
Under review as a conference paper at ICLR 2023

ARCHITECTURE MATTERS IN CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A large body of research in continual learning is devoted to overcoming the catas-
trophic forgetting of neural networks by designing new algorithms that are robust
to the distribution shifts. However, the majority of these works are strictly focused
on the algorithmic part of continual learning for a fixed neural network architecture,
and the implications of using different architectures are not clearly understood. The
few existing continual learning methods that expand the model also assume a fixed
architecture and develop algorithms that can efficiently use the model throughout
the learning experience. In contrast, in this work, we build on existing works that
study continual learning from a neural network’s architecture perspective and pro-
vide new insights into how the architecture choice, for the same learning algorithm,
can impact stability-plasticity trade-off resulting in markedly different continual
learning performance. We empirically analyze the impact of various architectural
components providing best practices and recommendations that can improve the
continual learning performance irrespective of the learning algorithm.

1 INTRODUCTION

Continual learning (CL) (Ring, 1995; Thrun, 1995) is a branch of machine learning where the model
is exposed to a sequence of tasks with the hope of exploiting existing knowledge to adapt quickly to
new tasks. The research in continual learning has seen a surge in the past few years with the explicit
focus of developing algorithms that can alleviate catastrophic forgetting (McCloskey & Cohen,
1989)—whereby the model abruptly forgets the information of the past when trained on new tasks.

While most of the research in continual learning is focused on developing learning algorithms, that
can perform better than naive fine-tuning on a stream of data, the role of model architecture, to
the best of our knowledge, is not explicitly studied in any of the existing works. Even the class of
parameter isolation or expansion-based methods, for example (Rusu et al., 2016; Yoon et al., 2018),
only have a cursory focus on the model architecture insofar that they assume a specific architecture
and develop an algorithm operating on the architecture. Orthogonal to this direction for designing
algorithms, our motivation is that the inductive biases induced by different architectural components
could be important for continual learning irrespective of the learning algorithm. Therefore, we seek
to characterize the implications of different architectural choices in continual learning.

To motivate our study, consider a ResNet-18 model (He et al., 2016) on Split CIFAR-100, where
CIFAR-100 dataset (Krizhevsky et al., 2009) is split into 20 disjoint sets—a prevalent architecture
and benchmark in the existing continual learning works. Fig. 1a shows that explicitly designed CL
algorithms, EWC (Kirkpatrick et al., 2017) (a parameter regularization-based method) and experience
replay (Riemer et al., 2018) (a memory-based CL algorithm) indeed improve upon the naive fine-
tuning. However, similar or better performance can be obtained on this benchmark by simply
removing the global average pooling layer from ResNet-18 and performing the naive fine-tuning.
This clearly demonstrates the need for a better understanding of network architectures in the context
of continual learning where the architectural choices are not solely based on the performance of a
single task but on a trade-off between the learning of new and previous tasks. Similar observation,
though in more limited scenarios have been previously studied, for example Mirzadeh et al. (2022)
looks at the role of layer width, while Ramasesh et al. (2022) focuses on the scale of the model. We
build on these works, extending the analysis to architecture choices as well understanding particular
components typically used like batch norm. It is also useful to note that these observations do not
imply that the algorithmic improvements are not important. In fact, we show in Appendix B that one
can achieve even better performance by combining our architectural findings with specially designed
continual learning algorithms.

1



Under review as a conference paper at ICLR 2023

1 5 10 15 20
Tasks Learned

40

50

60

70

80

A
ve

ra
ge

A
cc

ur
ac

y

RN18 w/o GAP - Finetune

RN18 - Finetune

RN18 - ER (1000)

RN18 - EWC

(a)

1 5 10 20 25 40 45

Params (M)

40

50

60

70

80

F
in

al
A

ve
ra

ge
A

cc
ur

ac
y

RN-18 RN-34

RN-50 RN-101

WRN-10-2

WRN-10-10

WRN-16-2

WRN-16-10 WRN-28-10
ViT-512

ViT-1024
CNNx1

CNNx2

CNNx4
CNNx8

CNNx16

(b)

1 5 10 20 25 40 45

Params (M)

10

20

30

40

F
in

al
A

ve
ra

ge
F

or
ge

tt
in

g

CNNx1
CNNx2

CNNx4 CNNx8
CNNx16

RN-18
RN-34

RN-50 RN-101

WRN-10-2

WRN-10-10

WRN-16-2

WRN-16-10
WRN-28-10

ViT-512

ViT-1024

(c)

Figure 1: Split CIFAR-100: (a) While compared to naive fine-tuning, continual learning algorithms
such as EWC and ER improve the performance, a simple modification to the architecture (removing
global average pooling (GAP) layer) can match the performance of ER with a replay size of 1000
examples. (b) and (c) Different architectures lead to very different continual learning performance
levels in terms of accuracy and forgetting. This work will investigate the reasons behind these gaps
and provide insights into improving architectures.

To understand the implications of architectural decisions in continual learning, we thoroughly study
different architectures including MLPs, CNNs, ResNets, Wide-ResNets and Visual Transformers.
Our experiments suggest that different components of these architectures can have different effects on
the relevant continual learning metrics—namely average accuracy, forgetting, and learning accuracy
(cf. Sec. 2.1)—to the extent that vanilla fine-tuning with modified components can achieve similar
of better performance than specifically designed CL methods on a given base architecture without
significantly increasing the parameters count.

Contributions. We summarize our main contributions as follows:

• We compare both the learning and retention capabilities of popular architectures. We study the role
of individual architectural decisions (e.g., width and depth, batch normalization, skip-connections,
and pooling layers) and how they can impact the continual learning performance.

• We show that, in some cases, simply modifying the architecture can achieve a similar or better
performance compared to specifically designed CL algorithms (on top of a base architecture).

• In addition to the standard CL benchmarks, Rotated MNIST and Split CIFAR-100, we report
results on the large-scale Split ImageNet-1K benchmark, which is rarely used in the CL literature,
to make sure our results hold in more complex settings.

• Inspired by our findings, we provide practical suggestions that are computationally cheap and can
improve the performance of various architectures in continual learning.

Limitations. We emphasize that our main focus is to illustrate the significance of architectural
decisions in continual learning. We do not claim that this work covers all the possible permutations
of architectural components and different continual learning scenarios. Consequently, the majority of
our experiments are focused on the task-incremental setup with popular architectures. However, our
results in Appendix B.5 for the class-incremental setup confirm our results for the task-incremental
setup. Moreover, the secondary aim of this work is to be a stepping-stone that encourages further
research on the architectural side of continual learning. That is why we focus on the breadth rather
than depth of some topics. Finally, while there are a limited number of works in the literature that
study the role of architecture in continual learning, in Sec. 5 we will discuss why those works solely
focus on specific topics while this work draws a comprehensive and general picture. We believe our
work provides many interesting directions that require deeper analysis beyond the scope of this paper
but can significantly improve our understanding of continual learning.

2 COMPARING ARCHITECTURES

2.1 EXPERIMENTAL SETUP

Here, for brevity, we explain our experimental setup but postpone more detailed information (e.g.,
hyper-parameters, details of architectures, etc.) to Appendix A.

