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ABSTRACT

The increasing size of deep neural networks (DNNs) necessitates effective model
compression to reduce their computational and memory footprints. Sparsity and
quantization are two prominent compression methods that have been shown to
reduce DNNs’ computational and memory footprints significantly while preserving
model accuracy. However, how these two methods interact when combined to-
gether remains a key question for developers, as many tacitly assume that they are
orthogonal, meaning that their combined use does not introduce additional errors
beyond those introduced by each method independently. In this paper, we provide
the first mathematical proof that sparsity and quantization are non-orthogonal. We
corroborate these results with experiments spanning a range of large language
models, including the OPT and LLaMA model families (with 125M to 8B parame-
ters), and vision models like ViT and ResNet. We show that the order in which we
apply these methods matters because applying quantization before sparsity may
disrupt the relative importance of tensor elements, which may inadvertently remove
significant elements from a tensor. More importantly, we show that even if applied
in the correct order, the compounded errors from sparsity and quantization can
significantly harm accuracy. Our findings extend to the efficient deployment of
large models in resource-constrained compute platforms to reduce serving cost,
offering insights into best practices for applying these compression methods to
maximize hardware resource efficiency without compromising accuracy.

1 INTRODUCTION

Recent breakthroughs in deep neural networks (DNNs) have surpassed human-level capabilities
across various tasks such as text generation, machine translation, and computer vision. Unfortunately,
this achievement is accompanied by significant challenges due to the exponential growth in the size
and complexity of DNN models and datasets (Brown et al., 2020; Zhang et al., 2022b; Scao et al.,
2022; Touvron et al., 2023; Almazrouei et al., 2023; Anil et al., 2023; Jiang et al., 2023; OpenAI,
2023; Mesnard et al., 2024), which complicates their practical deployment and efficient serving.
Delivering efficient and real-time inference for these large models is constrained by arithmetic density
(throughput/silicon area (Drumond et al., 2018a; Darvish Rouhani et al., 2020a; Harma et al., 2022)),
memory footprint, and the pressure on memory bandwidth across various hardware platforms (e.g.
GPU (Nvidia, 2022), TPU (Google, 2023)).

Among various efficiency efforts, model compression has emerged as a crucial solution to effectively
address the challenges associated with large models (Micikevicius et al., 2018; Drumond et al.,
2018b;a; Wang & Kanwar, 2019; Darvish Rouhani et al., 2020b;a; Dai et al., 2021; Zhang et al.,
2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani et al., 2023a;b; Hassibi et al., 1993; LeCun et al.,
1989; Frantar et al., 2023; Kao et al., 2022; Lasby et al., 2023; Kuzmin et al., 2023) with quantization
standing out as a prominent method in terms of overall compression ratio achieved. Quantization
effectively reduces the precision of model tensors from native floating-point representation to for-
mats such as FP16 (Micikevicius et al., 2018), BFloat16 (Wang & Kanwar, 2019), and INT8 (van
Baalen et al., 2023; Zafrir et al., 2019). In recent years, block-wise numerical formats have gained
prominence (Drumond et al., 2018b;a; Darvish Rouhani et al., 2020b;a; Dai et al., 2021; Zhang et al.,
2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani et al., 2023a;b), particularly due to their ability
to reduce memory footprint and increase arithmetic density in sub-8-bit regimes, while preserving
accuracy with minimal hardware overhead.
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Beyond quantization, researchers are also exploiting sparsity to further compress models, pruning
elements of tensors that are least significant to preserve model accuracy. This reduction in the
number of parameters decreases the models’ memory footprint and eliminates potentially unnecessary
computation (Sze et al., 2020). The most popular sparsity method is magnitude-based sparsity which
prunes elements of a tensor based on their magnitudes (i.e., a proxy for the importance of an element
to model accuracy) (Han et al., 2015b; Mishra et al., 2021b; Lu et al., 2023; Ding et al., 2023;
Bambhaniya et al., 2024), which when combined with fine-tuning achieves noticeable compression
rates with negligible impact on accuracy (Kurtic et al., 2022; Sanh et al., 2020).

While combining sparsity and quantization provides significant gains in arithmetic density and
memory footprint, it may inadvertently have a high impact on model accuracy. Prior work tacitly
assumes that these two methods are orthogonal, meaning that their combined use does not introduce
additional errors beyond those of each method individually. These include studies focusing on
CNNs (Han et al., 2015a; Wang et al., 2020), which are more resilient to quantization errors due to
the absence of dot-product outliers in activation tensors (Xiao et al., 2023). Because quantization
error in CNNs is relatively low, additional errors introduced by combining the two are minimal. Other
studies focus only on compressing weights without quantizing activations (Li et al., 2020; Liu et al.,
2023), which also leads to low overall error when combined with sparsity. These studies fall short of
properly investigating the combined impact of these two compression methods to maximize hardware
resource efficiency without compromising accuracy.

In this paper, we study the interplay between sparsity and quantization systematically. Sparsity and
quantization leverage fundamentally separate computational properties of DNNs, but their combined
impact on model accuracy involves complex interactions due to the introduction of errors in tensors.
We hypothesize that sparsity and quantization are non-orthogonal based on the following two insights.
First, applying quantization before sparsity (Q→S) may adversely disrupt the relative importance of
tensor elements, leading to the removal of significant elements of a tensor with a significant impact
on model accuracy. Second, applying sparsity before quantization (S→Q) can introduce additional
errors in dot product calculations, as these are influenced by the magnitudes and precision of the
involved elements requiring a careful investigation. To the best of our knowledge, we are the first to
study the interplay between sparsity and quantization in depth to identify the conditions under which
accuracy can be preserved or compromised. Our contributions are summarized below:

• Non-Orthogonality of Sparsity and Quantization: We prove mathematically that sparsity and
quantization are non-orthogonal operations. Our per-layer error analysis shows that combination of
the two introduces compounded errors and a degradation of model accuracy. Our findings challenge
the conventional wisdom that these methods can be combined without a significant impact on
accuracy.

• Corroborating the Optimal Compression Order: Although applying sparsity before quantiza-
tion (S→Q) is the most commonly adopted approach, the optimal order has not been formally
demonstrated in the literature. We provide the first mathematical proof that applying sparsity before
quantization (S→Q) is optimal. Moreover, we derive the upper bound for the error caused by the
sub-optimal order of the transformations at the tensor level. We show that it depends linearly on
the number of elements in the tensor and the size of the quantization bin.

• Validating Non-orthogonality Empirically: We validate our mathematical findings with experi-
ments covering a diverse range of models, including prominent LLMs (OPT, LLaMA), ViT, and
ResNet. These experiments support our hypotheses and mathematical findings, underscoring the
non-orthogonality of sparsity and quantization, and the optimal order of compression methods. Our
experiments demonstrate that combining sparsity and quantization, even in the optimal order, can
cause up to 13% additional error in perplexity.

2 RELATED WORK

Quantization. The ever-growing size of DNN models has spurred extensive research into using
narrow numerical formats for inference to reduce memory footprint and improve computational effi-
ciency (Micikevicius et al., 2018; Drumond et al., 2018b;a; Wang & Kanwar, 2019; Darvish Rouhani
et al., 2020b;a; Dai et al., 2021; Zhang et al., 2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani
et al., 2023a;b). Numerical formats employ scaling factors to adjust their dynamic range and can be
categorized based on the granularity and levels of the scaling factors.
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Element-wise scaling formats, such as FP32, BFloat16 (Wang & Kanwar, 2019), and FP16 (Mi-
cikevicius et al., 2018), consist of sign, mantissa, and exponent components, differing in the bit
allocation for each component. Conversely, block-wise scaling formats assign scaling factors to
blocks of elements, with block sizes varying by format. For instance, INT8 employs per-tensor
scaling, where a single scaling factor is shared by around 1K elements. Recent research highlights
the effectiveness of max-scaled fine-grained block-wise scaling formats with block sizes smaller
than 100 elements, especially in the sub-8-bit regime for both training and inference (Drumond et al.,
2018a; Rouhani et al., 2023a;b; Zhang et al., 2022a; Darvish Rouhani et al., 2020a). Additionally,
modern hardware platforms have adopted these techniques. For instance, the upcoming NVIDIA
Blackwell GPUs (Nvidia, 2024) will support MXFP.

Sparsity. Sparsity methods (Hassibi et al., 1993; LeCun et al., 1989; Frantar et al., 2023; Kao et al.,
2022; Lasby et al., 2023) aim to reduce computational and memory footprints in DNNs by selectively
pruning tensor elements according to various sparsity mask selection criteria. Broadly, these methods
fall into two main categories based on sparsity patterns: unstructured (Han et al., 2015a; Guo et al.,
2016; Frankle & Carbin, 2019; Evci et al., 2020a) and structured (Wen et al., 2016; Yao et al., 2019;
Kang, 2020; Mishra et al., 2021b; Pool & Yu, 2021; Zhou et al., 2021; Sun et al., 2021; Hubara et al.,
2021; Lu et al., 2023). Unstructured sparsity (Han et al., 2015a; Guo et al., 2016; Frankle & Carbin,
2019; Evci et al., 2020a) involves removing individual tensor elements without any specific pattern.
Structured sparsity (Wen et al., 2016), on the other hand, employs specific patterns when pruning
tensor elements. Recent work (Yao et al., 2019; Kang, 2020) has highlighted the effectiveness of
fine-grained N:M structured sparsity in mitigating model accuracy loss.

The fundamental operation in any sparsification scheme is selecting candidate elements for pruning
among which magnitude-based sparsity (Han et al., 2015b) is one of the most widely used methods (Lu
et al., 2023; Ding et al., 2023; Bambhaniya et al., 2024). In addition, recent work has introduced
one-shot pruning methods, such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023), aiming to eliminate the need for an additional fine-tuning phase. However, evidence suggests
that incorporating fine-tuning still improves accuracies significantly (Sun et al., 2023; Syed et al.,
2023; Lu et al., 2024).

Combining sparsity and quantization. Prior work has studied the combination of sparsity and
quantization and its impact on model accuracy in both orders: sparsity followed by quantization (Yu
et al., 2023; Frantar & Alistarh, 2023; 2022; Park et al., 2022; Mishra et al., 2021a; Li et al., 2020;
Han et al., 2015a) and quantization followed by sparsity (Hu et al., 2021; Hawks et al., 2021; Wu
et al., 2023; Mishra et al., 2021b). There are two missing pieces of information from prior work. First,
consensus on the optimal order of compression operations is not established. A few studies raise the
question and experiment with both orders to determine the best approach (Wu et al., 2023; Wang
et al., 2022; Zandonati et al., 2023; Park et al., 2019; Yu et al., 2020; Mishra et al., 2021a; Kozlov
et al., 2021; Zhang et al., 2021), while others treat the methods as orthogonal compression schemes.
Second, there is a lack of mathematical grasp on how sparsity and quantization errors interact and
influence final model performance.

