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ABSTRACT

Virtual sensing techniques allow for inferring signals at new unmonitored loca-
tions by exploiting spatio-temporal measurements coming from physical sensors
at different locations. However, as the sensor coverage becomes sparse due to
costs or other constraints, physical proximity cannot be used to support interpo-
lation. In this paper, we overcome this challenge by leveraging dependencies
between the target variable and a set of correlated variables (covariates) that can
frequently be associated with each location of interest. From this viewpoint, co-
variates provide partial observability, and the problem consists of inferring values
for unobserved channels by exploiting observations at other locations to learn how
such variables can correlate. We introduce a novel graph-based methodology to
exploit such relationships and design a graph deep learning architecture, named
GgNet, implementing the framework. The proposed approach relies on propa-
gating information over a nested graph structure that is used to learn dependen-
cies between variables as well as locations. GgNet is extensively evaluated under
different virtual sensing scenarios, demonstrating higher reconstruction accuracy
compared to the state-of-the-art.

1 INTRODUCTION

Spatio-temporal data analysis plays a significant role in applied and fundamental domains where
systems evolve over both space and time. These include, for example, environmental science, urban
planning, and epidemiology (Cressie & Wikle, 2015; Wang et al., 2020). In practice, the acquisi-
tion of spatio-temporal data is inevitably affected by all of the typical issues arising in real-world
scenarios. Sensor and communication failures, for instance, can result in partial or even complete
data loss at certain locations (Little & Rubin, 2019). Furthermore, the deployment of physical sen-
sors can incur high costs that often limit the number of monitored locations. Nonetheless, inferring
the values of observables at new target locations holds a significant value for analysis and, even-
tually, decision-making (Zhang et al., 2022; Hu et al., 2023). To address these challenges, virtual
sensing (Liu et al., 2009) (also known as spatio-temporal kriging) (Stein, 1999) has emerged as a
viable solution. Virtual sensing consists of reconstructing complete signals at unobserved locations
by utilizing data gathered from monitored locations during the same time frame (Paepae et al., 2021;
Brunello et al., 2021). As an example, virtual sensing techniques can be used to estimate solar irra-
diance at a particular location by exploiting neighboring sensors (Jayawardene & Venayagamoorthy,
2016), allowing, for instance, to plan for the installation of a new PV power plant. Most works rely
on spatial correlations and on interpolating observations at neighboring locations (Appleby et al.,
2020; Wu et al., 2021a;b; Zheng et al., 2023). However, as the sensor coverage becomes sparser due
to costs and/or other (e.g., ecological) concerns, the number of neighbors from which to extract use-
ful information becomes limited or even null. This makes the spatial position less informative and
limits the effectiveness of existing approaches. One such prominent example is material weathering
testing (De Felice et al., 2022), where such sparsity, together with the total lack of any historical data
regarding the variable to infer at the target location, makes virtual sensing bound to fail. Despite be-
ing quite common in the real world, this scenario of sparse data collection is still mostly overlooked
in the scientific literature.
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In this work, we focus on the multivariate setting and show how leveraging correlations be-
tween variables can mitigate the challenges posed by sparse data scenarios. We consider
sparsely distributed sensors, each of which is associated with a multivariate time series (MTS).
MTS can be partly unobserved, i.e., completely lack some of the channels. In such settings,
the problem becomes that of reconstructing missing channels (target variables) from the avail-
able ones (covariates) at the same location and from observations at related sensors (Fig. 1).

Figure 1: Sparse multivariate vir-
tual sensing; available data (yel-
low), missing data (white), and
predictions (red).

This scenario is typical of many real-world applications; in
fact, variables correlated to the reconstruction target are often
available at each location, e.g., satellite weather data can be
used as covariates to infer photovoltaic energy production or
material degradation. The approach developed in this paper
follows from two observations. First, the mutual dependencies
between the target variables and the covariates can be learned
from the dynamics observed at locations where the target vari-
able is being monitored. Such dependencies can then be lever-
aged at the target location, where covariates provide partial
observability, to infer the missing variable. Second, the tar-
get variables can be reconstructed by integrating information
from sensors that, although physically distant, can be consid-
ered close (similar) in a certain functional latent space. Such
similarities can be learned from the data. To solve the task
while taking advantage of the above considerations, we design
a novel graph-based framework allowing for modeling dependencies between variables and prop-
agating information across locations through graph convolutional layers (Bronstein et al., 2021).
Graph neural networks (GNNs) (Scarselli et al., 2008; Bacciu et al., 2020) indeed allow for ex-
ploiting dependencies as architectural biases in deep learning architectures and have recently found
widespread success in time series processing (Li et al., 2018; Cini et al., 2023a; Jin et al., 2023). In
particular, we propose a novel graph deep learning method, named Graph-graph Network (GgNet),
designed to propagate information through a nested graph structure encompassing both sensors and
channels. Relying on such a structure, the architecture of the resulting model is biased toward prop-
agating representations by exploiting learned dependencies among both variables and locations.
Summarizing, our novel contributions are as follows:

• we introduce a general methodology for performing multivariate virtual sensing, specifi-
cally designed to handle scenarios where available sensors do not provide adequate spatial
coverage (Sec. 4.1);

• we propose a nested graph representation allowing for effectively modeling dependencies
within multivariate spatio-temporal data (Sec. 4.2);

• we design GgNet, the first spatio-temporal graph neural network explicitly tailored for
multivariate virtual sensing from sparse observations (Sec. 4.3);

• we carry out an extensive empirical evaluation by exploring different use cases and assess-
ing the performance of the proposed method against the state-of-the-art (Sec. 5).

The proposed framework constitutes a first attempt at tackling a challenging setting for deep virtual
sensing methods and arguably constitutes a key contribution to the methodological advancement of
the field, as well as a powerful tool in practical applications.

2 PROBLEM FORMULATION

This section introduces the notation and formalizes the multivariate virtual sensing problem, with a
focus on settings where sensors provide a sparse coverage of the area of interest.

Notation We indicate scalar variables and indices as lowercase k, constants as uppercase K, vec-
tors as bold lowercase x, matrices as bold uppercase X, and higher order tensors and sets with
calligraphic X . We use the notation x⃗ and X⃗ to indicate univariate and multivariate time series,
respectively. Association with the n-th location is indicated with the notation x[n]. Measurements
at time step t are indicated with subscript xt; channel (variable) d of a multivariate observation is
indicated with superscript xd.
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Multivariate spatio-temporal data Spatio-temporal data refers to a collection of temporal obser-
vations coming from N distinct spatial locations with coordinates {q[n]}Nn=1 in a generic domain Ω,
e.g., the one induced by the geographic placement of sensors. For each spatial location n, consider
a multivariate time series (MTS) X⃗[n] ∈ RT [n]×D, where T [n] and D are, respectively, the number
of time steps at location n, and the number of channels, i.e., observable variables. If observations
are synchronous and an equal number of time steps are recorded across locations, the set of mea-
surements can be represented as a 3-D tensor X ∈ RN×T×D. Otherwise, the tensor representation
can usually be obtained by padding or interpolating the missing observations (Lepot et al., 2017).

Univariate virtual sensing Consider a set of N sensors positioned at distinct locations in a spatial
domain Ω where a subset of N̄ < N univariate time series {⃗x[n] ∈ RT }N̄n=1 are observed, while the
remaining are missing. In line with previous works (Cao et al., 2018; Cini et al., 2022), we model
data availability with a binary mask m[n] ∈ {0, 1}, which indicates if the n-th location is observed
(m[n] = 1) or missing (m[n] = 0). The task of univariate virtual sensing consists of estimating
p(⃗x[n] |q[n], X ), where time series x⃗[n] is unavailable (i.e., m[n] = 0), and the position q[n] of
the associated sensor is given together with the observation set X = {(⃗x[n], q[n]) |m[n] = 1}Nn=1.
Note that spatial coordinates are assumed to be available everywhere.

