, i.e. were likely to be chunked by a chunking
mechanism, was a positive predictor of eye-fixation duration. The interpretation is that a
person reads familiar sentence structures faster because the cognitive operations that build those
© 2016 The Author
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structures have been folded into macro-operators. From this perspective, construction
grammar would be a correct description of the chunked representations at the same time as
generative grammar remains a correct description of the un-chunked representations. Further
work along this line might consider alternative training regimes that experimentally induce
chunking.
For entropy reduction as well, candidate mechanisms have been proposed. Hale (2011, §5)

offers an ‘entropophobic’ search heuristic that tries not to get stuck in syntactic categories that
could be very complex. When this heuristic guides a phrase structure parser, transition counts
(see endnote 2) line up with the observed behavioral contrast between two well-known types
of garden-path effects, one relatively mild and the other more severe. An alternative mechanism
would be a neural net whose intermediate states define a probability distribution as in Frank
(2013).

8. Past and Future

The revival of information-theoretical complexity metrics is a revival of ideas that fas-
cinated information-processing psychologists like Hick (1952), Attneave (1959) and
Garner (1962), as well as pre-generative linguists like Charles F. Hockett (1953). In
the 1950s, information theory seemed to offer limitless new vistas for understanding
human language. But as Luce (2003) details, it fell out of favor. Among other factors,
Luce places the blame on a lack of structure in the models that were at that time
under consideration:

The elements of choice in information theory are absolutely neutral and lack any internal structure.
That is fine for a communication engineer….[but] by and large, however, the stimuli of psychological
experiments are to some degree structured, and so, in a fundamental way, they are not in any sense
interchangeable.

In the 21st century, we now know how to build structured probabilistic models. Gram-
mars are just one example of a probabilistic model that is at the same time sensitive to
the statistics of the environment and also able to generalize in a categorical, rule-
governed way. Now, unlike in the 1950s, we can assign both an information-theoretic
interpretation (e.g. the choice of this symbol is worth y bits) as well as a detailed linguis-
tic interpretation (this rule introduces a relative clause) to the same mathematical entity.
By combining contributions from disciplines that are traditionally separate, we advance
cognitive science.
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1 Delimiting the focus in this way, I nonetheless encourage readers to approach information theory on its own terms; John
R. Pierce (1980) provides a nontechnical book-length introduction. Kornai (2007, §7.2) is a shorter, more mathematical
treatment embedded in a broader discussion of linguistic complexity. Readers interested in phonological applications
should consult Goldsmith (2000) or Hume and Mailhot (2013). For morphology, see Milin et al. (2009). Information
theory also figures prominently in models of sentence misperception (Gibson, Bergen, and Piantadosi 2013; Levy 2008b),
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language production ( Jaeger 2010; Keller 2004) and language learning (Chater et al. 2015). This modeling literature is
sometimes polemical, arguing for a ‘rational analysis’ of human psychology founded on a Bayesian interpretation of
probability. In what follows, I set aside this polemic since information theory is compatible with any philosophy of
probability.
2 Kaplan (1972) offers an explicit parsing model called an Augmented Transition Net (ATN), which transitions from state to
state as it makes its way through a sentence. This model associates one additional unit of perceptual effort with each transition.
This claim is particularly interesting given that the transitions are ordered and some degree of backtracking is invariably
necessary in the search for a successful analysis.
3 Partee et al. (1993, §17.3.2) present a modernized version of the argument against Markov models.
4 For a gentle introduction to probabilistic grammars see Chapter 7 of Hale (2014), Chapter 14 of Jurafsky andMartin (2008)
or Chapter 3 of Levelt (1974).
5 The choice of a logarithmic measure is defended in the Introduction to Shannon’s Mathematical Theory of
Communication (1948). Specifying that the base of the logarithm is 2 is a calibration which means that the
surprisals are counted in bits, just like computer memory. Through linear regression one can fit these
information theoretical predictions in bits to particular dependent variables, e.g. reading times in milliseconds.
6 This logarithmic difficulty rule is analogous to the Hick-Hyman law, which characterizes the time a person takes to decide
between multiple choices. See Pierce (1980: 230).
7 The distributions illustrated in Figure 3 have not been renormalized; in this sense, the picture is drawn from the point of
view of the grammar which assigns probabilities to full derivations.
8 Frazier and Clifton (1996, Chapter 1) provide a concise summary of Garden Path Theory. For the standard formalization
due to Pereira and Shieber, see Hale (2014, Chapter 4).
9 The surprisal analysis in Boston et al. (2011) takes as data five different eyetracking measures from the Potsdam Sentence
Corpus (Engbert et al. 2005).
10 Bresnan (1982) exhorts cognitive scientists to ‘discover ways of showing that the actual behavior of real native speakers
converges on the ideal behavior predicted by our grammatical theory, as interfering performance factors are reduced’
(page xxiii). Kaplan later explained this further, saying:

The basic idea is that you can evaluate theories of grammar-based processing as to whether their behavior cor-
responds to the behavior of an ideal native speaker in the limit as the amount of available processing resources
goes to infinity. Of course, the behavior of an ideal native speaker, one who knows his language perfectly and is
not affected by restrictions of memory or processing time, lapses of attention, and so forth, is difficult to observe.
But as psycholinguistic methods and technologies improve, we can imagine doing experiments in which we
somehow vary the cognitive resources of real speakers and hearers, by removing distractions, giving them
scratch-pad memories, etc. We can then take the limiting, asymptotic behavior of real speakers as approxima-
tions to the behavior of the ideal. A grammar-based processing model which, when given more and more com-
putational resources, more and more accurately simulates the behavior of the ideal has the ‘ideal-convergent’
property (Kaplan 1995: page 344).

11 Demberg and Keller (2009) go on to propose just this sort of two-factor model.
12 An approximation of entropy reduction restricts consideration to just uncertainty about the next word, rather than the
whole derivation. Here again, a theorist must decide how to structure the left context: either by phrase, as in Roark et al.
(2009), or by word, as in Willems et al. (2015).
13 The difference between Marr’s uppermost two levels clarifies the respective roles of generative grammar and
psycholinguistics in one classic conception of cognitive science. See Hale (2014, Chapter 1) for a discussion of Marr’s
framework as applied to language.
14 Such operator-chunking in fact contributed to NL-Soar’s speed, bringing it into the time band of human language
comprehension (see Lehman, Lewis, and Newell 1991 and Lewis 1993, Chapter 7).
15 Thanks to Rick Lewis for contributing this example.
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Appendix A

Contrasting Predictions

The same grammar can lead to different predictions via entropy reduction and surprisal, respec-
tively. This section develops an example where that happens.15
probability rewriting rule comment

0.98 S ➞ A X X is radically more probable than Y
0.01 S ➞ B Z Z is a fairly uncertain category
0.01 S ➞ C Y choice between X and Y is cued by first symbol, a vs c

1.0 A ➞ a
1.0 B ➞ b
1.0 C ➞ c

1.0 X ➞ f neither X nor Y is entropic
1.0 Y ➞ g

0.25 Z ➞ c
0.25 Z ➞ d
0.25 Z ➞ e
0.25 Z ➞ f
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Consider the surprisal value of strings starting with c and b; these are shaded in gray in the first
column of the tables below. As specified in Equation 1, this is just the base-2 logarithm of the
transition probability, i.e. from 1.0 to 0.01. It is the same across both strings, 6.64 bits. Intui-
tively, both c and b eliminate the highly probable S → A X rule in favor of one or another
lower-probability rule.
The entropy reductions (see Equation 4) associated with these symbols are different: 0.1814

versus none at all. If the first symbol is c, then the rule S → C Y will be required. Since
(by construction) there is no uncertainty at all about Y’s derivation, this means that all of the
entropy associated with S has been reduced.
If instead the first symbol is b, then the rule S → B Z will be required. There is now an

‘obligation’ to work out Z’s derivation. Since Z’s derivation is maximally uncertain, entropy
goes up: no work is done on this particular symbol. On the following symbol, where Z’s
derivation is revealed, all of this entropy is reduced.
symbol c g

prefix prob 1 0.01 0.01
surprisal – 6.64 0
entropy 0.1814 0 0
entropy reduction – 0.1814 0

symbol b c

prefix prob 1 0.01 0.0025
surprisal – 6.64 2
entropy 0.1814 2.0 0
entropy reduction – none 2
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