Benchmarks. We use three continual learning benchmarks for our experiments. The Split CIFAR-
100 includes 20 tasks where each task has the data of 5 classes (disjoint), and we train on each task
for 10 epochs. The Split ImageNet-1K includes 10 tasks where each task includes 100 classes of

2



Under review as a conference paper at ICLR 2023

ImageNet-1K and we train on each task for 60 epochs. Finally, for a few experiments, we use the
small Rotated MNIST benchmark with 5 tasks where the first task is the standard MNIST dataset,
and each of the subsequent tasks adds 22.5 degrees of rotation to the images of the previous task. We
note that the Split CIFAR-100 and Split ImageNet-1K benchmarks use a multi-head classification
layer, while the MNIST benchmark uses a single-head classification layer. Thus, Split CIFAR-100
and Split ImageNet-1K belong to the so-called task incremental learning setting, whereas Rotated
MNIST belongs to domain incremental learning (Hsu et al., 2018). Finally, for Split CIFAR-100 and
Split ImageNet-1K benchmarks, we randomly shuffle the labels in each run, for 5 runs, to ensure that
the results are not biased towards a specific dataset ordering.

Architectures. We denote each architecture with a descriptor. MLP-N represents fully connected
networks with hidden layers of width N. Convolutions neural networks (CNN) are represented by
CNN×N where N is the multiplier of the number of channels in each layer. Unless otherwise stated,
the CNNs have only convolutional layers (with a stride of 2), followed by a dense feed-forward
layer for classification. For the CIFAR-100 experiments, we use three convolutional layers, and
for the ImageNet-1K experiments, we use six convolutional layers. Moreover, whenever we add
pooling layers, we change the convolutional layer strides to 1 to keep the dimension of features the
same. The standard ResNet (He et al., 2016) of depth D is denoted by ResNet-D and WideResNets
(WRN) (Zagoruyko & Komodakis, 2016) are denoted by WRN-D-N where D and N are the depths
and widths, respectively. Finally, we also use the recently proposed Vision Transformers (ViT) (Doso-
vitskiy et al., 2021). For the ImageNet-1K experiments, we follow the naming convention in the
original paper (Dosovitskiy et al., 2021). However, for the Split CIFAR-100 experiments, we use
smaller versions of ViTs where ViT N/M stands for a 4-layer vision transformer with the hidden size
of N and MLP size of M. For each architecture, we search over a large grid of hyper-parameters and
report the best results. Further, we average the results over 5 different random initializations, for the
corresponding best hyper-parameters, and report the average and standard deviations.

Metrics. We are interested in comparing different architectures from two aspects: (1) how well
an architecture can learn a new task i.e. their learning ability and (2) how well an architecture
can preserve the previous knowledge i.e. their retention ability. For the former, we record average
accuracy, learning accuracy, and joint/ multi-task accuracy, while for the latter we measure the
average forgetting of the model. We now define these metrics.
(1) Average Accuracy ∈ [0, 100] (the higher the better): The average validation accuracy after the
model has been continually trained for T tasks is defined as: AT = 1

T

∑T
i=1 aT,i, where, at,i is the

validation accuracy on the dataset of task i after the model finished learning task t.
(2) Learning Accuracy ∈ [0, 100] (the higher the better): The accuracy for each task directly after it
is learned. The learning accuracy provides a good representation of the plasticity of a model and can be
calculated using: LAT = 1

T

∑T
i=1 ai,i. Note that for both Split CIFAR-100 and ImageNet-1K bench-

marks, since tasks include images with disjoint labels, the standard deviation of this metric can be high.
(3) Joint Accuracy ∈ [0, 100] (the higher the better): The accuracy of the model when trained on
the data of all tasks together.
(4) Average Forgetting ∈ [−100, 100] (the lower the better): The average forgetting is calculated
as the difference between the peak accuracy and the final accuracy of each task, after the continual
learning experience is finished. For a continual learning benchmark with T tasks, it is defined as:
F = 1

T−1
∑T−1

i=1 maxt∈{1,...,T−1} (at,i − aT,i).

2.2 RESULTS

We first compare different architectures on the Split CIFAR-100 and Split ImageNet-1K benchmarks.
While this section broadly focuses on the learning and retention capabilities of different architectures,
the explanations behind the performance gaps across different architectures and the analysis of
different architectural components is given in the next section.

Tab. 1 lists the performance of different architectures on Split CIFAR-100 benchmark. One can make
several observations from the table. First, very simple CNNs, which are not state-of-the-art (SOTA)
in the single image classification tasks, significantly outperform both the ResNets, WRNs, and ViTs
(all SOTA architectures in image classification) in terms of average accuracy and forgetting. This
observation holds true for various sizes of widths and depths in all the architectures. A similar overall
trend where, for a given parameter count, simple CNNs outperform other architectures, can also be
seen in Fig. 1b and 1c. This shows that architectures that are cross-validated for a single task in an
IID fashion are not necessarily optimal for continual learning settings.

3



Under review as a conference paper at ICLR 2023

Table 1: Split CIFAR-100: the learning and re-
tention capabilities can vary significantly across
different architectures.

Model Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

CNN x1 0.3 62.2 ±1.35 12.6 ±1.14 74.1±7.72
CNN x2 0.8 66.3 ±1.12 10.1 ±0.98 75.8 ±7.2
CNN x4 2.3 68.1 ±0.5 8.7 ±0.21 76.4 ±6.92
CNN x8 7.5 69.9 ±0.62 8.0 ±0.71 77.5 ±6.78
CNN x16 26.9 76.8 ±0.76 4.7 ±0.84 81.0 ±6.97

ResNet-18 11.2 45.0 ±0.63 36.8 ±1.08 74.9 ±3.98
ResNet-34 21.3 44.8 ±2.34 39.9 ±2.28 72.6 ±6.34
ResNet-50 23.6 56.2 ±0.88 9.5 ±0.38 67.8 ±5.09
ResNet-101 42.6 56.8 ±1.62 9.2 ±0.89 65.7±5.42

WRN-10-2 0.3 50.5 ±2.65 36.5 ±2.74 84.5 ±5.04
WRN-10-10 7.7 56.8 ±2.03 31.7 ±1.34 86.7 ±4.94
WRN-16-2 0.7 44.6 ±2.81 41.4 ±1.43 82.4 ±6.09
WRN-16-10 17.3 51.3 ±1.47 37.6 ±2.22 86.9 ±3.96
WRN-28-2 5.9 46.6 ±2.27 39.5 ±2.29 82.5 ±6.26
WRN-28-10 36.7 49.3 ±2.02 35.8 ±2.56 82.5 ±6.26

ViT-512/1024 8.8 51.7 ±1.4 21.9 ±1.3 71.4 ±5.52
ViT-1024/1546 30.7 60.4 ±1.56 12.2 ±1.12 67.4 ±5.57

Table 2: Split ImageNet-1K: the learning and re-
tention capabilities can vary significantly across
different architectures.

Model Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

CNN x3 9.1 63.3 ±0.68 5.4 ±0.93 71.6 ±2.31
CNN x6 24.2 66.7 ±0.62 3.9 ±0.86 70.1 ±3.21
CNN x12 72.4 67.8 ±1.04 2.8 ±0.7 70.3 ±2.82

ResNet-34 21.8 62.7 ±0.53 17.3 ±0.58 78.4 ±2.57
ResNet-50 25.5 66.1 ±0.69 19.0 ±0.67 83.3 ±1.57
ResNet-101 44.5 64.1 ±0.72 18.9 ±1.32 81.1 ±2.89

WRN-50-2 68.9 63.2 ±1.61 21.7 ±1.73 85.8 ±1.65

ViT-Base 86.1 58.3 ±0.65 15.9 ±1.11 72.8 ±2.25
ViT-Large 307.4 60.7 ±1.31 10.6 ±1.1 73.2 ±2.12

1 5 10 15 20
Tasks Learned

50

60

70

80

90

A
ve

ra
ge

A
cc

ur
ac

y

CNN x8

WRN-10-10

ViT 512/1024

Resnet 18

(a) Split CIFAR-100

1 2 3 4 5 6 7 8 9 10
Tasks Learned

60

65

70

75

80

85

A
ve

ra
ge

A
cc

ur
ac

y

CNN x12

WRN-50-2

ViT-Large

ResNet 101

(b) Split ImageNet-1K

Figure 2: Evolution of average accuracy for various architectures on (a) Split CIFAR-100: CNNs have
smaller forgetting than other architectures while WideResNets have the highest learning accuracy,
and (b) Split ImageNet-1K WideResNets and ResNets have higher learning accuracy than CNNs and
ViTs. However, the latter has smaller forgetting.