Multivariate virtual sensing The problem can easily be extended to the multivariate case. Here,
consider a set of multivariate sensors {X⃗[n] ∈ RT×D}Nn=1 where individual channels are missing
at some locations. We can denote channel availability by extending the previous binary mask to
md[n] ∈ {0, 1}, which indicates if the d-th channel is available at the n-th location. The observation
set now consists of all the observed channels at all locations X = {(⃗x d

[n], q[n]) |md[n] = 1}Nn=1.
The task of multivariate virtual sensing (MVS) then consists of modeling:

p(⃗x d
[n] |q[n], X ) (1)

for every pair (n, d) such that md[n] = 0. Note that virtual sensing is, a priori, a much more chal-
lenging task than the ordinary missing data imputation problem, due to the absence of any historical
data to infer both the scale and the dynamics of the missing signal. When addressing this problem,
the sensors’ spatial proximity plays a pivotal role. If the sensors densely cover space, it is possible,
in both the univariate and multivariate settings, to leverage the spatial proximity to available observa-
tions. However, the problem is far more challenging in sparse settings: if the problem is univariate,
no observations are available at the target or any neighboring location. Conversely, the multivariate
settings might allow for dealing with the virtual sensing problem by exploiting dependencies on
variables other than the target one.

3 RELATED METHODS

Many approaches to kriging and virtual sensing have been proposed in geospatial analysis and ma-
chine learning literature (Cressie & Wikle, 2015). Notably, among existing methods, some rely on
Gaussian processes (Luttinen & Ilin, 2012) and tensor decomposition (Bahadori et al., 2014). More
related to our approach, Cini et al. (2022) and Marisca et al. (2022) introduced imputation methods
based on GNNs and showed that such methods can perform virtual sensing as well. Wu et al. (2021a)
and Zheng et al. (2023) directly tackle the virtual sensing problem exploiting inductive GNNs. In-
deed, GNNs are becoming popular in time series imputation and reconstruction (Ye et al., 2021;
Kuppannagari et al., 2021; Chen et al., 2022; Jin et al., 2023). However, all these approaches focus
on univariate settings. As a consequence, they can only rely on the spatial proximity of the available
sensors to perform the reconstruction and/or do not target sparser settings. Besides virtual sensing,
deep learning methods have been widely applied in the context of MTS imputation by relying on a
diverse range of model architectures, e.g., autoregressive RNNs (Cao et al., 2018), attention-based
models (Shukla & Marlin, 2021; Du et al., 2023), generative adversarial networks (Yoon et al.,
2018a; Luo et al., 2019) and diffusion models (Tashiro et al., 2021). Although such approaches
can in principle be used to perform virtual sensing in the multivariate case, they cannot take spatial
correlations directly into account. To the best of our knowledge, the proposed GgNet is the first
graph-based neural network architecture designed to tackle MVS in sparse scenarios by exploiting
learned relationships across both observable variables and locations. We refer to Appendix A for a
more thorough discussion of the relevant literature for spatio-temporal kriging and MTS imputation.
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4 METHODOLOGY

Here, we introduce a general framework for solving the MVS problems formalized in Sec. 2, re-
gardless of the spatial coverage offered by the available sensors. We begin by presenting a concep-
tualization of the inference problem as dealt with in our framework. Then, we introduce the details
of the proposed novel architecture, aligned with such conceptualization.

4.1 CONCEPTUALIZATION

We identify two fundamental types of dependencies characterizing the MVS task, i.e., the rela-
tionships between channels at the same location (intra location) and among observations at different
locations (inter location). We model such dependencies by considering location-channel (n, d) pairs
and defining the sets

Yd[n] =
{

x⃗ δ
[ν]

∣∣ δ = d ∧ ν = n ∧ mδ[ν] = 0
}

(target set)

T d[\n] =
{

x⃗ δ
[ν]

∣∣ δ = d ∧ ν ̸= n ∧ mδ[ν] = 1
}

(observed target set)

C\d[n] =
{

x⃗ δ
[ν]

∣∣ δ ̸= d ∧ ν = n ∧ mδ[ν] = 1
}

(intra-location covariate set)

C\d[\n] =
{

x⃗ δ
[ν]

∣∣ δ ̸= d ∧ ν ̸= n ∧ mδ[ν] = 1
}

(inter-location covariate set)

where \n indicates all indices except n. Sets Yd[n], T d[\n], C\d[n] and C\d[\n] encompass, respec-
tively, the target variable at the target location, the target variables at all other locations except n,
the observed variables at the target location, and the observed variables at all other locations except
n. By considering the above sets, we distinguish between the types of dependencies that allow for
reconstructing a missing channel xd[n] in the target set.

T→Y: Relations between observed targets at other locations (T d[\n]) and the target xd[n].

C→Y: Relations between observed covariates at the target location (C\d[n]) and the target xd[n].

The subtask of learning from T→Y dependencies is similar to learning how to exploit observations
at related locations typical of univariate virtual sensing. To weigh the importance of different obser-
vations in the observed target set w.r.t. the target, a notion of similarity between locations is required.
Kriging methods address it by relying on spatial proximity (dense scenario), e.g., as derived from the
sensor positions {q[n]}, to weigh the reciprocal importance of observations at different locations.
In contrast, with the sparse settings in mind, we model T→Y dependencies in a data-driven fash-
ion, learning a similarity score for each pair of locations. In particular, as detailed in Sec. 4.2, we
associate a representation (node embedding) (Cini et al., 2023a) to each location and learn a score
function taking as input pairs of such representations. At the same time, these are used as additional
learned covariates to tailor C→Y in modeling location-specific dynamics. Such a framework allows
for the extension of virtual sensing to generic MTS datasets, as it does not rely on pre-defined spatial
relationships such as physical proximity. In the following, we design a model that directly accounts
for both types of dependencies with architectural inductive biases that align the processing with the
modeling of intra and inter-location dependencies.

4.2 NESTED GRAPH STRUCTURE

To take advantage of both T→Y and C→Y relations, we learn a nested graph structure composed
of an inter-location graph and an intra-location graph (Fig. 2). The inter-location graph connects
different spatial locations, while the intra-location one explicits dependencies among channels.

Inter-location graph G: We associate each sensor location to a node of a graph G, which we call
inter-location graph, and model the association between different sensors as edges of G,
thus accounting for the T→Y modeling.

As physical proximity cannot be exploited in sparse settings, we learn the graph topology (N ×N
adjacency matrix AG) from the data to account for dependencies among sensors that can be far apart
in space. In particular, following previous works on local representations (Cini et al., 2023a), we
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Figure 2: Dataset as a collection of multivariate time series (left) and its nested graph representation
(right). Each location is represented as a node in the inter-location graph (G), capturing generic
relations between locations. Within each node in G, a smaller intra-location graph (g) models de-
pendencies between the channels.

associate each n-th node in G with a learnable (static) embedding eG[n] ∈ Rhe,G . These are learned
as parameters, jointly with the network weights, and are used to estimate relationships relevant to
the downstream MVS task. The weighted adjacency matrix is then obtained from the similarities
between embeddings. In particular, we model AG as

AG = Softmax(MLP1(EG) · MLP2(EG)
T ) (2)

where the matrix EG ∈ RN×he,G contains the learnable node embeddings for all nodes in G. Convo-
lutions on such a graph directly account for T→Y dependencies by propagating information across
locations. Similarly, we learn an adjacency matrix for intra-location dependencies.

Intra-location graph g: We identify each of the D channels, at every n-th sensor, with a node of
a second graph, which we name intra-location graph g, accounting for the relationships
between channels (C→Y).

Similarly to inter-location case, we associate each d-th node in g with a learnable embedding eg[d].
We learn adjacency matrix Ag ∈ RD×D of g as a function of a D ×D matrix Φ of free parameters,
treated as edge scores. As the physical quantities considered at each location are the same, we
assume g to be the same in all locations.

Note that, in this paper, for simplicity, we do not consider graphs G and g that change over time
and do not constrain G and g to be discrete binary objects. That being said, more advanced graph
learning methods (e.g., Kipf et al. 2018; Niculae et al. 2023; Cini et al. 2023b) can be incorporated
into the framework and constitute a possible extension for future works. Note that the node embed-
dings eG[n] need to be learned for every location, which makes the model intrinsically transductive.
Despite that, the fine-tuning of new node embeddings can be done efficiently (Cini et al., 2023a).

4.3 GRAPH-GRAPH NETWORK

In this section, we present the Graph-graph Network (GgNet), our proposed architecture relying on
the nested graph representations provided by G and g. The model is composed of several blocks, as
detailed below and depicted in Fig. 3.

Input encoder To account for specifics along the temporal, spatial and channel dimensions, we
obtain a hidden representation for each time step t, location n, and channel d given the input data X
and the learned node embeddings EG, Eg similarly to Marisca et al. (2022)

hd
t [n] = md

t [n] · MLPenc,1(x
d
t [n]) + MLPenc,2(eG[n], eg[d]) (3)

where hd
t [n] ∈ RH are the resulting encoded representations, while MLPenc,1 and MLPenc,2 are two

distinct multilayer perceptions. Note that representations are obtained by exploiting observations
wherever available and relying exclusively on node embeddings for the targets.
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Figure 3: Overview of GgNet. Temporal convolutions (blue) encode temporal patterns, G-
convolutions (green) propagate information across the inter location graph and model dependencies
between locations; g-convolutions (purple) propagate information across the intra-location graph
and model dependencies between channels. Starred modules refer to channel-wise operations.

