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ABSTRACT

We present Real2Code, a novel approach to reconstructing articulated objects via
code generation. Given visual observations of an object, we first reconstruct its
part geometry using image segmentation and shape completion. We represent these
object parts with oriented bounding boxes, from which a fine-tuned large language
model (LLM) predicts joint articulation as code. By leveraging pre-trained vision
and language models, our approach scales elegantly with the number of articulated
parts, and generalizes from synthetic training data to real world objects in unstruc-
tured environments. Experimental results demonstrate that Real2Code significantly
outperforms the previous state-of-the-art in terms of reconstruction accuracy, and is
the first approach to extrapolate beyond objects’ structural complexity in the train-
ing set, as we show for objects with up to 10 articulated parts. When incorporated
with a stereo reconstruction model, Real2Code moreover generalizes to real-world
objects, given only a handful of multi-view RGB images and without the need for
depth or camera information. 1

1 INTRODUCTION
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Figure 1: We propose a novel method for reconstructing articulated objects via code generation,
leveraging pre-trained large language models (LLMs). Real2Code takes visual observations as input,
and performs both part-level geometry reconstruction and joint prediction. When evaluated on an
extensive set of real and synthetic objects with varying level of kinematic complexity (up to 10 parts),
Real2Code can accurately reconstruct these complex articulated objects, and generalize to real world
objects from a handful of pose-free RGB images.

The ability to reconstruct real-world objects in simulation (real-to-sim) promises various downstream
applications: automating asset creation for building VR/AR experiences, enabling embodied agents to
verify their interaction in simulation before execution in the real world (Lim et al., 2022; Wang et al.,
2023a; Torne et al., 2024), or building large-scale simulation environments that support data-driven
policy learning (Katara et al., 2023). We are particularly interested in articulated objects, for both
their ubiquity in household and industrial settings and the unique challenges they pose in contrast to
single-body rigid objects. To reconstruct articulated objects, prior learning-based methods typically
train supervised (Jiang et al., 2022b) or test-time-optimized (Liu et al., 2023a) models on synthetic

1Submission Website: https://sites.google.com/view/real2code-submission
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objects with simple articulation structures (i.e., one or two moving parts per object). This results
in limited generalization ability to objects with more complex visual appearances and kinematics.
In addition, prior work only provides object part reconstructions of limited quality: the extracted
meshes are often incomplete and the predicted articulation parameters require manual cleanup before
being usable for simulation.

We propose Real2Code, a novel approach to address the above limitations. We represent object
articulation with code programs, and use language modeling to predict these code programs from
visual observations. This formulation scales elegantly with objects’ structural complexity: to process
an articulated object with multiple joints, prior methods would require either changing the output
dimension of their articulation prediction model, or run multiple inferences on pairs of before- and
after- interaction observations to predict one joint at a time. In contrast, the next-token prediction
formulation in language modeling allows generating arbitrary-length outputs, i.e., the model archi-
tecture needs no adjustment to handle varying number of object joints. Whereas prior work on
shape programs (Tian et al., 2019) needs to define task-specific code syntax, we represent objects
with simulation code in Python, which takes advantage of recent progress in large language models
(LLMs) that are pre-trained with code generation capabilities.

Although capable at code generation, LLMs pre-trained on text are not as equipped at predicting
accurate numerical values from spatial geometry information, which is required in our task in order
to obtain articulated joint parameters. To address this, we propose to use oriented bounding boxes
(OBBs) as an abstraction layer that summarizes the raw sensory observation to the LLM in a concise
yet precise manner. Given partial observations of an object, we first perform part-level segmentation
and reconstruction via a combination of 2D segmentation and a 3D shape completion model; next,
OBBs are extracted from the reconstructed object parts, and serve as input to the LLM. The LLM
then predicts joints as a classification problem by selecting the closest OBB rotation axis and box
edges.

In unstructured real world environments, another challenge is the lack of accurate depth and camera
information. To address this, we incorporate a pre-trained dense stereo reconstruction model, namely
DUSt3R (Wang et al., 2023b), into our pipeline: we show the dense 2D-to-3D point-map prediction
from DUSt3R can be combined with our fine-tuned SAM model to achieve view-consistent 3D
segmentation. As a result, Real2Code can then reconstruct real world objects from only a handful of
pose-free RGB images.

For a more systematic evaluation, we validate the performance of Real2Code on the well-established
PartNet-Mobility dataset (Mo et al., 2019), using an extensive test set of unseen objects that contain
various numbers of articulated parts. Compared to the prior state of the art, Real2Code significantly
improves both 3D reconstruction and joint prediction accuracy. Real2Code is the only approach
to reliably reconstruct objects with more than three articulated parts, whereas prior methods fail
completely on such objects. Fig. 1 highlights our results on both synthetic multi-part objects (first
column), where we show Real2Code reconstructs both synthetic objects with up to 10 parts (first
column) and real-world objects (second column) using in-the-wild RGB images.

In summary, our contributions are threefold:

1. We present Real2Code, a novel approach to reconstructing articulated objects from a handful of
unstructured RGB images. We formulate joint prediction as a code generation problem and adapt
pre-trained large language models to specialize in this task.

2. We address part reconstruction via kinematic-aware view-consistent image segmentation and a
learned 3D shape completion model, which leads to high-quality mesh extraction that generalizes to
multi-part real-world objects.

3. Empirical results demonstrate that Real2Code significantly outperforms the prior state of the art
at both articulation estimation and part reconstruction. To the best of our knowledge, Real2Code is
the first method to accurately predict objects with more than three parts, and generalizes beyond the
training dataset with at most 7 parts to objects with up to 10 parts.