Second, a mere increase in the parameters count, within or across the architectures, does not nec-
essarily translate into the performance increase in continual learning. For instance, ResNet-18 and
ResNet-34 have roughly the same performance despite almost twice the number of parameters in the
latter. Similarly, WRN-10-10 outperforms WRN-16-10 and WRN 28-10, despite having significantly
less number of parameters. Note that we do not draw a general principle that overparametrization
is not helpful in continual learning. In fact, in some cases, it indeed is helpful as can be in the
across-the-board performance improvement when ResNet-34 is compared with ResNet-50 or when
the WRN-10-2 is compared to the WRN-10-10. In the next section, we will analyze when the
overparametrization can help the performance in continual learning.

Finally, explicitly comparing the learning and retention capabilities of different architectures, one can
see from the table that ResNets and WRNs have a higher learning accuracy suggesting that they are
better at learning a new task. This also explains their frequent use in single task settings. However, in
terms of retention, CNNs and ViTs are much better, as evidenced by their lower forgetting numbers.
This is further demonstrated in Fig. 2a (CIFAR-100) and Fig. 2b (ImageNet-1K), where ResNets and
WRNs learn each individual task much better resulting in a higher average accuracy for the first few
tasks. However, as the number of tasks increases, CNNs outperforms the other architectures due to
their smaller forgetting, eventually translating into an overall flatter average accuracy curve.

A trend similar to CIFAR-100 can also be seen in the ImageNet-1K benchmark as shown in Table 2.
However, the performance difference, as measured by the average accuracy, between CNNs and
other architectures is smaller compared to that of CIFAR-100. We believe that this is due to the very
high learning accuracy of other architectures compared to CNNs on this benchmark, and hence their

4



Under review as a conference paper at ICLR 2023

Table 3: Role of width and depth: increasing the number of parameters (by increasing width) reduces
the forgetting and hence increases the average accuracy. However, increasing the depth does not
necessarily improve the performance, and thus, it is essential to distinguish between scaling the
models by making them deeper and wider.

Benchmark Model Depth Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

Rot MNIST MLP-128 2 0.1 70.8 ±0.68 31.5 ±0.92 96.0 ±0.90
Rot MNIST MLP-128 8 0.2 68.9 ±1.07 35.4 ±1.34 97.3 ±0.76
Rot MNIST MLP-256 2 0.3 71.1 ±0.43 31.4 ±0.48 96.1 ±0.82
Rot MNIST MLP-256 8 0.7 70.4 ±0.61 32.1 ±0.75 96.3 ±0.77
Rot MNIST MLP-512 2 0.7 72.6 ±0.27 29.6 ±0.36 96.4 ±0.73

CIFAR-100 CNN x4 3 2.3 68.1 ±0.5 8.7 ±0.21 76.4 ±6.92
CIFAR-100 CNN x4 6 5.4 62.9 ±0.86 12.4 ±1.62 77.7 ±5.49
CIFAR-100 CNN x8 3 7.5 69.9 ±0.62 8.0 ±0.71 77.5 ±6.78
CIFAR-100 CNN x8 6 19.9 66.5 ± 1.01 10.7 ±1.19 76.6 ±4.78

CIFAR-100 ViT 512/1024 2 4.6 56.4 ±1.14 15.9 ±0.95 68.1 ±7.15
CIFAR-100 ViT 512/1024 4 8.8 51.7 ±1.4 21.9 ±1.3 71.4 ±5.52

frequent use in the single task settings, resulting in an improved final average accuracy. The average
forgetting of CNNs is still much smaller than other architectures.

Overall, from both tables, we conclude that ResNets and WRNs have better learning abilities, whereas
CNNs and ViTs have better retention abilities. In our experiments, simple CNNs achieve the best
trade-off between learning and retention. In the next section, we study the individual components of
these architectures to better understand their performance gap with respect to each other.

3 ROLE OF ARCHITECTURE COMPONENTS

We now study the individual components in various architectures to understand how they impact
continual learning performance. We start by generic structural properties in all architectures such
as width and depth (cf. Sec. 3.1), and show that as the width increases, the forgetting decreases. In
Sec. 3.2, we study the impact of batch normalization and observe that it can significantly improve the
learning accuracy in continual learning. Then, in Sec. 3.3, we see that adding skip connections (or
shortcuts) to CNNs does not necessarily improve the CL performance whereas pooling layers (cf.
Sec. 3.4 and Sec. 3.5) can have significant impact on learning accuracy and forgetting. Moreover, we
briefly study the impact of attention heads in ViTs in Sec. 3.6. Finally, based on the observations
we make in the aforementioned sections, in Sec. 4, we provide a summary of modifications that can
improve various architectures on both Split CIFAR-100 and ImageNet-1K benchmarks1.

3.1 WIDTH AND DEPTH

Tab. 3 shows that across all architectures, over-parametrization through increasing width is helpful
in improving the continual learning performance as evidenced by lower forgetting and higher average
accuracy numbers. For MLP, when the width is increased from 128 to 512, the performance in all met-
rics improves. However, for both MLP-128 and MLP-256 when the depth is increased from 2 to 8 the
average accuracy is reduced, and the average forgetting is increased with a marginal gain in learning
accuracy. Finally, note that MLP-256 with 8 layers has roughly the same number of parameters as the
MLP-512 with 2 layers. However, the wider MLP-512 has a better continual learning performance.

A similar analysis for ResNets and WideResNets is demonstrated in Tab. 1. ResNet-50 and ResNet-
101 are four times wider than ResNet-18 and ResNet-34, and from the table, it can be seen that this
width translates into drastic improvements in average accuracy and forgetting. Similarly, ResNet-34
and ResNet-101 are the deeper versions of ResNet-18 and ResNet-50, respectively. We can observe
that increasing the depth is not helpful in this case either. Finally, wider WRN-10-10, WRN-16-10, and
WRN-28-10 outperform the narrower WRN-10-2, WRN-10-10, WRN-28-10, respectively. Whereas
if we fix the width, increasing the depth is not helpful. Overall, we can see that overparametrization
through width is helpful in continual learning, whereas a similar claim cannot be made for the depth.

We note that Mirzadeh et al. (2022) studied the same width vs. depth trade-off in the task-incremental
setting and demonstrated that overparametrization through width induces lazy-training regime during
training and makes the gradients of different tasks more orthogonal and sparser, ultimately resulting in

1In this section, we duplicate some of the results across tables to improve readability.

5



Under review as a conference paper at ICLR 2023

Table 4: Role of various components for the Split CIFAR-100 benchmark: While adding skip
connections does not have a significant impact on the performance, batch normalization and max
polling can significantly improve the learning accuracy of CNNs.

