
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFECTIVE INTERPLAY BETWEEN SPARSITY AND
QUANTIZATION: FROM THEORY TO PRACTICE

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing size of deep neural networks (DNNs) necessitates effective model
compression to reduce their computational and memory footprints. Sparsity and
quantization are two prominent compression methods that have been shown to
reduce DNNs’ computational and memory footprints significantly while preserving
model accuracy. However, how these two methods interact when combined to-
gether remains a key question for developers, as many tacitly assume that they are
orthogonal, meaning that their combined use does not introduce additional errors
beyond those introduced by each method independently. In this paper, we provide
the first mathematical proof that sparsity and quantization are non-orthogonal. We
corroborate these results with experiments spanning a range of large language
models, including the OPT and LLaMA model families (with 125M to 8B parame-
ters), and vision models like ViT and ResNet. We show that the order in which we
apply these methods matters because applying quantization before sparsity may
disrupt the relative importance of tensor elements, which may inadvertently remove
significant elements from a tensor. More importantly, we show that even if applied
in the correct order, the compounded errors from sparsity and quantization can
significantly harm accuracy. Our findings extend to the efficient deployment of
large models in resource-constrained compute platforms to reduce serving cost,
offering insights into best practices for applying these compression methods to
maximize hardware resource efficiency without compromising accuracy.

1 INTRODUCTION

Recent breakthroughs in deep neural networks (DNNs) have surpassed human-level capabilities
across various tasks such as text generation, machine translation, and computer vision. Unfortunately,
this achievement is accompanied by significant challenges due to the exponential growth in the size
and complexity of DNN models and datasets (Brown et al., 2020; Zhang et al., 2022b; Scao et al.,
2022; Touvron et al., 2023; Almazrouei et al., 2023; Anil et al., 2023; Jiang et al., 2023; OpenAI,
2023; Mesnard et al., 2024), which complicates their practical deployment and efficient serving.
Delivering efficient and real-time inference for these large models is constrained by arithmetic density
(throughput/silicon area (Drumond et al., 2018a; Darvish Rouhani et al., 2020a; Harma et al., 2022)),
memory footprint, and the pressure on memory bandwidth across various hardware platforms (e.g.
GPU (Nvidia, 2022), TPU (Google, 2023)).

Among various efficiency efforts, model compression has emerged as a crucial solution to effectively
address the challenges associated with large models (Micikevicius et al., 2018; Drumond et al.,
2018b;a; Wang & Kanwar, 2019; Darvish Rouhani et al., 2020b;a; Dai et al., 2021; Zhang et al.,
2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani et al., 2023a;b; Hassibi et al., 1993; LeCun et al.,
1989; Frantar et al., 2023; Kao et al., 2022; Lasby et al., 2023; Kuzmin et al., 2023) with quantization
standing out as a prominent method in terms of overall compression ratio achieved. Quantization
effectively reduces the precision of model tensors from native floating-point representation to for-
mats such as FP16 (Micikevicius et al., 2018), BFloat16 (Wang & Kanwar, 2019), and INT8 (van
Baalen et al., 2023; Zafrir et al., 2019). In recent years, block-wise numerical formats have gained
prominence (Drumond et al., 2018b;a; Darvish Rouhani et al., 2020b;a; Dai et al., 2021; Zhang et al.,
2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani et al., 2023a;b), particularly due to their ability
to reduce memory footprint and increase arithmetic density in sub-8-bit regimes, while preserving
accuracy with minimal hardware overhead.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Beyond quantization, researchers are also exploiting sparsity to further compress models, pruning
elements of tensors that are least significant to preserve model accuracy. This reduction in the
number of parameters decreases the models’ memory footprint and eliminates potentially unnecessary
computation (Sze et al., 2020). The most popular sparsity method is magnitude-based sparsity which
prunes elements of a tensor based on their magnitudes (i.e., a proxy for the importance of an element
to model accuracy) (Han et al., 2015b; Mishra et al., 2021b; Lu et al., 2023; Ding et al., 2023;
Bambhaniya et al., 2024), which when combined with fine-tuning achieves noticeable compression
rates with negligible impact on accuracy (Kurtic et al., 2022; Sanh et al., 2020).

While combining sparsity and quantization provides significant gains in arithmetic density and
memory footprint, it may inadvertently have a high impact on model accuracy. Prior work tacitly
assumes that these two methods are orthogonal, meaning that their combined use does not introduce
additional errors beyond those of each method individually. These include studies focusing on
CNNs (Han et al., 2015a; Wang et al., 2020), which are more resilient to quantization errors due to
the absence of dot-product outliers in activation tensors (Xiao et al., 2023). Because quantization
error in CNNs is relatively low, additional errors introduced by combining the two are minimal. Other
studies focus only on compressing weights without quantizing activations (Li et al., 2020; Liu et al.,
2023), which also leads to low overall error when combined with sparsity. These studies fall short of
properly investigating the combined impact of these two compression methods to maximize hardware
resource efficiency without compromising accuracy.

In this paper, we study the interplay between sparsity and quantization systematically. Sparsity and
quantization leverage fundamentally separate computational properties of DNNs, but their combined
impact on model accuracy involves complex interactions due to the introduction of errors in tensors.
We hypothesize that sparsity and quantization are non-orthogonal based on the following two insights.
First, applying quantization before sparsity (Q→S) may adversely disrupt the relative importance of
tensor elements, leading to the removal of significant elements of a tensor with a significant impact
on model accuracy. Second, applying sparsity before quantization (S→Q) can introduce additional
errors in dot product calculations, as these are influenced by the magnitudes and precision of the
involved elements requiring a careful investigation. To the best of our knowledge, we are the first to
study the interplay between sparsity and quantization in depth to identify the conditions under which
accuracy can be preserved or compromised. Our contributions are summarized below:

• Non-Orthogonality of Sparsity and Quantization: We prove mathematically that sparsity and
quantization are non-orthogonal operations. Our per-layer error analysis shows that combination of
the two introduces compounded errors and a degradation of model accuracy. Our findings challenge
the conventional wisdom that these methods can be combined without a significant impact on
accuracy.

• Corroborating the Optimal Compression Order: Although applying sparsity before quantiza-
tion (S→Q) is the most commonly adopted approach, the optimal order has not been formally
demonstrated in the literature. We provide the first mathematical proof that applying sparsity before
quantization (S→Q) is optimal. Moreover, we derive the upper bound for the error caused by the
sub-optimal order of the transformations at the tensor level. We show that it depends linearly on
the number of elements in the tensor and the size of the quantization bin.

• Validating Non-orthogonality Empirically: We validate our mathematical findings with experi-
ments covering a diverse range of models, including prominent LLMs (OPT, LLaMA), ViT, and
ResNet. These experiments support our hypotheses and mathematical findings, underscoring the
non-orthogonality of sparsity and quantization, and the optimal order of compression methods. Our
experiments demonstrate that combining sparsity and quantization, even in the optimal order, can
cause up to 13% additional error in perplexity.

2 RELATED WORK

Quantization. The ever-growing size of DNN models has spurred extensive research into using
narrow numerical formats for inference to reduce memory footprint and improve computational effi-
ciency (Micikevicius et al., 2018; Drumond et al., 2018b;a; Wang & Kanwar, 2019; Darvish Rouhani
et al., 2020b;a; Dai et al., 2021; Zhang et al., 2022a; Yeh et al., 2022; Harma et al., 2022; Rouhani
et al., 2023a;b). Numerical formats employ scaling factors to adjust their dynamic range and can be
categorized based on the granularity and levels of the scaling factors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Element-wise scaling formats, such as FP32, BFloat16 (Wang & Kanwar, 2019), and FP16 (Mi-
cikevicius et al., 2018), consist of sign, mantissa, and exponent components, differing in the bit
allocation for each component. Conversely, block-wise scaling formats assign scaling factors to
blocks of elements, with block sizes varying by format. For instance, INT8 employs per-tensor
scaling, where a single scaling factor is shared by around 1K elements. Recent research highlights
the effectiveness of max-scaled fine-grained block-wise scaling formats with block sizes smaller
than 100 elements, especially in the sub-8-bit regime for both training and inference (Drumond et al.,
2018a; Rouhani et al., 2023a;b; Zhang et al., 2022a; Darvish Rouhani et al., 2020a). Additionally,
modern hardware platforms have adopted these techniques. For instance, the upcoming NVIDIA
Blackwell GPUs (Nvidia, 2024) will support MXFP.

Sparsity. Sparsity methods (Hassibi et al., 1993; LeCun et al., 1989; Frantar et al., 2023; Kao et al.,
2022; Lasby et al., 2023) aim to reduce computational and memory footprints in DNNs by selectively
pruning tensor elements according to various sparsity mask selection criteria. Broadly, these methods
fall into two main categories based on sparsity patterns: unstructured (Han et al., 2015a; Guo et al.,
2016; Frankle & Carbin, 2019; Evci et al., 2020a) and structured (Wen et al., 2016; Yao et al., 2019;
Kang, 2020; Mishra et al., 2021b; Pool & Yu, 2021; Zhou et al., 2021; Sun et al., 2021; Hubara et al.,
2021; Lu et al., 2023). Unstructured sparsity (Han et al., 2015a; Guo et al., 2016; Frankle & Carbin,
2019; Evci et al., 2020a) involves removing individual tensor elements without any specific pattern.
Structured sparsity (Wen et al., 2016), on the other hand, employs specific patterns when pruning
tensor elements. Recent work (Yao et al., 2019; Kang, 2020) has highlighted the effectiveness of
fine-grained N:M structured sparsity in mitigating model accuracy loss.

The fundamental operation in any sparsification scheme is selecting candidate elements for pruning
among which magnitude-based sparsity (Han et al., 2015b) is one of the most widely used methods (Lu
et al., 2023; Ding et al., 2023; Bambhaniya et al., 2024). In addition, recent work has introduced
one-shot pruning methods, such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023), aiming to eliminate the need for an additional fine-tuning phase. However, evidence suggests
that incorporating fine-tuning still improves accuracies significantly (Sun et al., 2023; Syed et al.,
2023; Lu et al., 2024).

Combining sparsity and quantization. Prior work has studied the combination of sparsity and
quantization and its impact on model accuracy in both orders: sparsity followed by quantization (Yu
et al., 2023; Frantar & Alistarh, 2023; 2022; Park et al., 2022; Mishra et al., 2021a; Li et al., 2020;
Han et al., 2015a) and quantization followed by sparsity (Hu et al., 2021; Hawks et al., 2021; Wu
et al., 2023; Mishra et al., 2021b). There are two missing pieces of information from prior work. First,
consensus on the optimal order of compression operations is not established. A few studies raise the
question and experiment with both orders to determine the best approach (Wu et al., 2023; Wang
et al., 2022; Zandonati et al., 2023; Park et al., 2019; Yu et al., 2020; Mishra et al., 2021a; Kozlov
et al., 2021; Zhang et al., 2021), while others treat the methods as orthogonal compression schemes.
Second, there is a lack of mathematical grasp on how sparsity and quantization errors interact and
influence final model performance.

3 NON-ORTHOGONALITY OF SPARSITY AND QUANTIZATION

This section provides a mathematical analysis of the interplay between sparsity and quantization,
formalizing these compression methods and examining their combination, henceforth referred to
as (mathematical) composition, at both the tensor and dot-product levels. For the remainder of
the paper, we use the following notions: (1) Tensor level refers to structures that encompass both
weight and activation tensors; and (2) Dot-product level pertains to the computation of inner products
within these tensors, such as the matrix multiplication operation between weights and activations
during the forward pass. Our analysis centers on quantization methods that reduce the bit-width of
model weights and activations using block-wise numerical formats, which are prevalent in practical
implementations (Darvish Rouhani et al., 2020a; Drumond et al., 2018a; Zhang et al., 2022a; Rouhani
et al., 2023a;b; Micikevicius et al., 2022). These formats determine the scaling factor based on
the element with the maximum magnitude within the block. We refer to any quantization method
employing these numerical formats as max-scaled block-wise quantization. We use magnitude-based
sparsity for both unstructured and N:M structured sparsity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.1 (Max-scaled block-wise quantization). Let x ∈ Rn be a block of n numbers and
m ∈ N denote the quantization bit-width. Max-scaled block-wise quantization q : Rn → Rn is a
transformation of the block x such that

xi
q−→ Qm(xi, scale) (1)

where scale = max(|x1|, . . . , |xn|) is the scaling factor. Qm(·, scale) quantizes the given element
with the scaling factor scale and the number of mantissa bits m. The exact form of Qm depends on the
numerical format and can be found in Appendix K. For instance, INTm quantization transformation
is defined as follows:

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s =

scale

2m−1 − 1
, and ⌊·⌉ is the rounding to the nearest integer.