2 RELATED WORK

LLMs for Visual Tasks. Pre-trained LLMs have been used for visual reasoning and grounding
tasks (Zeng et al., 2022; Hsu et al., 2023b). LLMs’ code-generation capability has also been
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exploited for generating programs that solve visual tasks (Gupta & Kembhavi, 2022; Surı́s et al.,
2023; Subramanian et al., 2023). These works use zero-shot pre-trained LLMs such as GPTs (Brown
et al., 2020; OpenAI, 2023) and require prompt engineering, such as providing in-context examples,
to guide the model to generate desirable outputs; in contrast, we directly fine-tune the weights of a
code-generation model to specialize in our articulation prediction task without prompt tuning.

Shape Programs. Code-like programs have been studied in computer vision as a compact rep-
resentation for 2D and 3D shapes. A main challenge for learning code programs is the lack of
supervision, and prior work has explored using learned differentiable code executor (Tian et al.,
2019), pseudo-labeling (Jones et al., 2022), differentiable rendering (Liang, 2022), imitation learning
on code sequences (Willis et al., 2021), or reinforcement learning (Tulsiani et al., 2016). More
recent work has explored constructing large-scale datasets of shapes (Ganin et al., 2021) or scene
layouts (Avetisyan et al., 2024) and train supervised LLM-like models to generate code outputs. In
contrast to ours, these prior works focus on either individual object shapes or scene-level room layouts,
but do not estimate joint articulations. In addition, instead of the task-specific code programs, such as
customarily-designed language syntax (Tian et al., 2019; Jones et al., 2022; Avetisyan et al., 2024) or
Computer-Aided Design (CAD) code (Willis et al., 2021; Ganin et al., 2021), we represent object
articulation with Python code that 1) closely matches the pre-training distribution of code-generation
LLMs, which allows fine-tuning with limited data, and 2) can be directly executed by a physics
simulator (Todorov et al., 2012), which makes the reconstruction more usable for simulation and
requires less manual cleanup.

Articulation Model Estimation. Prior work has investigated estimating pose and joint properties of
articulated objects without full reconstruction. A common setup is to assume physical interactions on
an object to infer its articulation information: classical sampling-based algorithms (Huang et al., 2014;
Katz et al., 2013) are proposed to estimate joint parameters based on sensory inputs from an object’s
different configuration states; other learning-based methods train end-to-end models to predict part-
level segmentation, kinematic structure, object part poses, or articulated joint parameters (Hu et al.,
2017; Yi et al., 2018; Wang et al., 2019; Michel et al., 2015; Li et al., 2020; Zeng et al., 2021;
Huang et al., 2021; Tseng et al., 2022; Abdul-Rashid et al., 2022; Jiang et al., 2022a; Liu et al.,
2023b). Buchanan et al. (2023); Heppert et al. (2022); Sun et al. (2023) propose specialized neural
network architectures to improve the estimation performance. Other works focus on learning to
propose the most informative physical interactions on an object to help robot manipulation (Mo
et al., 2021), or to better isolate and segment articulated parts and joints (Gadre et al., 2021). These
articulation estimation tasks provide useful metrics for 3D shape reasoning (Wang et al., 2019), and
Liu et al. (2022); An et al. (2023); Geng et al. (2023b;a) show that the predicted object pose and joint
information are useful for robotic tasks. However, prior work typically handles objects with simple
structure (i.e., one or two moving parts) and does not address full object reconstruction. In contrast,
our method handles objects with more than ten moving parts, and performs shape reconstruction via
extraction of part meshes.

Articulated Object Reconstruction. Most closely related to ours are methods that reconstruct both
the geometry and joints of articulated objects. A popular approach is to train end-to-end models
on synthetic data to jointly segment articulated parts and predict joint parameters, assuming either
observations from interactions (Jiang et al., 2022b; Hsu et al., 2023a; Nie et al., 2023; Mu et al.,
2021) or single-stage (Heppert et al., 2023; Irshad et al., 2022; Kawana et al., 2022; Wei et al.,
2022) observations. Another approach uses per-object optimization (Liu et al., 2023a;b) without
training. Based on observations of the object in two or more different joint states, it optimizes for joint
parameters to match observed motion correspondences and optionally performs 3D reconstruction
using learned neural fields. Most existing methods assume a single joint and do not scale well with an
increasing number of joints: for example, to handle an object with N joints, methods like Ditto (Jiang
et al., 2022b) would need to move the N joints one by one, record the observations before and after
each interaction, and run N inferences on each observation pair. PARIS (Liu et al., 2023a) would
need to optimize N neural fields and joint parameters, which may lead to a much more complex
optimization landscape. The approach presented by Liu et al. (2023b) handles multiple joints but
requires a complete sequence of point-cloud observations and is not able to reconstruct 3D shapes.

3 METHOD

We address the problem of reconstructing multi-part articulated objects from visual observations. An
articulated object is composed of a set of rigid-body parts that are connected via joints. We assume
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Figure 2: Overview of Real2Code pipeline. Given unstructured multi-view RGB images, we leverage
the pre-trained DUSt3R model (Wang et al., 2023b) to obtain dense 2D-to-3D pointmaps, and use
a fine-tuned 2D segmentation model(Kirillov et al., 2023) to perform part-level segmentation and
project to segmented 3D point clouds. We train a shape-completion model to take partial point cloud
input and predict a dense occupancy field, which is used for part-level mesh extraction. We fine-tune
a large language model (LLM) (Rozière et al., 2023) that takes mesh information in the form of
oriented bounding boxes, and outputs full code descriptions of the object that can directly be executed
in simulation.

that joint types are either prismatic or revolute: a prismatic joint is parameterized by a joint axis
up ∈ R3 and a translation offset d; a revolute joint is parameterized by a position pr ∈ R, a rotation
axis ur ∈ R3, and a rotation angle θ. For an object with N moving parts, we assume each to be
connected with its parent via exactly one 1-DoF joint. Therefore, the transformation between each
part’s frame and its parent’s frame is uniquely determined by the joint parameters. Furthermore, for
hinge joints, we focus on objects what have joint position lie closely with one of its oriented bounding
box (OBB) edges — we remark that this is true for many common household objects with cuboid
shapes, such as doors, boxes, laptops, etc.