Temporal processing Stacks of Temporal Convolutions (TC) (Bai et al., 2018) are used to encode
temporal information for each location and channel as

H⃗d[n] = TCd
(
H⃗d[n], m⃗d[n], eG[n]

)
(4)

where H⃗d[n] ∈ RT×H . As channels may present largely heterogeneous temporal features, we use
a different set of weights (filters) for processing data in each channel. Temporal convolutions are
highly parallelizable making them preferable, in this setting, over, e.g., recurrent neural networks.
Furthermore, we symmetrically pad the input sequence to avoid duplicating the architecture to en-
code forward and backward dynamics and exploit exponentially increasing dilation rates to capture
both short and long-range temporal dependencies.

Inter-location (spatial) processing Spatial information is propagated across locations (T→Y)
by means of Graph Convolutions (GC) (Bronstein et al., 2021) over the inter-location graph (G-
convolution in Fig. 3):

Hd
t = GC(G)

(
Hd

t ,m
d
t ,EG,Eg;AG

)
(5)

where Hd
t ∈ RN×H and the same convolution is performed independently on each channel and each

time step. Specifics of each channel are accounted for via the conditioning on the embeddings in
Eg . Note that G-convolution is a synchronous operation that assumes that the time frames of each
time series are aligned.

Intra-location (channel-wise) processing As the next step, information is propagated across
channels (C→Y) by performing GCs over the intra-location graph (g-convolution in Fig. 3):

Ht[n] = GC(g) (Ht[n],mt[n],EG,Eg;Ag) (6)

for all time steps and locations, and where Ht[n] ∈ RD×H . g-convolutions allow for inferring
observations at unavailable channels by modeling dependencies among targets and covariates. Note
that weights are shared across locations, as local dynamics are accounted for by conditioning on
node embeddings EG.

Multiple T -, G-, and g-convolution blocks can be stacked, allowing for designing deep architectures.
We refer to Appendix E.2 for an extensive ablation study assessing the impact of each component.

Readout Finally, a readout composed of d MLPs maps representations to predictions at all target
locations and time steps as

x̂d
t [n] = MLP d

dec(h
d
t [n], m

d
t [n], eG[n], eg[d]). (7)

Note that the GgNet implementation considered here is just one of many possible instantiations of
the framework. The model can be extended, e.g., by including more sophisticated graph processing
and learning modules.
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4.4 MODEL TRAINING

Figure 4: Training and eval-
uation splits for MVS.

For a generic MVS task, the reconstruction error can be defined as

L(X̂ ,X ,M) =

∑
n

∑
d m̄

d[n] · ℓ(ˆ⃗x d[n], x⃗ d
[n])∑

n

∑
d m̄

d[n]
(8)

where ˆ⃗x d[n] and x⃗ d
[n] are, respectively, the predicted and true val-

ues, and ℓ(·, ·) is a loss function between time series, e.g., the mean
absolute error or the mean squared error. The model is trained and
evaluated by simulating the presence of missing channels partition-
ing the available N × D channels into training, validation, and test
channels (Fig. 4), simulating a transductive learning setting. To bias
the training toward the virtual sensing task, we mask out a fraction of
the available channels for each training batch and train the model to
reconstruct the input data, giving a higher weight to the masked out
observations. We have found this strategy to be crucial for models
like GgNet that do not rely on forecasting as a surrogate objective. Finally, we mask out an addi-
tional small fraction of data points, at random, in the training data to enforce robustness to random
missing values (Cini et al., 2022; Du et al., 2023).

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed method in several MVS tasks. Experiments are conducted
across three different datasets, allowing for the investigation of settings characterized by (i) different
temporal resolutions and (ii) different degrees of sparsity, as well as (iii) assessing the limitations of
the different approaches. Alongside GgNet, we provide results for the following baselines: KNN,
i.e., a simple baseline averaging the nearest geographical neighbors, BRITS (Cao et al., 2018) as
representative of autoregressive RNN global models1, SAITS (Du et al., 2023) as representative of
transformer-based global models unaware of spatial relations, GRIN (Cini et al., 2022) as repre-
sentative of graph-based imputation models, leveraging spatial correlations. Moreover, we consider
a variation of the standard GRIN model, named GRINm, modified to better deal with multivariate
data at each location; specifically, we add self-loops in GRIN’s Spatial Decoder for conditioning
on covariates at the same time step of the reconstruction target. To assess the impact of some of
the introduced design choices, we also compare 4 progressively more advanced recurrent architec-
tures: 1) RNN, a standard global recurrent neural network; 2) RNNBiD., its bidirectional extension;
3) RNNEmb., which, besides being bidirectional, incorporates a local component by concatenating
learnable node embeddings to the input observations; 4) RNNG, which adds a convolution opera-
tion over an inter-location graph on top of the previous architecture. For each model, we consider
different hyperparameter configurations, with increasing complexity; reported results correspond
to the best-performing model, given the reconstruction accuracy on the validation set. Regarding
the preprocessing steps, we follow the common practice of standardizing the data, ensuring that,
across locations and time, each of the D channels has zero mean and unit variance. Missing val-
ues, if present, are masked out. Details about the baselines can be found in Appendix B, while the
complete experimental setup is described in Appendix C.

5.1 MISSING-CHANNEL RECONSTRUCTION: CLIMATIC DATA

In the first experiment, we address reconstructing missing-at-random (MaR) channels in multivari-
ate spatio-temporal datasets. We build two datasets with different temporal resolutions of climatic
variables from the NASA Langley Research Center POWER Project. More information about the
data and APIs is available in Appendix D. To emulate a reduced spatial coverage, we collect data
in correspondence with the 235 national capitals. For each location, we collect multiple correlated
variables with daily and hourly resolutions. Within this setting, we aim to reconstruct MaR climatic
variables at different locations from the available data. Among all N ×D channels, we use 70% for
training, 10% for validation, and the remaining 20% for testing.

1With the term “global” we refer to models whose parameters are shared in all locations, in contrast to
“local” ones that have location-specific parameters (Montero-Manso & Hyndman, 2021; Cini et al., 2023a).
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Table 1: Climatic dataset: channel-wise MRE (%) for daily data and average accuracy for daily (D)
and hourly (H) data. Results are averaged across locations and 5 random seeds. The best-performing
method is in bold, the second-best is underlined.

CH. TEMP. TEMP. TEMP. WIND REL. PREC. TEMP. CLOUDS IRR. IRR. AVG AVG

MEAN RANGE MAX SPEED HUM. DEW SHORT LONG (D) (H)

KNN 15.6±2.5 42.1±6.3 12.4±1.5 33.7±4.5 12.3±0.4 102.8±4.7 23.9±2.9 34.0±0.6 18.0±0.5 6.0±1.0 30.1±1.0 36.2±1.9

BRITS 4.0±0.6 17.5±2.3 3.3±0.5 32.1±1.5 5.5±0.8 80.5±2.4 8.4±1.1 29.9±0.9 20.9±1.0 3.4±0.4 20.5±0.5 26.3±0.8

GRIN 4.2±0.7 18.6±1.9 4.3±0.5 30.7±2.3 5.6±0.6 77.3±3.8 8.7±1.0 29.1±0.3 15.3±0.7 3.9±0.3 19.8±0.6 23.3±0.7

GRINm 2.9±0.9 12.9±1.3 2.8±0.6 30.7±3.9 3.6±0.9 69.9±1.6 6.4±1.1 20.5±0.9 11.7±0.6 3.6±0.4 16.5±0.6 22.7±0.4