Model Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

Joint
Accuracy

CNN x4 2.3 68.1 ±0.5 8.7 ±0.21 76.4 ±6.92 73.4 ±0.89
CNN x4 + Skip 2.4 68.2 ±0.56 8.9 ±0.72 76.6 ±7.07 73.8 ±0.47
CNN x4 + BN 2.3 74.0 ±0.56 8.1 ±0.35 81.7 ±6.68 80.2 ±0.16
CNN x4 + AvgPool 2.3 68.5 ±0.6 8.3 ±0.57 76.3 ±7.63 73.6 ±0.83
CNN x4 + MaxPool 2.3 74.4 ±0.34 9.3 ±0.47 83.3 ±6.1 79.9 ±0.53
CNN x4 + All 2.4 77.7 ±0.77 6.5 ±0.58 83.7 ±6.31 81.6 ±0.77

CNN x8 7.5 69.9 ±0.62 8.0 ±0.71 77.5 ±6.78 74.1 ±0.83
CNN x8 + Skip 7.8 70.7 ±0.31 6.8 ±0.91 77.1 ±6.87 74.4 ±0.35
CNN x8 + BN 7.5 76.1 ±0.3 5.9 ±0.16 81.7 ±6.83 80.5 ±0.27
CNN x8 + AvgPool 7.5 71.2 ±0.5 8.3 ±0.35 79.0 ±7.05 74.0 ±1.02
CNN x8 + MaxPool 7.5 77.2 ±0.53 7.1 ±0.33 84.0 ±5.81 80.6 ±0.35
CNN x8 + All 7.8 78.1 ±1.15 5.7 ±0.36 83.3 ±6.27 81.9 ±0.51

CNN x16 26.9 76.8 ±0.76 4.7 ±0.84 81.0 ±6.97 79.1 ±0.86
CNN x16 + All 27.9 78.9 ±0.27 4.5 ±0.36 82.9 ±6.48 82.1 ±0.46

better continual learning performance. Our results verify their conclusions on more benchmarks and
architectures. Moreover, we report the benefits of width in class-incremental setup in Appendix B.5.

Conclusion. Overall, in continual learning setups, over-parameterization thorough width can increase
the accuracy and decrease the forgetting across all architectures. Given the same computing budget,
wider and shallower networks can outperform thinner and deeper networks.

3.2 BATCH NORMALIZATION

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is a normalization scheme that is shown to increase
the convergence speed of the network due to its optimization and generalization benefits (Santurkar
et al., 2018; Bjorck et al., 2018). Another advantage of the BN layer is its ability to reduce the covariate
shift problem that is specifically relevant for continual learning where the data distribution may change
from one task to the next. There are relatively few works that have studied the BN in the context
of continual learning. Mirzadeh et al. (2020) analyzed the BN in continual learning through the
generalization lens. Concurrently to this work, Pham et al. (2022) study the normalization schemes in
continual learning and show that BN enables improved learning of each task. Additionally, the authors
showed that in the presence of a replay buffer of previous tasks, BN facilitates a better knowledge
transfer compared to other normalization schemes such as Group Normalization (Wu & He, 2018).

Intuitively, however, one might think that since due to evolving data distribution the BN statistics
are changing across tasks and the statistics of each task are not kept, the BN should contribute to an
increased forgetting. This is not the case in some of the experiments that we conducted. Similar to
the results in Mirzadeh et al. (2020); Pham et al. (2022), we found the BN to facilitate the learning
accuracy in Split CIFAR-100 and split ImageNet-1K (cf. Tab. 4 and Tab. 7).

We believe that this could be due to relatively unchanging BN statistics across tasks in these datasets.
To verify this, in Appendix B.2, we plot the BN statistics of the first layer of CNN×4 on the Split
CIFAR-100 dataset, and we show that the BN statistics are stable throughout the continual learning
experience. However, if this hypothesis were to be true, the converse – a benchmark where the BN
statistics change a lot across tasks, such as Permuted MNIST – should hurt the continual learning
performance. In Appendix B.3, we plot the BN statistics of the first layer of MLP-128 on Permuted
MNIST. It can be seen from the figure that indeed the BN statistics are changing in this benchmark.
As a consequence, adding BN to this benchmark significantly hurt the performance, as evidenced by
the increased forgetting in Tab. 9.

Conclusion. The effect of the batchnorm layer is data-dependent. In the setups where the input
distribution relatively stays stable, such as Split CIFAR-100 or Split ImageNet-1K, the BN layer
improves the continual learning performance by increasing the learning capability of the models.
However, for setups where the input distribution changes significantly across tasks, such as Permuted
MNIST, the BN layer can hurt the performance by increasing the forgetting.

6



Under review as a conference paper at ICLR 2023

3.3 SKIP CONNECTIONS

Skip connections (Cho et al., 2011), originally proposed for convolutional models by He et al. (2016),
are crucial in the widely used ResNet architecture. They are also used in many other architectures
such as transformers (Vaswani et al., 2017). Many works have been done to explain why skip
connections are useful: Hardt & Ma (2016) show that skip connection tends to eliminate spurious
local optima; Bartlett et al. (2018b) study the function expressivity of residual architectures; Bartlett
et al. (2018a) show that gradient descent provably learns linear transforms in ResNets; Jastrzebski
et al. (2017) show that skip connections tend to iteratively refine the learned representations.

However, these works mainly focus on learning a single task. In continual learning problems, due
to the presence of distribution shift, it is unclear whether these benefits of skip connections still
have a significant impact on model performance, such as forgetting and average accuracy over tasks.
We empirically study the impact of skip connection on continual learning problems. Interestingly,
as illustrated in Tab. 4, adding skip connections to plain CNNs does not change the performance
significantly, and the results are very close (within the standard deviation) of each other.

Conclusion. The skip connection does not show a significant positive or negative impact on the
model performance in our benchmarks.

3.4 POOLING LAYERS

Pooling layers were the mainstay of the improved performance of CNNs before ResNets. Pooling
layers not only add local translation invariances, which help in applications like object classifica-
tion (Krizhevsky et al., 2017; Dai et al., 2021), but also reduce the spatial resolution of the network
features, resulting in the reduction of computational cost. Since one family of the architectures that
we study are all-convolutional CNNs, we revisit the role of pooling layers in these architectures in a
continual learning setup.

We compare the network without pooling, CNN×N , against those that have pooling layers
(‘CNN×N +AvgPool’ or ‘CNN×N +MaxPool’) in Tab. 4. To keep the feature dimensions fixed, we
set the convolutional stride from 2 to 1 when pooling is used. We make the following observations
from the table. First, the average pooling (+AvgPool) does not have any significant impact on the
continual learning metrics. Second, max pooling (+MaxPool) improves the learning capability of the
network significantly, as measured by the improved learning accuracy. Third, in terms of retention,
pooling layers do not have a significant impact as measured by similar forgetting. All in all, max
pooling achieves the best average accuracy, owing to its superior learning capability.

The ability of max pooling to achieve better performance in a continual learning setting can be
attributed to a well-known empirical observation by Springenberg et al. (2015), where it is shown that
max pooling with stride 1 outperforms a CNN with stride 2 and no pooling. Further, we believe that
max pooling might have extracted the low-level features, such as edges, better, resulting in improved
learning in a dataset like CIFAR-100 that consists of natural images. There is some evidence in the
literature that max pooling provides sparser features and precise localization (Zhou et al., 2016). This
could have transferred over to the continual learning setup that we considered.

Conclusion. We believe the ability of max pooling for extracting low-level features, makes them a
suitable choice for increasing the learning capability of models, especially on datasets consisting of
natural images. Moreover, the intrinsic sparsity induced by max pooling in network may be helpful
in continual learning scenarios. However, it remains an interesting future direction to further study
the gains brought by max pooling in both the standard and continual learning setups.