To obtain visual inputs, we assume an object is manipulated such that each articulated joint is at a
non-zero state, i.e., d > 0 or θ > 0, when we capture multi-view RGB (and optionally depth) images.
Our system outputs a set of 3D meshes – each a reconstruction of the object’s parts – and a list of
joint types and parameters represented as code. The outputs can then be used to create the object’s
digital twin in simulation for downstream applications.

Fig. 2 provides an overview of our method. Real2Code consists of two main steps: reconstruction
of object parts’ geometry (described in Sec. 3.1) and joint estimation via LLM code generation
(described in Sec. 3.2). Between the two steps, the oriented bounding boxes (OBBs) of the object
parts serve as an abstraction layer, enabling the LLM to reason about 3D spatial information and
predict accurate joint parameters.

3.1 PART RECONSTRUCTION

To reconstruct an object’s part-level shapes, we propose a 2D-to-3D approach that is category-agnostic
and handles objects with an arbitrary number of parts. First, we fine-tune a SAM model that generates
2D segmentations from RGB images, and project them to partially-observed 3D point clouds. Next,
we train a shape completion model that takes 3D point cloud input and extracts watertight meshes.

3.1.1 KINEMATICS-AWARE PART SEGMENTATION

We leverage the pre-trained 2D segmentation model SAM (Kirillov et al., 2023) to segment object
parts based on their kinematic structure. This design is motivated by the need to 1) generalize to real
world data, and 2) scalability to the number of object parts. In contrast to prior works that train 3D
segmentation models using limited amount of synthetic data (Jiang et al., 2022b; Mo et al., 2019;
Xiang et al., 2020), SAM (Kirillov et al., 2023) was pre-trained on a much larger dataset. Therefore,
SAM generalizes better to in-the-wild real world images, with a strong prior to identify moving object
parts without the need for multi-step interactions.

However, because SAM (Kirillov et al., 2023) is originally designed for iterative user prompting, its
zero-shot predictions do not always match the articulation structure, e.g., segmenting unnecessary de-
tails on an object part. To address this, we fine-tune the pre-trained model using PartNet-Mobility (Mo
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et al., 2019; Xiang et al., 2020) data: the model’s heavy-weight image encoder is kept frozen, we
update the lightweight prompt-decoder layer to take an image and one sampled 2D point prompt as
input, and predict the correct corresponding mask. See appendix A.3 for more details.

3.1.2 TEST-TIME PROMPTING FOR VIEW-CONSISTENT SEGMENTATION.

SAM Aggregated 
Part Point Cloud

SAMSAM

Project to a different viewView#1 View#2 
+ keypoint prompt 

Predicted Mask#2

Sampled 2D point 
on one of the part segment

View Consistent Mask 

Project to 3D 
using depth

View#1 

View#N 

…

Sampled 3D Points on 
Object Surface  

SAM

…

Figure 3: View-consistent segmentation. Illustration of our
method for test-time prompting the fine-tuned SAM model. We
first sample 3D points from the foreground object point clouds,
project each point onto 2D RGB images captured from different
camera views, which are used to prompt the model to generate
view-consistent segmentations.

The point-based segmentation de-
scribed above scales easily with the
number of the object parts. However,
this formulation also inherently lacks
view consistency, as SAM is unaware
of the correspondences across differ-
ent camera views. To address this, we
introduce a test-time prompting pro-
cedure to project predicted 2D masks
into a view-consistent 3D segmenta-
tion. We discuss two different input
settings based on the availability of
depth and camera data: 1) Multi-view
RGB-D and Camera Input: we first
coarsely sample 2D points on each
RGB image and run the SAM model
to obtain the background masks. This
allows us to segment the foreground object in the different views and sample 3D points uniformly
on the object point cloud. Next, we project each such 3D point back onto each image, and obtain
view-consistent 2D points for SAM prompting. Further, we rank the model’s predicted masks based
on the confidence and stability scores proposed by Kirillov et al. (2023), and filter them using
non-maximum suppression (NMS) to produce the final 3D segmentation. 2) Multi-view Unstruc-
tured RGB Input. To handle real world settings which often lack high-quality depth and camera
information, we adopt a multi-view stereo reconstruction model to achieve part segmentation. We
use the recently proposed DUSt3R (Wang et al., 2023b) model, which is pre-trained to predict dense
3D point-maps from RGB input images. We then sample 2D points from one RGB image and find
each point’s corresponding point in every other RGB images via nearest-neighbor. More details are
described in appendix A.4. This overall procedure of projecting between 3D to 2D prompting is
similar to SA3D (Cen et al., 2023), which samples on a NeRF(Mildenhall et al., 2020) field and uses
inverse rendering to effectively prompt SAM in 3D.

3.1.3 PART-LEVEL SHAPE COMPLETION.
Due to frequent self-occlusion, e.g. the inside of a drawer is often not visible, RGB-D input does
not provide full observation of each object part, and subsequently a segmented point cloud does not
recover complete part shape. This motivates learning a shape completion model to obtain watertight
meshes. Because part-segmentation is already handled in the previous step, we here tackle shape
completion on the object part level. We build on top of Convolutional Occupancy Nets (Peng et al.,
2020): the model architecture consists of a PointNet++(Qi et al., 2017) point-cloud encoder, followed
by a 3D Unet (Özgün Çiçek et al., 2016) encoder and a linear MLP decoder that predicts logits
for occupancy. We use the ground-truth part meshes from PartNet-Mobility (Mo et al., 2019) to
generate a dataset of partial point cloud inputs and occupancy labels. We normalize the occupancy
grid using partial OBBs extracted from the input point cloud to avoid under-fitting the smaller-sized
meshes. Marching Cubes (Lorensen & Cline, 1987) is used to extract the completed part meshes
from predicted occupancy. See appendix A.3 for more details.