3 NON-ORTHOGONALITY OF SPARSITY AND QUANTIZATION

This section provides a mathematical analysis of the interplay between sparsity and quantization,
formalizing these compression methods and examining their combination, henceforth referred to
as (mathematical) composition, at both the tensor and dot-product levels. For the remainder of
the paper, we use the following notions: (1) Tensor level refers to structures that encompass both
weight and activation tensors; and (2) Dot-product level pertains to the computation of inner products
within these tensors, such as the matrix multiplication operation between weights and activations
during the forward pass. Our analysis centers on quantization methods that reduce the bit-width of
model weights and activations using block-wise numerical formats, which are prevalent in practical
implementations (Darvish Rouhani et al., 2020a; Drumond et al., 2018a; Zhang et al., 2022a; Rouhani
et al., 2023a;b; Micikevicius et al., 2022). These formats determine the scaling factor based on
the element with the maximum magnitude within the block. We refer to any quantization method
employing these numerical formats as max-scaled block-wise quantization. We use magnitude-based
sparsity for both unstructured and N:M structured sparsity.
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Definition 3.1 (Max-scaled block-wise quantization). Let x ∈ Rn be a block of n numbers and
m ∈ N denote the quantization bit-width. Max-scaled block-wise quantization q : Rn → Rn is a
transformation of the block x such that

xi
q−→ Qm(xi, scale) (1)

where scale = max(|x1|, . . . , |xn|) is the scaling factor. Qm(·, scale) quantizes the given element
with the scaling factor scale and the number of mantissa bits m. The exact form of Qm depends on the
numerical format and can be found in Appendix K. For instance, INTm quantization transformation
is defined as follows:

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s =

scale

2m−1 − 1
, and ⌊·⌉ is the rounding to the nearest integer.

(2)
Definition 3.2 (Magnitude-based sparsity). Let x ∈ Rn be a block of n numbers. We assume n is
divisible by M and we consider each group of M elements in the block. The magnitude-based N:M
sparsity transformation can be formulated as:

x̃i :=

{
0 if |xi| < ξ

xi otherwise
, for i = 1, 2, ...,M (3)

where ξ is the N -th largest element in the set {|x1|, . . . , |xM |}. The same formula can be adjusted
to represent p% unstructured sparsity by defining ξ as the N -th largest element in the tensor, where
N = ⌊M · p/100⌉, M is the number of elements in the tensor, and ⌊·⌉ is the operation of rounding
to the nearest integer.

In the remainder of this section, we delve into the composition of sparsity and quantization at two
different levels. First, we examine the effects of applying this composition in different orders at the
tensor level, observing how individual tensors are altered. Then, we explore how the composition
influences the result of the dot product operation.

3.1 TENSOR-LEVEL ANALYSIS

Sparsity and quantization transformations inherently introduce errors by decreasing precision or
pruning tensor elements. To study the composition of sparsity and quantization transformations at the
tensor level, we introduce formal definitions of transformation error and orthogonality in compression.
We prove that orthogonality in compression between sparsity and quantization does not persist within
this composition.

The following definition formalizes the error for a specific transformation at the block level, which
consists of a subset of tensor elements.
Definition 3.3 (Transformation error). Let x ∈ Rn be a block of n numbers, which are the input of
a transformation f : Rn → Rn. We define εf (x) := x− f(x) as the error of the transformation f .

Definition 3.3 can be extended to the tensor level, despite being defined at the block level. The
cumulative error of a tensor can be viewed as the summation of individual errors across all its
constituent blocks. Hence, the theorems analyzed at the block level are indicative of the behavior
when scaled up to the tensor level.

Composing two compression methods (transformations) is expected to introduce additional errors.
Any error introduced by the first transformation becomes part of the input to the second transformation,
potentially amplifying the initial error and resulting in a larger overall error.
Definition 3.4 (Tensor-level orthogonality). We define two transformations f and g to be orthogonal
in compression1 if any order of their composition does not introduce any additional error, and thus,
the following inequalities hold:

∀x ∈ Rn, ∥εg◦f (x)∥ ≤ ∥εf (x)∥+ ∥εg(x)∥ and ∥εf◦g(x)∥ ≤ ∥εf (x)∥+ ∥εg(x)∥ (4)

where ∥ · ∥ is an Lp norm, p ∈ [1,+∞).
1In the remainder of the paper, we use the term "orthogonal" to refer to "orthogonal in compression" for

simplicity.
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Theorem 3.5. Let q be the max-scaled block-wise quantization and s be the magnitude-based sparsity
transformation. Applying sparsity before quantization does not introduce any additional error:

∀x ∈ Rn, ∥εq◦s(x)∥ ≤ ∥εq(x)∥+ ∥εs(x)∥ (5)

Moreover, the equality is attainable.

The proof of Theorem 3.5 can be found in Appendix J. The main idea behind the proof is that as
the sparsity transformation does not prune the largest element in the block, the scale quantization
parameter remains unchanged. Consequently, the quantization error for the non-zero components
before and after sparsity remains the same.
Theorem 3.6. Let q be the max-scaled block-wise quantization and s be the magnitude-based sparsity
transformation. Applying quantization before sparsity may introduce additional error:

∃x ∈ Rn, ∥εs◦q(x)∥ > ∥εq(x)∥+ ∥εs(x)∥ (6)

Moreover, a global upper bound exists for the additional error arising from this specific order of
transformations (Q→S). This upper bound is solely determined by the quantization method and the
parameters of the sparsity type, independent of the input data. The following theorem precisely
quantifies the magnitude of this additional error.
Theorem 3.7. Let q be the max-scaled block-wise quantization and s be the magnitude-based N:M
sparsity transformation. Let step be the least upper bound for the magnitude of the quantization error
for one element: step = sup{|εq(x)i| | x ∈ Rn, i ∈ {1 . . . n}}. Then the error of the composition
s ◦ q with respect to L1 norm has the following upper bound:

∀x ∈ Rn, ∥εs◦q(x)∥1 ≤ ∥εq(x)∥1 + ∥εs(x)∥1 + 2 · step · M −N

M
· n︸ ︷︷ ︸

additional error

(7)

The general formulation of Theorem 3.7 for all Lp norms and the proof of Theorem 3.6 and 3.7 can
be found in Appendix J. As a corollary of Theorem 3.5, 3.6, and 3.7, it follows that the optimal
order of transformations is sparsity followed by quantization, as this sequence does not introduce any
additional error. Moreover, according to Definition 3.4, sparsity and quantization are non-orthogonal
at the tensor level.

3.2 DOT-PRODUCT-LEVEL ANALYSIS

In this section, we delve into the error linked with the dot product operation, which is the primary
operation in DNNs. Our analysis focuses on scenarios where weight tensors undergo sparsity and
quantization, while activation tensors solely undergo quantization. We first extend the definition of
transformation error to the dot-product level.
Definition 3.8 (Transformation error over the dot product). Let x,w ∈ Rn denote the inputs
of a transformation f : Rn → Rn and the dot product operation ⟨., .⟩ : Rn × Rn → R. We define
εDf (x,w) := ⟨x,w⟩ − ⟨f(x), f(w)⟩ as the error of the transformation f over dot product. Similarly,
we define εDf,g(x,w) := ⟨x,w⟩ − ⟨f(x), g(w)⟩ as the error over the dot product when different
transformations are applied to x and w.

At the dot-product level, we define two compression methods as orthogonal if their composition, in
any order, does not introduce additional error, akin to Definition 3.4.
Definition 3.9 (Dot-product-level orthogonality). Let x,w ∈ Rn denote the inputs of transforma-
tions f : Rn → Rn and g : Rn → Rn, and the dot product operation ⟨., .⟩ : Rn × Rn → R. Let the
transformation f be applied to both x and w, and transformation g be applied only to w. Let c denote
a composition of f and g in any order, c := f ◦ g or c := g ◦ f . We define two transformations f and
g to be orthogonal on the dot-product level if any order of their composition applied to the second
term w does not introduce any additional error:

∀x,y ∈ Rn, |εDf,c(x,w)| < |εDI,g(x,w)|+ |εDf (x,w)| (8)

In the following theorem, we demonstrate that any composition of sparsity and quantization yields
additional error, rendering these two methods non-orthogonal.

5
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Theorem 3.10. Let q be the max-scaled block-wise quantization, s be the magnitude-based sparsity
transformation, c be the composition which is either s ◦ q or q ◦ s and I be the identity function.
Composition of max-scaled quantization q and sparsity s in any order produces additional error in
any order, given that only the second operand, i.e., weight, is pruned:

∃x,w ∈ Rn, |εDq,c(x,w)| > |εDI,s(x,w)|+ |εDq (x,w)| (9)

Moreover,

|εDq,c(x,w)| ≤ |εDI,s(x,w)|+ |εDq (x,w)|+
εt︷ ︸︸ ︷

|⟨q(x), ε̃c(w)⟩|+
εi︷ ︸︸ ︷

|⟨εq(x), εs(w)⟩|︸ ︷︷ ︸
additional error

(10)

where ε̃c(x) is defined as the correction error vector of the composition:

εc(x) = εq(x) + εs(x) + ε̃c(x) (11)

Proof of Theorem 3.10 can be found in Appendix J.

Analysis of the additional error. As a corollary of Theorem 3.10, the composition of max-scaled
sparsity and quantization is non-orthogonal, resulting in two additional error terms.

The term εt incorporates the correction vector of the composition ε̃c, which carries the additional
error from the tensor level to the dot-product level. Depending on the order of the composition,
the value of εt varies. When quantization precedes sparsity, certain elements within a block may
become equal due to quantization, leading the sparsity step to prune different elements than it would
on the original tensor. This introduces additional error, as previously significant elements may be
inadvertently pruned. If sparsity precedes quantization, the correction vector ε̃c exclusively comprises
the quantization errors of the pruned elements. As a result, the magnitude of the additional error is
typically smaller compared to the reverse order.

The term εi also contributes to the additional error, encoding the interaction between the error vectors
εq(x) and εs(w). However, since the norm of quantization and sparsity errors are generally smaller
than the norm of the quantization block, this term is less significant than εt.

We provide a more detailed explanation of the additional error analysis in Appendix M

Finally, to experimentally validate our mathematical findings, we define a metric, orthogonality
threshold to assess whether the transformations are orthogonal.
Definition 3.11 (Orthogonality threshold). Let M be a DNN model under consideration, EM(M)
be an evaluation metric that measures the performance of the model M (e.g., perplexity or cross-
entropy loss), EMC(M) be the evaluation metric of the model M with transformation C, which is
either sparsity S or quantization Q. Moreover, let ErrC(M) = EMC(M)−EM(M) be the evaluation
metric error of the transformation C for the model M . We define orthogonality threshold as:

Orthogonality Threshold = EM(M) + ErrQ(M) + ErrS(M) (12)

If the compression methods are non-orthogonal, and the evaluation metric improves with lower values
(e.g., perplexity), we expect the compressed model’s evaluation metric (e.g., perplexity) to worsen
and thus exceed the orthogonality threshold due to compounded errors. Similarly, if the compression
methods are non-orthogonal, and the evaluation metric improves with higher values (e.g., accuracy),
we expect the compressed model’s evaluation metric (e.g., accuracy) to decrease and thus fall below
the orthogonality threshold.