3.5 GLOBAL POOLING LAYERS

Global average pooling (GAP) layers are typically used in convolutional networks just before the
final classification layer to reduce the number of parameters in the classifier. The consequence of
adding a GAP layer is to reduce the width of the final classifier. It is argued in Sec. 3.1 that wider
networks forget less. Consequently, the architectures with a GAP layer can suffer from increased
forgetting. Tab. 5 empirically demonstrate this intuition. From the table it can be seen that applying
the GAP layer significantly increases the forgetting resulting in a lower average accuracy. In the
previous section, we already demonstrated that average pooling does not result in a performance
decrease as long as the spatial feature dimensions are the same. To demonstrate that there is nothing
inherent to the GAP layer, and it is just a consequence of a reduced width of the final classifier, we
construct another baseline by multiplying the number of channels in the last convolutional layer by
16 and then apply the GAP. This network is denoted as “CNN x4 (16x)” in Tab. 5 and it has the same

7



Under review as a conference paper at ICLR 2023

Table 5: Role of Global Average Pooling (GAP) for Split CIFAR-100: related to our arguments in
Sec. 3.1, adding GAP to CNNs significantly increases the forgetting. Later, we show that removing
GAP from ResNets can also significantly reduce forgetting as well.

Model Params
(M)

Pre-Classification
Width

Average
Accuracy

Average
Forgetting

Learning
Accuracy

Joint
Accuracy

CNN x4 2.3 8192 68.1 ±0.5 8.7 ±0.21 76.4 ±6.92 73.4 ±0.89
CNN x4 + GAP 1.5 512 60.1 ±0.43 14.3 ±0.8 66.1 ±7.76 76.9 ±0.81
CNN x4 (16x) + GAP 32.3 8192 73.6 ±0.39 5.2 ±0.66 75.6 ±4.77 77.9 ±0.37

CNN x8 7.5 16384 69.9 ±0.62 8.0 ±0.71 77.5 ±6.78 74.1 ±0.83
CNN x8 + GAP 6.1 1024 63.1 ±2.0 14.7 ±1.68 70.1 ±7.18 78.3 ±0.97

CNN x16 26.9 32768 76.8 ±0.76 4.7 ±0.84 81.0 ±6.97 74.6 ±0.86
CNN x16 + GAP 23.8 2048 66.3 ±0.82 12.2 ±0.65 72.3 ±6.02 78.9 ±0.27

classifier width as that of the network without GAP. It can be seen this architecture has considerably
smaller forgetting showing GAP affects continual learning through the width of the final classifier.

Conclusion. Global pooling layers, while being computationally beneficial, reduce the dimensionality
of the final features resulting in low continual learning performance. A practical workaround could
be to use pooling layers with smaller filter sizes. Inspired by this observation, in Sec. 4 we show that
the performance of ResNets in continual learning can be significantly improved by either removing
the GAP layer or using the smaller average pooling window rather than the GAP.

3.6 ATTENTION HEADS

Table 6: Role of attention heads: for the Split
CIFAR-100 benchmark, increasing the num-
ber of attention heads (while fixing the total
width), does not impact the performance sig-
nificantly.

Model Heads Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

ViT 512/1024 4 8.8 50.9 ±0.73 23.8 ±1.3 72.8 ±6.13
ViT 512/1024 8 8.8 51.7 ±1.4 21.9 ±1.3 71.4 ±5.52

ViT 1024/1536 4 30.7 57.4 ±1.59 14.4 ±1.96 66.0 ±5.89
ViT 1024/1536 8 30.7 60.4 ±1.56 12.2 ±1.12 67.4 ±5.57

The attention mechanism is a prominent component
in the transformer-based architectures Vaswani et al.
(2017) that have had great success in natural language
processing and, more recently, computer vision tasks.
For the latter, the heads of vision transformers (ViTs)
are shown to attend to both local and global features
in the image Dosovitskiy et al. (2021).

For our experiments, we double the number of heads
while fixing the width to ensure that any change in
results is not due to the increased dimension of repre-
sentations. In Tab. 6, it can be seen that even doubling
the number of heads in ViTs only marginally helps in
increasing the learning accuracy and lowering the forgetting. This suggests that increasing the number
of attention heads may not be an efficient approach for improving continual learning performance
in ViTs. We, however, note that consistent with other observations in the literature (Paul & Chen,
2022), ViTs show promising robustness against distributional shifts as evidenced by lower forgetting
numbers, for the same amount of parameters, on the Split CIFAR-100 benchmark (cf. Fig. 1c).

Conclusion. While increasing the number of attention heads can improve the performance, the
gain is not substantial. We believe increasing the hidden dimension of ViTs is a better approach for
improving the performance if our computational budget allows for it.

4 PRACTICAL SUGGESTIONS FOR IMPROVING ARCHITECTURES

We now provide practical suggestions to improve the performance of architectures, that are derived
from our results in Sec. 3. For CNNs, we add BatchNormalization and MaxPooling, as they both are
shown to improve the learning ability of the model and skip connections that make the optimization
problem easier. Tab. 7 shows the results on both CIFAR-100 and ImageNet-1K. It can be seen from
the table that adding these components significantly improves the CNNs performance, as evidenced
by improvement over almost all the metrics, including average accuracy. In addition, motivated
by Sec. 3.1, we can use wider CNNs that have less forgetting and higher accuracy. For ResNets,
we either remove the GAP, as is the case with CIFAR-100, or locally average the features in the
penultimate layer by a 4x4 filter, as is the case with ImageNet-1K. The reason for not fully removing
the average pooling from the ImageNet-1K is the resultant large increase in the number of parameters
in the classifier layer. It can be seen from Tab. 7 that fully or partially removing the GAP, CIFAR-100
or ImageNet-1K, respectively, highly improves the retention capability of ResNets, indicated by their
lower forgetting.

8



Under review as a conference paper at ICLR 2023

Table 7: Improving CNNs and ResNets architectures on both Split CIFAR-100 and ImageNet-1K.

Model Benchmark Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

CNN x4 CIFAR-100 2.3 68.1 ±0.5 8.7 ±0.21 76.4 ±6.92
CNN x4 + BN + MaxPool + Skip CIFAR-100 1.5 77.7 ±0.77 6.5 ±0.58 83.7 ±6.31
CNN x8 CIFAR-100 7.5 69.9 ±0.62 8.0 ±0.71 77.5 ±6.78
CNN x8 + BN + MaxPool + Skip CIFAR-100 6.1 78.1 ±1.15 5.7 ±0.36 83.3 ±6.27

CNN x3 ImageNet-1K 9.1 63.3 ±0.68 5.8 ±0.93 71.6 ±2.31
CNN x3 + BN + MaxPool + Skip ImageNet-1K 9.1 66.4 ±0.47 5.4 ±0.3 74.7 ±2.1
CNN x6 ImageNet-1K 24.2 66.7 ±0.62 3.9 ±0.86 70.1 ±3.21
CNN x6 + BN + MaxPool + Skip ImageNet-1K 24.3 72.1 ±0.41 4.0 ±0.22 75.7 ±2.57

ResNet-18 CIFAR-100 11.2 45.0 ±0.63 36.8 ±1.08 74.9 ±3.98
ResNet-18 w/o GAP CIFAR-100 11.9 67.4 ±0.76 11.2 ±1.98 74.2 ±4.79
ResNet-50 CIFAR-100 23.6 56.2 ±0.88 9.5 ±0.38 67.8 ±5.09
ResNet-50 w/o GAP CIFAR-100 26.7 71.4 ±0.29 6.6 ±0.12 73.0 ±5.18

ResNet-34 ImageNet-1K 21.8 62.7 ±0.53 19.0 ±0.67 80.4 ±2.57
ResNet-34 w 4x4 AvgPool ImageNet-1K 23.3 66.0 ±0.24 4.2 ±0.16 70.2 ±3.87
ResNet-50 ImageNet-1K 25.5 66.1 ±0.69 17.3 ±0.58 83.3 ±1.57
ResNet-50 w 4x4 AvgPool ImageNet-1K 31.7 67.2 ±0.13 3.5 ±0.35 72.8 ±3.27

5 RELATED WORK

Algorithms. Perhaps the most related side of algorithms to our work is the parameter-isolation
methods where different parts of the model are devoted to a specific task (Yoon et al., 2018; Mallya
& Lazebnik, 2018; Wortsman et al., 2020). Often, these algorithms start with a fixed-size model,
and the algorithm aims to allocate a subset of the model for each task such that only a specific part of
the model is responsible for the knowledge for that task. For instance, PackNet (Mallya & Lazebnik,
2018) uses iterative pruning to free space for future tasks, while (Wortsman et al., 2020) propose
to fix with a randomly initialized and over-parameterized network to find a binary mask for each
task. Nevertheless, even though the focus of these methods is the model and its parameters, the main
objective is to have an algorithm that can use the model as efficiently as possible. Consequently,
the significance of the architecture is often overlooked. We believe our work is orthogonal to the
algorithmic side of continual learning research as any of the methods mentioned above can use a
different architecture for their proposed algorithm, as we have shown in Fig. 1a and Tab. 8.