3.2 ARTICULATION PREDICTION VIA CODE GENERATION

Given a set of segmented object parts, we next predict their articulation structure using LLM-based
code generation. This approach yields several advantages: first, code offers a compact representation
for joints, and when combined with LLM’s ability to predict arbitrary-length outputs, it scales
elegantly with the complexity of object kinematic structure; second, pre-trained LLMs are equipped
with strong priors for both common-sense objects and for generating syntactically correct code,
making them easily adaptable to our task; lastly, the LLM-generated code can be directly executed
in simulation, removing the need for manual cleanup of predicted joint parameters as seen in prior
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Figure 4: Articulation Prediction as Code. We fine-tune a Codellama (Rozière et al., 2023) model
that takes in oriented bounding boxes (OBBs) for segmented parts as input, and generates joint
predictions via selecting OBB rotation axes and edges (model generation is highlighted in green). A
helper function is used to compute the absolute joint axis and position that assembles the object parts
in simulation

work (Jiang et al., 2022b). The following sub-sections first introduce our formulation of predicting
joint parameters from oriented bounding boxes, then discuss our LLM fine-tuning procedure.
3.2.1 ORIENTED BOUNDING BOX AS INPUT ABSTRACTION.
Articulation prediction requires numerical precision at joint parameters (i.e., position and rotation)
and reasoning from raw sensory input, but an LLM pre-trained on text is not adept at these challenges.
We address this by representing the sensory input (object point clouds) as a set of oriented bounding
boxes (OBBs), each representing a segmented and completed object part. Compared to alternative
object representations such as 3D point clouds or 2D images, OBBs strike a balance between
compactness (i.e., do not require an extra feature encoder) and preciseness (i.e., provide numerical
3D pose information). Further, OBBs provide a reference for joint information. Recall that the pose
of an object part is determined by its 1-DoF joint at a non-zero state — we can hence recover joint
parameters from the observed displacement of object parts. Given an OBB of a part connected to its
parent, the joint axis will be parallel to one of the three axes of the OBB’s rotation matrix regardless
of its joint type. We observe many common articulated objects consist of cuboid-like parts (e.g. doors
or laptops), hence the position of their corresponding revolute joints will lie closely to, if not overlap
with, one of the OBB edges. Combining these observations, we re-formulate the joint axis prediction
problem by selecting an OBB rotation axis as the joint axis and, for revolute joints, choosing an OBB
edge parallel to the axis as the joint position. See Fig. 4 for an illustration.

3.2.2 FINE-TUNING A CODE GENERATION LLM.
We now have an input formulation that effectively converts a regression task (i.e., predicting contin-
uous values) to an easier classification task (i.e., selecting axes and edges) for LLMs. We use the
7B-CodeLlama (Rozière et al., 2023) model for its open-source-availability and built-in priors for
code generation. We construct a fine-tuning dataset using PartNet (Mo et al., 2019) objects (the same
assets used to generate our segmentation and shape completion data), and convert the native URDF
files into MJCF code (Tunyasuvunakool et al., 2020), which 1) is in the more compact Python syntax,
2) can be executed in MuJoCo (Todorov et al., 2012) physics simulation, and 3) has each object’s
joints assigned with respect to the corresponding part’s OBB information. The LLM takes a list of
part-OBB information (i.e., center, rotation, and half-lengths) as input, and outputs joint predictions
as a list, where each line contains indices into the axes and edges of an OBB. More details can be
found inappendix A.3.

4 EXPERIMENTS

We evaluate Real2Code and compare to baseline methods to validate the effectiveness of our approach.
Sec. 4.2 describes experiments on our kinematics-aware 2D image segmentation and 3D shape
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Category Laptop Box Fridge Furniture Furniture
Number of Parts 2 2 2-3 2-4 5-15
Metric whole part whole part whole part whole part whole part

Real2Code+gtSeg 0.57 2.33 1.54 7.65 0.51 2.04 1.46 13.3 5.84 16.8

Ditto 2.54 2.04 1.73 82.82 2.80 462.25 2.25 1105.86 2.21 4608.08
PARIS 84.29 206.31 15.35 158.73 20.63 1297.27 6.02 544.64 11.44 816.86

Real2Code-SegOnly 1.74 7.19 11.46 10.52 0.90 23.44 17.43 206.49 N/A N/A
Real2Code (Ours) 0.44 3.02 1.31 5.94 0.60 1.28 3.47 65.79 19.70 118.58

Table 1: We evaluate surface reconstruction quality by measuring Chamfer-Distance (CD) between
predicted and ground-truth meshes. Results are reported separately for each object category, where
we take average CD of objects’ entire surface reconstruction (‘whole’ column) and of all part wholes
(‘part’ column). Objects from Storage-Furniture and Table are reported under Furniture and divided
based on the number of parts.

completion models. Sec. 4.3 evaluates our fine-tuned code-generation model on articulation prediction.
Sec. 4.5 contains ablation studies that provide additional insights into our method. Sec. 4.6 shows
qualitative results of our pipeline on real world objects.

4.1 EXPERIMENT SETUP

Datasets. We use assets from five categories in PartNet-Mobility (Mo et al., 2019) dataset: Laptop,
Box, Refrigerator, Storage-Furniture and Table. The same split of 467 train and 35 test objects are used
to construct our image segmentation, shape completion, and code datasets. We use Blender (Com-
munity, 2018; Denninger et al., 2023) to render RGB-D and segmentation masks. The RGB-D
images and masks are then used to generate part-level point clouds as partial observations. For
code data, we extract OBBs from part meshes and process each object’s raw URDF file into Python
MJCF (Tunyasuvunakool et al., 2020), where the joint rotation and position are relative to the OBB
of the child part that this joint connects to the parent part. Refer to appendix A.2 for more details.