SAITS 2.4±0.4 11.2±1.3 2.3±0.4 26.9±1.0 3.3±1.0 66.0±2.5 5.0±1.0 20.6±0.7 14.2±0.9 2.8±0.3 15.5±0.5 22.2±0.5

GGNET 2.1±0.4 9.6±0.7 2.0±0.2 23.9±2.2 2.7±0.7 60.6±2.1 4.2±0.8 16.5±0.5 9.2±0.8 2.9±0.3 13.4±0.2 20.4±0.6

% IMP. 12.5% 14.3% 13.0% 11.1% 18.1% 8.1% 16.0% 19.9% 21.4% -3.6% 13.5% 8.1%

RNN 5.6±0.7 21.9±0.7 5.8±0.5 32.7±1.2 6.9±0.7 83.8±1.8 10.8±1.1 35.5±1.0 21.8±0.3 3.8±0.4 22.9±0.2 28.8±0.8

+ BID. 4.2±0.6 19.1±1.0 4.7±0.4 31.1±0.8 5.9±0.6 78.0±2.6 8.6±1.0 31.4±0.6 19.0±0.4 3.6±0.4 20.6±0.3 25.7±0.5

+ EMB. 4.1±0.5 17.5±1.5 4.3±0.4 30.2±2.0 5.5±0.6 77.1±1.6 8.5±1.0 30.2±0.4 17.5±0.7 3.6±0.3 19.8±0.5 26.2±0.9

+ G 3.6±0.3 16.5±1.3 3.9±0.4 27.6±1.6 5.2±0.4 74.7±1.8 7.3±0.9 27.7±0.5 14.0±0.8 3.6±0.4 18.4±0.5 23.2±1.1

Figure 5: (Left) Reconstruction of wind speed (poorly correlated with the other channels) in Road
Town (which can exploit observations at nearby Caribbean capitals). (Right) t-SNE representation of
the node embeddings learned by GgNet; colours refer to the Köppen-Geiger climate classification.

Daily climatic data Considering a daily resolution, we collect 10 climatic variables (listed in Ap-
pendix D) encompassing 30 years, which results in N = 235, T = 10958, D = 10. Tab. 1 reports
the Mean Relative Error (MRE) for each test channel, grouped by variable and averaged across lo-
cations. All results are consistent across different metrics as shown in Appendix E.8. From the
results, we first observe that GgNet outperforms models relying exclusively on pre-defined spatial
relations (GRIN), demonstrating superior performance in handling sparse settings. Notably, GRIN
underperforms especially in correspondence with remote locations, where no neighboring sensor is
available (Appendix E.3). The GRINm variant improves over the results of GRIN, but nonetheless
underperforms w.r.t. GgNet. SAITS performs reasonably well on this dataset, ranking second in
most of the setups. In particular, SAITS can account for intra-location covariates, but cannot take
advantage of inter-location relations. This is particularly evident for missing channels that are hard
to infer from the other variables at the same location (e.g., wind speed, precipitations, clouds and
shortwave irradiation), but can be reconstructed from spatially close observations, as in the exam-
ple shown in Fig. 5 (left). Tab. 1’s lower section reports results for the RNN model variants. The
notable performance improvement obtained by the bidirectional variant demonstrates the impor-
tance of accounting for both past and future values. Node embeddings yield modest yet consistent
improvements. Additionally, the introduction of the inter-location graph G results in a substantial
performance gain, supporting the importance of inter-location relations. Alongside MVS results, we
provide in Fig. 5 (right) a t-SNE visualization of the node embeddings (EG, Sec. 4.2) as learned by
GgNet w.r.t. each location. Each embedding is coloured according to the Köppen-Geiger climate
classification (Peel et al., 2007) that divides the globe into different climates, with similar colours
corresponding to similar climates. Note that the model does not have access, at any point, to either
these climate labels or to the geographical coordinates of any location. The correspondence between
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Table 2: Photovoltaic dataset: MAE (W*h). For each N, results are averaged across 5 sampling of
the locations and 5 different runs for each set (25 runs in total). The best-performing method is in
bold, the second-best is underlined.

NLOCATIONS 10 20 30 50 70 100 150 200

GRIN 581± 170 536± 52 533± 49 514± 36 531± 34 524± 28 523± 40 528± 43

GRINm 497± 117 458± 49 446± 42 424± 23 428± 21 423± 13 417± 13 418± 12

SAITS 466± 68 451 ± 46 448± 37 427± 29 436± 24 420± 16 417± 14 416± 14

GGNET 452 ± 67 455± 39 439 ± 32 415 ± 26 410 ± 26 391 ± 18 367 ± 15 357 ± 16

% IMP. 3.0% -0.9% 1.6% 2.1% 4.2% 6.9% 12.0% 14.2%

such labels and the formed clusters serves as a qualitative assessment of the capability of GgNet to
capture similarities in the observed dynamics reflecting the climate at each location. Appendix E
reports several additional analyses.

Hourly climatic data Then, we address the same MaR task in the case of 7 climatic variables
sampled with hourly resolution. Data cover one year, which results in N = 235, T = 8760, D = 7.
Differently from daily data, hourly data are more difficult to predict, being characterized by high-
frequency components both temporally and spatially. As a consequence, exploiting inter-location
dependencies can help in providing better conditioning and hence lead to more accurate predictions.
Average MRE is reported in the last column of Tab. 1, while channel-wise results are shown in Ap-
pendix E.8. Graph-based models effectively exploit the additional information to obtain a relatively
good reconstruction accuracy. In GgNet, accounting for the interplay between spatial aggregation
(T→Y) and global modeling of the relations across channels (C→Y) arguably results in superior
average performance.

5.2 EXTENDING SPATIAL COVERAGE: PHOTOVOLTAIC ENERGY PRODUCTION

We consider the problem of predicting a specific target variable (whose direct observation is ex-
pensive) at new target locations by exploiting a set of available covariates. This constitutes an
interesting use case for our multivariate virtual sensing task. For example, renewable energy pro-
duction or material degradation can be inferred from widely available satellite climatic data (De Fe-
lice et al., 2022). In particular, we consider as target variable the daily photovoltaic power (PV)
production simulated over continental North America by Hu et al. (2022). To simulate a sparse
scenario, we randomly sample a few locations from the provided dense grid. As covariates, we use
the same 10 climatic variables from Sec. 5.1 collected in correspondence with the sampled loca-
tions. For both target and covariates, we consider 1 full year of daily observations, which results in
T = 365, D = 11. By varying the number of locations between 10 and 200, we aim to infer the PV
production at new target locations from the climate at such locations. We use 70% of the sensors for
training, 10% for validation, and 20% for testing. Tab. 2 reports the reconstruction accuracy in terms
of the Mean Absolute Error (MAE). As more locations are considered, results show a progressive
increment of the relative improvement of GgNet over SAITS. This could be related to the superior
capability of GgNet to exploit spatial information.

6 CONCLUSION

We presented a novel framework for virtual sensing from sparse multivariate spatio-temporal obser-
vations. In doing so, we introduced a novel methodology to exploit dependencies between covariates
and relations across locations. In this context, we proposed GgNet, a graph deep learning architec-
ture leveraging a nested graph structure to account for such relations. The relational structure is
learned end-to-end to maximize reconstruction accuracy. Compared to state-of-the-art, GgNet can
achieve superior performance in settings with poor sensor coverage, where other methods fail. As
future directions, we believe it would be interesting to explore the application of a similar method-
ology to collections of asynchronous time series, typically found in healthcare applications. Finally,
GgNet is limited, in its current form, to transductive learning settings and its extension to inductive
learning would broaden the applicability of the proposed method.
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REPRODUCIBILITY STATEMENT

Python code to reproduce the experiments is available online at https://github.com/
gdefe/ggnet-virtual-sensing. A script to download climatic data from the database in
correspondence with the world capitals is included in the provided code. PV datasets at differ-
ent spatial densities, together with the corresponding climatic variables, are provided alongside the
code. Complete climatic and photovoltaic datasets are publicly available online through the refer-
ences provided in Appendix D. The sampling of locations (photovoltaic experiment) and simulation
of missing channels (both climatic and photovoltaic experiment) are controlled by a fixed seed for
reproducibility purposes. Hyperparameters for all models are provided in Appendix C.
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APPENDIX