(2)
Definition 3.2 (Magnitude-based sparsity). Let x ∈ Rn be a block of n numbers. We assume n is
divisible by M and we consider each group of M elements in the block. The magnitude-based N:M
sparsity transformation can be formulated as:

x̃i :=

{
0 if |xi| < ξ

xi otherwise
, for i = 1, 2, ...,M (3)

where ξ is the N -th largest element in the set {|x1|, . . . , |xM |}. The same formula can be adjusted
to represent p% unstructured sparsity by defining ξ as the N -th largest element in the tensor, where
N = ⌊M · p/100⌉, M is the number of elements in the tensor, and ⌊·⌉ is the operation of rounding
to the nearest integer.

In the remainder of this section, we delve into the composition of sparsity and quantization at two
different levels. First, we examine the effects of applying this composition in different orders at the
tensor level, observing how individual tensors are altered. Then, we explore how the composition
influences the result of the dot product operation.

3.1 TENSOR-LEVEL ANALYSIS

Sparsity and quantization transformations inherently introduce errors by decreasing precision or
pruning tensor elements. To study the composition of sparsity and quantization transformations at the
tensor level, we introduce formal definitions of transformation error and orthogonality in compression.
We prove that orthogonality in compression between sparsity and quantization does not persist within
this composition.

The following definition formalizes the error for a specific transformation at the block level, which
consists of a subset of tensor elements.
Definition 3.3 (Transformation error). Let x ∈ Rn be a block of n numbers, which are the input of
a transformation f : Rn → Rn. We define εf (x) := x− f(x) as the error of the transformation f .

Definition 3.3 can be extended to the tensor level, despite being defined at the block level. The
cumulative error of a tensor can be viewed as the summation of individual errors across all its
constituent blocks. Hence, the theorems analyzed at the block level are indicative of the behavior
when scaled up to the tensor level.

Composing two compression methods (transformations) is expected to introduce additional errors.
Any error introduced by the first transformation becomes part of the input to the second transformation,
potentially amplifying the initial error and resulting in a larger overall error.
Definition 3.4 (Tensor-level orthogonality). We define two transformations f and g to be orthogonal
in compression1 if any order of their composition does not introduce any additional error, and thus,
the following inequalities hold:

∀x ∈ Rn, ∥εg◦f (x)∥ ≤ ∥εf (x)∥+ ∥εg(x)∥ and ∥εf◦g(x)∥ ≤ ∥εf (x)∥+ ∥εg(x)∥ (4)

where ∥ · ∥ is an Lp norm, p ∈ [1,+∞).
1In the remainder of the paper, we use the term "orthogonal" to refer to "orthogonal in compression" for

simplicity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 3.5. Let q be the max-scaled block-wise quantization and s be the magnitude-based sparsity
transformation. Applying sparsity before quantization does not introduce any additional error:

∀x ∈ Rn, ∥εq◦s(x)∥ ≤ ∥εq(x)∥+ ∥εs(x)∥ (5)

Moreover, the equality is attainable.

The proof of Theorem 3.5 can be found in Appendix J. The main idea behind the proof is that as
the sparsity transformation does not prune the largest element in the block, the scale quantization
parameter remains unchanged. Consequently, the quantization error for the non-zero components
before and after sparsity remains the same.
Theorem 3.6. Let q be the max-scaled block-wise quantization and s be the magnitude-based sparsity
transformation. Applying quantization before sparsity may introduce additional error:

∃x ∈ Rn, ∥εs◦q(x)∥ > ∥εq(x)∥+ ∥εs(x)∥ (6)

Moreover, a global upper bound exists for the additional error arising from this specific order of
transformations (Q→S). This upper bound is solely determined by the quantization method and the
parameters of the sparsity type, independent of the input data. The following theorem precisely
quantifies the magnitude of this additional error.
Theorem 3.7. Let q be the max-scaled block-wise quantization and s be the magnitude-based N:M
sparsity transformation. Let step be the least upper bound for the magnitude of the quantization error
for one element: step = sup{|εq(x)i| | x ∈ Rn, i ∈ {1 . . . n}}. Then the error of the composition
s ◦ q with respect to L1 norm has the following upper bound:

∀x ∈ Rn, ∥εs◦q(x)∥1 ≤ ∥εq(x)∥1 + ∥εs(x)∥1 + 2 · step · M −N

M
· n︸ ︷︷ ︸

additional error

(7)

The general formulation of Theorem 3.7 for all Lp norms and the proof of Theorem 3.6 and 3.7 can
be found in Appendix J. As a corollary of Theorem 3.5, 3.6, and 3.7, it follows that the optimal
order of transformations is sparsity followed by quantization, as this sequence does not introduce any
additional error. Moreover, according to Definition 3.4, sparsity and quantization are non-orthogonal
at the tensor level.

3.2 DOT-PRODUCT-LEVEL ANALYSIS

In this section, we delve into the error linked with the dot product operation, which is the primary
operation in DNNs. Our analysis focuses on scenarios where weight tensors undergo sparsity and
quantization, while activation tensors solely undergo quantization. We first extend the definition of
transformation error to the dot-product level.
Definition 3.8 (Transformation error over the dot product). Let x,w ∈ Rn denote the inputs
of a transformation f : Rn → Rn and the dot product operation ⟨., .⟩ : Rn × Rn → R. We define
εDf (x,w) := ⟨x,w⟩ − ⟨f(x), f(w)⟩ as the error of the transformation f over dot product. Similarly,
we define εDf,g(x,w) := ⟨x,w⟩ − ⟨f(x), g(w)⟩ as the error over the dot product when different
transformations are applied to x and w.

At the dot-product level, we define two compression methods as orthogonal if their composition, in
any order, does not introduce additional error, akin to Definition 3.4.
Definition 3.9 (Dot-product-level orthogonality). Let x,w ∈ Rn denote the inputs of transforma-
tions f : Rn → Rn and g : Rn → Rn, and the dot product operation ⟨., .⟩ : Rn × Rn → R. Let the
transformation f be applied to both x and w, and transformation g be applied only to w. Let c denote
a composition of f and g in any order, c := f ◦ g or c := g ◦ f . We define two transformations f and
g to be orthogonal on the dot-product level if any order of their composition applied to the second
term w does not introduce any additional error:

∀x,y ∈ Rn, |εDf,c(x,w)| < |εDI,g(x,w)|+ |εDf (x,w)| (8)

In the following theorem, we demonstrate that any composition of sparsity and quantization yields
additional error, rendering these two methods non-orthogonal.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3.10. Let q be the max-scaled block-wise quantization, s be the magnitude-based sparsity
transformation, c be the composition which is either s ◦ q or q ◦ s and I be the identity function.
Composition of max-scaled quantization q and sparsity s in any order produces additional error in
any order, given that only the second operand, i.e., weight, is pruned:

∃x,w ∈ Rn, |εDq,c(x,w)| > |εDI,s(x,w)|+ |εDq (x,w)| (9)

Moreover,

|εDq,c(x,w)| ≤ |εDI,s(x,w)|+ |εDq (x,w)|+
εt︷ ︸︸ ︷

|⟨q(x), ε̃c(w)⟩|+
εi︷ ︸︸ ︷

|⟨εq(x), εs(w)⟩|︸ ︷︷ ︸
additional error

(10)

where ε̃c(x) is defined as the correction error vector of the composition:

εc(x) = εq(x) + εs(x) + ε̃c(x) (11)

Proof of Theorem 3.10 can be found in Appendix J.

Analysis of the additional error. As a corollary of Theorem 3.10, the composition of max-scaled
sparsity and quantization is non-orthogonal, resulting in two additional error terms.

The term εt incorporates the correction vector of the composition ε̃c, which carries the additional
error from the tensor level to the dot-product level. Depending on the order of the composition,
the value of εt varies. When quantization precedes sparsity, certain elements within a block may
become equal due to quantization, leading the sparsity step to prune different elements than it would
on the original tensor. This introduces additional error, as previously significant elements may be
inadvertently pruned. If sparsity precedes quantization, the correction vector ε̃c exclusively comprises
the quantization errors of the pruned elements. As a result, the magnitude of the additional error is
typically smaller compared to the reverse order.

The term εi also contributes to the additional error, encoding the interaction between the error vectors
εq(x) and εs(w). However, since the norm of quantization and sparsity errors are generally smaller
than the norm of the quantization block, this term is less significant than εt.

We provide a more detailed explanation of the additional error analysis in Appendix M

Finally, to experimentally validate our mathematical findings, we define a metric, orthogonality
threshold to assess whether the transformations are orthogonal.
Definition 3.11 (Orthogonality threshold). Let M be a DNN model under consideration, EM(M)
be an evaluation metric that measures the performance of the model M (e.g., perplexity or cross-
entropy loss), EMC(M) be the evaluation metric of the model M with transformation C, which is
either sparsity S or quantization Q. Moreover, let ErrC(M) = EMC(M)−EM(M) be the evaluation
metric error of the transformation C for the model M . We define orthogonality threshold as:

Orthogonality Threshold = EM(M) + ErrQ(M) + ErrS(M) (12)

If the compression methods are non-orthogonal, and the evaluation metric improves with lower values
(e.g., perplexity), we expect the compressed model’s evaluation metric (e.g., perplexity) to worsen
and thus exceed the orthogonality threshold due to compounded errors. Similarly, if the compression
methods are non-orthogonal, and the evaluation metric improves with higher values (e.g., accuracy),
we expect the compressed model’s evaluation metric (e.g., accuracy) to decrease and thus fall below
the orthogonality threshold.

4 EXPERIMENTAL METHODOLOGY AND RESULTS

Models, datasets, and evaluation setup. We study the most widely adopted Transformer-based
models, including OPT (Zhang et al., 2022b) and LLaMA (Touvron et al., 2023) model families.
In line with prior work (Xiao et al., 2023; Frantar & Alistarh, 2023; Sun et al., 2023), we fine-tune
pre-trained models and evaluate perplexity on the WikiText2 (Merity et al., 2017) dataset. The
pretrained LLMs used in our experiments are base (general-purpose) models, not instruct-tuned
variants. In addition, we assess non-orthogonality across different metrics of ViT (Dosovitskiy et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2021) and ResNet (He et al., 2016) on ImageNet-1k (Deng et al., 2009). In all experiments, we
designate the dense FP32 configuration as the primary baseline.

Our experiments span a diverse range of configurations to validate our mathematical findings,
including various variants of max-scaled formats, such as INT8 quantization with per channel
scaling (Dettmers et al., 2022), HBFP8/6 (Drumond et al., 2018a), and MXFP8/6 (Rouhani et al.,
2023b). We primarily study magnitude-based 50% unstructured and 2:4 structured sparsity with
sparsity-aware fine-tuning. We define N:M structured sparsity as following: in every group of M
consecutive weights, at most N weights can have non-zero values. We evaluate the impact of a
higher compression ratio on ViT-B/16 and ResNet-50 by applying 75% unstructured sparsity, 1:4
structured sparsity, and HBFP4. Detailed results can be found in Appendix G and O. We also explore
post-training one-shot sparsity methods like SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023) in Appendix F.

In our experiments, we evaluate the impact of each compression method by analyzing the variations
in perplexity and cross-entropy loss compared to the baseline, thereby focusing on the cumulative
error in the model output. Additionally, we analyze the errors of intermediate layers to support our
mathematical analysis, as detailed in Section 4.3 and Appendix I.

Note that we focus on cross-entropy loss for ViT-B/16 and ResNet-50 instead of classification
accuracy. This is because accuracy remains unaffected as long as the most likely label remains
unchanged, regardless of its absolute value. However, our primary metric for orthogonality threshold
is the aggregated errors introduced in the model output distribution. Table 8 in Appendix G and
Table 12 in Appendix O present orthogonality threshold on additional metrics.

Experimental setup. We exclusively sparsify and/or quantize layers with trainable parameters.
Specifically, we target all linear layers in LLMs (excluding the lm-head or embedding layers following
the literature (Frantar et al., 2022; Frantar & Alistarh, 2023; Lee et al., 2024)), and all linear and
convolution layers (including the initial embedding layer) in ViT-B/16 and ResNet-50. These layers
collectively constitute approximately 99% of the total parameters. In all experiments, we sparsify
weights while keeping activation dense. Both weights and activation tensors are quantized before
matrix multiplication operations. For OPT, LLaMA, ViT, and ResNet fine-tuning, we employ sparse
fine-tuning on a dense FP32 pre-trained model, recomputing sparsity masks at each iteration. In
experiments involving sparsity followed by quantization (S→Q), we apply one-shot quantization to
sparse fine-tuned models. Conversely, for experiments with the reverse order (Q→S), we directly fine-
tune the model in a quantized and sparsified manner. At each iteration, we quantize activations and
weights while applying sparsity to weight tensors. We validate the effectiveness of these compression
recipes through an ablation study, the details of which are presented in Appendix D. To ensure fair
comparison, we maintain uniform hyperparameters across various number formats for a given model
and sparsity type (details in Appendix B). We present a limited sensitivity study on the initial seed
number in Table 9 in Appendix H. A summary of our experimental setup is presented in Table 6.