Baselines. We compare Real2Code to the following baseline methods:

• PARIS (Liu et al., 2023a) is the prior state-of-the-art for articulated object reconstruction. It
takes multi-view RGB observations of a two-part articulated object at two different joint states, then
optimizes NeRF-based reconstructions and joint parameters based on motion cues from the two
observed states. We render our test objects at two random joint states, report the average performance
across 5 random initialization seeds. We modify their method to optimize for more than two parts at
once. However, we observe that their design of optimizing one neural field for each part runs out of
memory when the number of joints exceeds 4.

• Ditto (Jiang et al., 2022b) is an end-to-end learned model that takes in a pair of before- and
after-interaction point cloud inputs and predicts implicit part shapes and joint parameters. Notably,
Ditto assumes only one object part is moved at a time, which requires step-by-step interactions and
observations, making evaluation less efficient. For an object with N joints, we move one part at a
time, render the corresponding N pairs of point cloud observations, and run their pre-trained model
N times to obtain the final results.

• GPT-4 (OpenAI, 2023) is representative of recent state-of-the-art LLMs with strong reasoning
and code-generation capability. We use it as a reference for zero-shot LLM performance on our task
without fine-tuning. We prompt it with the same code header used in our LLM fine-tuning dataset,
plus additional instructions on how to format the output, which our fine-tuned LLM does not need.

4.2 PART SEGMENTATION AND RECONSTRUCTION EXPERIMENTS

4.2.1 3D PART-LEVEL SHAPE COMPLETION.
Following the prompting procedure described in Sec. 3.1, we first run our fine-tuned SAM on images
from the test set of unseen objects and obtain segmented part point clouds. We observe that, because
we rank and filter the mask predictions (i.e., prioritize high predicted confidence score and stability
score), the low-quality masks have less impact on the final segmented point-cloud after the projection
step. Next, we use the segmented part point clouds as input to evaluate our learned shape completion
model: following Mu et al. (2021); Jiang et al. (2022b); Liu et al. (2023a), we uniformly sample
10, 000 points on the extracted mesh surface, and report the average Chamfer Distance between the
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2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (7)
rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑

Real2Code+gtBB 0.0 0.07 0.93 0.0 0.04 1.00 0.0 0.04 1.00 11.6 0.03 0.94

Ditto 40.04 4.04 0.57 35.57 2.47 0.70 49.77 3.20 0.43 63.06 4.16 0.30
PARIS 48.44 2.67 0.51 32.35 3.63 0.84 55.97 2.14 0.43 N/A N/A N/A
GPT4 57.3 0.26 0.73 10.0 0.08 0.61 45.0 0.21 0.51 30.0 0.05 0.71

Real2Code (Ours) 7.5 0.08 0.80 0.0 0.04 0.89 0.63 0.07 0.97 30.2 0.05 0.89

Table 2: Joint prediction results from Real2Code and baseline methods, grouped by the number
of moving parts in each object. We remark that Real2Code consistently outperforms baseline
methods across objects with different kinematic structures; on objects with 4 or more moving parts,
Real2Code predicts joints accurately whereas baseline methods fail.

extracted and ground-truth part meshes in Tab. 1. Because the predictions are semantics-agnostic
(i.e., the model does not know if a segmented part is a drawer or a door), we generate permutations of
the set of predicted meshes and take the permutation that results in lowest error; the same logic is
used for joint prediction results.

Overall, Real2Code achieves the best reconstruction quality and elegantly scales to a larger num-
ber of parts (column ‘Real2Code (Ours)’). We remark on the performance difference between
Real2Code and baselines: the joint optimization of all parts in PARIS (Liu et al., 2023a) suffers from
a complex loss landscape and produces unsatisfactory reconstructions, especially when the number of
parts increases. Ditto (Jiang et al., 2022b) performs well on training categories (i.e., Laptop) but does
not generalize well to unseen categories. In contrast, ours obtain better results because we factorize
the problem into segmentation and shape completion, aggregate 2D segmentation from fine-tuned
SAM and perform part-level shape completion.

To validate the need for our shape completion model, we observe that 1) Due to the partial observation
and noise in the segmentation masks, simply extracting meshes from the part-level point clouds also
results in subpar reconstruction results (column ‘Real2Code-SegOnly’, where ‘N/A’ indicates the
mesh extractions are too noisy to match with GT mesh). 2) If we use ground-truth segmentation, the
mesh extraction from the aggregated point clouds are better than using SAM segmentation, but are
still incomplete (column ‘Real2Code-gtSeg’).

4.2.2 KINEMATICS-AWARE 2D IMAGE SEGMENTATION.
To demonstrate the effectiveness of SAM fine-tuning, we evaluate the fine-tuned model on unseen
object images by uniformly sampling a grid of 32 × 32 query points and compare the predicted
segmentation with ground-truth masks. We use NMS filtering on the predicted masks, then sort with
the model’s predicted confidence score to take the top-K masks that fill the image to more than 95%
total pixels. We observe a significant improvement over zero-shot SAM: object parts are segmented
much more closely following their kinematics structure, obtaining a 92% mean IoU score on the final
used masks and 84% match rate to ground-truth masks.