A RELATED METHODS

Methods that can perform virtual sensing can be broadly categorized into spatio-temporal kriging
methods and generic MTS imputation approaches. Kriging methods exploit the density of the net-
work and infer the missing sensors by interpolating neighboring observations. Among those, ordi-
nary kriging (Stein, 1999) is a linear interpolation procedure that assigns optimal weights for neigh-
boring data points based on a variogram model. Similarly, cokriging (Goovaerts, 1998; Cressie &
Wikle, 2015) also exploits correlation with auxiliary covariate information (such as elevation, soil
type, or temperature) and estimates them simultaneously with the variable of interest. However,
these are linear spatial interpolation methods, therefore, they fail to capture any temporal patterns,
as well as nonlinear dependencies within the data. Multi-task Gaussian Processes leverage flexi-
ble kernel structures to capture spatio-temporal correlations (Bonilla et al., 2007; Luttinen & Ilin,
2012). In addressing scalability issues when dealing with extensive datasets, matrix/tensor com-
pletion methods capture global consistency in the data by imposing a low-rank assumption, as well
as local consistency by diverse key regularization structures (Bahadori et al., 2014; Takeuchi et al.,
2017; Lei et al., 2022; Wu et al., 2022). More related to our approach, imputation methods based
on GNNs have demonstrated great effectiveness in modeling spatial dependencies between time se-
ries (Ye et al., 2021; Kuppannagari et al., 2021; Roth & Liebig, 2022; Kong et al., 2023; Jin et al.,
2023). Notably, GRIN (Cini et al., 2022) accounts for both temporal and spatial correlation within
the data by combining autoregressive modeling with message-passing operations; SPIN (Marisca
et al., 2022) introduces a spatiotemporal attention mechanism to weigh discrete points in time and
space; IGNNK (Wu et al., 2021a) tackle inductive virtual sensing by specializing spatio-temporal
graph neural networks, later extended in SATCN (Wu et al., 2021b) by allowing multiple transfor-
mations of the spatial information to contribute to the adjacency matrix; INCREASE (Zheng et al.,
2023) also considers different heterogeneous spatial relations. However, they all assume that the
spatial information characterizing the placement of each sample is available to the model; either
as a given graph structure or as geographical information to compute one. In sparse settings, or
when such information is missing, the main limitation of these methods is deriving an appropriate
adjacency matrix. This problem is even exacerbated in the multivariate case. As evidence, MTS sim-
ilarity is a challenging problem on its own (Mikalsen et al., 2018; De Felice et al., 2023). Adaptive
methods (Bai et al., 2020), such as AGRN (Chen et al., 2022), address this by learning the adjacency
matrix together with the network weights. Despite this, existing GNN-based approaches only target
dense and univariate sensor networks and do not explicitly model the relations between channels in
individual locations.

On the other hand, recent advancements in generic MTS imputation have led to models that can be
adapted to perform virtual sensing. Among these, the most widely adopted are deep autoregressive
methods based on recurrent neural networks (Che et al., 2018; Yoon et al., 2018b), e.g. BRITS (Cao
et al., 2018) is a bidirectional model that also takes advantage of the relationships between dimen-
sions. Moreover, imputation can be performed by modeling the underlying data distribution, gen-
erally employing generative adversarial neural networks (Yoon et al., 2018a; Luo et al., 2019). In
recent times, imputation techniques have been proposed that rely on attention mechanisms (Ma
et al., 2019; Shukla & Marlin, 2021; Du et al., 2023) and diffusion models (Tashiro et al., 2021).
However, these models cannot take spatial correlations directly into account. Indeed, these methods
learn a single model shared across locations and take into account a single MTS at a time. One could
still exploit such approaches by considering all the available data as a single MTS, but the result-
ing model would not be appropriate for virtual sensing, as the same variables at different locations
would be modeled as entirely different channels.

B BASELINE DETAILS

KNN: imputes missing test channels by averaging the corresponding train channels in the k-
nearest geographical neighbors. The number of neighbors k ∈ {1, 2, 3, 5, 10} is selected based on
the best performance on the validation set. This baseline has access to the geographical coordinates,
with which neighbors are identified.
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RNN: global model where data at different locations X[n] ∈ RT×D are considered as different
training instances to train a shared model. Specifically, this model imputes missing values from a
linear transformation of the hidden state of a global Recurrent Neural Network (RNN). Formally,
the following operations are sequentially iterated for every time step t in the considered temporal
window:

x̂t = Wout ht + b (9)
xt = mt ⊙ xt + m̄t ⊙ x̂t (10)

ht = GRU( [ xt ||mt ], ht−1 ) (11)
where the notation [n] is implicit for all inputs, masks and hidden states.

RNNBiD: this model replicates the previous RNN model both in the forward direction and in
the backward direction. Imputations performed by Eq. 9 are discarded and the final imputation is
obtained with a separate MLP acting on the aggregated hidden representations:

x̂t = MLP( [hfwd
t ||hbwd

t ] ) (12)

RNNemb: as global models, it is not possible for the two previous models to specialize the mod-
eling on the specifics of each location. In this extension, we incorporate local components into
RNNBiD by concatenating the node embeddings e[n] to all input time steps before the state update
and readout. Formally, the model sequentially iterates, on both directions, for every time step t,
Eq. 9, Eq. 10 and:

ht[n] = GRU( [ xt[n] ||mt[n] || e[n] ], ht−1[n] ) (13)
where we have here explicit the notation [n]. Finally, as before, we aggregate hidden representations
to output the final result:

x̂t[n] = MLP( [hfwd
t [n] ||hbwd

t [n] || e[n] ] ) (14)

RNNG: we further build here on the previous model by introducing synchronous message-passing
operations between locations. The resulting architecture mimics time-then-space models that are
typical to the spatio-temporal graph processing literature (Gao & Ribeiro, 2022). First, inputs are
processed by the RNNemb, as above, up to Eq. 13; then, a GC layer performs a convolution operation
over the inter-location graph G:

H′
t = AG Ht Θ+ Ht Θskip + b (15)

where Ht = [Hfwd
t ||Hbwd

t ] and AG is obtained from Eq. 2. Finally, RNN and GNN states are
concatenated and fed to an MLP readout to produce the final imputation:

x̂t[n] = MLP( [hfwd
t [n] ||hbwd

t [n] ||h′
t[n] || e[n] ] ) (16)

BRITS: global bidirectional RNN model for generic MTS imputation from Cao et al. (2018) 2.
The 2D form is recovered by processing one MTS at a time, i.e., in practice, flattening the location
dimension along the batch dimension.

SAITS: global self-attention-based MTS imputation model from Du et al. (2023) 3. The 2D form
is recovered by processing one MTS at a time, i.e., in practice, flattening the location dimension
along the batch dimension.

GRIN: graph-based model for spatio-temporal data imputation from Cini et al. (2022) 4. This
baseline has access to the geographical coordinates, from which we compute the adjacency matrix
with a thresholded Gaussian kernel (Shuman et al., 2013):

Aij = Aji =

exp

(
− dist(i, j)2

σ2

)
if dist(i, j) < δ

0 otherwise
(17)

2https://github.com/caow13/BRITS
3https://github.com/WenjieDu/SAITS
4https://github.com/Graph-Machine-Learning-Group/grin
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with dist(·, ·) being the Haversine distance, σ2 the distances variance, and δ a custom threshold.
For all datasets with a number of nodes N ≥ 70, we set δ to the required value to obtain an average
of 10 edges per node, e.g., δ(climatic datasets) = 3500 km. For smaller datasets, we fix δ to the
corresponding value at N = 70. The GRINm variant adds self-loops to the original Spatial Decoder
of GRIN.

C DETAILED EXPERIMENTAL SETTING

Shared settings For GgNet and all baselines, we adopt the Adam optimizer (Kingma & Ba, 2015)
with a learning rate lr = 0.001 paired with a cosine annealing learning rate scheduler. All models
are trained for a maximum of 500 epochs, with a 30 epochs patience for early stopping. All batches
have a size set to 32 and consider temporal windows of tw = 24 time steps. As for the settings
that are specific to virtual sensing: we set, for all methods, the probability of randomly masking
training points to pwithen−points = 0.05, the probability of randomly masking entire channels to
pwithen−channels = 0.3 and the weight of masked points during loss calculation to wwhiten = 5.
Different values wwhiten ∈ {3, 5, 10} led to a negligible difference in performance. A brief study
on the robustness under changes in the pwithen−channels mask can be found in Appendix E.6. Ex-
periments are conducted within the Python (Van Rossum et al., 1995) library Torch Spatiotempo-
ral (Cini & Marisca, 2022), which is also used to implement all methods. Experiments are tracked
using Weight and Biases (Biewald, 2020). Code to reproduce the experiments is available online.5

Hyperparameter settings on climatic dataset In the climatic data, all models are evaluated under
different hyperparameter configurations, with increasing complexity. Separately for the daily and
hourly datasets, the best-performing configuration of parameters on the validation set across the
training epochs is used at testing. For GgNet, this resulted in the same set of parameters for both
datasets: hidden size dh = 128 for all convolutions and MLPs; location node embedding size
he,G = 16, channel node embedding size he,g = 8; 2 blocks, each of which is composed of 3 layers
of temporal convolution (with filter length ktemp. filter = 3 centered at each time step t), 1 layer of
G-convolution and 1 layer of g-convolution; “elu” activation functions for the encoding MLPs, all
graph convolutions and decoding MLPs; “Tanh” activation functions for the MLPs transforming the
embeddings (Eq. 2). Hyperparameter choices for all baselines are available within the configurations
file in the provided code. RNN variants are set to the same hidden size h = 64 for comparability.