4.1 EMPIRICAL STUDY 1: ORDER OF SPARSITY AND QUANTIZATION

This section presents empirical evidence demonstrating that applying sparsity before quantization
leads to better perplexities compared to the reverse order. These results are aligned with the math-
ematical analysis in Section 3.1. Table 1 presents perplexities for OPT-125M and LLaMA-2-7B
under various number formats and sparsity types considering both orders of transformations. “50%”
denotes unstructured sparsity, while “2:4” represents a variant of N:M structured sparsity. In the
FP32 columns, only one perplexity for each compression order is reported because no quantization is
applied. The best results for each (sparsity type, number format) pair are highlighted in bold.

We evaluate the order of transformations across different configurations: sparsity followed by quanti-
zation (S→Q) and quantization followed by sparsity (Q→S). Configurations with lower perplexities
are highlighted in bold. Consistently, we observe that the S→Q order yields better perplexities
across all number formats for magnitude-based sparsity. As discussed in Section 3.1, in the case
of Q→S, quantizing a tensor can alter the order of its elements due to changes in magnitudes. If
magnitude-based sparsity removes elements of the quantized tensor that were originally larger before
quantization, the error of the combination may exceed the sum of the errors caused by each transfor-
mation individually. This compounded error further propagates through subsequent dot-product and
vector operations, impacting overall model performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Model perplexities on WikiText2 for combined sparsity and quantization. The best results
for each (sparsity type, number format) pair are highlighted in bold.

OPT-125M LLaMA-2-7B

Sparsity
type Order FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6 FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6

0% (Dense) - 27.65 28.06 28.45 28.01 27.81 29.91 5.12 5.15 5.17 5.16 5.12 5.24

50% S→ Q 29.94 30.22 31.13 31.20 30.46 32.51 6.31 6.94 6.40 6.38 6.32 6.51
Q→ S - 34.71 36.39 35.60 37.48 40.86 - 8.13 8.47 9.32 9.86 10.20

2:4 S→ Q 31.89 32.76 33.99 33.41 32.25 34.58 9.30 9.37 9.35 9.32 9.39 10.68
Q→ S - 45.06 44.16 42.25 46.57 55.64 - 14.65 14.35 14.50 14.98 18.64

Table 2: Model perplexities and CE loss for combined sparsity and quantization. The numbers in the
parentheses show the difference in perplexity/CE loss between the sparse and dense configuration.

OPT-125M OPT-6.7B LLaMA-2-7B LLaMA-3-8B ViT-B/16
Sparsity

type
Number
format PPL↓ Orth.

threshold PPL↓ Orth.
threshold PPL↓ Orth.

threshold PPL↓ Orth.
threshold

CE
Loss↓

Orth.
threshold

0%

FP32 27.65 - 10.86 - 5.12 - 5.53 - 0.703 -
INT8 28.06 - 10.95 - 5.19 - 5.63 - 0.706 -

MXFP8 28.45 - 11.25 - 5.17 - 5.62 - 0.722 -
MXFP6 28.01 - 11.02 - 5.16 - 5.62 - 0.715 -
HBFP8 27.81 - 10.88 - 5.12 - 5.56 - 0.704 -
HBFP6 29.91 - 11.20 - 5.24 - 5.87 - 0.718 -

50%

FP32 29.94 (+2.29) - 11.30 (+0.44) - 6.31 (+1.19) - 10.09 (+4.56) - 0.723 (+0.020) -
INT8 30.22 (+2.16) 30.35 11.37 (+0.42) 11.39 6.94 (+1.75) 6.38 10.85 (+5.22) 10.19 0.728 (+0.022) 0.725

MXFP8 31.13 (+2.68) 30.74 11.74 (+0.49) 11.69 6.40 (+1.23) 6.36 10.34 (+4.72) 10.18 0.745 (+0.023) 0.742
MXFP6 31.20 (+3.19) 30.30 11.53 (+0.51) 11.44 6.38 (+1.22) 6.35 10.15 (+4.53) 10.18 0.734 (+0.019) 0.735
HBFP8 30.46 (+2.65) 30.18 11.31 (+0.43) 11.32 6.32 (+1.20) 6.31 10.12 (+4.56) 10.12 0.724 (+0.020) 0.723
HBFP6 32.51 (+2.60) 32.2 11.94 (+0.74) 11.65 6.51 (+1.27) 6.43 10.55 (+4.68) 10.43 0.736 (+0.018) 0.737

2:4

FP32 31.89 (+4.24) - 15.48 (+4.62) - 9.30 (+4.18) - 13.07 (+7.54) - 0.759 (+0.056) -
INT8 32.76 (+4.70) 32.30 15.61 (+4.66) 15.57 9.37 (+4.18) 9.37 13.23 (+7.60) 13.17 0.762 (+0.056) 0.761

MXFP8 33.99 (+5.54) 32.69 15.70 (+4.45) 15.87 9.35 (+4.18) 9.35 13.35 (+7.73) 13.16 0.781 (+0.059) 0.777
MXFP6 33.41 (+5.40) 32.25 15.95 (+4.93) 15.64 9.32 (+4.16) 9.34 13.20 (+7.58) 13.16 0.770 (+0.055) 0.771
HBFP8 32.25 (+4.44) 32.05 15.57 (+4.69) 15.50 9.39 (+4.27) 9.31 13.11 (+7.55) 13.1 0.760 (+0.056) 0.759
HBFP6 34.58 (+4.67) 34.15 16.98 (+5.78) 15.82 10.68 (+5.44) 9.42 13.64 (+7.77) 13.41 0.774 (+0.056) 0.773

4.2 EMPIRICAL STUDY 2: NON-ORTHOGONALITY BETWEEN SPARSITY AND QUANTIZATION

This section demonstrates that combining sparsity and quantization results in additional error, sur-
passing the sum of their individual errors. Table 2 presents perplexities for OPT-125M, OPT-
6.7B, LLaMA-2-7B and LLaMA-3-8B on WikiText2, and cross-entropy (CE) loss for ViT-B/16
on ImageNet-1k for various combinations of number formats and sparsity types. Following our
conclusions regarding the order of transformations, we only report results for S→Q. We compute the
orthogonality threshold for each combination by summing the individual errors from sparsity and
quantization relative to the baseline dense FP32 model, using Equation 12. Each model’s performance
is compared against this bound, with superior results highlighted in bold. In the majority of configu-
rations, perplexity and cross-entropy loss values exceed the orthogonality thresholds, validating the
non-orthogonality of sparsity and quantization.

We mathematically show (Section 3.2) that the additional error introduced by combining sparsity and
quantization significantly depends on the values of quantized activation tensors and the quantization
error of sparsified weights. This error tends to amplify through successive dot products and vector
operations. Consequently, the quantization error affects the additional error caused by the combination
more than the sparsity error. The gap between the model’s performance and the orthogonality
threshold is minimal for number formats with minimal performance decrease, whereas larger errors
are observed for formats with larger errors. For instance, HBFP6 results in a 2.26 increase in
perplexity for OPT-125M, while its combination with 50% unstructured sparsity leads to a 4.86
increase.

Our analysis reveals that both model size and compression ratio significantly influence the additional
error introduced by combining sparsity and quantization. Larger models exhibit greater tolerance
to these compression methods, resulting in lower additional errors. Moreover, formats with mini-
mal quantization errors (e.g. MXFP8), and sparsity types with minimal sparsification errors (e.g.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12
Layer ID

0

50

100

150

200

250

300

350

L 2
 e

rro
r

Q S
S Q

Figure 1: Cumulative error for the combination of 2:4 structured sparsity and HBFP6 quantization

unstructured sparsity) lead to lower additional errors, even for smaller models. The effect of high
quantization error is more pronounced for sparsity types known for higher errors. For instance,
HBFP6’s combination with 2:4 sparsity causes a 6.93 perplexity increase for OPT-125M and a
6.12 perplexity increase for OPT-6.7B. In contrast, combining HBFP6 with unstructured sparsity
results in smaller increases of 4.86 and 0.79 for the respective models.

We also observe instances where the orthogonality threshold is slightly higher than the actual
perplexity: (a) INT8 with 50% unstructured sparsity for both OPT models, (b) MXFP8 with 2:4
sparsity for OPT-6.7B, (c) MXFP6 with 2:4 sparsity for LLaMA-2-7B, and (d) MXFP6 50%
unstructured sparsity for LLaMa-3-8B. Although these occurrences do not consistently correlate
with specific formats, sparsity types, or model sizes, they do not contradict our mathematical analysis,
which primarily concerns upper bounds of errors and does not entirely rule out orthogonal cases.
Furthermore, orthogonal configurations still result in larger errors compared to applying either sparsity
or quantization alone. Our mathematical analysis (Theorem 3.10) indicates that there exists at least
one occurrence where the orthogonality is not preserved. This underscores the need for careful
examination when applying these compression methods together, as they do not guarantee high
accuracies. Delving into cases where orthogonality is preserved falls beyond the scope of this paper,
and we leave it for future work.

We observe that although the cross-entropy loss for ViT-B/16 is higher than the calculated orthog-
onality threshold in most cases in Table 2, the difference is relatively small. We hypothesize the
reason behind this behavior is due to the fact that ViT-B/16, being a vision model that operates on
images, is more robust to sparsity and quantization errors than LLMs that operate on text. Hence,
the sparsity and quantization levels shown in Table 2 are not sufficient to induce large errors, and
hide the non-orthogonality of sparsity and quantization. To test our hypothesis, we increase the
compression further by employing 75% unstructured sparsity, 1:4 structured sparsity and HBFP4
on ViT-B/16 (Appendix G). The results show that the difference between the baseline cross-entropy
loss and the calculated orthogonality threshold for these cases increases significantly, validating the
non-orthogonality of sparsity and quantization. This increase in cross-entropy loss also translates
to a significant non-orthogonal drop in accuracy. Additionally, we run the same experiments on a
CNN-based vision model, ResNet-50 (Appendix O), and the experimental results corroborate these
findings.

4.3 ABLATION: ERROR PROPAGATION ACROSS LAYERS

In this section, we study error propagation across the layers of a deep neural network.

While our mathematical study provides insights into how sparsity and quantization introduce errors at
the dot-product and tensor levels, mathematically estimating the cumulative effect of these errors on
the model’s final loss or performance is non-trivial. Therefore, we perform this layer-wise empirical
analysis to verify that the order of applying sparsity and quantization not only affects per-layer errors
but also significantly impacts overall model’s accuracy. By inspecting the intermediate outputs of the
pre-trained OPT-125M model, we show that the error accumulation increases with the layer index
and that the choice of the order directly influences the final model performance.

We apply quantization and magnitude-based sparsity to all linear layers of the pre-trained OPT-125M
model in a zero-shot manner. We feed a sample from the test subset through both the compressed

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

model and the corresponding full precision dense model, and we measure the difference in Feed-
Forward outputs for each Transformer block. We repeat this experiment for both the S→Q and Q→S
orders, and we compare the L2 errors at each layer. The results are shown in Figure 1.

As illustrated in the figure, the per-layer error increases consistently with the layer index, regardless
of the order of transformations, and reaches its peak in the final layer. However, we observe that the
S→Q order produces significantly lower errors at each intermediate layer compared to the reverse
order. This pattern indicates that the error introduced by Q→S accumulates more rapidly as layers
deepen, highlighting the detrimental effects of applying quantization before sparsity.

5 DISCUSSION

Our mathematical analysis and experimental results offer multiple insights for ML model practitioners.
First, our analysis demonstrates a risk-free method to improve model performance, measured by lower
perplexity and/or higher accuracy, through choosing the optimal ordering of compression operations
for any max-scaled number format and magnitude-based pruning scheme. This contribution is
particularly important in the current ML landscape, where sparsity and quantization are pivotal
methods for reducing the memory footprint and bandwidth requirements of state-of-the-art LLMs.
Second, we show that calculating the orthogonality threshold offers a close enough estimate of model
performance (e.g. accuracy, perplexity, etc.) under conditions of sparsity and quantization. This
bound can streamline the search for optimal sparse-quantized model configurations by effectively
narrowing the search space. There is an inherent tradeoff between the hardware benefits of various
sparse-quantized configurations and the achieved model performance. Quantization bit-width and
sparsity level are key factors influencing the memory and bandwidth requirements for serving these
models. For example, at a 50% sparsity level, 8-bit and 6-bit quantization result in total reductions in
memory footprint and bandwidth requirements by 8× and 10.7×, respectively.