4 EXPERIMENTAL METHODOLOGY AND RESULTS

Models, datasets, and evaluation setup. We study the most widely adopted Transformer-based
models, including OPT (Zhang et al., 2022b) and LLaMA (Touvron et al., 2023) model families.
In line with prior work (Xiao et al., 2023; Frantar & Alistarh, 2023; Sun et al., 2023), we fine-tune
pre-trained models and evaluate perplexity on the WikiText2 (Merity et al., 2017) dataset. The
pretrained LLMs used in our experiments are base (general-purpose) models, not instruct-tuned
variants. In addition, we assess non-orthogonality across different metrics of ViT (Dosovitskiy et al.,
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2021) and ResNet (He et al., 2016) on ImageNet-1k (Deng et al., 2009). In all experiments, we
designate the dense FP32 configuration as the primary baseline.

Our experiments span a diverse range of configurations to validate our mathematical findings,
including various variants of max-scaled formats, such as INT8 quantization with per channel
scaling (Dettmers et al., 2022), HBFP8/6 (Drumond et al., 2018a), and MXFP8/6 (Rouhani et al.,
2023b). We primarily study magnitude-based 50% unstructured and 2:4 structured sparsity with
sparsity-aware fine-tuning. We define N:M structured sparsity as following: in every group of M
consecutive weights, at most N weights can have non-zero values. We evaluate the impact of a
higher compression ratio on ViT-B/16 and ResNet-50 by applying 75% unstructured sparsity, 1:4
structured sparsity, and HBFP4. Detailed results can be found in Appendix G and O. We also explore
post-training one-shot sparsity methods like SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023) in Appendix F.

In our experiments, we evaluate the impact of each compression method by analyzing the variations
in perplexity and cross-entropy loss compared to the baseline, thereby focusing on the cumulative
error in the model output. Additionally, we analyze the errors of intermediate layers to support our
mathematical analysis, as detailed in Section 4.3 and Appendix I.

Note that we focus on cross-entropy loss for ViT-B/16 and ResNet-50 instead of classification
accuracy. This is because accuracy remains unaffected as long as the most likely label remains
unchanged, regardless of its absolute value. However, our primary metric for orthogonality threshold
is the aggregated errors introduced in the model output distribution. Table 8 in Appendix G and
Table 12 in Appendix O present orthogonality threshold on additional metrics.

Experimental setup. We exclusively sparsify and/or quantize layers with trainable parameters.
Specifically, we target all linear layers in LLMs (excluding the lm-head or embedding layers following
the literature (Frantar et al., 2022; Frantar & Alistarh, 2023; Lee et al., 2024)), and all linear and
convolution layers (including the initial embedding layer) in ViT-B/16 and ResNet-50. These layers
collectively constitute approximately 99% of the total parameters. In all experiments, we sparsify
weights while keeping activation dense. Both weights and activation tensors are quantized before
matrix multiplication operations. For OPT, LLaMA, ViT, and ResNet fine-tuning, we employ sparse
fine-tuning on a dense FP32 pre-trained model, recomputing sparsity masks at each iteration. In
experiments involving sparsity followed by quantization (S→Q), we apply one-shot quantization to
sparse fine-tuned models. Conversely, for experiments with the reverse order (Q→S), we directly fine-
tune the model in a quantized and sparsified manner. At each iteration, we quantize activations and
weights while applying sparsity to weight tensors. We validate the effectiveness of these compression
recipes through an ablation study, the details of which are presented in Appendix D. To ensure fair
comparison, we maintain uniform hyperparameters across various number formats for a given model
and sparsity type (details in Appendix B). We present a limited sensitivity study on the initial seed
number in Table 9 in Appendix H. A summary of our experimental setup is presented in Table 6.

4.1 EMPIRICAL STUDY 1: ORDER OF SPARSITY AND QUANTIZATION

This section presents empirical evidence demonstrating that applying sparsity before quantization
leads to better perplexities compared to the reverse order. These results are aligned with the math-
ematical analysis in Section 3.1. Table 1 presents perplexities for OPT-125M and LLaMA-2-7B
under various number formats and sparsity types considering both orders of transformations. “50%”
denotes unstructured sparsity, while “2:4” represents a variant of N:M structured sparsity. In the
FP32 columns, only one perplexity for each compression order is reported because no quantization is
applied. The best results for each (sparsity type, number format) pair are highlighted in bold.

We evaluate the order of transformations across different configurations: sparsity followed by quanti-
zation (S→Q) and quantization followed by sparsity (Q→S). Configurations with lower perplexities
are highlighted in bold. Consistently, we observe that the S→Q order yields better perplexities
across all number formats for magnitude-based sparsity. As discussed in Section 3.1, in the case
of Q→S, quantizing a tensor can alter the order of its elements due to changes in magnitudes. If
magnitude-based sparsity removes elements of the quantized tensor that were originally larger before
quantization, the error of the combination may exceed the sum of the errors caused by each transfor-
mation individually. This compounded error further propagates through subsequent dot-product and
vector operations, impacting overall model performance.
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Table 1: Model perplexities on WikiText2 for combined sparsity and quantization. The best results
for each (sparsity type, number format) pair are highlighted in bold.

OPT-125M LLaMA-2-7B

Sparsity
type Order FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6 FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6

0% (Dense) - 27.65 28.06 28.45 28.01 27.81 29.91 5.12 5.15 5.17 5.16 5.12 5.24

50% S→ Q 29.94 30.22 31.13 31.20 30.46 32.51 6.31 6.94 6.40 6.38 6.32 6.51
Q→ S - 34.71 36.39 35.60 37.48 40.86 - 8.13 8.47 9.32 9.86 10.20

2:4 S→ Q 31.89 32.76 33.99 33.41 32.25 34.58 9.30 9.37 9.35 9.32 9.39 10.68
Q→ S - 45.06 44.16 42.25 46.57 55.64 - 14.65 14.35 14.50 14.98 18.64

Table 2: Model perplexities and CE loss for combined sparsity and quantization. The numbers in the
parentheses show the difference in perplexity/CE loss between the sparse and dense configuration.

OPT-125M OPT-6.7B LLaMA-2-7B LLaMA-3-8B ViT-B/16
Sparsity

type
Number
format PPL↓ Orth.

threshold PPL↓ Orth.
threshold PPL↓ Orth.

threshold PPL↓ Orth.
threshold

CE
Loss↓

Orth.
threshold

0%

FP32 27.65 - 10.86 - 5.12 - 5.53 - 0.703 -
INT8 28.06 - 10.95 - 5.19 - 5.63 - 0.706 -

MXFP8 28.45 - 11.25 - 5.17 - 5.62 - 0.722 -
MXFP6 28.01 - 11.02 - 5.16 - 5.62 - 0.715 -
HBFP8 27.81 - 10.88 - 5.12 - 5.56 - 0.704 -
HBFP6 29.91 - 11.20 - 5.24 - 5.87 - 0.718 -

50%

FP32 29.94 (+2.29) - 11.30 (+0.44) - 6.31 (+1.19) - 10.09 (+4.56) - 0.723 (+0.020) -
INT8 30.22 (+2.16) 30.35 11.37 (+0.42) 11.39 6.94 (+1.75) 6.38 10.85 (+5.22) 10.19 0.728 (+0.022) 0.725

MXFP8 31.13 (+2.68) 30.74 11.74 (+0.49) 11.69 6.40 (+1.23) 6.36 10.34 (+4.72) 10.18 0.745 (+0.023) 0.742
MXFP6 31.20 (+3.19) 30.30 11.53 (+0.51) 11.44 6.38 (+1.22) 6.35 10.15 (+4.53) 10.18 0.734 (+0.019) 0.735
HBFP8 30.46 (+2.65) 30.18 11.31 (+0.43) 11.32 6.32 (+1.20) 6.31 10.12 (+4.56) 10.12 0.724 (+0.020) 0.723
HBFP6 32.51 (+2.60) 32.2 11.94 (+0.74) 11.65 6.51 (+1.27) 6.43 10.55 (+4.68) 10.43 0.736 (+0.018) 0.737

2:4

FP32 31.89 (+4.24) - 15.48 (+4.62) - 9.30 (+4.18) - 13.07 (+7.54) - 0.759 (+0.056) -
INT8 32.76 (+4.70) 32.30 15.61 (+4.66) 15.57 9.37 (+4.18) 9.37 13.23 (+7.60) 13.17 0.762 (+0.056) 0.761

MXFP8 33.99 (+5.54) 32.69 15.70 (+4.45) 15.87 9.35 (+4.18) 9.35 13.35 (+7.73) 13.16 0.781 (+0.059) 0.777
MXFP6 33.41 (+5.40) 32.25 15.95 (+4.93) 15.64 9.32 (+4.16) 9.34 13.20 (+7.58) 13.16 0.770 (+0.055) 0.771
HBFP8 32.25 (+4.44) 32.05 15.57 (+4.69) 15.50 9.39 (+4.27) 9.31 13.11 (+7.55) 13.1 0.760 (+0.056) 0.759
HBFP6 34.58 (+4.67) 34.15 16.98 (+5.78) 15.82 10.68 (+5.44) 9.42 13.64 (+7.77) 13.41 0.774 (+0.056) 0.773

4.2 EMPIRICAL STUDY 2: NON-ORTHOGONALITY BETWEEN SPARSITY AND QUANTIZATION

This section demonstrates that combining sparsity and quantization results in additional error, sur-
passing the sum of their individual errors. Table 2 presents perplexities for OPT-125M, OPT-
6.7B, LLaMA-2-7B and LLaMA-3-8B on WikiText2, and cross-entropy (CE) loss for ViT-B/16
on ImageNet-1k for various combinations of number formats and sparsity types. Following our
conclusions regarding the order of transformations, we only report results for S→Q. We compute the
orthogonality threshold for each combination by summing the individual errors from sparsity and
quantization relative to the baseline dense FP32 model, using Equation 12. Each model’s performance
is compared against this bound, with superior results highlighted in bold. In the majority of configu-
rations, perplexity and cross-entropy loss values exceed the orthogonality thresholds, validating the
non-orthogonality of sparsity and quantization.

We mathematically show (Section 3.2) that the additional error introduced by combining sparsity and
quantization significantly depends on the values of quantized activation tensors and the quantization
error of sparsified weights. This error tends to amplify through successive dot products and vector
operations. Consequently, the quantization error affects the additional error caused by the combination
more than the sparsity error. The gap between the model’s performance and the orthogonality
threshold is minimal for number formats with minimal performance decrease, whereas larger errors
are observed for formats with larger errors. For instance, HBFP6 results in a 2.26 increase in
perplexity for OPT-125M, while its combination with 50% unstructured sparsity leads to a 4.86
increase.

Our analysis reveals that both model size and compression ratio significantly influence the additional
error introduced by combining sparsity and quantization. Larger models exhibit greater tolerance
to these compression methods, resulting in lower additional errors. Moreover, formats with mini-
mal quantization errors (e.g. MXFP8), and sparsity types with minimal sparsification errors (e.g.
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Figure 1: Cumulative error for the combination of 2:4 structured sparsity and HBFP6 quantization

unstructured sparsity) lead to lower additional errors, even for smaller models. The effect of high
quantization error is more pronounced for sparsity types known for higher errors. For instance,
HBFP6’s combination with 2:4 sparsity causes a 6.93 perplexity increase for OPT-125M and a
6.12 perplexity increase for OPT-6.7B. In contrast, combining HBFP6 with unstructured sparsity
results in smaller increases of 4.86 and 0.79 for the respective models.