Hyperparameter settings on photovoltaic dataset In the photovoltaic dataset, to assess perfor-
mance scaling with the number of locations, we set a common hidden size of h = 64 to all models
and leave all other parameters to the best-performing setting in the climatic daily experiment. For
all models, we also set a dropout value of dr = 0.1 in all experiments up to N = 70, and dr = 0
afterward.

C.1 LOSS FUNCTIONS

GgNet loss function As our loss function ℓ(·, ·), we employ the sum of three quantile losses, (also
referred to as ’pinball loss’) (Koenker & Bassett Jr, 1978), with quantile levels selected as follows:
q−σ = 0.159, qµ = 0.5, and q+σ = 0.841. The median quantile aligns with the Mean Absolute
Error (MAE), while q−σ and q+σ allow for the concurrent estimation of uncertainties. We believe
this is particularly relevant to virtual sensing, as not all channels in all locations can be equally
reconstructed from the available data. As in (Cini et al., 2023a), further embedding regularizations
can be considered in addition to the training objective.

Baseline loss functions RNN and RNNBiD use MAE loss; RNNemb and RNNG use the same three-
quantiles loss as GgNet; BRITS, SAITS and GRIN use same loss functions as the authors provide
in the respective code implementations.

5https://github.com/gdefe/ggnet-virtual-sensing
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D DATASETS DETAILS

Climatic dataset: We obtain daily and hourly climatic data from the POWER Project’s Daily and
Hourly 2.3.5 version on 2023/02/26. This online database contains data about surface solar energy
fluxes and other meteorological quantities obtained through satellite systems and further reanalysis.
For radiation data, spatial resolution is 1.0° (latitude) by 1.0° (longitude); for meteorological data,
this is 1/2° (latitude) by 5/8° (longitude). For each point on this global-scale grid, data are pro-
vided in time-series format with customizable temporal resolution. Further information, together
with data and API, is available at the project website 6. For daily data, we select the following 10
variables: mean temperature (C), temperature range (C), maximum temperature (C), wind speed
(m/s), relative humidity (%), precipitation (mm/day), dew/frost point (C), cloud amount (%), all-
sky surface shortwave irradiance (W/m2) and all-sky surface longwave irradiance (W/m2). Daily
data extend for 30 years (1991-01-01 to 2022-12-31). For hourly data, we reduce the dimensionality
to 7 variables, as maximum temperature, temperature range and cloud amount are not available at
this resolution. Hourly data extend for 1 year (2022-01-01 to 2022-12-31).

Photovoltaic dataset: We collect photovoltaic data from Hu et al. (2022), which simulate photo-
voltaic power production densely over the Continental North America. Simulations extend over the
entire year 2019, with a temporal resolution of one hour, which we average across days to obtain
daily data. The spatial resolution of the mesh grid is 12 km, resulting in 56,776 points, from which
we randomly sample a few locations to recreate a sparse scenario. From the 13 simulated photo-
voltaic panels, we select module 00. Finally, we take the average across the 21 forecast members of
the provided ensemble.

E ADDITIONAL ANALYSIS

E.1 SCALABILITY AND COMPUTATION TIME

The asymptotic computational complexity of GgNet originates from the sum of the complexities
of its components. The time and space complexity are both O(N2TD) + O(NTD2). As it is
often safe to assume that D2 ≪ N2, the overall complexity reduces to O(N2TD). The main
bottleneck in GgNet is due to the inter-locations graph which makes message-passing operations
scale quadratically w.r.t. the number of locations. If scalability to large N is a concern, existing
sparse graph learning methods can be considered (Niculae et al., 2023; Cini et al., 2023b). However,
note that scenarios that involve significantly more sensors than the selected datasets would not likely
be sparse and a different set of techniques should be used.

We also report here the computational times of different methods on the daily climatic dataset
(N = 235, T = 10958, D = 10) under the best hyperparameter setting. It takes approximately
(on average) 2h for BRITS to complete one training, 7h for SAITS, 16h for GgNet, 14h for GRIN.
Approximate time per epoch are: 40s for BRITS, 4m 40s for SAITS, 6m for GgNet, 8m 30s for
GRIN. The temporal modeling in GgNet is based on temporal convolutions, which makes it faster
than the popular graph-based representative GRIN, which uses a recurrent model instead. As for
BRITS and SAITS, these are faster than GgNet as they do not account for spatial dependencies.
Timings are taken on a machine equipped with an NVIDIA A100 GPU.

E.2 ABLATION STUDY

The GgNet architecture is composed of the following principal constituents: 3 layers of temporal
convolutions, which we indicate with 3T, and one pairs of alternate spatial and channel convolutions:
G - g. The sequence is iterated twice to allow for deeper processing, resulting in the following
layers’ pattern: 2(3T - G - g). We provide in Tab. 3 an ablation study by removing individual
components; model’s hidden size is h = 64, without residual connections and variable embeddings
(Eg). Considerably worse performances are obtained by removing the g-convolution, i.e., 2(3T - G),
supporting the importance of modeling the relations with the covariates in reconstructing the missing
channel in a sparse setting. Removing the temporal convolution, i.e., 2(G - g), forces the model
to exchange only instantaneous information across locations and channels, missing the temporal

6https://power.larc.nasa.gov/
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Table 3: Ablation study. Results are averaged across 3 runs. 2(3T - G - g) represents the architecture
for which results are presented in the main text of the paper.

CH. TEMP. TEMP. TEMP. WIND REL. PREC. TEMP. CLOUDS IRR. IRR. AVG

MEAN RANGE MAX SPEED HUM. DEW SHORT LONG (D)

2(3T - G) 9.2±0.5 25.9±3.0 8.4±1.2 33.1±1.1 8.5±0.4 83.0±3.7 14.8±1.6 33.1±0.6 17.7±1.5 4.5±0.1 23.8±0.7

2(G - g) 4.8±0.8 18.5±2.4 3.9±1.0 28.0±2.4 5.6±0.8 69.1±0.7 7.6±1.3 20.6±1.9 11.3±1.2 3.2±0.2 17.3±1.1

2(3T - g) 3.1±0.2 11.9±0.7 2.5±0.3 29.1±0.9 2.8±0.5 68.0±3.0 4.9±0.2 20.8±0.4 14.1±1.0 3.4±0.3 16.1±0.4

2(3T - G - g) 2.6±0.2 10.9±1.7 2.6±0.3 25.0±1.4 2.8±0.3 61.7±1.4 4.4±0.5 17.3±0.4 9.2±0.8 3.2±0.2 14.0±0.1

context. Removing the G-convolution, i.e., 2(3T - g), negates the model from exploiting information
from other locations at inference. This variant has access to the same information as other models
that do not consider spatial information, e.g., SAITS.

E.3 GEOGRAPHICALLY ISOLATED LOCATIONS

In this section, we qualitatively discuss the disadvantages of graph-based approaches in reconstruct-
ing virtual sensors in geographically sparse locations. This is done, in Fig. 6 (left), by an illustrative
example on the daily climatic dataset. The plot compares the reconstruction of the maximum tem-

Figure 6: (Left) Reconstruction of maximum temperature (well correlated with other available vari-
ables) in Port-aux-Français, which cannot exploit observations at nearby locations as geographically
isolated in the south Indian Ocean. (Right) colourmap visualization of the GgNet’s learned intra-
location graph (g), representation of the mutual dependencies between climatic channels.

perature channel, with different models, in Port-aux-Français, a geographically isolated location in
the south Indian Ocean. For such a remote location, no information can be inferred from nearby
points, making T → Y dependencies ineffective in performing virtual sensing. As a consequence,
graph-based methods, e.g., GRIN, heavily underperform, as they rely on geographical proximity to
build the graph and model spatial dependencies. On the contrary, GgNet or global recurrent mod-
els, e.g., SAITS, can effectively infer the missing channel by leveraging, at the target location, the
learned dependencies between the target and the available covariates (C → Y dependencies). With
the intent of enhancing this effect, we deliberately choose maximum temperature as target variable,
which is highly correlated with other variables in the dataset.