Ideally, practitioners aim to maximize compression (increase sparsity ratio and/or reduce the average
bitwidth per element). Our analysis elucidates the individual and combined impacts of these factors
across a range of recent large models, providing practical guidelines to achieve the highest compres-
sion without compromising model performance. Typically, 8-bit quantization with any max-scaled
number format can serve as a direct replacement for FP32 when combined with any form of sparsity
in the optimal order (S→Q). As discussed in Section 4, certain models exhibit sensitivity to sub-8bit
number formats and structured sparsity combinations, even when applied in an optimal order. In
scenarios where improvements in arithmetic density (TOPS/mm2) and memory footprint justify a
slight reduction in model performance, such as the deployment of large models on edge devices,
these combinations may still be viable.

In this work, we do not consider heterogeneous sparsity and quantization schemes, where the sparsity
fraction and quantization bit-width vary across layers and differ between activation and weight tensors.
Such approaches (Rouhani et al., 2023b; Ma et al., 2024; Harma et al., 2022; Evci et al., 2020b)
have demonstrated to be effective in maintaining model accuracy or perplexity while improving
compressing ratio. However, these schemes may not be hardware-friendly, introduce noticeable
overhead, and are impractical to implement on off-the-shelf hardware platforms (e.g. GPU, TPU).
We leave the investigation of the interactions between these heterogeneous sparsity and quantization
schemes for future work.

6 CONCLUSION

We provide a comprehensive analysis of the interplay between sparsity and quantization in DNNs,
showing that applying sparsity before quantization (S→Q) minimizes additional errors and yields
better model accuracy. Moreover, our mathematical analysis and extensive empirical study with
large language models (OPT, LLaMA), vision transformers (ViT), and convolutional neural networks
(ResNet) demonstrate that sparsity and quantization are non-orthogonal and their combined use
can adversely affect model accuracy. Our findings provide valuable insights for optimizing the
compression of large models while preserving accuracy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, Daniele Maz-
zotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series of open language
models. CoRR, abs/2311.16867, 2023. doi: 10.48550/ARXIV.2311.16867. URL https://doi.org/10.
48550/arXiv.2311.16867.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin Johnson, Ioannis Antonoglou,
Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy P. Lillicrap, Angeliki Lazaridou,
Orhan Firat, James Molloy, Michael Isard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola,
Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica
Moreira, Kareem Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay
Savinov, Ivo Danihelka, Becca Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman
Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A family of
highly capable multimodal models. CoRR, abs/2312.11805, 2023. doi: 10.48550/ARXIV.2312.11805. URL
https://doi.org/10.48550/arXiv.2312.11805.

Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-Chun Kao, Shivani
Agrawal, Utku Evci, and Tushar Krishna. Progressive gradient flow for robust N: M sparsity training in
transformers. CoRR, abs/2402.04744, 2024. doi: 10.48550/ARXIV.2402.04744. URL https://doi.
org/10.48550/arXiv.2402.04744.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models
are Few-Shot Learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), NeurIPS, 2020.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany. Vs-quant:
Per-vector scaled quantization for accurate low-precision neural network inference. Proceedings of Machine
Learning and Systems, 3:873–884, 2021.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vino-
gradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin, Haishan Zhu, Taesik Na, Prerak
Patel, Shuai Che, Lok Chand Koppaka, XIA SONG, Subhojit Som, Kaustav Das, Saurabh T, Steve Rein-
hardt, Sitaram Lanka, Eric Chung, and Doug Burger. Pushing the limits of narrow precision inferencing
at cloud scale with microsoft floating point. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 10271–10281.
Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vinogradsky,
Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow precision inferencing at cloud
scale with microsoft floating point. Advances in neural information processing systems, 33:10271–10281,
2020b.

Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Mathew Zhao, Ritchie
amd Hall, Jasmine Klar, Eric Chung, Yuan Yu, Michael Schulte, Ralph Wittig, Ian Bratt, Nigel Stephens,
Jelena Milanovic, John Brothers, Pradeep Dubey, Marius Cornea, Alexander Heinecke, Andres Rodriguez,
Martin Langhammer, Summer Deng, Maxim Naumov, Paulius Micikevicius, Michael Siu, and Colin Verrilli.
OCP Microscaling (MX) Specification. Open Compute Project, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. CoRR, abs/2208.07339, 2022. doi: 10.48550/ARXIV.2208.07339. URL https:
//doi.org/10.48550/arXiv.2208.07339.

Shaojin Ding, David Qiu, David Rim, Yanzhang He, Oleg Rybakov, Bo Li, Rohit Prabhavalkar, Weiran Wang,
Tara N. Sainath, Shivani Agrawal, Zhonglin Han, Jian Li, and Amir Yazdanbakhsh. Usm-lite: Quantization and
sparsity aware fine-tuning for speech recognition with universal speech models. CoRR, abs/2312.08553, 2023.
doi: 10.48550/ARXIV.2312.08553. URL https://doi.org/10.48550/arXiv.2312.08553.

11

https://doi.org/10.48550/arXiv.2311.16867
https://doi.org/10.48550/arXiv.2311.16867
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.2402.04744
https://doi.org/10.48550/arXiv.2402.04744
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2312.08553

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training DNNs with Hybrid Block Floating Point.
arXiv:1804.01526 [cs, stat], December 2018a. URL http://arxiv.org/abs/1804.01526. arXiv:
1804.01526.

Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating point.
Advances in Neural Information Processing Systems, 31, 2018b.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 2943–2952.
PMLR, 2020a. URL http://proceedings.mlr.press/v119/evci20a.html.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2943–2952. PMLR,
13–18 Jul 2020b. URL https://proceedings.mlr.press/v119/evci20a.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training quantization
and pruning. Advances in Neural Information Processing Systems, 35:4475–4488, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 10323–10337. PMLR, 2023. URL
https://proceedings.mlr.press/v202/frantar23a.html.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training quantization for
generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.48550/ARXIV.2210.17323. URL
https://doi.org/10.48550/arXiv.2210.17323.

Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alistarh, and Utku Evci. Scaling laws for sparsely-connected
foundation models. arXiv preprint arXiv:2309.08520, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07 2024.
URL https://zenodo.org/records/12608602.

Google. Enabling next-generation ai workloads: Announcing tpu v5p and ai hypercom-
puter. https://cloud.google.com/blog/products/ai-machine-learning/
introducing-cloud-tpu-v5p-and-ai-hypercomputer, 2023.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances in neural
information processing systems, 29, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. Advances in neural information processing systems, 28, 2015b.

Simla Burcu Harma, Ayan Chakraborty, Babak Falsafi, Martin Jaggi, and Yunho Oh. Accuracy boosters:
Epoch-driven mixed-mantissa block floating-point for dnn training. arXiv preprint arXiv:2211.10737, 2022.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network pruning. In
IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

12

https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/1804.01526
http://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.48550/arXiv.2210.17323
https://zenodo.org/records/12608602
https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5p-and-ai-hypercomputer
https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5p-and-ai-hypercomputer

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Benjamin Hawks, Javier Duarte, Nicholas J Fraser, Alessandro Pappalardo, Nhan Tran, and Yaman Umuroglu.
Ps and qs: Quantization-aware pruning for efficient low latency neural network inference. Frontiers in
Artificial Intelligence, 4:676564, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. ArXiv, abs/2102.00554, 2021.
URL https://api.semanticscholar.org/CorpusID:231740691.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M Sabry Aly, and Jie Lin. Opq: Compressing deep neural
networks with one-shot pruning-quantization. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 7780–7788, 2021.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated sparse neu-
ral training: A provable and efficient method to find N: M transposable masks. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pp. 21099–21111, 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.48550/ARXIV.2310.06825. URL
https://doi.org/10.48550/arXiv.2310.06825.

Hyeong-Ju Kang. Accelerator-aware pruning for convolutional neural networks. IEEE Trans. Circuits Syst.
Video Technol., 30(7):2093–2103, 2020. doi: 10.1109/TCSVT.2019.2911674. URL https://doi.org/
10.1109/TCSVT.2019.2911674.

Sheng-Chun Kao, Amir Yazdanbakhsh, Suvinay Subramanian, Shivani Agrawal, Utku Evci, and Tushar Krishna.
Training recipe for n: M structured sparsity with decaying pruning mask. arXiv preprint arXiv:2209.07617,
2022.

Alexander Kozlov, Ivan Lazarevich, Vasily Shamporov, Nikolay Lyalyushkin, and Yury Gorbachev. Neural
network compression framework for fast model inference. In Intelligent Computing: Proceedings of the 2021
Computing Conference, Volume 3, pp. 213–232. Springer, 2021.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and
Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large language
models. arXiv preprint arXiv:2203.07259, 2022.

Andrey Kuzmin, Markus Nagel, Mart van Baalen, Arash Behboodi, and Tijmen Blankevoort. Pruning vs
quantization: Which is better? In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
c48bc80aa5d3cbbdd712d1cc107b8319-Abstract-Conference.html.

Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training with structured
sparsity. arXiv preprint arXiv:2305.02299, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing
systems, 2, 1989.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: outlier-aware weight
quantization for efficient fine-tuning and inference of large language models. In Michael J. Wooldridge,
Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pp. 13355–13364. AAAI Press, 2024. doi: 10.1609/AAAI.V38I12.29237. URL https://doi.
org/10.1609/aaai.v38i12.29237.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez. Train large,
then compress: Rethinking model size for efficient training and inference of transformers. In International
Conference on machine learning, pp. 5958–5968. PMLR, 2020.

13

https://api.semanticscholar.org/CorpusID:231740691
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.1109/TCSVT.2019.2911674
https://doi.org/10.1109/TCSVT.2019.2911674
http://papers.nips.cc/paper_files/paper/2023/hash/c48bc80aa5d3cbbdd712d1cc107b8319-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c48bc80aa5d3cbbdd712d1cc107b8319-Abstract-Conference.html
https://doi.org/10.1609/aaai.v38i12.29237
https://doi.org/10.1609/aaai.v38i12.29237

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at inference time. In
International Conference on Machine Learning, pp. 22137–22176. PMLR, 2023.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. SPP: sparsity-preserved
parameter-efficient fine-tuning for large language models. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=9Rroj9GIOQ.

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir Yaz-
danbakhsh. STEP: learning N: M structured sparsity masks from scratch with precondition. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 22812–22824. PMLR, 2023. URL
https://proceedings.mlr.press/v202/lu23c.html.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang,
Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in 1.58 bits, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?
id=Byj72udxe.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane
Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti,
Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-
Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland,
Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff
Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based on
gemini research and technology. CoRR, abs/2403.08295, 2024. doi: 10.48550/ARXIV.2403.08295. URL
https://doi.org/10.48550/arXiv.2403.08295.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed Precision Training.
arXiv:1710.03740 [cs, stat], February 2018. URL http://arxiv.org/abs/1710.03740. arXiv:
1710.03740.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart F. Oberman,
Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats for deep learning. CoRR, abs/2209.05433,
2022. doi: 10.48550/arXiv.2209.05433. URL https://doi.org/10.48550/arXiv.2209.05433.

Paulius Micikevicius, Stuart Oberman, Pradeep Dubey, Marius Cornea, Andres Rodriguez, Ian Bratt, Richard
Grisenthwaite, Norm Jouppi, Chiachen Chou, Amber Huffman, Michael Schulte, Ralph Wittig, Dharmesh
Jani, and Summer Deng. OCP 8-bit Floating Point Specification (OFP8). Open Compute Project, 2023.

Microsoft. MicroXcaling: A Library for Microservices Autoscaling. https://github.com/microsoft/
microxcaling, 2024.

Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. ArXiv, abs/2104.08378, 2021a. URL
https://api.semanticscholar.org/CorpusID:233296249.

Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. CoRR, abs/2104.08378, 2021b. URL
https://arxiv.org/abs/2104.08378.

Nvidia. Nvidia ampere architecture whitepaper. Technical report, NVIDIA, 2021. URL
.https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

Nvidia. Nvidia h100 tensor core gpu architecture. Technical report, NVIDIA,
2022. URL .https://www.advancedclustering.com/wp-content/
uploads/2022/03/gtc22-whitepaper-hopper.pdfSolutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

14

https://openreview.net/forum?id=9Rroj9GIOQ
https://openreview.net/forum?id=9Rroj9GIOQ
https://proceedings.mlr.press/v202/lu23c.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.48550/arXiv.2403.08295
http://arxiv.org/abs/1710.03740
https://doi.org/10.48550/arXiv.2209.05433
https://github.com/microsoft/microxcaling
https://github.com/microsoft/microxcaling
https://api.semanticscholar.org/CorpusID:233296249
https://arxiv.org/abs/2104.08378
. https://images.nvidia.com/aem-dam/en-zz/ Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
. https://images.nvidia.com/aem-dam/en-zz/ Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
. https://www.advancedclustering.com/wp-content/uploads/2022/03/gtc22-whitepaper-hopper.pdf Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
. https://www.advancedclustering.com/wp-content/uploads/2022/03/gtc22-whitepaper-hopper.pdf Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
. https://www.advancedclustering.com/wp-content/uploads/2022/03/gtc22-whitepaper-hopper.pdf Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Nvidia. Nvidia tensor cores: Unprecedented acceleration for generative ai. https://www.nvidia.com/
en-us/data-center/tensor-cores/#blackwell, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL
https://doi.org/10.48550/arXiv.2303.08774.