4.3 ARTICULATION PREDICTION EXPERIMENTS

After completing part-level reconstruction on test objects, we extract OBBs for each object part and
compose a text-prompt for our fine-tuned CodeLlama model. We parse the model’s code generation
and append it with code header lines (e.g. import packages) such that the post-processed code can
be directly executed to produce object simulation. We then evaluate the accuracy of articulation
prediction by measuring the error of joint type, joint axis, and (for revolute joints only) joint position
predictions. As shown in Tab. 2, Real2Code outperform all baseline methods by a large margin. The
effectiveness of our OBB abstraction is further accentuated by column ‘Real2Code+gtBB’, where
we feed oracle OBB to the code generation module and achieve highly accurate predictions even on
unseen objects with a large number of parts.

4.4 QUALITATIVE RESULTS
For qualitative results, we show objects with a range of varying kinematic complexities, from a
two-part laptop to a ten-part multi-drawer table. We visualize the final reconstructed objects from
ours and baselines methods in Fig. 6. Whereas all methods handle the simpler laptop articulation,
baseline methods struggle as the number of object part increases while Real2Code performs much
more accurate reconstruction. See our submission website for more visualizations: https://sites.
google.com/view/real2code-submission
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2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (6)
Inp. Out rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑
OBB Abs. 7.5 0.06 0.92 0.0 0.03 1.0 0.0 0.6 0.83 0.0 0.7 0.73
OBB Rot. 0.0 0.18 0.73 0.3 0.23 1.00 0.9 0.19 0.83 5.9 0.06 0.59
+RGB Rel. 0.0 0.06 0.80 5.0 0.03 1.0 0.0 0.03 0.89 0.0 0.02 0.67

OBB Rel. 0.0 0.07 0.93 0.0 0.04 1.0 0.0 0.04 1.00 11.6 0.03 0.94

Table 3: Joint prediction results from ablation experiments on Real2Code. Using a regression
formulation, the LLM is still able to output reasonable values for two or three part objects, but
generates much less accurate joint positions when the number of articulated parts increase. Additional
RGB image input yields no clear improvements, which suggests the OBB input alone can provide
sufficient information.

4.5 ABLATION STUDIES
To further validate our formulation of using OBB as reference for articulation prediction, experiment with
alternative input and output representation for ablation:

• Regression on Joint Parameters. We fine-tune two more CodeLlama models to take the same input but
outputs continuous numerical values for joint parameters: the first model directly predicts 3 values for each joint
axis and 3 for every joint position (Sec. 4.5 row ‘OBB Abs.’); the second model predicts joint axis the same way
as Real2Code, but predicts joint position as a relative position to the OBB’s center (Sec. 4.5 column ‘OBB Rel.’).

• Provide LLM with Visual Inputs. We fine-tune a model with both RGB and OBB inputs. We adopt the
OpenFlamingo (Alayrac et al., 2022; Awadalla et al., 2023) approach for interleaving image embeddings with
the CodeLlama model weights, and uses the same pre-trained ViT (Dosovitskiy et al., 2020) weights for image
encoder.

Results from the ablation experiments are reported in Tab. 3. We make the following remarks: first, regression
formulation predicts less accurate joint positions. Both predicting absolute joint positions (column ‘OBB
Abs.’) and relative position from OBB center (column ‘OBB Rot.’) yield a higher error. In contrary, the
rotation error is still on a reasonable scale: we found this is due to the model learns to copy the correct axis
column from the OBB rotation matrices contained in the input prompt. Second, RGB input does not yield
significant improvement. Comparing row ‘+RGB Rel.’ and ‘OBB Rel.’, we see the OBB input provides sufficient
information for articulation prediction task.

4.6 EXPERIMENTS ON REAL WORLD OBJECTS

Additional RGB Input

Prompt with OBB Input

Regress

Classify 

Additional RGB Input

Prompt with OBB Input

Different Joint Output Types

Absolute Pos. + Axis

Relative Pos. 
+ OBB Axis  

OBB Edge + Axis  

Figure 5: Qualitative comparison of the code output format in
ablation experiments. Each formulation occupies one line. In
‘Absolute Pos. + Axis’, LLM outputs continuous position and axis
values; in ‘Relative Pos. + OBB Axis’, LLM outputs one index
into the OBB’s rotation axis, and a 2D joint position relative to the
selected axis; Real2Code uses ‘OBB Edge + Axis‘, where LLM
outputs index to rotation axes in an OBB, and two values to indicate
the OBB edge. Bottom right of the figure shows one example of
additional RGB image input to the LLM.

To validate the generalization ability of
Real2Code, we gather a set of in-the-
wild articulated objects and collect multi-
view RGB data as inputs. We run
Real2Code with DUSt3R (Wang et al.,
2023b) to achieve reconstruction from
multi-view pose-free RGB images. Due to
the lack of ground-truths, we show quali-
tative results in Fig. 7 that Real2Code gen-
eralizes well to real objects and pro-
duces good quality reconstructions from
RGB-only inputs. However, although
the learned DUSt3R (Wang et al., 2023b)
model performs well on overall shape and
exterior surface areas of the objects, it pre-
dicts less accurate point maps at areas in-
side the drawers, (likely due to the lack of
similar data in their training dataset). As
a result, the segmented part point clouds
display noises (second row in Fig. 7), and
leads to lower quality mesh extractions.
See appendix A.4 for more details on our
evaluation setup.

5 CONCLUSION
We present Real2Code, a novel method for reconstructing articulated objects that leverages the capability of pre-
trained vision and large language models. We empirically show that Real2Code achieves a new state-of-the-art
in both geometry reconstruction and articulation prediction. We hope Real2Code unlocks new opportunities in
robotics and mixed reality applications.
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PARIS

Ditto

Real2Code 
w/o Shape 
Completion

Real2Code 
(ours)

GT

N/A

Figure 6: Qualitative results that compare Real2Code to baseline methods. We show test on objects with
varying kinematic complexities, from a two-part laptop to a ten-part multi-drawer table. Whereas all methods
handle the simpler laptop articulation, baseline methods struggle as the number of object parts increases, and
Real2Code performs reconstruction much more accurately. PARIS runs out of memory and fails to run on the
ten-part table object (‘N/A’).