Architectures. There have been some efforts on applying architecture search to continual
learning (Xu & Zhu, 2018; Huang et al., 2019; Gao et al., 2020; Li et al., 2019; Lee et al., 2021).
However, when it comes to architecture search, the current focus of continual learning literature
is mainly on deciding how to efficiently share or expand the model by delegating these decisions
to the controller. For instance, Lee et al. (2021) use a ResNet as the base model and propose a search
algorithm that decides whether the parameters should be reused or new parameters are needed for the
new task, and the implications of architectural decisions have not been discussed. We believe future
works that focus on the architecture search can benefit from our work by designing better search
spaces that include various components that we have shown are important in continual learning.
Finally, beyond architecture search methods, there are several works that focus on the non-algorithmic
side of CL. Mirzadeh et al. (2022) study the impact of width and depth on forgetting and show that
as width increases, the forgetting will decrease. Our work extends their analysis for larger-scale
ImageNet-1K benchmark, more architectures, and more setups. Recently, Ramasesh et al. (2022)
shows that in the pre-training setups, the scale of model and dataset can improve CL performance.
In this work, however, we study the learning and retention capabilities of various architectures when
models are trained from scratch. However, we show that while scaling the model can be helpful,
the impact of architectural decisions is more significant. For instance, as shown in Tab. 1 and Tab. 2b,
the best performing architectures are not the ones with highest number of parameters.

6 DISCUSSION

In this work, we have studied the role of architecture in continual learning. Through extensive
experiments on a variety of benchmarks, we have shown that different neural network architectures
have different learning and retention capabilities, and a slight change in the architecture can result in
a significant change in performance in a continual learning setting. While our work has limitations
regarding the studied domains, we believe our results show promising directions for future works and
add novel insights over the existing works in this space.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity initialization efficiently learns
positive definite linear transformations by deep residual networks. In International Conference on Machine
Learning, pp. 521–530. PMLR, 2018a.

Peter L Bartlett, Steven N Evans, and Philip M Long. Representing smooth functions as compositions of
near-identity functions with implications for deep network optimization. arXiv preprint arXiv:1804.05012,
2018b.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normalization. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Enhanced gradient and adaptive learning rate for training
restricted boltzmann machines. In Proceedings of the 28th International Conference on Machine Learning,
ICML, pp. 105–112. Omnipress, 2011.

Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying convolution and attention for
all data sizes. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th International Conference on Learning Representations,
ICLR, 2021, 2021.

Qiang Gao, Zhipeng Luo, and Diego Klabjan. Efficient architecture search for continual learning. CoRR,
abs/2006.04027, 2020.

Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C. Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgeting in gradient-based neural networks. In 2nd International Conference on Learning
Representations, ICLR, 2014.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm-haiku.

Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca, Eren Sezener, and Tom Hennigan. Optax: compos-
able gradient transformation and optimisation, in jax!, 2020. URL http://github.com/deepmind/
optax.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning scenarios:
A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Shenyang Huang, Vincent François-Lavet, and Guillaume Rabusseau. Neural architecture search for class-
incremental learning. CoRR, abs/1909.06686, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015.

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio. Residual
connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,
Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural
networks. Commun. ACM, 60(6), 2017.

10

http://github.com/google/jax
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/optax
http://github.com/deepmind/optax


Under review as a conference paper at ICLR 2023

Seungwon Lee, Sima Behpour, and Eric Eaton. Sharing less is more: Lifelong learning in deep networks with
selective layer transfer. In Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 6065–6075. PMLR, 18–24 Jul 2021.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual structure
learning framework for overcoming catastrophic forgetting. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning Research, pp.
3925–3934, 2019.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, pp. 7765–7773. Computer
Vision Foundation / IEEE Computer Society, 2018.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding the role
of training regimes in continual learning. In Advances in Neural Information Processing Systems, volume 33,
pp. 7308–7320, 2020.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and Mehrdad
Farajtabar. Wide neural networks forget less catastrophically. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 15699–
15717, 2022.

Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. AAAI, 2022.

Quang Pham, Chenghao Liu, and Steven HOI. Continual normalization: Rethinking batch normalization for
online continual learning. In International Conference on Learning Representations, 2022.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting in
neural networks. In International Conference on Learning Representations, 2022.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning
to learn without forgetting by maximizing transfer and minimizing interference. In International Conference
on Learning Representations, 2018.

Mark B. Ring. Continual learning in reinforcement environments. PhD thesis, University of Texas at Austin,
TX, USA, 1995.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization help
optimization? In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving for simplicity:
The all convolutional net. CoRR, abs/1412.6806, 2015.

Sebastian Thrun. A lifelong learning perspective for mobile robot control. In Intelligent robots and systems, pp.
201–214. Elsevier, 1995.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. Supermasks in superposition. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

Yuxin Wu and Kaiming He. Group normalization. In Computer Vision - ECCV 2018 - 15th European Conference,
Munich, volume 11217 of Lecture Notes in Computer Science, pp. 3–19. Springer, 2018.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 907–916, 2018.

Jaehong Yoon, Eunho Yang, Jungtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable
networks. In Sixth International Conference on Learning Representations. ICLR, 2018.

11



Under review as a conference paper at ICLR 2023

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine Vision
Conference 2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press, 2016.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for
discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2921–2929, 2016.

12



Under review as a conference paper at ICLR 2023

APPENDIX OVERVIEW

In this document, we provide additional details regarding the main work. More specifically:

• First, in Sec. A we cover the details regarding our experimental setup, design choices,
architecture details, and hyper-parameters.
• Second, in Sec. B we provide additional experiments and results and a more detailed version

of some of the experiments.

A EXPERIMENTAL SETUP DETAILS

A.1 ARCHITECTURES

A.1.1 CNNS

Unless otherwise stated, the CNN models in this work solely include the convolutional layers,
followed by a single feed-forward layer for classification. All CNNs use the ReLU activation function
and use 3x3 kernels and a stride of 2.

For the CIFAR-100 experiments, the base CNN contains 3 convolutional layers with 32, 64, and 128
channels respectively, and CNN ×N refers to the base CNN model where the number of channels in
each layer is multiplied by N . Hence, CNN ×4 refers to 3 convolutional layers with 128, 256, and
512 channels, followed by a feed-forward classification layer. In Split ImageNet-1K experiments, the
base CNN contains 6 convolutional layers with 64 channels for the first four layers and 128 channels
for the last two layers. Similar to the setup for the Split CIFAR-100 experiments, all models have a
single-layer feed-forward layer for classification and use a kernel size of 3, with a stride of 2.