Jun-Hyung Park, Kang-Min Kim, and Sangkeun Lee. Quantized sparse training: a unified trainable framework
for joint pruning and quantization in dnns. ACM Transactions on Embedded Computing Systems (TECS), 21
(5):1–22, 2022.

Mi Sun Park, Xiaofan Xu, and Cormac Brick. Squantizer: Simultaneous learning for both sparse and low-
precision neural networks, 2019. URL https://arxiv.org/abs/1812.08301.

Jeff Pool and Chong Yu. Channel permutations for N: M sparsity. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 13316–13327, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html.

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mesmakhos-
roshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, Lai Shao, Gaurav Kolhe, Dimitry
Melts, Jasmine Klar, Renee L’Heureux, Matt Perry, Doug Burger, Eric S. Chung, Zhaoxia (Summer) Deng,
Sam Naghshineh, Jongsoo Park, and Maxim Naumov. With shared microexponents, A little shifting goes a
long way. In Yan Solihin and Mark A. Heinrich (eds.), Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture, ISCA 2023, Orlando, FL, USA, June 17-21, 2023, pp. 83:1–83:13. ACM,
2023a. doi: 10.1145/3579371.3589351. URL https://doi.org/10.1145/3579371.3589351.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng, Dhruv
Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Dusan Stosic, Venmugil Elango, Maximilian
Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gaurav Kolhe, Martin Langhammer, Ada Li,
Levi Melnick, Maral Mesmakhosroshahi, Andres Rodriguez, Michael Schulte, Rasoul Shafipour, Lei Shao,
Michael Y. Siu, Pradeep Dubey, Paulius Micikevicius, Maxim Naumov, Colin Verilli, Ralph Wittig, Doug
Burger, and Eric S. Chung. Microscaling data formats for deep learning. CoRR, abs/2310.10537, 2023b. doi:
10.48550/ARXIV.2310.10537. URL https://doi.org/10.48550/arXiv.2310.10537.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning. Advances
in neural information processing systems, 33:20378–20389, 2020.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella
Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muen-
nighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-
Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo
Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi,
Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao
Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al.
BLOOM: A 176b-parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022. doi:
10.48550/ARXIV.2211.05100. URL https://doi.org/10.48550/arXiv.2211.05100.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. CoRR, abs/2306.11695, 2023. doi: 10.48550/ARXIV.2306.11695. URL https:
//doi.org/10.48550/arXiv.2306.11695.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven, Andrew Nelson, Hongsheng Li, and Henk
Corporaal. Dominosearch: Find layer-wise fine-grained N: M sparse schemes from dense neural
networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-
nifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 20721–20732, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
ad68473a64305626a27c32a5408552d7-Abstract.html.

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sundarapandiyan. Prune and tune: Improving efficient
pruning techniques for massive language models. In Krystal Maughan, Rosanne Liu, and Thomas F. Burns
(eds.), The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023.
OpenReview.net, 2023. URL https://openreview.net/pdf?id=cKlgcx7nSZ.

15

https://www.nvidia.com/en-us/data-center/tensor-cores/#blackwell
https://www.nvidia.com/en-us/data-center/tensor-cores/#blackwell
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/1812.08301
https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://doi.org/10.1145/3579371.3589351
https://doi.org/10.48550/arXiv.2310.10537
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2306.11695
https://doi.org/10.48550/arXiv.2306.11695
https://proceedings.neurips.cc/paper/2021/hash/ad68473a64305626a27c32a5408552d7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ad68473a64305626a27c32a5408552d7-Abstract.html
https://openreview.net/pdf?id=cKlgcx7nSZ

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient Processing of Deep Neural Net-
works. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2020. ISBN 978-3-
031-00638-8. doi: 10.2200/S01004ED1V01Y202004CAC050. URL https://doi.org/10.2200/
S01004ED1V01Y202004CAC050.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023.
doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.

Mart van Baalen, Andrey Kuzmin, Suparna S. Nair, Yuwei Ren, Eric Mahurin, Chirag Patel, Sundar Subramanian,
Sanghyuk Lee, Markus Nagel, Joseph Soriaga, and Tijmen Blankevoort. FP8 versus INT8 for efficient deep
learning inference. CoRR, abs/2303.17951, 2023. doi: 10.48550/ARXIV.2303.17951. URL https:
//doi.org/10.48550/arXiv.2303.17951.

Naigang Wang, Chi-Chun (Charlie) Liu, Swagath Venkataramani, Sanchari Sen, Chia-Yu Chen, Kaoutar El
Maghraoui, Vijayalakshmi Srinivasan, and Leland Chang. Deep compression of pre-trained transformer
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Shibo Wang and Pankaj Kanwar. BFloat16: The secret to high performance on Cloud TPUs, August 2019.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint
search for network architecture, pruning and quantization policy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2078–2087, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. Advances in neural information processing systems, 29, 2016.

Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding int4 quantization
for transformer models: Latency speedup, composability, and failure cases, 2023.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pp. 38087–38099. PMLR, 2023. URL https://proceedings.mlr.
press/v202/xiao23c.html.

Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and Lanshun Nie. Balanced sparsity for efficient
DNN inference on GPU. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pp. 5676–5683. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.33015676. URL
https://doi.org/10.1609/aaai.v33i01.33015676.

Thomas Yeh, Max Sterner, Zerlina Lai, Brandon Chuang, and Alexander Ihler. Be like water: Adaptive floating
point for machine learning. In International Conference on Machine Learning, pp. 25490–25500. PMLR,
2022.

Chong Yu, Tao Chen, Zhongxue Gan, and Jiayuan Fan. Boost vision transformer with gpu-friendly sparsity and
quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22658–22668, 2023.

Po-Hsiang Yu, Sih-Sian Wu, Jan P Klopp, Liang-Gee Chen, and Shao-Yi Chien. Joint pruning & quantization
for extremely sparse neural networks. arXiv preprint arXiv:2010.01892, 2020.

16

https://doi.org/10.2200/S01004ED1V01Y202004CAC050
https://doi.org/10.2200/S01004ED1V01Y202004CAC050
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2303.17951
https://doi.org/10.48550/arXiv.2303.17951
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.1609/aaai.v33i01.33015676

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: quantized 8bit BERT. In Fifth Work-
shop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS Edition, EMC2@NeurIPS
2019, Vancouver, Canada, December 13, 2019, pp. 36–39. IEEE, 2019. doi: 10.1109/EMC2-NIPS53020.
2019.00016. URL https://doi.org/10.1109/EMC2-NIPS53020.2019.00016.

Ben Zandonati, Glenn Bucagu, Adrian Alan Pol, Maurizio Pierini, Olya Sirkin, and Tal Kopetz. Towards optimal
compression: Joint pruning and quantization. CoRR, abs/2302.07612, 2023. doi: 10.48550/ARXIV.2302.
07612. URL https://doi.org/10.48550/arXiv.2302.07612.

Sai Qian Zhang, Bradley McDanel, and HT Kung. Fast: Dnn training under variable precision block floating
point with stochastic rounding. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 846–860. IEEE, 2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. OPT: open pre-trained
transformer language models. CoRR, abs/2205.01068, 2022b. doi: 10.48550/ARXIV.2205.01068. URL
https://doi.org/10.48550/arXiv.2205.01068.

Xinyu Zhang, Ian Colbert, Ken Kreutz-Delgado, and Srinjoy Das. Training deep neural networks with joint
quantization and pruning of weights and activations. arXiv preprint arXiv:2110.08271, 2021.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning N: M fine-grained structured sparse neural networks from scratch. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=K9bw7vqp_s.

17

https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.48550/arXiv.2302.07612
https://doi.org/10.48550/arXiv.2205.01068
https://openreview.net/forum?id=K9bw7vqp_s

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Additional related work 18

B Hyperparameters 19

C Compute resources and runtime 20

D Fine-tuning strategies 20

E Experimental Setup Summary 20

F Post-training one-shot sparsity methods 20

G Orthogonality threshold for ViT 21

H Robustness analysis 22

I Layer-wise Error Propagation 23

J Proofs for the mathematical analysis 24

K Definitions of Q for numerical formats 28

L Analysis of the upper bound of the dot product error 29
L.1 Upper bound is reachable . 29
L.2 Contribution of additional error terms . 30

M Analysis of the Additional Error 30

N Combining GPTQ with Sparsity 31

O Convolutional Networks 31

P Optimal order without fine-tuning 31

Q Collision analysis 32

R OpenLLM evaluation 33

S Order of sparsity and quantization during fine-tuning 34

A ADDITIONAL RELATED WORK

Quantization. Element-wise scaling formats, such as FP32, BFLOAT32 (Wang & Kanwar, 2019), and FP16 (Mi-
cikevicius et al., 2018), consist of sign, mantissa, and exponent components, differing in the bit allocation for
each component. Conversely, block-wise scaling formats assign scaling factors to blocks of elements, with block
sizes varying by format. For instance, INT8 employs per-tensor scaling, where a single scaling factor is shared
by around 1K elements.

Recent research highlights the effectiveness of fine-grained block-wise scaling formats with block sizes smaller
than 100 elements, especially in the sub-8-bit regime for both training and inference (Drumond et al., 2018a;
Rouhani et al., 2023a;b; Zhang et al., 2022a; Darvish Rouhani et al., 2020a). These formats are further
categorized into single-level and two-level scaling. Single-level block-wise formats, such as HBFP (Drumond

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Types of max-scaled numerical encodings

Element-wise Single-level block-wise Two-level block-wise
FP32/FP16 BFloat16 INT HBFP MXINT MXFP FP8

Scaling level 1 Block size 1 1 1k 64 32 32 10k
Scale type HW HW SW HW HW HW SW

Scaling level 2 Block size - - - - - 1 1
Scale type - - - - - HW HW

et al., 2018a; Darvish Rouhani et al., 2020a) and MXINT (Rouhani et al., 2023b), enable fixed-point arithmetic
by sharing a single exponent within a block of mantissa or integers. Two-level formats, like MXFP (Rouhani
et al., 2023a;b; Micikevicius et al., 2022) and FP8, use more granular scaling factors at the second level, offering
greater robustness across diverse range of models.

Sparsity. Unstructured sparsity (Han et al., 2015a; Guo et al., 2016; Frankle & Carbin, 2019; Evci et al., 2020a)
involves removing individual tensor elements without any specific pattern. Structured sparsity (Wen et al., 2016),
on the other hand, employs specific patterns when pruning tensor elements. Recent work (Yao et al., 2019; Kang,
2020) has highlighted the effectiveness of fine-grained N:M structured sparsity in mitigating model accuracy
loss. The introduction of the 2:4 structured-sparse Tensor Core in the Nvidia Ampere architecture (Nvidia, 2021)
has further driven research in developing N:M sparsity training recipes (Mishra et al., 2021b; Pool & Yu, 2021;
Zhou et al., 2021; Sun et al., 2021; Hubara et al., 2021; Lu et al., 2023).

The fundamental operation in any sparsification scheme is selecting candidate elements for pruning among
which magnitude-based sparsity (Han et al., 2015b) is one of the most widely used methods (Lu et al., 2023;
Ding et al., 2023; Bambhaniya et al., 2024). In addition, recent work has introduced one-shot pruning methods,
such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), aiming to eliminate the need for an
additional fine-tuning phase. While these methods achieve state-of-the-art performance for one-shot pruning,
evidence suggests that incorporating a fine-tuning phase can lead to better model quality (Sun et al., 2023;
Syed et al., 2023). Although these methods are proposed to eliminate fine-tuning and present state-of-the-art
accuracies for one-shot pruning, it has been shown that fine-tuning still improves accuracies significantly (Sun
et al., 2023; Syed et al., 2023).

B HYPERPARAMETERS

We perform full parameter fine-tuning while applying magnitude-based sparsity methods. We find the optimal
hyperparameters through grid search for each model and sparsity type and apply the same hyperparameters
across all number formats, including FP32. We observe that fine-tuning in a Q→S order, where we quantize
and sparsify tensors at each iteration, leads to a highly unstable training process, especially with the structured
sparsity. For this reason, we impose limitations on the number of training iterations and the learning rate. Thus,
we prioritize achieving reproducible and comparable results across all number formats over achieving full
convergence for each specific configuration.