We also observe instances where the orthogonality threshold is slightly higher than the actual
perplexity: (a) INT8 with 50% unstructured sparsity for both OPT models, (b) MXFP8 with 2:4
sparsity for OPT-6.7B, (c) MXFP6 with 2:4 sparsity for LLaMA-2-7B, and (d) MXFP6 50%
unstructured sparsity for LLaMa-3-8B. Although these occurrences do not consistently correlate
with specific formats, sparsity types, or model sizes, they do not contradict our mathematical analysis,
which primarily concerns upper bounds of errors and does not entirely rule out orthogonal cases.
Furthermore, orthogonal configurations still result in larger errors compared to applying either sparsity
or quantization alone. Our mathematical analysis (Theorem 3.10) indicates that there exists at least
one occurrence where the orthogonality is not preserved. This underscores the need for careful
examination when applying these compression methods together, as they do not guarantee high
accuracies. Delving into cases where orthogonality is preserved falls beyond the scope of this paper,
and we leave it for future work.

We observe that although the cross-entropy loss for ViT-B/16 is higher than the calculated orthog-
onality threshold in most cases in Table 2, the difference is relatively small. We hypothesize the
reason behind this behavior is due to the fact that ViT-B/16, being a vision model that operates on
images, is more robust to sparsity and quantization errors than LLMs that operate on text. Hence,
the sparsity and quantization levels shown in Table 2 are not sufficient to induce large errors, and
hide the non-orthogonality of sparsity and quantization. To test our hypothesis, we increase the
compression further by employing 75% unstructured sparsity, 1:4 structured sparsity and HBFP4
on ViT-B/16 (Appendix G). The results show that the difference between the baseline cross-entropy
loss and the calculated orthogonality threshold for these cases increases significantly, validating the
non-orthogonality of sparsity and quantization. This increase in cross-entropy loss also translates
to a significant non-orthogonal drop in accuracy. Additionally, we run the same experiments on a
CNN-based vision model, ResNet-50 (Appendix O), and the experimental results corroborate these
findings.

4.3 ABLATION: ERROR PROPAGATION ACROSS LAYERS

In this section, we study error propagation across the layers of a deep neural network.

While our mathematical study provides insights into how sparsity and quantization introduce errors at
the dot-product and tensor levels, mathematically estimating the cumulative effect of these errors on
the model’s final loss or performance is non-trivial. Therefore, we perform this layer-wise empirical
analysis to verify that the order of applying sparsity and quantization not only affects per-layer errors
but also significantly impacts overall model’s accuracy. By inspecting the intermediate outputs of the
pre-trained OPT-125M model, we show that the error accumulation increases with the layer index
and that the choice of the order directly influences the final model performance.

We apply quantization and magnitude-based sparsity to all linear layers of the pre-trained OPT-125M
model in a zero-shot manner. We feed a sample from the test subset through both the compressed
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model and the corresponding full precision dense model, and we measure the difference in Feed-
Forward outputs for each Transformer block. We repeat this experiment for both the S→Q and Q→S
orders, and we compare the L2 errors at each layer. The results are shown in Figure 1.

As illustrated in the figure, the per-layer error increases consistently with the layer index, regardless
of the order of transformations, and reaches its peak in the final layer. However, we observe that the
S→Q order produces significantly lower errors at each intermediate layer compared to the reverse
order. This pattern indicates that the error introduced by Q→S accumulates more rapidly as layers
deepen, highlighting the detrimental effects of applying quantization before sparsity.

5 DISCUSSION

Our mathematical analysis and experimental results offer multiple insights for ML model practitioners.
First, our analysis demonstrates a risk-free method to improve model performance, measured by lower
perplexity and/or higher accuracy, through choosing the optimal ordering of compression operations
for any max-scaled number format and magnitude-based pruning scheme. This contribution is
particularly important in the current ML landscape, where sparsity and quantization are pivotal
methods for reducing the memory footprint and bandwidth requirements of state-of-the-art LLMs.
Second, we show that calculating the orthogonality threshold offers a close enough estimate of model
performance (e.g. accuracy, perplexity, etc.) under conditions of sparsity and quantization. This
bound can streamline the search for optimal sparse-quantized model configurations by effectively
narrowing the search space. There is an inherent tradeoff between the hardware benefits of various
sparse-quantized configurations and the achieved model performance. Quantization bit-width and
sparsity level are key factors influencing the memory and bandwidth requirements for serving these
models. For example, at a 50% sparsity level, 8-bit and 6-bit quantization result in total reductions in
memory footprint and bandwidth requirements by 8× and 10.7×, respectively.

Ideally, practitioners aim to maximize compression (increase sparsity ratio and/or reduce the average
bitwidth per element). Our analysis elucidates the individual and combined impacts of these factors
across a range of recent large models, providing practical guidelines to achieve the highest compres-
sion without compromising model performance. Typically, 8-bit quantization with any max-scaled
number format can serve as a direct replacement for FP32 when combined with any form of sparsity
in the optimal order (S→Q). As discussed in Section 4, certain models exhibit sensitivity to sub-8bit
number formats and structured sparsity combinations, even when applied in an optimal order. In
scenarios where improvements in arithmetic density (TOPS/mm2) and memory footprint justify a
slight reduction in model performance, such as the deployment of large models on edge devices,
these combinations may still be viable.

In this work, we do not consider heterogeneous sparsity and quantization schemes, where the sparsity
fraction and quantization bit-width vary across layers and differ between activation and weight tensors.
Such approaches (Rouhani et al., 2023b; Ma et al., 2024; Harma et al., 2022; Evci et al., 2020b)
have demonstrated to be effective in maintaining model accuracy or perplexity while improving
compressing ratio. However, these schemes may not be hardware-friendly, introduce noticeable
overhead, and are impractical to implement on off-the-shelf hardware platforms (e.g. GPU, TPU).
We leave the investigation of the interactions between these heterogeneous sparsity and quantization
schemes for future work.

6 CONCLUSION

We provide a comprehensive analysis of the interplay between sparsity and quantization in DNNs,
showing that applying sparsity before quantization (S→Q) minimizes additional errors and yields
better model accuracy. Moreover, our mathematical analysis and extensive empirical study with
large language models (OPT, LLaMA), vision transformers (ViT), and convolutional neural networks
(ResNet) demonstrate that sparsity and quantization are non-orthogonal and their combined use
can adversely affect model accuracy. Our findings provide valuable insights for optimizing the
compression of large models while preserving accuracy.
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A ADDITIONAL RELATED WORK

Quantization. Element-wise scaling formats, such as FP32, BFLOAT32 (Wang & Kanwar, 2019), and FP16 (Mi-
cikevicius et al., 2018), consist of sign, mantissa, and exponent components, differing in the bit allocation for
each component. Conversely, block-wise scaling formats assign scaling factors to blocks of elements, with block
sizes varying by format. For instance, INT8 employs per-tensor scaling, where a single scaling factor is shared
by around 1K elements.

Recent research highlights the effectiveness of fine-grained block-wise scaling formats with block sizes smaller
than 100 elements, especially in the sub-8-bit regime for both training and inference (Drumond et al., 2018a;
Rouhani et al., 2023a;b; Zhang et al., 2022a; Darvish Rouhani et al., 2020a). These formats are further
categorized into single-level and two-level scaling. Single-level block-wise formats, such as HBFP (Drumond
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Table 3: Types of max-scaled numerical encodings

Element-wise Single-level block-wise Two-level block-wise
FP32/FP16 BFloat16 INT HBFP MXINT MXFP FP8

Scaling level 1 Block size 1 1 1k 64 32 32 10k
Scale type HW HW SW HW HW HW SW

Scaling level 2 Block size - - - - - 1 1
Scale type - - - - - HW HW

et al., 2018a; Darvish Rouhani et al., 2020a) and MXINT (Rouhani et al., 2023b), enable fixed-point arithmetic
by sharing a single exponent within a block of mantissa or integers. Two-level formats, like MXFP (Rouhani
et al., 2023a;b; Micikevicius et al., 2022) and FP8, use more granular scaling factors at the second level, offering
greater robustness across diverse range of models.

Sparsity. Unstructured sparsity (Han et al., 2015a; Guo et al., 2016; Frankle & Carbin, 2019; Evci et al., 2020a)
involves removing individual tensor elements without any specific pattern. Structured sparsity (Wen et al., 2016),
on the other hand, employs specific patterns when pruning tensor elements. Recent work (Yao et al., 2019; Kang,
2020) has highlighted the effectiveness of fine-grained N:M structured sparsity in mitigating model accuracy
loss. The introduction of the 2:4 structured-sparse Tensor Core in the Nvidia Ampere architecture (Nvidia, 2021)
has further driven research in developing N:M sparsity training recipes (Mishra et al., 2021b; Pool & Yu, 2021;
Zhou et al., 2021; Sun et al., 2021; Hubara et al., 2021; Lu et al., 2023).

The fundamental operation in any sparsification scheme is selecting candidate elements for pruning among
which magnitude-based sparsity (Han et al., 2015b) is one of the most widely used methods (Lu et al., 2023;
Ding et al., 2023; Bambhaniya et al., 2024). In addition, recent work has introduced one-shot pruning methods,
such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), aiming to eliminate the need for an
additional fine-tuning phase. While these methods achieve state-of-the-art performance for one-shot pruning,
evidence suggests that incorporating a fine-tuning phase can lead to better model quality (Sun et al., 2023;
Syed et al., 2023). Although these methods are proposed to eliminate fine-tuning and present state-of-the-art
accuracies for one-shot pruning, it has been shown that fine-tuning still improves accuracies significantly (Sun
et al., 2023; Syed et al., 2023).

B HYPERPARAMETERS

We perform full parameter fine-tuning while applying magnitude-based sparsity methods. We find the optimal
hyperparameters through grid search for each model and sparsity type and apply the same hyperparameters
across all number formats, including FP32. We observe that fine-tuning in a Q→S order, where we quantize
and sparsify tensors at each iteration, leads to a highly unstable training process, especially with the structured
sparsity. For this reason, we impose limitations on the number of training iterations and the learning rate. Thus,
we prioritize achieving reproducible and comparable results across all number formats over achieving full
convergence for each specific configuration.

Table 4: Details of the sparse fine-tuning experiments

Model Sparsity type Batch size Weight decay Optimizer FT num. iterations Learning rate

OPT-125M 50% 8 - Adam 1776 1e−4

2:4 8 - Adam 1776 1e−4

OPT-6.7B 50% 4 - Adam 1000 5e−4

2:4 4 - Adam 1500 5e−4

LLaMA-2-7B 50% 2 1e−3 AdamW 150 2e−4

2:4 2 1e−3 AdamW 60 5e−5

LLaMA-3-8B 50% 2 1e−3 AdamW 200 2e−5

2:4 1 1e−3 AdamW 300 2e−5

ViT-B/16 50% 32 1e−3 Adam 30000 5e−5

2:4 32 1e−3 Adam 30000 5e−5

OPT-125M and OPT-6.7B models are fine-tuned with block sizes of 512 and 1024 respectively, while LLaMa
models utilize a block size of 2048. All configurations employ a linear learning rate schedule without a warm-up.
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C COMPUTE RESOURCES AND RUNTIME

We conduct our experiments on four NVIDIA A100 GPUs with 80GB memory, and for small models, we use
four NVIDIA V100 GPUs with 32GB memory. The hyperparameters used in our experiments, including the
number of fine-tuning epochs, are given in Appendix B. In summary, the estimated runtime for each fine-tuning
experiments on these hardware platforms are as follows: (a) 20 minutes for OPT-125M, (b) 5-6 hours for
OPT-6.7B, (c) 2-3 hours for LLaMA-2-7B and LLaMA-3-8B, and (d) 40 hours for ViT-B/16.