E.4 LEARNED DEPENDENCIES BETWEEN VARIABLES

In GgNet, relationships between channels are accounted for by means of the intra-location graph g.
In particular, we learn the edge scores of its adjacency matrix from a D × D free parameter matrix,
normalized with a softmax function. In Fig. 6 (right) we provide a colourmap visualization of the
learned weighted (dense and bidirected) adjacency matrix. Interestingly, after processing the daily
climatic dataset, several meaningful correlations have been captured: e.g., temperatures correlate
with each other; temperature range affects precipitation and wind speed; relative humidity corre-
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lates with temperatures, precipitation and wind speed; precipitation correlate with clouds; longwave
irradiation correlates with clouds and shortwave irradiation.

E.5 LOCATION-WISE ANALYSIS

Tables throughout the paper present results in a channel-wise fashion, i.e., for each channel d, per-
formance metrics are averaged across test locations. In this additional analysis, we present, for the
daily climatic dataset, results averaged across variables, i.e., location-wise results. With this anal-

Figure 7: (left) location-wise analysis of GgNet performance over SAITS for the daily climatic
dataset. (right) Robustness of GgNet to the fraction of masked training channels on the daily climatic
dataset.

ysis, we aim to demonstrate that the improvement of GgNet over SAITS is not restricted to a few
critical locations but is actually spread across the considered locations. As evidenced by Fig. 7 (left),
GgNet improves over SAITS for ∼ 2/3 of the considered target locations.

E.6 ROBUSTNESS TESTS

With reference to Sec. 4.4, the training of GgNet and the adopted baselines is guided by means of a
specific mask. In particular, we mask out a fraction of the available training channels (entirely for
all timestamps in a batch) and train the models to reconstruct such masked portions of data. This is
a core aspect, as it pushes the training toward learning the virtual-sensing task. In this regard, we
investigate the accuracy of GgNet on the daily climatic dataset for different values of the fraction of
masked training channels. The study is reported in Fig. 7 (right); the model’s layer organization is
4T - 2(G-g), model’s hidden size is h = 64, without residual connections and variable embeddings
(Eg). Results show a rapid improvement as soon as a small fraction is used, followed by robust
performances.

E.7 UNCERTAINTY ESTIMATES

Virtual sensing models are often employed to guide decision-making at unsampled locations. In
this regard, it is important to pair the estimate for the virtual channel with a prediction of the corre-
sponding uncertainty. In fact, channels at some locations may be, in principle, more challenging to
reconstruct than others. In GgNet, uncertainty estimates are obtained by employing the sum of three
quantile losses (Appendix C.1). Fig. 8 explores four different scenarios where the reconstruction is
gradually more challenging. The extent of the uncertainty estimates is consistent with the dominant
factors in assessing the quality of the predictions, i.e., the correlation between the target and the
available covariates and the presence of similar latent representations in the training set.

E.8 OTHER METRICS

Results are provided in the main text in terms of the most relevant metric for the task at hand. This is
MRE for the climatic dataset, as different channels are expressed in different units, and MAE for the
photovoltaic dataset, as power output is the only variable being reconstructed. Here, we also define
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Figure 8: Daily climatic dataset: GgNet predictions for different channels at different locations,
uncertainty estimates appear consistent with the difficulty of the reconstruction.

a custom metric, Variance Rescaled Error (VRE), tailored to this task:

VRE(x̂d[n], xd[n]) =
1

T

T∑
t=1

| x̂d
t [n]− xd

t [n] |
σd[n]

(18)

where x̂d[n] and xd[n] are the predicted and true d-th channel in n-th location, σd[n] is the standard
deviation along the temporal axis of the true signal. Results are consistent across different metrics.
We support this statement by reporting below the testing accuracy, for all experiments, in terms
of the other metrics. Specifically, Tab. 6 contains the channel-wise results for the hourly climatic
dataset that were omitted from Tab. 1 to respect the space constraints.

Table 4: Daily climatic dataset: channel-wise MAE. Results are averaged across locations and 5
random seeds. The best-performing method is in bold, the second-best is underlined.

CH. TEMP. TEMP. TEMP. WIND REL. PREC. TEMP. CLOUDS IRR. IRR.
MEAN RANGE MAX SPEED HUM. DEW SHORT LONG

KNN 3.21±0.39 2.84±0.26 2.97±0.35 1.47±0.19 9.00±0.30 2.93±0.27 3.49±0.39 19.53±0.33 36.46±1.02 21.87±3.23

BRITS 0.82±0.09 1.19±0.16 0.78±0.12 1.40±0.04 4.04±0.64 2.30±0.21 1.22±0.15 17.16±0.65 42.41±2.18 12.49±1.05

GRIN 0.86±0.10 1.26±0.14 1.04±0.11 1.33±0.06 4.15±0.48 2.20±0.16 1.26±0.12 16.70±0.32 31.14±1.22 14.30±0.92

GRINm 0.59±0.16 0.88±0.09 0.67±0.12 1.33±0.12 2.64±0.65 2.00±0.19 0.93±0.14 11.79±0.39 23.70±0.94 13.13±1.22

SAITS 0.49±0.07 0.76±0.10 0.56±0.10 1.17±0.05 2.42±0.75 1.88±0.20 0.73±0.14 11.86±0.38 28.80±1.58 10.07±0.78

GGNET 0.42±0.07 0.65±0.02 0.48±0.06 1.04±0.08 1.98±0.55 1.73±0.13 0.62±0.12 9.48±0.35 18.73±1.42 10.39±0.81

RNN 1.16±0.10 1.49±0.13 1.40±0.12 1.42±0.05 5.08±0.50 2.39±0.20 1.57±0.14 20.38±0.24 44.15±1.02 13.97±1.17

RNNbi 0.87±0.09 1.30±0.14 1.12±0.10 1.35±0.06 4.34±0.47 2.22±0.16 1.25±0.13 18.06±0.19 38.59±0.90 13.13±1.21

RNNemb 0.85±0.07 1.19±0.12 1.03±0.08 1.31±0.07 4.01±0.46 2.20±0.18 1.23±0.13 17.36±0.26 35.48±1.18 13.18±0.71

RNNG 0.74±0.04 1.12±0.12 0.94±0.07 1.20±0.06 3.80±0.30 2.13±0.20 1.06±0.11 15.90±0.33 28.47±1.09 13.04±1.13
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Table 5: Daily climatic dataset: channel-wise VRE (%). Results are averaged across locations and
5 random seeds. The best-performing method is in bold, the second-best is underlined.

CH. TEMP. TEMP. TEMP. WIND REL. PREC. TEMP. CLOUDS IRR. IRR. AVG

MEAN RANGE MAX SPEED HUM. DEW SHORT LONG (D)

KNN 105.8±15.3 213.3±55.6 90.9±7.4 116.4±26.3 102.3±3.4 56.8±4.2 100.8±10.0 72.1±2.7 59.7±3.7 95.9±14.8 101.4±9.3

BRITS 27.5±3.1 75.1±11.2 23.4±3.4 104.0±13.2 45.2±6.6 41.6±1.2 30.9±4.1 63.7±3.4 67.2±4.4 53.9±5.2 53.2±1.9

GRIN 29.7±3.6 75.8±12.2 31.0±2.5 99.4±13.7 48.2±4.1 39.9±1.4 36.1±2.1 61.5±1.6 50.4±3.0 64.3±9.5 53.6±3.2

GRINm 23.3±5.1 55.6±7.3 21.9±5.2 101.8±18.5 30.1±6.6 37.0±2.8 27.4±3.1 43.6±1.8 39.6±3.3 64.8±10.2 44.5±2.7

SAITS 16.8±1.4 44.8±5.5 16.5±2.9 88.8±8.9 26.0±7.4 33.7±1.6 20.1±3.2 44.0±2.1 47.5±5.4 45.2±5.7 38.3±1.5

GGNET 14.6±3.2 35.8±3.0 14.4±1.8 80.5±14.5 22.1±5.3 30.9±1.3 17.3±2.2 35.2±1.7 31.3±3.8 48.9±6.3 33.1±1.9

RNN 37.2±4.1 89.6±5.4 39.3±3.6 105.2±12.0 56.8±4.3 44.0±2.2 42.0±2.6 74.7±1.1 69.1±3.3 60.0±7.0 61.8±1.1

RNNbi 28.9±3.4 74.8±9.8 32.7±3.3 101.0±11.6 48.7±4.2 40.9±2.2 33.3±2.0 66.4±1.8 61.4±3.9 57.3±7.5 54.5±0.8

RNNemb 26.9±4.1 63.2±3.8 29.7±3.0 99.8±12.7 45.8±3.9 40.0±1.4 33.3±3.0 63.8±1.4 57.3±4.6 58.4±7.8 51.8±2.3

RNNG 24.5±3.2 60.2±2.5 28.0±2.3 93.1±11.8 43.6±2.4 38.6±2.0 29.0±2.1 58.5±1.5 46.2±3.3 58.6±10.5 48.0±2.0

Table 6: Hourly climatic dataset: channel-wise MRE (%). Results are averaged across locations and
5 random seeds. The best-performing method is in bold, the second-best is underlined.