Table 4: Details of the sparse fine-tuning experiments

Model Sparsity type Batch size Weight decay Optimizer FT num. iterations Learning rate

OPT-125M 50% 8 - Adam 1776 1e−4

2:4 8 - Adam 1776 1e−4

OPT-6.7B 50% 4 - Adam 1000 5e−4

2:4 4 - Adam 1500 5e−4

LLaMA-2-7B 50% 2 1e−3 AdamW 150 2e−4

2:4 2 1e−3 AdamW 60 5e−5

LLaMA-3-8B 50% 2 1e−3 AdamW 200 2e−5

2:4 1 1e−3 AdamW 300 2e−5

ViT-B/16 50% 32 1e−3 Adam 30000 5e−5

2:4 32 1e−3 Adam 30000 5e−5

OPT-125M and OPT-6.7B models are fine-tuned with block sizes of 512 and 1024 respectively, while LLaMa
models utilize a block size of 2048. All configurations employ a linear learning rate schedule without a warm-up.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C COMPUTE RESOURCES AND RUNTIME

We conduct our experiments on four NVIDIA A100 GPUs with 80GB memory, and for small models, we use
four NVIDIA V100 GPUs with 32GB memory. The hyperparameters used in our experiments, including the
number of fine-tuning epochs, are given in Appendix B. In summary, the estimated runtime for each fine-tuning
experiments on these hardware platforms are as follows: (a) 20 minutes for OPT-125M, (b) 5-6 hours for
OPT-6.7B, (c) 2-3 hours for LLaMA-2-7B and LLaMA-3-8B, and (d) 40 hours for ViT-B/16.

D FINE-TUNING STRATEGIES

Magnitude-based sparsity applied in one-shot causes a significant perplexity degradation and thus needs an
additional fine-tuning to recover the perplexity. In combination with quantization, several fine-tuning strategies
are possible:

1. Sparse fine-tuning of FP32 model followed by the post-training quantization, sparsity masks are
applied to the FP32 weight tensors

2. Fine-tuning in sparsified and quantized manner, where we sparsify and then quantize tensors at each
iteration

3. Sparse fine-tuning of FP32 model followed by the post-training quantization, sparsity masks are
applied to the quantized weight tensors

4. Fine-tuning in quantized and sparsified manner, where we quantize and then sparsify tensors at each
iteration

The former two strategies correspond to the S→Q order of transformations, while the latter two correspond to
the Q→S order. We conduct ablation experiments for the OPT-125M to compare these fine-tuning strategies.
The results are presented in the Table 5. According to our results, post-training quantization outperforms

Table 5: Validation perplexities of OPT-125M on WikiText2, produced by different fine-tuning
strategies. The best results for each configuration are highlighted in bold.

Sparsity
type

Number
format Order Quantization

during fine-tuning PPL

50% HBFP8
S→Q × 30.46

✓ 33.51

Q→S × 39.04
✓ 37.48

50% HBFP6
S→Q × 32.51

✓ 36.20

Q→S × 41.97
✓ 40.86

sparse-and-quantized fune-tuning in S→Q order. In contrast, fine-tuning in quantized and sparsified manner
recovers perplexity better than post-training quantization in the reverse order.

E EXPERIMENTAL SETUP SUMMARY

Table 6 presents a summary of our experimental setup.

F POST-TRAINING ONE-SHOT SPARSITY METHODS

Other sparsity schemes, such as Wanda and SparseGPT, have a different pruning policy, which uses activations
to assess the significance of the weights and prunes only the least significant ones. The pruning metrics in Wanda
and SparseGPT are

Sij = |Wij | · ∥Xj∥2 and Sij = [|W|2/diag((XTX+ λI)−1]ij (13)

respectively. If quantization is applied before sparsity, the input values will change, which might also change the
set of the nullified weights. However, the significance of those weights will not change considerably. Therefore,
the correction vector tc consists of the least significant weights, which are multiplied by the elements of q(x)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Compressed operations by model type
LLMs ViTs CNNs

Linear Layers Yes Yes Yes
Convolutional Layers – – Yes
Embedding Layer No Yes –
Attention MatMuls Yes Yes –

Tensor-level granularity for compressed operations
Weights Activations Gradients

Forward Pass (for inference and finetuning) Sparsified + quantized Quantized –
Backward Pass (for finetuning only) Quantized Quantized Quantized
(1) Note: Only matrix multiplications are compressed; other operations (e.g., optimizer updates) are in FP32
(2) Note: Master weights are stored in FP32, since our primary aim is to compress inference.

Workflow for the two different compression orders

S → Q - Sparse finetuning followed by zero-shot quantization
- Sparsity mask recomputed for each iteration

Q → S - Quantization and sparse finetuning
- Quantization and sparsity masks recomputed for each iteration

Table 6: Summary of experimental setup

with the lowest values due to the chosen pruning metrics. As a result, the magnitude of εt and the effect of
changing the order of the operations is much lower for those sparsity schemes than for the magnitude-based
sparsity.

Table 7: Model perplexities on WikiText2 for combined sparsity and quantization. The numbers
in the parentheses show the difference in perplexity between the sparse and dense configuration.

OPT-125M (↓) LLaMA-2-7B (↓)

Sparsity
type

Sparsity
method Order FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6 FP32 INT8 MXFP8 MXFP6 HBFP8 HBFP6

0% - - 27.65 28.06 28.45 28.01 27.81 29.91 5.12 5.15 5.17 5.16 5.12 5.24

50%

Magnitude S→ Q 29.94(+2.29) 30.22(+2.16) 31.13(+2.68) 31.20(+3.19) 30.46(+2.65) 32.51(+2.60) 6.31(+1.19) 6.94(+1.79) 6.40(+1.23) 6.38(+1.22) 6.32(+1.2) 6.51(+1.27)

Q→ S - 34.71(+6.65) 36.39(+7.94) 35.60(+7.59) 37.48(+9.67) 40.86(+10.95) - 8.13(+2.98) 8.47(+3.30) 9.32(+4.16) 9.86(+4.74) 10.20(+4.96)

Wanda S→ Q 38.97(+11.32) 39.29(+11.23) 39.72(+11.27) 40.02(+12.01) 39.21(+11.40) 42.33(+12.42) 6.46(+1.34) 6.47(+1.32) 6.53(+1.36) 6.53(+1.37) 6.48(+1.36) 6.73(+1.49)

Q→ S - 40.01(+11.95) 40.58(+12.13) 40.43(+12.42) 40.52(+12.71) 42.57(+12.66) - 6.46(+1.31) 6.55(+1.38) 6.52(+1.36) 6.48(+1.36) 6.79(+1.55)

SparseGPT S→ Q 33.24(+5.59) 33.22(+5.16) 35.27(+6.82) 34.22(+6.21) 33.41(+5.60) 35.86(+5.95) 6.51(+1.39) 6.51(+1.36) 6.58(+1.41) 6.58(+1.42) 6.52(+1.40) 6.77(+1.53)

Q→ S - 33.54(+5.48) 35.32(+6.87) 34.29(+6.28) 33.64(+5.83) 36.80(+6.89) - 6.53(+1.38) 6.60(+1.43) 6.58(+1.42) 6.55(+1.43) 6.93(+1.69)

2:4

Magnitude S→ Q 31.89(+4.24) 32.76(+4.7) 33.99(+5.54) 33.41(+5.40) 32.25(+4.44) 34.58(+4.67) 9.30(+4.18) 9.37(+4.22) 9.35(+4.18) 9.32(+4.16) 9.39(+4.27) 10.68(+5.44)

Q→ S - 45.06(+17.00) 44.16(+15.71) 42.25(+14.24) 46.57(+18.76) 55.64(+25.73) - 14.65(+9.50) 14.35(+9.18) 14.50(+9.34) 14.98(+9.86) 18.64(+13.40)

Wanda S→ Q 79.91(+52.26) 79.81(+51.75) 85.25(+56.80) 84.10(+56.09) 80.62(+52.81) 90.66(+60.75) 11.36(+6.24) 11.37(+6.22) 11.15(+5.98) 11.35(+6.19) 11.45 (+6.33) 12.74 (+7.50)

Q→ S - 80.28(+52.22) 86.69(+58.24) 84.38(+56.37) 80.69(+52.88) 91.04(+61.13) - 11.28(+6.13) 11.24(+6.07) 11.46(+6.30) 11.36(+6.24) 13.61(+8.37)

SparseGPT S→ Q 45.14(+17.49) 45.34(+17.28) 48.44(+19.99) 46.49(+18.48) 45.52(+17.71) 50.74(+20.83) 10.22(+5.10) 10.21(+5.06) 10.15(+4.98) 10.26(+5.10) 10.26(+5.14) 10.86(+5.62)

Q→ S - 44.96(+16.9) 48.67(+20.22) 46.50(+18.49) 45.82(+18.01) 57.39(+27.48) - 10.21(+5.06) 10.24(+5.07) 10.26(+5.10) 10.21(+5.09) 11.16(+5.92)

We further explore the effectiveness of post-training one-shot sparsity methods, specifically SparseGPT and
Wanda, which utilize a selection criterion based on the product of the magnitudes of weights and activations. We
report our results in Table 7. We observe that magnitude-based sparsity continues to achieve better perplexities
due to fine-tuning. However, because of their selection criterion, SparseGPT and Wanda are not affected by
the order of the operations. Even when quantization alters the relative magnitudes within a weight tensor, the
corresponding activations can compensate by preserving the original ranking of importance when multiplied
together. Consequently, the difference in perplexities between S→Q and Q→S for these methods is minimal,
and in few instances, Q→S yields better perplexities.

G ORTHOGONALITY THRESHOLD FOR VIT

Table 8 shows the results of cross-entropy loss across various combinations of sparsity and quantization schemes
for ViT-B/16 performing the image classification task on ImageNet-1k. First, we note that the calculated
orthogonality threshold serves as a correct lower bound for most configurations, supporting our mathematical
analysis. Second, ViT-B/16 is significantly more robust to the combination of sparsity and quantization schemes
compared to the other LLMs studied in this paper. When used with moderate sparsity levels (50% and 2:4)
and 8-bit/6-bit number formats, the actual cross-entropy loss is close to the calculated orthogonality threshold,
showing the robustness of ViT-B/16. Only at higher compression rates achieved by using 75% or 1:4 sparsity

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

and 4-bit number formats such as HBFP4, do we see the impact of the sparsity and quantization errors affecting
the final cross-entropy loss, making it significantly higher than the calculated orthogonality threshold.

Table 8: Comparison of evaluation cross-entropy loss with estimated orthogonality thresholds.

Sparsity
type

Number
format

ViT-B/16
Metric Orthogonality Threshold

Accuracy CE Loss Accuracy CE Loss

0%

FP32 81.70% 0.703 - -
INT8 81.64% 0.706 - -

MXFP8 81.12% 0.722 - -
MXFP6 81.26% 0.715 - -
HBFP8 81.67% 0.704 - -
HBFP6 81.35% 0.718 - -
HBFP4 72.73% 1.094 - -

50%

FP32 81.04% 0.723 - -
INT8 81.03% 0.728 80.98% 0.725

MXFP8 80.50% 0.745 80.46% 0.742
MXFP6 80.80% 0.734 80.60% 0.735
HBFP8 81.00% 0.724 81.01% 0.723
HBFP6 80.64% 0.736 80.69% 0.737
HBFP4 73.38% 1.058 72.07% 1.113

2:4

FP32 80.06% 0.759 - -
INT8 79.95% 0.762 80.00% 0.761

MXFP8 79.48% 0.781 79.48% 0.777
MXFP6 79.73% 0.770 79.62% 0.771
HBFP8 80.06% 0.760 80.03% 0.759
HBFP6 79.69% 0.774 79.71% 0.773
HBFP4 71.06% 1.163 71.09% 1.149

75%

FP32 77.26% 0.881 - -
INT8 77.03% 0.897 77.20% 0.884

MXFP8 76.57% 0.913 76.68% 0.900
MXFP6 76.99% 0.895 76.82% 0.894
HBFP8 77.14% 0.882 77.23% 0.882
HBFP6 76.89% 0.899 76.91% 0.896
HBFP4 66.84% 1.365 68.29% 1.272

1:4

FP32 73.24% 1.055 - -
INT8 72.90% 1.070 73.18% 1.058

MXFP8 72.36% 1.095 72.66% 1.074
MXFP6 72.92% 1.070 72.80% 1.068
HBFP8 73.16% 1.057 73.21% 1.056
HBFP6 72.77% 1.078 72.89% 1.070
HBFP4 59.58% 1.725 64.27% 1.446

H ROBUSTNESS ANALYSIS

To substantiate our conclusions on the optimal compression operation order, we conduct limited experiments
across three distinct random seeds. We report the mean perplexities and error bars in the Table 9. Given the
computational cost of fine-tuning, we limit the robustness analysis to the OPT-125M model and HBFP8/6
number format. For both sparsity types we observe stable results, consistently affirming the higher efficacy of the
S→Q order. Note that deviations causes by different seeds do not compromise the integrity of our conclusions.

Table 9: Validation perplexities of OPT-125M on WikiText2 for S→Q and Q→S. We report mean
and standard deviation over three random seeds.