D FINE-TUNING STRATEGIES

Magnitude-based sparsity applied in one-shot causes a significant perplexity degradation and thus needs an
additional fine-tuning to recover the perplexity. In combination with quantization, several fine-tuning strategies
are possible:

1. Sparse fine-tuning of FP32 model followed by the post-training quantization, sparsity masks are
applied to the FP32 weight tensors

2. Fine-tuning in sparsified and quantized manner, where we sparsify and then quantize tensors at each
iteration

3. Sparse fine-tuning of FP32 model followed by the post-training quantization, sparsity masks are
applied to the quantized weight tensors

4. Fine-tuning in quantized and sparsified manner, where we quantize and then sparsify tensors at each
iteration

The former two strategies correspond to the S→Q order of transformations, while the latter two correspond to
the Q→S order. We conduct ablation experiments for the OPT-125M to compare these fine-tuning strategies.
The results are presented in the Table 5. According to our results, post-training quantization outperforms

Table 5: Validation perplexities of OPT-125M on WikiText2, produced by different fine-tuning
strategies. The best results for each configuration are highlighted in bold.

Sparsity
type

Number
format Order Quantization

during fine-tuning PPL

50% HBFP8
S→Q × 30.46

✓ 33.51

Q→S × 39.04
✓ 37.48

50% HBFP6
S→Q × 32.51

✓ 36.20

Q→S × 41.97
✓ 40.86

sparse-and-quantized fune-tuning in S→Q order. In contrast, fine-tuning in quantized and sparsified manner
recovers perplexity better than post-training quantization in the reverse order.

E EXPERIMENTAL SETUP SUMMARY

Table 6 presents a summary of our experimental setup.

F POST-TRAINING ONE-SHOT SPARSITY METHODS

Other sparsity schemes, such as Wanda and SparseGPT, have a different pruning policy, which uses activations
to assess the significance of the weights and prunes only the least significant ones. The pruning metrics in Wanda
and SparseGPT are

Sij = |Wij | · ∥Xj∥2 and Sij = [|W|2/diag((XTX+ λI)−1]ij (13)

respectively. If quantization is applied before sparsity, the input values will change, which might also change the
set of the nullified weights. However, the significance of those weights will not change considerably. Therefore,
the correction vector tc consists of the least significant weights, which are multiplied by the elements of q(x)
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Compressed operations by model type
LLMs ViTs CNNs

Linear Layers Yes Yes Yes
Convolutional Layers – – Yes
Embedding Layer No Yes –
Attention MatMuls Yes Yes –

Tensor-level granularity for compressed operations
Weights Activations Gradients

Forward Pass (for inference and finetuning) Sparsified + quantized Quantized –
Backward Pass (for finetuning only) Quantized Quantized Quantized
(1) Note: Only matrix multiplications are compressed; other operations (e.g., optimizer updates) are in FP32
(2) Note: Master weights are stored in FP32, since our primary aim is to compress inference.

Workflow for the two different compression orders

S → Q - Sparse finetuning followed by zero-shot quantization
- Sparsity mask recomputed for each iteration

Q → S - Quantization and sparse finetuning
- Quantization and sparsity masks recomputed for each iteration

Table 6: Summary of experimental setup

with the lowest values due to the chosen pruning metrics. As a result, the magnitude of εt and the effect of
changing the order of the operations is much lower for those sparsity schemes than for the magnitude-based
sparsity.

Table 7: Model perplexities on WikiText2 for combined sparsity and quantization. The numbers
in the parentheses show the difference in perplexity between the sparse and dense configuration.

OPT-125M (↓) LLaMA-2-7B (↓)

Sparsity
type

Sparsity
method Order FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6 FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6

0% - - 27.65 28.06 28.45 28.01 27.81 29.91 5.12 5.15 5.17 5.16 5.12 5.24

50%

Magnitude S→ Q 29.94(+2.29) 30.22(+2.16) 31.13(+2.68) 31.20(+3.19) 30.46(+2.65) 32.51(+2.60) 6.31(+1.19) 6.94(+1.79) 6.40(+1.23) 6.38(+1.22) 6.32(+1.2) 6.51(+1.27)

Q→ S - 34.71(+6.65) 36.39(+7.94) 35.60(+7.59) 37.48(+9.67) 40.86(+10.95) - 8.13(+2.98) 8.47(+3.30) 9.32(+4.16) 9.86(+4.74) 10.20(+4.96)

Wanda S→ Q 38.97(+11.32) 39.29(+11.23) 39.72(+11.27) 40.02(+12.01) 39.21(+11.40) 42.33(+12.42) 6.46(+1.34) 6.47(+1.32) 6.53(+1.36) 6.53(+1.37) 6.48(+1.36) 6.73(+1.49)

Q→ S - 40.01(+11.95) 40.58(+12.13) 40.43(+12.42) 40.52(+12.71) 42.57(+12.66) - 6.46(+1.31) 6.55(+1.38) 6.52(+1.36) 6.48(+1.36) 6.79(+1.55)

SparseGPT S→ Q 33.24(+5.59) 33.22(+5.16) 35.27(+6.82) 34.22(+6.21) 33.41(+5.60) 35.86(+5.95) 6.51(+1.39) 6.51(+1.36) 6.58(+1.41) 6.58(+1.42) 6.52(+1.40) 6.77(+1.53)

Q→ S - 33.54(+5.48) 35.32(+6.87) 34.29(+6.28) 33.64(+5.83) 36.80(+6.89) - 6.53(+1.38) 6.60(+1.43) 6.58(+1.42) 6.55(+1.43) 6.93(+1.69)

2:4

Magnitude S→ Q 31.89(+4.24) 32.76(+4.7) 33.99(+5.54) 33.41(+5.40) 32.25(+4.44) 34.58(+4.67) 9.30(+4.18) 9.37(+4.22) 9.35(+4.18) 9.32(+4.16) 9.39(+4.27) 10.68(+5.44)

Q→ S - 45.06(+17.00) 44.16(+15.71) 42.25(+14.24) 46.57(+18.76) 55.64(+25.73) - 14.65(+9.50) 14.35(+9.18) 14.50(+9.34) 14.98(+9.86) 18.64(+13.40)

Wanda S→ Q 79.91(+52.26) 79.81(+51.75) 85.25(+56.80) 84.10(+56.09) 80.62(+52.81) 90.66(+60.75) 11.36(+6.24) 11.37(+6.22) 11.15(+5.98) 11.35(+6.19) 11.45 (+6.33) 12.74 (+7.50)

Q→ S - 80.28(+52.22) 86.69(+58.24) 84.38(+56.37) 80.69(+52.88) 91.04(+61.13) - 11.28(+6.13) 11.24(+6.07) 11.46(+6.30) 11.36(+6.24) 13.61(+8.37)

SparseGPT S→ Q 45.14(+17.49) 45.34(+17.28) 48.44(+19.99) 46.49(+18.48) 45.52(+17.71) 50.74(+20.83) 10.22(+5.10) 10.21(+5.06) 10.15(+4.98) 10.26(+5.10) 10.26(+5.14) 10.86(+5.62)

Q→ S - 44.96(+16.9) 48.67(+20.22) 46.50(+18.49) 45.82(+18.01) 57.39(+27.48) - 10.21(+5.06) 10.24(+5.07) 10.26(+5.10) 10.21(+5.09) 11.16(+5.92)

We further explore the effectiveness of post-training one-shot sparsity methods, specifically SparseGPT and
Wanda, which utilize a selection criterion based on the product of the magnitudes of weights and activations. We
report our results in Table 7. We observe that magnitude-based sparsity continues to achieve better perplexities
due to fine-tuning. However, because of their selection criterion, SparseGPT and Wanda are not affected by
the order of the operations. Even when quantization alters the relative magnitudes within a weight tensor, the
corresponding activations can compensate by preserving the original ranking of importance when multiplied
together. Consequently, the difference in perplexities between S→Q and Q→S for these methods is minimal,
and in few instances, Q→S yields better perplexities.

G ORTHOGONALITY THRESHOLD FOR VIT

Table 8 shows the results of cross-entropy loss across various combinations of sparsity and quantization schemes
for ViT-B/16 performing the image classification task on ImageNet-1k. First, we note that the calculated
orthogonality threshold serves as a correct lower bound for most configurations, supporting our mathematical
analysis. Second, ViT-B/16 is significantly more robust to the combination of sparsity and quantization schemes
compared to the other LLMs studied in this paper. When used with moderate sparsity levels (50% and 2:4)
and 8-bit/6-bit number formats, the actual cross-entropy loss is close to the calculated orthogonality threshold,
showing the robustness of ViT-B/16. Only at higher compression rates achieved by using 75% or 1:4 sparsity
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and 4-bit number formats such as HBFP4, do we see the impact of the sparsity and quantization errors affecting
the final cross-entropy loss, making it significantly higher than the calculated orthogonality threshold.

Table 8: Comparison of evaluation cross-entropy loss with estimated orthogonality thresholds.

Sparsity
type

Number
format

ViT-B/16
Metric Orthogonality Threshold

Accuracy CE Loss Accuracy CE Loss

0%

FP32 81.70% 0.703 - -
INT8 81.64% 0.706 - -

MXFP8 81.12% 0.722 - -
MXFP6 81.26% 0.715 - -
HBFP8 81.67% 0.704 - -
HBFP6 81.35% 0.718 - -
HBFP4 72.73% 1.094 - -

50%

FP32 81.04% 0.723 - -
INT8 81.03% 0.728 80.98% 0.725

MXFP8 80.50% 0.745 80.46% 0.742
MXFP6 80.80% 0.734 80.60% 0.735
HBFP8 81.00% 0.724 81.01% 0.723
HBFP6 80.64% 0.736 80.69% 0.737
HBFP4 73.38% 1.058 72.07% 1.113

2:4

FP32 80.06% 0.759 - -
INT8 79.95% 0.762 80.00% 0.761

MXFP8 79.48% 0.781 79.48% 0.777
MXFP6 79.73% 0.770 79.62% 0.771
HBFP8 80.06% 0.760 80.03% 0.759
HBFP6 79.69% 0.774 79.71% 0.773
HBFP4 71.06% 1.163 71.09% 1.149

75%

FP32 77.26% 0.881 - -
INT8 77.03% 0.897 77.20% 0.884

MXFP8 76.57% 0.913 76.68% 0.900
MXFP6 76.99% 0.895 76.82% 0.894
HBFP8 77.14% 0.882 77.23% 0.882
HBFP6 76.89% 0.899 76.91% 0.896
HBFP4 66.84% 1.365 68.29% 1.272

1:4

FP32 73.24% 1.055 - -
INT8 72.90% 1.070 73.18% 1.058

MXFP8 72.36% 1.095 72.66% 1.074
MXFP6 72.92% 1.070 72.80% 1.068
HBFP8 73.16% 1.057 73.21% 1.056
HBFP6 72.77% 1.078 72.89% 1.070
HBFP4 59.58% 1.725 64.27% 1.446

H ROBUSTNESS ANALYSIS

To substantiate our conclusions on the optimal compression operation order, we conduct limited experiments
across three distinct random seeds. We report the mean perplexities and error bars in the Table 9. Given the
computational cost of fine-tuning, we limit the robustness analysis to the OPT-125M model and HBFP8/6
number format. For both sparsity types we observe stable results, consistently affirming the higher efficacy of the
S→Q order. Note that deviations causes by different seeds do not compromise the integrity of our conclusions.