Figure 7: We evaluate Real2Code on real world objects using RGB data. For each object, we use 10 pose-free
RGB images captured in-the-wild and run Real2Code with DUSt3R(Wang et al., 2023b). We show one example
RGB input (1st row), segmented point clouds (2nd row) and full reconstruction (3rd row) for each object.
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A APPENDIX

A.1 DISCUSSIONS & LIMITATIONS

In this section, we discuss a few key limitations that point to interesting directions for future work:

1. Real2Code currently handles one single object at a time. To achieve scene-level reconstruction, i.e.
multiple objects each with multiple articulated parts, additional processing is required on top of the
current pipeline. For example, given a sequence of multi-view image inputs of a multi-object scene,
we can first use an object detection model to single-out each detected object, then use the original
Real2Code pipeline to handle object-level reconstruction.

2. Test-time computational efficiency. Due to the iterative prompting method described in 3.1.2, i.e. 1)
grid-sampling of prompt points on each single RGB image and 2) prompting on all camera views
for each object part, our test-time compute for SAM forward pass scales linearly with the number
of input camera views: if an object has M camera views, K object parts, and uses NxN grid for
initial prompt points sampling (we use N = 16), then the SAM Kirillov et al. (2023) is prompted
with N + K(M − 1) single 2D-point and RGB image pairs. Notably, M is the main compute
bottleneck because we can cache the image embedding from SAM Kirillov et al. (2023), and only call
the light-weight prompt decoder for additional prompt points. Additionally, the inference compute for
LLM code generation is dependent on the number of object parts, and roughly scales linearly with
the generation token length. Overall, our system is slower at inference time when compared with
end-to-end methods such as CARTOHeppert et al. (2023) and Ditto Jiang et al. (2022b), but is more
scalable to more complex articulation structures because it handles arbitrary numbers of object parts.

3. Cascading dependency. Because Real2Code is composed of multiple modules, failure cases happen
when the errors from each module propagate and lead to sub-optimal final object reconstructions.
We found that the articulation prediction accuracy is sensitive to failures in the first 2D image
segmentation module, i.e., OBBs from wrong segmentations directly obstruct the LLM reasoning of
object structures. To increase robustness, we can improve the system by providing human corrective
feedback as proposed in Kirillov et al. (2023), i.e., a user provides additional points and prompt the
model to adjust its mask predictions. Then only feed the input with satisfactory OBB extractions to
LLM for code generation.

4. Objects with hinge joints that do not overlap with OBB edge. To handle new object categories,
we remark that 1) the geometry reconstruction part of Real2Code (both part segmentation shape
completion) can handle complex geometry shapes (e.g. scissors, faucet handles) when given the
training data for fine-tuning the part segmentation model and shape completion model. 2) However,
because we select OBB edge as rotation center, our method can handle sliding joints (e.g. a sliding
oven rack) but will be inaccurate for hinge joints where the joint is not overlapping with any OBB
edge (e.g. scissors). To address this, one could add another fine-tuning head to further adjust the
LLM outputs (which selects one OBB edge) by predicting an offset value to improve the joint position
accuracy.

A.2 DATASET PREPARATION DETAILS

Base: PartNet-Mobility Object Assets. We use the same set of 467 training and 35 testing objects from 4
categories in PartNet-Mobility (Mo et al., 2019). The raw dataset contains a rich collection of object meshes,
textures, and URDF files that contain articulation information. We further process the data as follows:

RGB-D Image Rendering We render each object individually using Blender (Community, 2018; Denninger
et al., 2023) for 5 loops. For each rendering loop, the object is centered at the scene origin and the rendering
camera poses are randomly sampled; we render 12 RGB-D images and all the segmentation masks corresponding
to the all the object parts. During rendering, we also randomly sample joint states in the object such that all its
doors or drawers are partially open — we make the assumption that all the parts our train and test objects are
partially open to remove ambiguity and provide more observation view into object insides.

Mesh Pre-processing. The original PartNet-Mobility assets contain highly fine-grained meshes, i.e.,one drawer
part is comprised of more than ten panel or bar-shaped meshes. To prepare data for part-level shape completion,
we group these fine-grained meshes such that meshes from the same object part are merged into one single
mesh. Mesh textures are ignored during grouping, resulting in grouped texture-less part-level meshes. The
RGB-D images and masks are then used to generate part-level point clouds as partial observations. We use
Kaolin (Fuji Tsang et al., 2022) to sample label occupancy values from object part meshes.

Code-Generation Data. To prepare data for fine-tuning code-generation LLMs, we first use the rendered
RGB-D images and segmentation masks to obtain ground-truth part-level point-clouds, which are used to extract
oriented-bounding boxes (OBBs) for each part. Next, we take the raw object URDF files and generate a shorter

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

copy with our grouped part meshes. Because the raw URDF/XML syntax contain long unnecessary details,
we manually translate them into Python-like MJCF (Tunyasuvunakool et al., 2020) code, which are a lot more
compact and familiar to the pre-trained LLMs. Finally, for each of the 5 rendering loops per object, we re-write
the object code again to replace the absolute joint information with the relative position and rotation of each
joint with respect to the extracted OBBs. We further augment the data by randomly rotating the OBBs along the
z-axis, 5 times per object. This results in 468× 5× 5 = 11700 training samples for LLM fine-tuning.