When we use pooling layers in CNNs(e.g., Sec. 3.4), to keep the dimension of features the same
with the CNNs that don’t have pooling layers, we use a stride of 1 for convolutional layers. In
other words, every convolutional layer leads to a reduced feature map by a factor of 2: either the
convolution has stride 2 (e.g., CNNs in Tab. 1) or else it has a stride 1, followed by a pooling layer
(e.g., CNN+(Avg/Max)Pool in Tab. 4 and Tab. 7). Finally, for the experiments with skip-connections
added, we add 2 skip-connections (with projections) for the 3-layer CNNs on Split CIFAR100 that
adds shortcuts from layer 1 to output of layer 2 and layer 2 to the output of layer 3.

A.1.2 RESNETS

The ResNets we use in the ImageNet experiment are the standard models, and we do not modify
them. However, the ResNets in the CIFAR-100 experiments use 3 × 3 kernels with a stride of 1,
rather than the 7× 7 kernels with a stride of 2. This is a common practice for the ResNet models for
low-dimensional CIFAR images since it does not reduce the dimension of input significantly. Other
than this modification for CIFAR-100 experiments, the rest of the ResNet architecture kept the same.

A.1.3 WIDERESNETS

The WideResNets (WRN) models on both CIFAR-100 and ImageNet benchmarks follow the original
implementation of WRN models. For all experiments, we use a dropout factor of 0.1 as we empirically
observed increasing the dropout does not improve the performance significantly.

A.1.4 VISION TRANSFORMERS

The Vision Transformer (ViT) models in our ImageNet experiment follow the same architecture as
the original vision transformers. Similar to the original ViT models, we use the patch size of 16 for
both ViT models in our ImageNet-1K experiments.

However, since the original vision transformer paper does not provide the details for the best practices
for the CIFAR benchmark, we used smaller versions of the ViTs to match the training cost of other
models. In those experiments, ViT 512-1024 refers to a ViT model with 4 layers, with a width of 512
and MLP size of 1024. Similarly, ViT 1024-1536 has a width of 1024 with the MLP hidden size of
1536. All models use the patch size of 4 (i.e., 64 patches for CIFAR images), but we empirically
observed increasing the patch size to 8 does not impact the results significantly.

13



Under review as a conference paper at ICLR 2023

A.2 HYPERPARAMETERS

In this section, we report the hyper-parameters we used for our experiments. We include the chosen
hyper-parameter for each architecture in parentheses.

A.2.1 ROTATED MNIST

We follow the setting in (Mirzadeh et al., 2022) for our MNIST experiments in Sec. 3.1.

learning rate: [0.001, 0.01 (MLP), 0.05, 0.1]
momentum: [0.0 (MLP), 0.8]
weight decay: [0.0 (MLP), 0.0001]
batch size: [16, 32, 64 (MLP)]

A.2.2 SPLIT CIFAR-100

We use the following grid of hyper-parameters for the CIFAR-100 experiments:

learning rate: [0.001, 0.005, 0.01 (ViT 1024, ResNet 50/101), 0.05 (CNNs, ResNet 18/34, ViT 512, WRNs), 0.1]
learning rate decay: [1.0 (ResNet 50/101), 0.8 (CNN, ViTs, ResNet 18/34, WRNs)]
momentum: [0.0 (CNN, ViTs, ResNet 50/101), 0.8 (ResNet 18/34, WRNs)]
weight decay: [0.0 (CNNs, ViTs), 0.0001 (ResNets, WRNs)]
batch size: [8 (CNNs, ResNet18/34), 16 (WRNs), 64 (ResNet 50/101, ViT 512), 128 (ViT 1024)]

We note that the learning rate decay is applied after each task.

A.2.3 SPLIT IMAGENET-1K

Due to computation budget, we use smaller a smaller grid for the ImageNet-1K experiments. However,
we make sure that the grid is diverse enough to cover various family of architectures.

learning rate: [0.005, 0.01, 0.05, 0.1 (All models)]
learning rate decay: [1.0, 0.75 (All models)]
momentum: [0.0, 0.8 (All models)]
weight decay: [0.0 (CNNs), 0.0001 (ResNets, WRN, ViTs)]
batch size: [64 (All models), 256]

A.3 TRAINING INFRASTRUCTURE

For each run of the MNIST and CIFAR-100 experiments, we have used 1 NVIDIA V-100 GPU. For
the ImageNet-1K experiments, we have used 32 TPU v2 or v3. Moreover, we have used JaxBradbury
et al. (2018), Haiku Hennigan et al. (2020), and Optax Hessel et al. (2020) for the implementation.

B ADDITIONAL RESULTS

B.1 ALGORITHMS VS. ARCHITECTURES

In Fig. 1a, we have provided the results for the ResNet-18 model. Here, we provide the average
accuracy and average forgetting for various models and algorithms on split CIFAR-100 with 20 tasks.

Table 8: Different Algorithms and Architectures

Algorithm Parameters (M) Architecture Average Accuracy Average Forgetting
Finetune 11.2 ResNet-18 45.0 ±0.63 36.8 ±1.08
EWC 11.2 ResNet-18 50.6 ±0.70 26.6 ±2.53
AGEM (Mem = 1000) 11.2 ResNet-18 61.8 ±0.45 22.9 ±1.59
ER (Mem = 1000) 11.2 ResNet-18 64.3 ±0.99 19.7 ±1.26

Finetune 11.9 ResNet-18 (w/o GAP) 67.4 ±0.76 11.2 ±1.98
AGEM (Mem = 1000) 11.9 ResNet-18 (w/o GAP) 72.8 ±1.33 5.8 ±0.39
ER (Mem = 1000) 11.9 ResNet-18 (w/o GAP) 74.4 ±0.33 4.6 ±0.54

Finetune 2.3 CNN x4 68.1 ±0.50 8.7 ±0.21
ER (Mem = 1000) 2.3 CNN x4 74.4 ±0.27 2.4 ±0.12

We remind the reader that the aim of our work is not to undermine the importance of continual
learning algorithms. On the contrary, we appreciate the recent algorithmic improvements in the
continual learning literature. The aim of this work is to show that the role of architecture is significant,
and a good architecture can complement a good algorithm in continual learning.

14



Under review as a conference paper at ICLR 2023

B.2 BATCHNORM STATISTICS ON SPLIT CIFAR-100

We show the first layer’s BN statistics for CNN×4 in Fig. 3 using kernel density estimation with
Gaussian kernel. As illustrated, the batch statistics and learned BN parameters do not change
significantly across different tasks. Here, for simplicity, we have shown only four tasks from the
beginning, middle, and late of the learning experience. Moreover, we focus on the first layer’s
statistics, which is the first layer of the model that operates on the data.

task 5

bn1 - running_mean

task 10

task 15

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

task 20

(a)

task 5

bn1 - running_var

task 10

task 15

0.050 0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150
task 20

(b)

task 5

bn1 - weight

task 10

task 15

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
task 20

(c)

task 5

bn1 - bias

task 10

task 15

0.2 0.1 0.0 0.1 0.2
task 20

(d)

Figure 3: BN statistics for the first layer of CNN×4 on Split CIFAR-100: the statistics do not change
significantly throughout the continual learning experience.

B.3 BATCHNORM STATISTICS ON PERMUTED MNIST

In Sec. 3.2, we have discussed that if the batch statistics change significantly across tasks, batch
normalization can increase the forgetting. To this end, we design an experiment where we train
two MLP-128 networks (with and without BN) on the Permuted MNIST benchmark(Goodfellow
et al., 2014) with five tasks. While Permuted MNIST is not a very realistic benchmark, it fits our
requirements for synthetic distribution shift (i.e., shuffling pixels).