Sparsity
Type

Number
Format Order PPL

50%
HBFP8 S→Q 30.5 (± 0.2)

Q→S 37.4 (± 0.3)

HBFP6 S→Q 32.5 (± 0.2)
Q→S 40.8 (± 0.3)

2:4
HBFP8 S→Q 32.2 (± 0.1)

Q→S 46.5 (± 0.4)

HBFP6 S→Q 34.6 (± 0.2)
Q→S 55.5 (± 0.8)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I LAYER-WISE ERROR PROPAGATION

We also examine the error propagation to ensure that errors introduced in earlier layers do not vanish in
subsequent layers. Figure 2 illustrates how compression errors persist and propagate throughout the pre-trained
OPT-2.7b model. In this analysis, we quantize each layer in isolation and measure the corresponding propagated
error to the other layers, which remain in full precision. We observe that relatively large errors introduced in
earlier layers, despite small fluctuations, stay on the same level as they go through the network. As a result, even
a single-layer error can significantly degrade model performance, highlighting the potential threats of errors due
to the non-orthogonality of compression techniques or applying them in the suboptimal order.

Figure 2: Error dynamics for single-layer quantization. Each line represents the relative L2 error
of outputs (∥Ŷi − Yi∥2/∥Yi∥2) for the compressed layer at the particular index and all subsequent
layers, which remain in full precision.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

J PROOFS FOR THE MATHEMATICAL ANALYSIS

Proof of Theorem 3.5. Let ns represent the number of elements pruned from the block by the sparsity transfor-
mation. Without loss of generality, we assume that the last ns elements in the block are pruned, as permuting the
elements does not affect the block’s norm. As the sparsity transformation does not prune the largest element in
the block, the scale parameter of quantization remains unchanged. Consequently, the quantization error for the
non-zero components before and after sparsity remains the same:

∥εq◦s(x)∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1

...
xn−ns

xn−ns+1

...
xn


− q



x1

...
xn−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (14)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εs(x)1
...

εs(x)n−ns

εs(x)n−ns+1

...
εs(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (15)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

εq(x)n−ns+1

...
εq(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εs(x)1
...

εs(x)n−ns

εs(x)n−ns+1

...
εs(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= ∥εs(x)∥+ ∥εq(x)∥ (16)

For Lp norms, where p ∈ (1,+∞), the upper bound is attainable under one of two conditions: either the pruned
elements in x are originally zero, or the quantization error for all elements of x is zero.

In the first case, the first inequality becomes an equality because ∀i ∈ {n− ns + 1, . . . , n} : xi = 0. In the
second case, the first inequality also becomes an equality because ∀i ∈ {1, . . . , n− ns} : εq(x)i = 0.

Similarly, the second inequality becomes an equality as quantization maps zero to zero. Thus, the quantization
error for elements in {n− ns + 1, . . . , n} is zero either because the quantization error for all elements of x is
zero or because the elements were originally zero: ∀i ∈ {n− ns + 1, . . . , n} : εq(x)i = 0.

For L1 norm there exist a non-trivial case. We consider the block of floating-point numbers x = (4.0, 4.1)T ,
INT4 quantization and 1 : 2 sparsity.

s(x) =

(
0.0
4.1

)
q(x) =

(
4.0
4.0

)
q(s(x)) =

(
0.0
4.0

)
(17)

The L1-norms of the transformation errors are the following:

∥εs(x)∥1 =

∥∥∥∥(4.0
0.0

)∥∥∥∥
1

= 4.0 ∥εq(x)∥1 =

∥∥∥∥(0.0
0.1

)∥∥∥∥
1

= 0.1 ∥εq◦s(x)∥1 =

∥∥∥∥(4.0
0.1

)∥∥∥∥
1

= 4.1 (18)

Therefore, ∥εq◦s(x)∥1 = ∥εq(x)∥1 + ∥εs(x)∥1 is attainable.

Proof of Theorem 3.6. Consider the block of floating-point numbers x = (3.9, 4.0)T , INT4 quantization q and
1:2 sparsity s. After applying the quantization transformation to the block, initial relation between its elements
xi < xj is no longer preserved and both elements have equal probability to be zeroed out by the sparsity
transformation. If sparsity zeroes out the element that was initially larger, the resulting error can exceed the sum
of the errors caused by each transformation individually:

s(x) =

(
0.0
4.0

)
q(x) =

(
4.0
4.0

)
s(q(x)) =

(
4.0
0.0

)
(19)

∥εs(x)∥ =

∥∥∥∥(3.9
0.0

)∥∥∥∥ ∥εq(x)∥ =

∥∥∥∥(−0.1
0.0

)∥∥∥∥ ∥εs◦q(x)∥ =

∥∥∥∥(−0.1
4.0

)∥∥∥∥ (20)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We consider Lp norms, where p ∈ [1;+∞). In these norms, ∀a ∈ R : ∥(a, 0)T ∥ = |a| · ||(1, 0)T || = |a|.
Therefore:

∥εq(x)∥+ ∥εs(x)∥ =

∥∥∥∥(−0.1
0.0

)∥∥∥∥+

∥∥∥∥(3.9
0.0

)∥∥∥∥ = | − 0.1|+ |3.9| = 4.0 = (21)

=

∥∥∥∥(0.0
4.0

)∥∥∥∥ <

∥∥∥∥(−0.1
4.0

)∥∥∥∥ = ∥εs◦q(x)∥ (22)

Thus, for this particular input x, the inequality ∥εs◦q(x)∥ > ∥εq(x)∥+ ∥εs(x)∥ holds true.

Theorem J.1 (Upper-bound of the error for suboptimal order, general case). Let q be the max-scaled block-wise
quantization and s be the magnitude-based N:M sparsity transformation. Let step be the least upper bound
for the magnitude of the quantization error for one element: step = sup{|εq(x)i| | x ∈ Rn, i ∈ {1 . . . n}}.
Let 1⃗(n,N,M) ∈ Rn be a vector with M−N

M
· n ones and N

M
· n zeros in any order. Then the error of the

composition s ◦ q with respect to L1 norm has the following upper bound:

∀x ∈ Rn, ∥εs◦q(x)∥1 ≤ ∥εq(x)∥+ ∥εs(x)∥+ 2 · step · ∥1⃗(n,N,M)∥︸ ︷︷ ︸
additional error

(23)

Proof of Theorem J.1. Without loss of generality for simplicity we assume that the sparsity operation nullifies
the last elements within the vector.

∥εs◦q(x)∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1

...
xn−ns

xn−ns+1

...
xn


− s



x1 − q(x)1
...

xn−ns − q(x)n−ns

xn−ns+1 − q(x)n−ns+1

...
xn − q(x)n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ (24)

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



εq(x)1
...

εq(x)n−ns

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ε1q
...

εn−ns
q

εn−ns+1
q

...
εnq



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= (25)

= ∥εq(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

xn−ns+1

...
xn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
:= ∥q(x)∥+ ∥s̃(x)∥ (26)

When quantization is applied first, two distinct numbers can become the same: xi < xj → q(x)i = q(x)j .
When we sparsify the quantized numbers, the number that was smaller might get nullified, as depicted in Figure
3. Therefore, the last component s̃ of the upper bound does not equal s.

However, in this case we can get an upper bound for the distance between them:

{
xi < xj

q(x)i ≥ q(x)j
⇔

{
xi < xj

xi − q(x)i ≥ xj − q(x)j
⇔

{
xj − xi > 0

xj − xi ≤ q(x)j − q(x)i
⇒ (27)

⇒ |xj − xi| ≤ |q(x)j − q(x)i| ≤ |q(x)j |+ |q(x)i| ≤ 2 · step (28)

For each xi that was nullified after quantization followed by sparsification we define xt
i to be an element that

would be nullified, if quantization was not applied. Then the vector s(x) consists of all and only such elements
xt
i .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 3: A visual representation of applying quantization first and then sparsification. After
quantization two distinct elements become equal. Then, when sparsification is applied, the element
that was originally bigger gets nullified as the sparsification operation cannot differentiate them by
their magnitude.

There exists a permutation W of the vector s(x) such that maps the element xi in s̃(x) to the element xt
i in

s(x). Therefore, an upper bound for ∥s̃(x)∥ is:

∥s̃(x)∥ = ∥s̃(x)−Ws(x) +Ws(x)∥ ≤ ∥Ws(x)∥+ ∥s̃(x)−Ws(x)∥ = (29)

= ∥s(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0− 0
...

0− 0
xn−ns+1 − xt

n−ns+1

...
xn − xt

n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ ∥s(x)∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

2 · step
...

2 · step



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(30)

For the case of N : M sparsity the number of nullified elements within the block equals M−N
M

· n. Therefore:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0

2 · step
...

2 · step



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 2 · step ·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0
1
...
1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 2 · step · ∥1⃗(n,N,M)∥ (31)

As a result, the upper bound for the error of the composition is the following:

∥εs◦q(x)∥ ≤ ∥q(x)∥+ ∥s̃(x)∥ ≤ ∥εq(x)∥+ ∥εs(x)∥+ 2 · step · ∥1⃗(n,N,M)∥ (32)

Proof of Theorem 3.7. As a corollary of Theorem J.1, with respect to L1 norm, the last error term can be
evaluated as follows:

2 · step · ∥1⃗(n,N,M)∥1 = 2 · step ·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...
0
1
...
1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

= 2 · step · M −N

M
· n (33)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof of Theorem 3.10. Error of the composition can be written as the following:

εDq,c(x,w) = ⟨x,w⟩ − ⟨q(x), c(w)⟩ (34)
= ⟨x,w⟩ − ⟨x− εq(x),w − εc(w)⟩ (35)
= ⟨εq(x),w⟩+ ⟨x, εc(w)⟩ − ⟨εq(x), εc(w)⟩ (36)
= ⟨εq(x),w⟩+ ⟨x, εq(w) + εs(w) + ε̃c(w)⟩ − ⟨εq(x), εq(w) + εs(w) + ε̃c(w)⟩ (37)
= ⟨x, εs(w)⟩︸ ︷︷ ︸

εD
I,s

(x,w)

+ ⟨x, εq(w)⟩+ ⟨εq(x),w⟩ − ⟨εq(x), εq(w)⟩︸ ︷︷ ︸
εDq (x,w)

+⟨x− εq(x)︸ ︷︷ ︸
q(x)

, ε̃c(w)⟩ (38)

− ⟨εq(w), εs(w)⟩ (39)

= εDI,s(x,w) + εDq (x,w) + ⟨q(x), ε̃c(w)⟩ − ⟨εq(x), εs(w)⟩ (40)

After adding the norms, we obtain the following:

|εDq,c(x,w)| ≤ |εDI,s(x,w)|+ |εDq (x,w)|+ | ⟨q(x), ε̃c(w)⟩︸ ︷︷ ︸
εt

|+ | ⟨εq(x), εs(w)⟩︸ ︷︷ ︸
εi

| (41)

where εt and εi are the additional error terms.

To prove non-orthogonality, consider the blocks of floating-point numbers x = (1.0, 1.0)T , w = (0.6, 1.3)T ,
HBFP4 quantization q and 1:2 sparsity s. We assume that q does not affect x: q(x) = x. On the other hand, the
block w is transformed in the following way:

s(w) =

(
0
1.3

)
q(w) =

(
0.625
1.25

)
s(q(w)) = s(q(w)) = c(w) =

(
0

1.25

)
(42)

The dot product error of the composition equals:

εDq,c(x,w) = ⟨x,w⟩ − ⟨q(x), c(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0

1.25

)〉
= 0.65 (43)

The dot product error of quantization equals:

εDq (x,w) = ⟨x,w⟩ − ⟨q(x), q(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0.625
1.250

)〉
= 0.025 (44)

The dot product error of sparsity equals:

εDI,s(x,w) = ⟨x,w⟩ − ⟨x, s(w)⟩ =
〈(

1.0
1.0

)
,

(
0.6
1.3

)〉
−

〈(
1.0
1.0

)
,

(
0
1.3

)〉
= 0.6 (45)

Therefore, for these particular values of x and w, the inequality: |εDq,c(x,w)| > |εDq (x,w)| + |εDI,s(x,w)|
holds true.

Theorem J.2. Let q be the max-scaled block-wise quantization and s be the magnitude-based N:M sparsity
transformation. Then:

∀x ∈ Rn, ∥εq◦s(x)∥1 ≤ ∥εs◦q(x)∥1 (46)

Proof. If sparsity is applied first, then from the proof of Theorem 3.5

εq◦s(x)i =

{
εs(x)i if xi is sparsified,
εq(x)i otherwise.

(47)

If quantization is applied first, there are two cases.