A.3 MODEL TRAINING DETAILS

SAM Fine-tuning. The fine-tuning data consists of 28, 020 RGB images, and each image corresponds to a set
of binary segmentation masks, one per each object part plus a background mask. We fine-tune only the decoder
layers of pre-trained SAM (Kirillov et al., 2023) on this custom dataset while keeping the rest of the model
weights frozen. Each fine-tuning batch contains 24 RGB images; for every RGB image in the batch, we sample
16 prompt points uniformly across each image’s ground-truth masks, i.e.,only sample points from the positive
mask area. Hence each training batch of size B = 24 contains 24 images and 24× 16 pairs of prompt point and
ground-truth masks. Following the original paper (Kirillov et al., 2023), we update the model with a weighted
average of Focal Loss (Lin et al., 2018), Dice Loss (Sudre et al., 2017) and MSE IoU prediction loss.

Fine-tuning DatasetInput image     Zero-shot SAM      Fine-tuned SAM

Figure 8: Kinematics-aware SAM Fine-tuning. Given an RGB input image, the pre-trained
zero-shot SAMKirillov et al. (2023) produces unnecessarily detailed segmentation masks (column
Zero-shot SAM’. We construct a dataset of objects’ RGB images and kinematics-aligned ground-truth
masks (column ‘Fine-tuning Dataset’). The model is fine-tuned to take one image and one sampled
2D query point and predict the corresponding part mask. We compare the output of the model after
fine-tuning on the same image (column ‘Fine-tuned SAM’).

Training Shape Completion Model. We use 6, 260 pairs of partial point clouds and size 963 occupancy grids
and train our PointNet++ (Qi et al., 2017) based occupancy prediction model from scratch. For a training batch
of size B, we sample B point clouds of size 2048, and sample B × 12, 000 query points on the label occupancy
grids. Notably, because object parts are of different scales, we normalize the occupancy grid using partial OBBs
extracted from the input point cloud to avoid under-fitting the smaller-sized meshes. When sampling training
query points, we found sampling 25% occupied works the best for balancing between occupied areas and empty
space, and we add a random shifting step on the occupied grids to improve model accuracy on the near-surface
areas. At test time, we query on a 963 grid and use Marching Cubes (Lorensen & Cline, 1987) to extract the
completed part meshes.

Fine-tuning Code Generation LLM. We use the pre-trained Codellama (Rozière et al., 2023)-7B model on
our code dataset, which contains code samples generated from PartNet (Mo et al., 2019) objects as described
above. We use LoRA (Hu et al., 2021), a low-rank weight fine-tuning technique, to fine-tune the model with the
next-token prediction loss. For training efficiency, we compress the training sequences by removing unnecessary
empty character spaces and overhead code lines (such as package import statements). The resulting training set
contains under 800 tokens per sequence for objects with up to 7 parts (i.e., 6 articulated joints). Despite the short
training data, we found the model to be able to extrapolate to unseen test set objects with up to 15 parts when the
ground-truth segmentation is provided.

A.4 DETAILS ON REAL WORLD EVALUATIONS

Data Collection. We collect data from a set of common furniture objects, including cabinets, laptops, night
stands, dressers, ranging from 1 to 3 moving parts. Each object is scanned using a LiDAR-equipped iPhone
camera and 3dScanner App (3D Scanner App, 2024) to capture a series of RGB images from the front 180◦

view. We then select 10 RGB images per object, and crop and resize them into 512 × 512 images used by
SAM (Kirillov et al., 2023) and DUSt3R (Wang et al., 2023b).

Part Segmentation from Unstructured RGB images. Fig. 9 visualizes the DUSt3R model output on an
example object in: notably, the model predicts dense point-maps on the object’s surface area that can be
globally-aligned into a object point cloud; but the 3D points are less accurate on the partially occluded areas,
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Globally Aligned Dense Point-maps from DUSt3R                  View-consistent Prompt Points

Figure 9: 3D part segmentation from Pose-free RGB images. Illustration of how DUSt3R (Wang
et al., 2023b) is used to achieve 3D part segmentation from unstructured RGB images. For each
object, we take around 10 pose-free RGB images as input to the pre-trained DUSt3R (Wang et al.,
2023b) model, which outputs a set of globally-aligned 2D-to-3D dense point-maps, i.e.,every 2D
pixel on each image is matched to a point in 3D. This correspondence enables cross-view pixel
matching via finding nearest-neighbor in 3D space. We can therefore sample view-consistent 2D
points for prompting our fine-tuned SAM model, and the resulting segmented masks are grouped into
3D part segmentation.

Jewelry Box       Gameboy 

Figure 10: We demonstrate that Real2Code can be used for labeling and animating real world objects.
We evaluate Real2Code on scanned real objects from Polycam (Polycam, 2024) and export the
resulting mesh and joints in MuJoCo (Todorov et al., 2012). Blue arrows indicate the simulated joint
axis and position; mesh corresponding to the moving part is colored in green.

such as the inside of the drawer. This is likely due to these areas are less common in the model’s pre-training
dataset. Also notice that, because we sample each 2D point from one RGB image first and uses nearest neighbor
in the predicted 3D point-map to find its matching 2D point in another image, it might find a wrong match if the
point is occluded and not visible in the other image. We address this by manually setting a distance threshold,
and decide a match cannot be found if its 3D point’s distance to the nearest neighbor is above set threshold.

B ADDITIONAL RESULTS ON ANIMATING SCANNED REAL WORLD OBJECTS

In addition to object reconstruction from raw RGB images, we show Real2Code can also be used to animate
scanned objects. We use real world scanned object meshes uploaded by users of the Polycam (Polycam, 2024)
App, and use our Blender rendering pipeline to render RGB-D images. We evaluate our image segmentation,
shape completion, and code generation models on these images, and demonstrate only the qualitative results due
to the lack of ground-truth data. We execute the final model output code to show the objects can be simulated
in MuJoCo (Todorov et al., 2012). See Fig. 10 for visualizations. These real world objects feature complex
visual appearance that falls outside our SAM fine-tuning distribution, but Real2Code is still able to successfully
segment parts and predict reasonable joint positions and rotations.
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