Table 9: Validation perplexities of OPT-125M on WikiText2 for S→Q and Q→S. We report mean
and standard deviation over three random seeds.

Sparsity
Type

Number
Format Order PPL

50%
HBFP8 S→Q 30.5 (± 0.2)

Q→S 37.4 (± 0.3)

HBFP6 S→Q 32.5 (± 0.2)
Q→S 40.8 (± 0.3)

2:4
HBFP8 S→Q 32.2 (± 0.1)

Q→S 46.5 (± 0.4)

HBFP6 S→Q 34.6 (± 0.2)
Q→S 55.5 (± 0.8)
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I LAYER-WISE ERROR PROPAGATION

We also examine the error propagation to ensure that errors introduced in earlier layers do not vanish in
subsequent layers. Figure 2 illustrates how compression errors persist and propagate throughout the pre-trained
OPT-2.7b model. In this analysis, we quantize each layer in isolation and measure the corresponding propagated
error to the other layers, which remain in full precision. We observe that relatively large errors introduced in
earlier layers, despite small fluctuations, stay on the same level as they go through the network. As a result, even
a single-layer error can significantly degrade model performance, highlighting the potential threats of errors due
to the non-orthogonality of compression techniques or applying them in the suboptimal order.

Figure 2: Error dynamics for single-layer quantization. Each line represents the relative L2 error
of outputs (∥Ŷi − Yi∥2/∥Yi∥2) for the compressed layer at the particular index and all subsequent
layers, which remain in full precision.
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J PROOFS FOR THE MATHEMATICAL ANALYSIS

Proof of Theorem 3.5. Let ns represent the number of elements pruned from the block by the sparsity transfor-
mation. Without loss of generality, we assume that the last ns elements in the block are pruned, as permuting the
elements does not affect the block’s norm. As the sparsity transformation does not prune the largest element in
the block, the scale parameter of quantization remains unchanged. Consequently, the quantization error for the
non-zero components before and after sparsity remains the same:

∥εq◦s(x)∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1

...
xn−ns

xn−ns+1

...
xn


− q



x1

...
xn−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (14)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εs(x)1
...

εs(x)n−ns

εs(x)n−ns+1

...
εs(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (15)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

εq(x)n−ns+1

...
εq(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εs(x)1
...

εs(x)n−ns

εs(x)n−ns+1

...
εs(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= ∥εs(x)∥+ ∥εq(x)∥ (16)

For Lp norms, where p ∈ (1,+∞), the upper bound is attainable under one of two conditions: either the pruned
elements in x are originally zero, or the quantization error for all elements of x is zero.

In the first case, the first inequality becomes an equality because ∀i ∈ {n− ns + 1, . . . , n} : xi = 0. In the
second case, the first inequality also becomes an equality because ∀i ∈ {1, . . . , n− ns} : εq(x)i = 0.

Similarly, the second inequality becomes an equality as quantization maps zero to zero. Thus, the quantization
error for elements in {n− ns + 1, . . . , n} is zero either because the quantization error for all elements of x is
zero or because the elements were originally zero: ∀i ∈ {n− ns + 1, . . . , n} : εq(x)i = 0.

For L1 norm there exist a non-trivial case. We consider the block of floating-point numbers x = (4.0, 4.1)T ,
INT4 quantization and 1 : 2 sparsity.

s(x) =

(
0.0
4.1

)
q(x) =

(
4.0
4.0

)
q(s(x)) =

(
0.0
4.0

)
(17)

The L1-norms of the transformation errors are the following:

∥εs(x)∥1 =

∥∥∥∥(4.0
0.0

)∥∥∥∥
1

= 4.0 ∥εq(x)∥1 =

∥∥∥∥(0.0
0.1

)∥∥∥∥
1

= 0.1 ∥εq◦s(x)∥1 =

∥∥∥∥(4.0
0.1

)∥∥∥∥
1

= 4.1 (18)

Therefore, ∥εq◦s(x)∥1 = ∥εq(x)∥1 + ∥εs(x)∥1 is attainable.

Proof of Theorem 3.6. Consider the block of floating-point numbers x = (3.9, 4.0)T , INT4 quantization q and
1:2 sparsity s. After applying the quantization transformation to the block, initial relation between its elements
xi < xj is no longer preserved and both elements have equal probability to be zeroed out by the sparsity
transformation. If sparsity zeroes out the element that was initially larger, the resulting error can exceed the sum
of the errors caused by each transformation individually:

s(x) =

(
0.0
4.0

)
q(x) =

(
4.0
4.0

)
s(q(x)) =

(
4.0
0.0

)
(19)

∥εs(x)∥ =

∥∥∥∥(3.9
0.0

)∥∥∥∥ ∥εq(x)∥ =

∥∥∥∥(−0.1
0.0

)∥∥∥∥ ∥εs◦q(x)∥ =

∥∥∥∥(−0.1
4.0

)∥∥∥∥ (20)
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We consider Lp norms, where p ∈ [1;+∞). In these norms, ∀a ∈ R : ∥(a, 0)T ∥ = |a| · ||(1, 0)T || = |a|.
Therefore:

∥εq(x)∥+ ∥εs(x)∥ =

∥∥∥∥(−0.1
0.0

)∥∥∥∥+

∥∥∥∥(3.9
0.0

)∥∥∥∥ = | − 0.1|+ |3.9| = 4.0 = (21)

=

∥∥∥∥(0.0
4.0

)∥∥∥∥ <

∥∥∥∥(−0.1
4.0

)∥∥∥∥ = ∥εs◦q(x)∥ (22)

Thus, for this particular input x, the inequality ∥εs◦q(x)∥ > ∥εq(x)∥+ ∥εs(x)∥ holds true.

Theorem J.1 (Upper-bound of the error for suboptimal order, general case). Let q be the max-scaled block-wise
quantization and s be the magnitude-based N:M sparsity transformation. Let step be the least upper bound
for the magnitude of the quantization error for one element: step = sup{|εq(x)i| | x ∈ Rn, i ∈ {1 . . . n}}.
Let 1⃗(n,N,M) ∈ Rn be a vector with M−N

M
· n ones and N

M
· n zeros in any order. Then the error of the

composition s ◦ q with respect to L1 norm has the following upper bound:

∀x ∈ Rn, ∥εs◦q(x)∥1 ≤ ∥εq(x)∥+ ∥εs(x)∥+ 2 · step · ∥1⃗(n,N,M)∥︸ ︷︷ ︸
additional error

(23)

Proof of Theorem J.1. Without loss of generality for simplicity we assume that the sparsity operation nullifies
the last elements within the vector.

∥εs◦q(x)∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1

...
xn−ns

xn−ns+1

...
xn


− s



x1 − q(x)1
...

xn−ns − q(x)n−ns

xn−ns+1 − q(x)n−ns+1

...
xn − q(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (24)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ε1q
...

εn−ns
q

εn−ns+1
q

...
εnq



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= (25)

= ∥εq(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
:= ∥q(x)∥+ ∥s̃(x)∥ (26)

When quantization is applied first, two distinct numbers can become the same: xi < xj → q(x)i = q(x)j .
When we sparsify the quantized numbers, the number that was smaller might get nullified, as depicted in Figure
3. Therefore, the last component s̃ of the upper bound does not equal s.

However, in this case we can get an upper bound for the distance between them:

{
xi < xj

q(x)i ≥ q(x)j
⇔

{
xi < xj

xi − q(x)i ≥ xj − q(x)j
⇔

{
xj − xi > 0

xj − xi ≤ q(x)j − q(x)i
⇒ (27)

⇒ |xj − xi| ≤ |q(x)j − q(x)i| ≤ |q(x)j |+ |q(x)i| ≤ 2 · step (28)

For each xi that was nullified after quantization followed by sparsification we define xt
i to be an element that

would be nullified, if quantization was not applied. Then the vector s(x) consists of all and only such elements
xt
i .
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Figure 3: A visual representation of applying quantization first and then sparsification. After
quantization two distinct elements become equal. Then, when sparsification is applied, the element
that was originally bigger gets nullified as the sparsification operation cannot differentiate them by
their magnitude.

There exists a permutation W of the vector s(x) such that maps the element xi in s̃(x) to the element xt
i in

s(x). Therefore, an upper bound for ∥s̃(x)∥ is:

∥s̃(x)∥ = ∥s̃(x)−Ws(x) +Ws(x)∥ ≤ ∥Ws(x)∥+ ∥s̃(x)−Ws(x)∥ = (29)

= ∥s(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0− 0
...

0− 0
xn−ns+1 − xt

n−ns+1

...
xn − xt

n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ ∥s(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

2 · step
...

2 · step



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(30)

For the case of N : M sparsity the number of nullified elements within the block equals M−N
M

· n. Therefore:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

2 · step
...

2 · step



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 2 · step ·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0
1
...
1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 2 · step · ∥1⃗(n,N,M)∥ (31)

As a result, the upper bound for the error of the composition is the following:

∥εs◦q(x)∥ ≤ ∥q(x)∥+ ∥s̃(x)∥ ≤ ∥εq(x)∥+ ∥εs(x)∥+ 2 · step · ∥1⃗(n,N,M)∥ (32)

Proof of Theorem 3.7. As a corollary of Theorem J.1, with respect to L1 norm, the last error term can be
evaluated as follows:

2 · step · ∥1⃗(n,N,M)∥1 = 2 · step ·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0
1
...
1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

= 2 · step · M −N

M
· n (33)
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Proof of Theorem 3.10. Error of the composition can be written as the following:

εDq,c(x,w) = ⟨x,w⟩ − ⟨q(x), c(w)⟩ (34)
= ⟨x,w⟩ − ⟨x− εq(x),w − εc(w)⟩ (35)
= ⟨εq(x),w⟩+ ⟨x, εc(w)⟩ − ⟨εq(x), εc(w)⟩ (36)
= ⟨εq(x),w⟩+ ⟨x, εq(w) + εs(w) + ε̃c(w)⟩ − ⟨εq(x), εq(w) + εs(w) + ε̃c(w)⟩ (37)
= ⟨x, εs(w)⟩︸ ︷︷ ︸

εD
I,s

(x,w)

+ ⟨x, εq(w)⟩+ ⟨εq(x),w⟩ − ⟨εq(x), εq(w)⟩︸ ︷︷ ︸
εDq (x,w)

+⟨x− εq(x)︸ ︷︷ ︸
q(x)

, ε̃c(w)⟩ (38)

− ⟨εq(w), εs(w)⟩ (39)

= εDI,s(x,w) + εDq (x,w) + ⟨q(x), ε̃c(w)⟩ − ⟨εq(x), εs(w)⟩ (40)

After adding the norms, we obtain the following:

|εDq,c(x,w)| ≤ |εDI,s(x,w)|+ |εDq (x,w)|+ | ⟨q(x), ε̃c(w)⟩︸ ︷︷ ︸
εt

|+ | ⟨εq(x), εs(w)⟩︸ ︷︷ ︸
εi

| (41)

where εt and εi are the additional error terms.