While Tab. 9 demonstrates the benefit of adding BN (i.e., improving learning accuracy), we can
observe a significant increase in average forgetting as well. To investigate this more, we visualize the
BN statistics in Fig. 4 where we can see compared to Fig. 3, the statistics change more, confirming
our hypothesis in Sec. 3.2.

Table 9: Permuted MNIST: The MLP with BN has slightly higher learning accuracy, but significantly
higher forgetting as well.

Model Average Accuracy Average Forgetting Learning Accuracy
MLP-128 86.8 ±0.95 10.9 ±0.88 95.5 ±0.33
MLP-128 + BN 73.2 ±0.82 32.5 ±0.72 97.8 ±0.45

B.4 MORE NUMBER OF EPOCHS ON SPLIT CIFAR-100

While in our main text, we have used 10 epochs for Split CIFAR-100, here in Tab. 10 we show that
the main conclusions hold even when we train the models longer. More specifically, we can see that
wider models perform better in terms of learning and retention capabilities, batch normalization and
max pooling improve the learning ability of the models, and removing the global average pooling can
improve the performance of ResNets.

15



Under review as a conference paper at ICLR 2023

task 1

bn1 - running_mean

task 2

task 3

task 4

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6

task 5

(a)

task 1

bn1 - running_var

task 2

task 3

task 4

0.00 0.05 0.10 0.15 0.20 0.25
task 5

(b)

task 1

bn1 - weight

task 2

task 3

task 4

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100
task 5

(c)

task 1

bn1 - bias

task 2

task 3

task 4

0.20 0.15 0.10 0.05 0.00 0.05 0.10
task 5

(d)

Figure 4: BN statistics for the first layer of MLP-128 on Permuted MNIST: the statistics change more
compared to Fig. 3

Interestingly, we can see that simple MLPs (with two hidden layers), perform surprisingly well
and demonstrate a comparable performance in terms of forgetting with CNNs. However, as it is
well known in the single task setup, they are not great learners of image data, and their learning
accuracy is often much smaller than their convolutional models. But, it is worth mentioning that these
simple MLPs still outperform the commonly used ResNets (with GAP layer) in this task-incremental
benchmark, which is another strong evidence of the significance of architecture in continual learning.

Table 10: Comparing the impact of components in with two different settings: The components
that are helpful in the short training time (e.g., removing GAP layers, adding pooling or batch norm
layers), are also beneficial when the training time is longer.

Epochs = 10 Epochs = 50

Model Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

Average
Accuracy

Average
Forgetting

Learning
Accuracy

ResNet-18 11.2 45.0 ± 0.63 36.8 ± 1.08 74.9 ± 3.98 37.1 ± 0.59 48.9 ± 1.35 82.4 ± 4.83
ResNet-18 w/o GAP 11.9 67.4 ± 0.76 11.2 ± 1.98 74.2 ± 4.79 66.1 ± 0.44 17.3 ± 1.43 80.2 ± 4.77
ResNet-50 23.6 56.2 ± 0.88 9.5 ± 0.38 67.8 ± 5.09 53.4 ± 0.29 14.5 ± 0.64 75.3 ± 5.65
ResNet-50 w/o GAP 26.7 71.4 ± 0.29 6.6 ± 0.12 73.0 ± 5.18 71.2 ± 0.18 7.3 ± 0.22 76.5 ± 4.87

MLP-512 1.9 53.9 ± 0.99 14.0 ± 1.41 63.2 ± 6.35 53.7 ± 1.06 17.2 ± 1.51 64.7 ± 5.77
MLP-512 + BN 1.9 58.2 ± 0.55 12.8 ± 0.71 69.5 ± 4.11 57.0 ± 0.43 17.6 ± 0.47 72.0 ± 4.25

MLP-1024 4.3 57.1± 0.4 9.0 ± 1.11 65.3± 2.42 57.5± 1.18 13.6± 1.36 73.4± 3.41
MLP-1024 + BN 4.3 62.0± 0.66 8.3± 0.74 71.1± 2.48 61.5± 0.5 13.5± 1.37 72.8± 2.68

CNN x4 2.3 68.1 ± 0.5 8.7 ± 0.21 76.4 ± 6.92 62.6 ± 0.4 14.4 ± 0.62 75.2 ± 6.25
CNN x4 + BN 2.3 74.0 ± 0.56 8.1 ± 0.35 81.7 ± 6.68 68.9 ± 0.93 13.8 ± 0.68 80.7 ± 5.83
CNN x4 + Maxpool 2.3 74.4 ± 0.34 9.3 ± 0.47 83.3 ± 6.1 69.3 ± 0.79 13.5 ± 0.85 81.9 ± 5.47

CNN x8 7.5 69.9 ± 0.62 8.0 ± 0.71 77.5 ± 6.78 64.3 ± 0.82 13.2 ± 1.01 78.8 ± 6.61
CNN x8 + BN 7.5 76.1 ± 0.3 5.9 ± 0.16 81.7 ± 6.83 71.7 ± 0.79 11.5 ± 0.85 82.4 ± 6.18
CNN x8 + Maxpool 7.5 77.2 ± 0.53 7.1 ± 0.33 84.0 ± 5.81 73.6 ± 2.25 12.9 ± 1.07 84.4 ± 5.06

16



Under review as a conference paper at ICLR 2023

B.5 PRELIMINARY RESULTS ON CLASS-INCREMENTAL LEARNING

While exploring all scenarios with all architectures is beyond the scope of this work, as a proof of
concept, in Tab. 11, we report the results (over five runs) on Split CIFAR-10 with 5 tasks (5 epochs
per task) in the class-incremental scenario . Most importantly, we can observe:

1. The architectures (e.g., CNN vs ResNet) play a significant role as we can see by various
metrics.

2. Architectural decisions (e.g., removing GAP, adding MaxPooling) are beneficial and they
can significantly increase the learning and/or retention capabilities of models.

Table 11: The class-incremental scenario on 5-split CIFAR-10: Similar to the task-incremental
scenario, we can observe the significant impact of architectural changes on continual learning
performance.

Model Params
(M)

Average
Accuracy

Average
Forgetting

Learning
Accuracy

CNNx4 1.6 62.0±(1.41) 15.6±(0.25) 74.4±(1.61)
CNNx8 6.2 66.5±(1.23) 12.1±(0.5) 75.2±(0.83)
CNNx4 + MaxPool 1.6 69.1±(0.45) 15.9±(1.07) 82.0±(1.09)
CNNx8 + MaxPool 6.2 72.5±(0.18) 12.8±(0.91) 84.3±(0.91)

ResNet-18 11.1 62.1±(0.2) 37.7±(1.08) 92.2±(0.68)
ResNet-18 w/o GAP 11.2 67.6±(0.84) 17.5±(0.92) 81.5±(1.57)

ViT 512/1024 8.5 64.3±(0.1) 20.5±(1.07) 83.1±(0.8)

Overall, while our small-scale experiment is limited to a specific setup, still, the conclusions are in
line with our results on task-incremental setup.

17


	Introduction
	Comparing Architectures
	Experimental Setup
	Results

	Role of Architecture Components
	Width and Depth
	Batch Normalization
	Skip Connections
	Pooling Layers
	Global Pooling Layers
	Attention Heads

	Practical Suggestions For Improving Architectures
	Related Work
	Discussion
	Experimental Setup Details
	Architectures
	CNNs
	ResNets
	WideResNets
	Vision Transformers

	Hyperparameters
	Rotated MNIST
	Split CIFAR-100
	Split ImageNet-1K

	Training Infrastructure

	Additional Results
	Algorithms vs. Architectures
	Batchnorm Statistics on Split CIFAR-100
	Batchnorm Statistics on Permuted MNIST
	More Number of Epochs on Split CIFAR-100
	Preliminary Results on Class-Incremental Learning