CH. TEMP. WIND REL. PREC. TEMP. IRR. IRR. AVG

MEAN SPEED HUM. DEW SHORT LONG (H)

KNN 15.9±2.4 38.0±5.2 14.6±1.8 133.6±7.8 23.1±3.4 21.4±1.9 6.7±0.4 36.2±1.9

BRITS 7.4±2.5 34.6±1.4 6.5±1.2 85.4±1.1 9.1±1.5 36.5±2.0 4.6±0.4 26.3±0.8

GRIN 6.5±2.3 35.5±1.0 5.3±1.1 86.9±2.3 8.6±1.2 16.2±1.0 4.4±0.3 23.3±0.7

GRINm 6.0±2.2 34.5±2.1 4.8±0.9 85.5±1.1 8.0±1.4 16.1±0.8 4.3±0.3 22.7±0.4

SAITS 4.7±1.8 29.0±0.8 4.3±0.8 82.8±1.2 6.6±1.2 24.4±1.6 3.7±0.2 22.2±0.5

GGNET 4.5±1.9 29.2±2.5 4.3±0.7 78.4±1.1 5.7±0.9 17.4±3.8 3.6±0.2 20.4±0.6

RNN 8.0±2.7 38.9±1.3 6.6±0.8 90.8±1.3 9.7±1.5 43.2±3.3 4.5±0.3 28.8±0.8

RNNbi 5.9±2.0 36.5±1.5 5.3±0.9 87.1±1.3 7.7±1.2 33.3±2.0 4.1±0.3 25.7±0.5

RNNemb 6.6±2.8 36.4±0.9 5.6±1.1 86.8±1.1 8.2±1.5 35.6±3.2 4.5±0.4 26.2±0.9

RNNG 5.7±2.4 32.2±2.7 5.1±0.9 83.0±3.0 7.1±1.0 25.1±2.7 4.0±0.4 23.2±1.1

Table 7: Hourly climatic dataset: channel-wise MAE. Results are averaged across locations and 5
random seeds. The best-performing method is in bold, the second-best is underlined.

CH. TEMP. WIND REL. PREC. TEMP. IRR. IRR.
MEAN SPEED HUM. DEW SHORT LONG

KNN 3.24±0.29 1.64±0.25 10.59±1.05 0.16±0.01 3.54±0.49 43.52±4.19 24.54±1.55

BRITS 1.49±0.44 1.49±0.13 4.68±0.76 0.10±0.01 1.39±0.24 74.13±4.00 16.84±1.39

GRIN 1.32±0.42 1.53±0.09 3.84±0.74 0.10±0.01 1.31±0.20 32.91±2.22 15.99±1.11

GRINm 1.23±0.40 1.49±0.16 3.47±0.60 0.10±0.00 1.22±0.23 32.74±1.75 15.60±0.99

SAITS 0.96±0.32 1.25±0.08 3.11±0.50 0.10±0.01 1.00±0.18 49.67±3.34 13.31±0.77

GGNET 0.91±0.35 1.26±0.14 3.11±0.47 0.09±0.01 0.87±0.15 35.28±7.33 13.14±0.49

RNN 1.61±0.48 1.68±0.12 4.76±0.50 0.11±0.00 1.49±0.23 87.86±6.70 16.21±1.09

RNNbi 1.19±0.37 1.57±0.13 3.82±0.59 0.10±0.01 1.18±0.18 67.75±4.15 15.00±1.08

RNNemb 1.34±0.51 1.57±0.09 4.09±0.71 0.10±0.01 1.25±0.24 72.50±7.11 16.29±1.30

RNNG 1.14±0.43 1.39±0.14 3.72±0.62 0.10±0.00 1.09±0.17 50.99±5.59 14.71±1.28
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Table 8: Hourly climatic dataset: channel-wise VRE (%). Results are averaged across locations and
5 random seeds. The best-performing method is in bold, the second-best is underlined.

CH. TEMP. WIND REL. PREC. TEMP. IRR. IRR. AVG

MEAN SPEED HUM. DEW SHORT LONG (H)

KNN 77.4±5.2 96.9±13.9 83.9±11.9 49.1±6.6 106.9±21.2 16.3±1.4 83.5±8.3 73.4±4.1

BRITS 35.9±7.0 83.3±4.4 36.1±5.8 29.0±0.8 38.4±5.0 26.8±1.5 59.2±6.5 44.1±2.9

GRIN 37.8±7.1 85.0±2.2 32.6±8.2 29.2±1.1 42.7±8.6 12.2±0.8 59.1±4.3 42.7±1.1

GRINm 40.1±8.3 82.8±6.3 30.0±5.5 29.2±0.4 40.0±8.3 12.1±0.6 58.2±7.4 41.8±2.7

SAITS 24.3±4.3 69.9±4.0 25.5±3.5 28.3±0.6 28.1±3.7 18.3±1.3 46.5±1.1 34.4±1.3

GGNET 24.0±6.0 70.6±2.8 26.3±5.2 27.3±1.4 25.3±3.1 12.9±2.5 46.9±4.4 33.3±0.9

RNN 40.5±7.2 93.5±4.7 36.5±4.2 31.2±0.9 44.3±4.5 31.8±2.3 56.0±2.0 47.7±2.0

RNNbi 29.9±5.9 87.4±4.3 30.5±5.4 29.5±1.0 33.3±3.1 24.8±1.4 51.7±2.2 41.0±1.3

RNNemb 35.6±8.4 88.4±3.2 33.8±6.9 29.1±1.0 33.9±2.9 26.2±2.5 57.2±1.8 43.4±2.2

RNNG 32.9±11.1 78.0±4.6 31.0±6.6 27.8±1.6 33.7±5.0 18.5±1.8 52.9±2.2 39.3±2.7

Table 9: Photovoltaic dataset: MRE (%). For each N, results are averaged across 5 sampling of the
locations and 5 different runs for each set (25 runs in total). The best-performing method is in bold,
the second-best is underlined.

NLOCATIONS 10 20 30 50 70 100 150 200

GRIN 20.1± 6.3 18.8± 2.7 18.6± 2.2 18.2± 2.2 18.8± 1.8 18.4± 1.4 18.3± 1.7 18.5± 1.6

GRINm 17.2± 4.7 16.0± 2.4 15.6± 2.1 15.0± 1.5 15.1± 1.2 14.8± 0.8 14.6± 0.7 14.6± 0.6

SAITS 16.0± 3.0 15.8 ± 2.3 15.6± 1.8 15.1± 1.4 15.4± 1.3 14.7± 1.0 14.6± 0.7 14.6± 0.7

GGNET 15.6 ± 3.5 15.9± 2.0 15.3 ± 1.9 14.7 ± 1.5 14.5 ± 1.3 13.7 ± 1.0 12.8 ± 0.7 12.5 ± 0.7

Table 10: Photovoltaic dataset: VRE (%). For each N, results are averaged across 5 sampling of the
locations and 5 different runs for each set (25 runs in total). The best-performing method is in bold,
the second-best is underlined.

NLOCATIONS 10 20 30 50 70 100 150 200

GRIN 40.7± 11.9 38.2± 4.3 37.8± 3.6 36.0± 2.5 37.4± 2.7 37.0± 2.1 36.9± 2.8 37.4± 3.0

GRINm 34.8± 7.1 32.8± 4.1 31.7± 3.3 29.8± 1.8 30.3± 1.7 30.0± 1.2 29.5± 1.2 29.8± 1.2

SAITS 32.8± 4.6 32.4 ± 3.8 31.7± 2.6 30.0± 2.0 30.8± 1.9 29.7± 1.3 29.5± 1.2 29.6± 1.3

GGNET 31.8 ± 4.4 32.6± 3.4 31.2 ± 2.6 29.2 ± 2.0 29.0 ± 2.0 27.8 ± 1.7 26.0 ± 1.4 25.5 ± 1.4
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