To prove non-orthogonality, consider the blocks of floating-point numbers x = (1.0, 1.0)T , w = (0.6, 1.3)T ,
HBFP4 quantization q and 1:2 sparsity s. We assume that q does not affect x: q(x) = x. On the other hand, the
block w is transformed in the following way:

s(w) =

(
0
1.3

)
q(w) =

(
0.625
1.25

)
s(q(w)) = s(q(w)) = c(w) =

(
0

1.25

)
(42)

The dot product error of the composition equals:

εDq,c(x,w) = ⟨x,w⟩ − ⟨q(x), c(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0

1.25

)〉
= 0.65 (43)

The dot product error of quantization equals:

εDq (x,w) = ⟨x,w⟩ − ⟨q(x), q(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0.625
1.250

)〉
= 0.025 (44)

The dot product error of sparsity equals:

εDI,s(x,w) = ⟨x,w⟩ − ⟨x, s(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0
1.3

)〉
= 0.6 (45)

Therefore, for these particular values of x and w, the inequality: |εDq,c(x,w)| > |εDq (x,w)| + |εDI,s(x,w)|
holds true.

Theorem J.2. Let q be the max-scaled block-wise quantization and s be the magnitude-based N:M sparsity
transformation. Then:

∀x ∈ Rn, ∥εq◦s(x)∥1 ≤ ∥εs◦q(x)∥1 (46)

Proof. If sparsity is applied first, then from the proof of Theorem 3.5

εq◦s(x)i =

{
εs(x)i if xi is sparsified,
εq(x)i otherwise.

(47)

If quantization is applied first, there are two cases.

Case 1: there are no new duplicates. Quantization cannot reorder elements, it can only make them duplicates.
Therefore, if there are no new duplicates, the same elements will be sparsified after quantization as the order of
the elements did not change, and the error vector will be the same:

∥εs◦q(x)∥1 = ∥εq◦s(x)∥1 (48)
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Case 2: there are new duplicates. Let xi and xj be such elements that |xi| < |xj | and q(x)i = q(x)j =: y, and
the j-th element gets sparsified instead of the i-th. In this case:

εs◦q(x)i = εq(x)i and εs◦q(x)j = εs(x)j = xj (49)

Therefore,
|εs◦q(x)i|+ |εs◦q(x)j | = |εq(x)i|+ |εs(x)j | = |y − xi|+ |xj | (50)

If we consider the case xi < y < xj and y = 0, then
|εq(x)i|+ |εs(x)j | = |xi|+ |xj | = |εs(x)i|+ |εq(x)j | (51)

Otherwise, we assume that xi, xj and y have the same sign.

Here we have three subcases:

• |y| > |xj |. Then
|y − xi|+ |xj | = |y| − |xi|+ |xj | > |y|+ |xi| − |xj | = |y − xj |+ |xi| (52)

• |y| < |xi|. Then
|y − xi|+ |xj | = |xi| − |y|+ |xj | = |y − xj |+ |xi| (53)

• |xi| < |y| < |xj |. Then
|y−xi|+|xj | = |y|−|xi|+|xj | > |xj | = |xj |−|y|+|y| > |xj |−|y|+|xi| = |y−xj |+|xi| (54)

Therefore,
εq(x)i|+ |εs(x)j | = |y − xi|+ |xj | ≥ |y − xj |+ |xi| = |εq(x)j |+ |εs(x)i| (55)

As a result,

∥εs◦q(x)∥1 =

 ∑
k ̸=i,j

|εs◦q(x)k|

+ |εs◦q(x)i|+ |εs◦q(x)j | = (56)

=

 ∑
k ̸=i,j

|εs◦q(x)k|

+ |εq(x)i|+ |εs(x)j | ≥ (57)

≥

 ∑
k ̸=i,j

|εq◦s(x)k|

+ |εq(x)j |+ |εs(x)i| = ∥εq◦s(x)∥1 . (58)

K DEFINITIONS OF Q FOR NUMERICAL FORMATS

1. INTm (Symmetric version) (Dettmers et al., 2022)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s =

scale

2m−1 − 1
, (59)

2. HBFPm (Drumond et al., 2018a)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s = 2⌈log2(scale)⌉−(m−1) (60)

3. MXFPm (Darvish Rouhani et al., 2023; Microsoft, 2024)

Qm(xi, scale) = scale · (−1)S · 2E · (1 + 2−m ·M) (61)

where S = sign(xs) (62)
E = ⌊log2(|xs|)⌋ − bias (63)

M =

⌊(
|xs|
2E

− 1

)
· 2m

⌉
(64)

xs =
x

2⌈log2(scale)⌉
(65)

(66)
Value of bias depends on the chosen configuration (Micikevicius et al., 2023).

4. MXINTm (Darvish Rouhani et al., 2023; Microsoft, 2024)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s = 2⌈log2(scale)⌉−(m−1) (67)
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Figure 4: Distribution of the deviation values for several random blocks.
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Figure 5: Normalized values of each error term of the upper bound for the case of applying quantiza-
tion before sparsity.

L ANALYSIS OF THE UPPER BOUND OF THE DOT PRODUCT ERROR

L.1 UPPER BOUND IS REACHABLE

To test if the upper bound derived in Theorem 3.10 is reachable in practice, we randomly sampled 1000 blocks of
size 64 from a standard normal distribution N (0, 1), and applied 2:4 sparsity and HBFP6 quantization. We then
compute the aggregate error of the composition and individual error term of the upper bound. Subsequently, we
quantified how much the upper bound deviates from the actual composition error using the following formula:

Deviation =
|εDI,s(x,w)|+ |εDq (x,w)|+ |εt|+ |εi|

|εDq,c(x,w)| (68)

As a corollary of Theorem 3.10, the minimal value of deviation is 1.

Figure 4 shows the deviation distribution of samples. Most values fall into the first bin, suggesting the upper
bound is frequently reached. It can also be seen that the deviation values can be large, almost reaching the value
of 10, which indicates that the upper bound can be pessimistic in some cases too. Theorem 3.10 does not rule out
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Figure 6: Normalized values of each error term of the upper bound for the case of applying sparsity
before quantization. We fix the seed and consider the same random blocks as for the order Q → S.

large values of deviation, as it applies the triangle inequality to obtain the upper bound, which leads to dropping
the sign of each error term. If the values of the error terms are negative, they can make the overall error of the
composition lower than the upper bound, which leads to the deviation values larger than one.

L.2 CONTRIBUTION OF ADDITIONAL ERROR TERMS

Section 3.2 describes how each additional error term can contribute to the overall error of the composition. We
hypothesize that the error term εt contributes less in case of applying sparsity followed by quantization than in
case of applying quantization first. We also hypothesize that the magnitude of the error term εi is much lower
than the magnitude of εt. To test our hypotheses, we normalized the values of each term of the upper bound to
compare their contribution to the error. We considered both orders of applying the transformations. We also
only looked at the samples with low deviation values (< 1.05) to increase the explainability power of the upper
bound.

Figures 5 and 6 depict the results of the experiment. If we consider the order Q → S in Figure 5, we can see
that the term εt advocates for almost half of the error of the composition. However, in the order S → Q the
term εt has a much lower impact, which proves our first hypothesis.

We can also see that the values of εi are much lower that the values of εt in most of the cases in both orders.
This proves our second hypothesis.

M ANALYSIS OF THE ADDITIONAL ERROR

As a corollary of Theorem 3.10, the composition of max-scaled sparsity and quantization is non-orthogonal,
resulting in two additional error terms.

The term εt incorporates the correction vector of the composition ε̃c, which carries the additional error from the
tensor level to the dot-product level. Depending on the order of the composition, the value of εt varies.

If sparsity precedes quantization, the correction vector ε̃q◦s(w) exclusively comprises negative quantization
errors for the elements pruned by the sparsity transformation:

ε̃q◦s(w)i =

{
−εq(w)i, s(w)i = 0

0, otherwise
(69)

However, if quantization is applied first, certain elements in the block may become equal, resulting in the sparsity
removing a different set of elements. Formally, if wi is pruned by s but not by s ◦ q, there exists a wj , where
j ̸= i, such that q(w)i = q(w)j . In this scenario, ε̃s◦q(w)i = −εs(w)i and ε̃s◦q(w)j = εs(w)j − εq(w)j .
Otherwise, it only contains the quantization errors of the pruned elements. Therefore, the magnitude of the
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correction vector for the composition s ◦ q is generally larger than that of the reverse order. Besides the
quantization errors, the correction vector also contains pruned elements, which are generally larger by orders of
magnitude except in a few improbable edge cases. This results in the overall value of εt being larger, implying
that the order of applying sparsity first and then quantization is optimal for dot products.

The term εi also contributes to the additional error, encoding the interaction between the error vectors εq(x)
and εs(w). However, εi is less significant than εt, as it contains the quantization error, the norm of which is
generally orders of magnitudes lower than the norm of the original block. In addition, εi contains the sparsity
error, which involves the smallest weights, diminishing the significance of this additional error.

N COMBINING GPTQ WITH SPARSITY

Magnitude-based Sparsity and GPTQ. Although our mathematical analysis does not specifically cover GPTQ,
we conducted controlled experiments to evaluate its performance in the context of our paper. We applied 50%
unstructured sparsity to the OPT-125M model in combination with GPTQ.

Table 10: GPTQ - Magnitude Based for OPT-
125m

S&Q
Layer Id Sparsity Quantization Order PPL

- - - - 27.65
0, 1, 10, 11 - GPTQ-4b - 28.1
0, 1, 10, 11 50% - - 34.62
0, 1, 10, 11 50% GPTQ-4b S → Q 30.93
0, 1, 10, 11 50% GPTQ-4b Q → S 35.59

Table 11: GPTQ - SparseGPT

OPT-350M OPT-1.3B
Sparsity

type Order Wikitext2 PTB C4 Wikitext2 PTB C4

2:4
S→ Q 56.27 80.67 51.65 27.99 42.32 29.42
Q→ S 67.96 91.03 56.57 29.38 45.15 30.15

3:4
S→ Q 26.82 38.45 26.86 16.73 24.30 18.62
Q→ S 27.38 39.62 27.21 17.42 24.23 18.72

4:8
S→ Q 43.06 62.84 39.09 22.96 33.61 23.86
Q→ S 46.49 64.53 42.05 24.75 35.88 25.40

When applying GPTQ→S, finetuning requires quantizing and sparsifying weight tensors in tandem at each
iteration. However, GPTQ operates by quantizing a column and updating the remaining weights to compensate
for the introduced errors. Under this scenario, comparing GPTQ→S and S→GPTQ with finetuning would not
be fair due to the different amounts of error compensation. To ensure a fair comparison, we decided to eliminate
the fine-tuning step and instead sparsified only a subset of layers to contain the sparsity error to a reasonable
degree. We determined the number of layers to compress by setting a perplexity threshold equivalent to that
achieved by SparseGPT. Table 10 shows that even in this case, magnitude-based sparsity is most effective when
applied before quantization (S→GPTQ: 30.93 vs. GPTQ→S: 35.59).

SparseGPT and GPTQ. GPTQ and SparseGPT apply the compression on a column-by-column basis and
assume that elements to the right of the current column remain uncompressed. This is because dense updates
propagate through these uncompressed elements to compensate for the introduced error. If subsequent columns
are compressed, they would not remain so after the first update.

Given this context, we used the SparseGPT codebase, which natively supports S→Q, and followed their
instructions to apply this compression order. We also reached out to the author of SparseGPT and followed their
recommendation to apply Q→S. We experimented with 4-bit GPT quantization and different variants of OPT
models. Table 11 summarizes our results, supporting our hypothesis for the optimal order of compression for
second-order methods. The mathematical study of the optimal compression order in second-order methods is
beyond the scope of our work, and we leave it as future work.

O CONVOLUTIONAL NETWORKS

Our mathematical framework is designed to be applicable to any matrix multiplications, regardless of the specific
model architecture. This allows us to study the optimal order of compression for various models, including
CNNs. Therefore, we extended our experiments to include ResNet50 on the ImageNet dataset using all of the
same configurations as ViT. The results are present in Table 12. These additional results further validate our
findings regarding the optimal compression order and orthogonality threshold.

P OPTIMAL ORDER WITHOUT FINE-TUNING

Magnitude-based sparsity, when applied without further re-training, leads to significant accuracy degradation
(Hoefler et al., 2021; Frantar & Alistarh, 2023). In our case, without sparsity-aware fine-tuning, the sparsity
error becomes several orders of magnitude larger than the quantization error, causing both S→Q and Q→S to

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 12: Comparison of evaluation cross-entropy loss with estimated orthogonality thresholds

Sparsity
type

Number
format

ResNet50
Metric Orthogonality Threshold

Accuracy CE Loss Accuracy CE Loss

0%

FP32 76.97% 1.040 - -
INT8 76.83% 1.051 - -

MXFP8 69.21% 1.462 - -
MXFP6 70.86% 1.362 - -
HBFP8 76.88% 1.043 - -
HBFP6 74.61% 1.176 - -

50%

FP32 76.33% 1.067 - -
INT8 76.06% 1.072 76.19% 1.078

MXFP8 62.07% 1.917 68.57% 1.489
MXFP6 69.54% 1.420 70.22% 1.389
HBFP8 76.21% 1.072 76.24% 1.070
HBFP6 73.95% 1.186 73.97% 1.204

2:4

FP32 76.90% 1.044 - -
INT8 76.49% 1.060 76.66% 1.055

MXFP8 67.03% 1.580 69.04% 1.467
MXFP6 70.47% 1.351 70.69% 1.366
HBFP8 76.51% 1.053 76.71% 1.047
HBFP6 74.51% 1.158 74.44% 1.181

75%

FP32 67.30% 1.569 - -
INT8 67.33% 1.565 67.16% 1.580

MXFP8 62.14% 1.920 59.54% 1.991
MXFP6 58.77% 2.785 61.19% 1.891
HBFP8 67.13% 1.581 67.21% 1.572
HBFP6 64.78% 1.733 64.94% 1.706

1:4

FP32 73.91% 1.218 - -
INT8 73.89% 1.227 73.77% 1.229

MXFP8 58.11% 2.314 66.15% 1.640
MXFP6 63.80% 1.907 67.80% 1.540
HBFP8 73.79% 1.225 73.82% 1.221
HBFP6 71.47% 1.340 71.55% 1.355

yield predominantly sparsity error. Table 13 shows the WikiText2 perplexities of FP32 sparse models without
sparsity-aware finetuning.

Table 13: Magnitude-based sparsity applied without fine-tuning

Sparsity OPT-125m OPT-6.7b Llama-2-7B Llama-3-8b
50% 146. 81. 27. 34.
2:4 619. 238. 76. 113.

The significant degradation in accuracy makes the scenario without sparsity-aware finetuning impractical.
Therefore, we reproduced the configurations from Table 1 with only a portion of the layers being sparse and
quantized. By applying compression to approximately one-third of the layers, specifically those located at the
beginning and end of the model, we can achieve acceptable perplexity increases. These results support the
optimality of the S→Q order.

Q COLLISION ANALYSIS

In the proof of Theorem J.1, we demonstrated that additional error may arise in suboptimal order when, after
quantization, a larger value and a smaller value collide, causing the originally larger element to be pruned. In
this section, we provide empirical evidence of the fact that these collisions take place.

We extracted the weights of all layers of the OPT-1.3b model and calculated the average reduction in unique
elements after applying quantization (HBFP6). The reduction in unique elements for each layer is computed as:

∆unique = unique(W )− unique(Ŵ ) (70)
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Table 14: Perplexities of OPT-125m model without sparsity-aware fine-tuning

OPT-125M
S&Q

Layer Id
Sparsity

type Order INT8 MXFP8 MXFP6 HBFP8 HBFP6 HBFP4

0. 1, 10, 11
50% S→Q 35.85 34.98 35.02 34.73 35.41 230.

Q→S 35.92 35.03 35.23 34.97 36.05 305.

2:4 S→Q 42.97 40.5 40.51 40.19 43.43 471.
Q→S 43.32 40.61 40.59 40.91 48.64 793.

Llama-2-7B

0-4, 27-31
50% S→Q 8.69 8.73 10.04 8.72 9.98 18.

Q→S 8.85 8.74 11.44 8.68 10.43 26.

2:4 S→Q 9.31 9.39 11.21 9.25 10.06 31.
Q→S 9.61 9.92 11.67 9.70 11.24 44.

where unique(X) returns the number of unique elements in X . On average, ∆unique(W, Ŵ ) = 24230, with
the total number of unique elements before quantization averaging 24419. Therefore, quantization introduces
significant collisions, which may lead to additional error.

To further validate our findings, we analyzed the reduction of unique elements at the block level rather than
across the entire tensor. Specifically, we examined the 6th layer of OPT-1.3B, selecting random blocks with
a block size of 64. As shown in Figure 7, the reduction of unique elements in a block can reach up to 41,
representing approximately 64% of the elements in the block. These results confirm that quantization introduces
a substantial number of duplicates.

Figure 7: Impact of quantization the number of unique elements in each block.

R OPENLLM EVALUATION

To further validate our findings and expand our experimental setup, we evaluated the models on zero-shot tasks
Gao et al. (2024) under both compression orders (S→Q and Q→S). The results are presented in Table 15 for
OPT-125M and Table 16 for Llama-3-8B. The results show that in all cases, the optimal compression order
(S→Q) yields better performance across all models and tasks, validating our theoretical conclusions.
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S ORDER OF SPARSITY AND QUANTIZATION DURING FINE-TUNING

Our mathematical analysis of sparsity and quantization assumes the model weights to be fixed. However, in our
empirical study, the master weights of compressed layers change during fine-tuning. To bridge the gap between
the static case in our mathematical analysis and the dynamic case in our experimental setup, we demonstrate
that the optimal compression order is independent of the exact model weights, and that quantization minimally
affects the model weights during sparsity-aware fine-tuning.

Zero-shot sparsity and quantization (no fine-tuning). To show that the optimal compression order is
independent from the model weights, we apply zero-shot compression to intermediate checkpoints of the OPT-
125M model collected during dense FP32 fine-tuning. Table 17 demonstrates final perplexities after applying
HBFP6 quantization and 50% unstructured sparsity in S→Q and Q→S orders at various checkpoints of dense
fine-tuning. The perplexity increases as dense fine-tuning progresses, which is expected, as the weights become
less tolerant to sparsity during the dense FP32 fine-tuning process. For each checkpoint, S→Q consistently
outperforms Q→S, achieving a relative gap of up to 7%. This confirms that the optimal compression order is
independent of the model’s specific weights, validating our mathematical analysis.

Weight distributions during fine-tuning. In our experiments, we employ sparsity-aware fine-tuning to mitigate
sparsity-induced errors. A detailed summary of our experimental set-up is presented in Table 6. During fine-
tuning, we store master weights in full precision for each layer, following prior work (Rouhani et al., 2023b).
This approach enables compression of matrix multiplications during the forward and backward stages while
retaining full precision for weight updates. Consequently, quantization during forward and backward phases has
minimal impact on the learning dynamics of the weights.

To demonstrate the minimal effect of quantization during fine-tuning, we compare the distributions of master
weights at various iterations during S→Q and Q→S fine-tuning. Figures 8, 9, 10 show that the master weights
remain nearly identical between the two schedules, with negligible differences in the small magnitude range
[−0.2, 0.2]. Although weight values in the tails of the distributions exhibit more noticeable discrepancies,
reordering sparsity and quantization impacts only the smallest values within each block, which lie within the
range where the distributions are nearly identical.

To further quantify these differences, Figure 11 presents the distribution of discrepancies for a single weight
component. The absolute difference between weight values remains below 0.02, which is negligibly small at the
tensor and model levels. Therefore, mathematical analysis remains valid even during fine-tuning.
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Figure 8: Distribution of master weights of Q_proj layer at the beginning of fine-tuning
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Figure 9: Distribution of master weights of Q_proj layer at the middle of fine-tuning
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Figure 10: Distribution of master weights of Q_proj layer at the end of fine-tuning
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Figure 11: Distribution of discrepancies between weights of Q_proj layer at the end of fine-tuning
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Table 15: OPT-125M Zero-Shot Performance. The best results for each configuration are
highlighted in bold.

Sparsity Num format Order ARC-c ARC-e HellaSWAG WinoGrande

0% HBFP6 - 19.62 41.79 28.74 51.46

INT8 - 19.03 36.28 28.45 50.99

50%
HBFP6 S→Q 20.31 39.86 28.01 51.38

Q→S 19.04 38.56 26.41 50.67

INT8 S→Q 20.99 34.18 27.49 52.88
Q→S 20.12 33.70 26.98 51.14

2:4
HBFP6 S→Q 20.31 38.26 27.56 52.17

Q→S 18.92 36.68 27.23 49.96

INT8 S→Q 19.97 34.93 27.81 50.67
Q→S 18.51 30.17 27.35 48.74
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Table 16: Llama-3 Zero-Shot Performance. The best results for each configuration are highlighted
in bold.

Sparsity Num format Order ARC-c ARC-e HellaSWAG WinoGrande
0% HBFP6 - 48.21 76.43 59.17 71.19

50% HBFP6 S→Q 37.54 69.19 50.64 64.25
Q→S 37.29 67.59 49.54 63.38

2:4 HBFP6 S→Q 31.91 59.6 45.85 60.77
Q→S 29.83 59.48 42.9 58.43
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Table 17: Perplexities of the intermediate checkpoints during dense fine-tuning of OPT-125m,
HBFP6+50% sparsity. The best results for each configuration are highlighted in bold.

Steps 500 700 900 1100 1300 1500 1700
S→Q 86.09 95.61 100.35 97.22 119.66 126.04 130.31
Q→S 89.03 97.91 107.28 98.58 125.10 127.35 131.01
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