Case 1: there are no new duplicates. Quantization cannot reorder elements, it can only make them duplicates.
Therefore, if there are no new duplicates, the same elements will be sparsified after quantization as the order of
the elements did not change, and the error vector will be the same:

∥εs◦q(x)∥1 = ∥εq◦s(x)∥1 (48)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Case 2: there are new duplicates. Let xi and xj be such elements that |xi| < |xj | and q(x)i = q(x)j =: y, and
the j-th element gets sparsified instead of the i-th. In this case:

εs◦q(x)i = εq(x)i and εs◦q(x)j = εs(x)j = xj (49)

Therefore,
|εs◦q(x)i|+ |εs◦q(x)j | = |εq(x)i|+ |εs(x)j | = |y − xi|+ |xj | (50)

If we consider the case xi < y < xj and y = 0, then
|εq(x)i|+ |εs(x)j | = |xi|+ |xj | = |εs(x)i|+ |εq(x)j | (51)

Otherwise, we assume that xi, xj and y have the same sign.

Here we have three subcases:

• |y| > |xj |. Then
|y − xi|+ |xj | = |y| − |xi|+ |xj | > |y|+ |xi| − |xj | = |y − xj |+ |xi| (52)

• |y| < |xi|. Then
|y − xi|+ |xj | = |xi| − |y|+ |xj | = |y − xj |+ |xi| (53)

• |xi| < |y| < |xj |. Then
|y−xi|+|xj | = |y|−|xi|+|xj | > |xj | = |xj |−|y|+|y| > |xj |−|y|+|xi| = |y−xj |+|xi| (54)

Therefore,
εq(x)i|+ |εs(x)j | = |y − xi|+ |xj | ≥ |y − xj |+ |xi| = |εq(x)j |+ |εs(x)i| (55)

As a result,

∥εs◦q(x)∥1 =

 ∑
k ̸=i,j

|εs◦q(x)k|

+ |εs◦q(x)i|+ |εs◦q(x)j | = (56)

=

 ∑
k ̸=i,j

|εs◦q(x)k|

+ |εq(x)i|+ |εs(x)j | ≥ (57)

≥

 ∑
k ̸=i,j

|εq◦s(x)k|

+ |εq(x)j |+ |εs(x)i| = ∥εq◦s(x)∥1 . (58)

K DEFINITIONS OF Q FOR NUMERICAL FORMATS

1. INTm (Symmetric version) (Dettmers et al., 2022)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s =

scale

2m−1 − 1
, (59)

2. HBFPm (Drumond et al., 2018a)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s = 2⌈log2(scale)⌉−(m−1) (60)

3. MXFPm (Darvish Rouhani et al., 2023; Microsoft, 2024)

Qm(xi, scale) = scale · (−1)S · 2E · (1 + 2−m ·M) (61)

where S = sign(xs) (62)
E = ⌊log2(|xs|)⌋ − bias (63)

M =

⌊(
|xs|
2E

− 1

)
· 2m

⌉
(64)

xs =
x

2⌈log2(scale)⌉
(65)

(66)
Value of bias depends on the chosen configuration (Micikevicius et al., 2023).

4. MXINTm (Darvish Rouhani et al., 2023; Microsoft, 2024)

Qm(xi, scale) = s ·
⌊xi

s

⌉
,where s = 2⌈log2(scale)⌉−(m−1) (67)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10
Deviation

0

100

200

300

400

C
ou

nt

Distribution of Deviation

Figure 4: Distribution of the deviation values for several random blocks.

0 9 12 15 16 20 22 27 28
Random block id

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
(n

or
m

al
iz

ed
)

Contribution of the error terms (Q→ S)

εDI,s

εDq

εt
εi

Figure 5: Normalized values of each error term of the upper bound for the case of applying quantiza-
tion before sparsity.

L ANALYSIS OF THE UPPER BOUND OF THE DOT PRODUCT ERROR

L.1 UPPER BOUND IS REACHABLE

To test if the upper bound derived in Theorem 3.10 is reachable in practice, we randomly sampled 1000 blocks of
size 64 from a standard normal distribution N (0, 1), and applied 2:4 sparsity and HBFP6 quantization. We then
compute the aggregate error of the composition and individual error term of the upper bound. Subsequently, we
quantified how much the upper bound deviates from the actual composition error using the following formula:

Deviation =
|εDI,s(x,w)|+ |εDq (x,w)|+ |εt|+ |εi|

|εDq,c(x,w)| (68)

As a corollary of Theorem 3.10, the minimal value of deviation is 1.

Figure 4 shows the deviation distribution of samples. Most values fall into the first bin, suggesting the upper
bound is frequently reached. It can also be seen that the deviation values can be large, almost reaching the value
of 10, which indicates that the upper bound can be pessimistic in some cases too. Theorem 3.10 does not rule out

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 9 12 15 16 20 22 27 28
Random block id

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
(n

or
m

al
iz

ed
)

Contribution of the error terms (S → Q)

εDI,s

εDq

εt
εi

Figure 6: Normalized values of each error term of the upper bound for the case of applying sparsity
before quantization. We fix the seed and consider the same random blocks as for the order Q → S.

large values of deviation, as it applies the triangle inequality to obtain the upper bound, which leads to dropping
the sign of each error term. If the values of the error terms are negative, they can make the overall error of the
composition lower than the upper bound, which leads to the deviation values larger than one.

L.2 CONTRIBUTION OF ADDITIONAL ERROR TERMS

Section 3.2 describes how each additional error term can contribute to the overall error of the composition. We
hypothesize that the error term εt contributes less in case of applying sparsity followed by quantization than in
case of applying quantization first. We also hypothesize that the magnitude of the error term εi is much lower
than the magnitude of εt. To test our hypotheses, we normalized the values of each term of the upper bound to
compare their contribution to the error. We considered both orders of applying the transformations. We also
only looked at the samples with low deviation values (< 1.05) to increase the explainability power of the upper
bound.

Figures 5 and 6 depict the results of the experiment. If we consider the order Q → S in Figure 5, we can see
that the term εt advocates for almost half of the error of the composition. However, in the order S → Q the
term εt has a much lower impact, which proves our first hypothesis.

We can also see that the values of εi are much lower that the values of εt in most of the cases in both orders.
This proves our second hypothesis.

M ANALYSIS OF THE ADDITIONAL ERROR

As a corollary of Theorem 3.10, the composition of max-scaled sparsity and quantization is non-orthogonal,
resulting in two additional error terms.

The term εt incorporates the correction vector of the composition ε̃c, which carries the additional error from the
tensor level to the dot-product level. Depending on the order of the composition, the value of εt varies.

If sparsity precedes quantization, the correction vector ε̃q◦s(w) exclusively comprises negative quantization
errors for the elements pruned by the sparsity transformation:

ε̃q◦s(w)i =

{
−εq(w)i, s(w)i = 0

0, otherwise
(69)

However, if quantization is applied first, certain elements in the block may become equal, resulting in the sparsity
removing a different set of elements. Formally, if wi is pruned by s but not by s ◦ q, there exists a wj , where
j ̸= i, such that q(w)i = q(w)j . In this scenario, ε̃s◦q(w)i = −εs(w)i and ε̃s◦q(w)j = εs(w)j − εq(w)j .
Otherwise, it only contains the quantization errors of the pruned elements. Therefore, the magnitude of the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

correction vector for the composition s ◦ q is generally larger than that of the reverse order. Besides the
quantization errors, the correction vector also contains pruned elements, which are generally larger by orders of
magnitude except in a few improbable edge cases. This results in the overall value of εt being larger, implying
that the order of applying sparsity first and then quantization is optimal for dot products.

The term εi also contributes to the additional error, encoding the interaction between the error vectors εq(x)
and εs(w). However, εi is less significant than εt, as it contains the quantization error, the norm of which is
generally orders of magnitudes lower than the norm of the original block. In addition, εi contains the sparsity
error, which involves the smallest weights, diminishing the significance of this additional error.

N COMBINING GPTQ WITH SPARSITY

Magnitude-based Sparsity and GPTQ. Although our mathematical analysis does not specifically cover GPTQ,
we conducted controlled experiments to evaluate its performance in the context of our paper. We applied 50%
unstructured sparsity to the OPT-125M model in combination with GPTQ.

Table 10: GPTQ - Magnitude Based for OPT-
125m

S&Q
Layer Id Sparsity Quantization Order PPL

- - - - 27.65
0, 1, 10, 11 - GPTQ-4b - 28.1
0, 1, 10, 11 50% - - 34.62
0, 1, 10, 11 50% GPTQ-4b S → Q 30.93
0, 1, 10, 11 50% GPTQ-4b Q → S 35.59

Table 11: GPTQ - SparseGPT

OPT-350M OPT-1.3B
Sparsity

type Order Wikitext2 PTB C4 Wikitext2 PTB C4

2:4
S→ Q 56.27 80.67 51.65 27.99 42.32 29.42
Q→ S 67.96 91.03 56.57 29.38 45.15 30.15

3:4
S→ Q 26.82 38.45 26.86 16.73 24.30 18.62
Q→ S 27.38 39.62 27.21 17.42 24.23 18.72

4:8
S→ Q 43.06 62.84 39.09 22.96 33.61 23.86
Q→ S 46.49 64.53 42.05 24.75 35.88 25.40

When applying GPTQ→S, finetuning requires quantizing and sparsifying weight tensors in tandem at each
iteration. However, GPTQ operates by quantizing a column and updating the remaining weights to compensate
for the introduced errors. Under this scenario, comparing GPTQ→S and S→GPTQ with finetuning would not
be fair due to the different amounts of error compensation. To ensure a fair comparison, we decided to eliminate
the fine-tuning step and instead sparsified only a subset of layers to contain the sparsity error to a reasonable
degree. We determined the number of layers to compress by setting a perplexity threshold equivalent to that
achieved by SparseGPT. Table 10 shows that even in this case, magnitude-based sparsity is most effective when
applied before quantization (S→GPTQ: 30.93 vs. GPTQ→S: 35.59).

SparseGPT and GPTQ. GPTQ and SparseGPT apply the compression on a column-by-column basis and
assume that elements to the right of the current column remain uncompressed. This is because dense updates
propagate through these uncompressed elements to compensate for the introduced error. If subsequent columns
are compressed, they would not remain so after the first update.

Given this context, we used the SparseGPT codebase, which natively supports S→Q, and followed their
instructions to apply this compression order. We also reached out to the author of SparseGPT and followed their
recommendation to apply Q→S. We experimented with 4-bit GPT quantization and different variants of OPT
models. Table 11 summarizes our results, supporting our hypothesis for the optimal order of compression for
second-order methods. The mathematical study of the optimal compression order in second-order methods is
beyond the scope of our work, and we leave it as future work.

O CONVOLUTIONAL NETWORKS

Our mathematical framework is designed to be applicable to any matrix multiplications, regardless of the specific
model architecture. This allows us to study the optimal order of compression for various models, including
CNNs. Therefore, we extended our experiments to include ResNet50 on the ImageNet dataset using all of the
same configurations as ViT. The results are present in Table 12. These additional results further validate our
findings regarding the optimal compression order and orthogonality threshold.

P OPTIMAL ORDER WITHOUT FINE-TUNING

Magnitude-based sparsity, when applied without further re-training, leads to significant accuracy degradation
(Hoefler et al., 2021; Frantar & Alistarh, 2023). In our case, without sparsity-aware fine-tuning, the sparsity
error becomes several orders of magnitude larger than the quantization error, causing both S→Q and Q→S to

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 12: Comparison of evaluation cross-entropy loss with estimated orthogonality thresholds

Sparsity
type

Number
format

ResNet50
Metric Orthogonality Threshold

Accuracy CE Loss Accuracy CE Loss

0%

FP32 76.97% 1.040 - -
INT8 76.83% 1.051 - -

MXFP8 69.21% 1.462 - -
MXFP6 70.86% 1.362 - -
HBFP8 76.88% 1.043 - -
HBFP6 74.61% 1.176 - -

50%

FP32 76.33% 1.067 - -
INT8 76.06% 1.072 76.19% 1.078

MXFP8 62.07% 1.917 68.57% 1.489
MXFP6 69.54% 1.420 70.22% 1.389
HBFP8 76.21% 1.072 76.24% 1.070
HBFP6 73.95% 1.186 73.97% 1.204

2:4

FP32 76.90% 1.044 - -
INT8 76.49% 1.060 76.66% 1.055

MXFP8 67.03% 1.580 69.04% 1.467
MXFP6 70.47% 1.351 70.69% 1.366
HBFP8 76.51% 1.053 76.71% 1.047
HBFP6 74.51% 1.158 74.44% 1.181

75%

FP32 67.30% 1.569 - -
INT8 67.33% 1.565 67.16% 1.580

MXFP8 62.14% 1.920 59.54% 1.991
MXFP6 58.77% 2.785 61.19% 1.891
HBFP8 67.13% 1.581 67.21% 1.572
HBFP6 64.78% 1.733 64.94% 1.706

1:4

FP32 73.91% 1.218 - -
INT8 73.89% 1.227 73.77% 1.229

MXFP8 58.11% 2.314 66.15% 1.640
MXFP6 63.80% 1.907 67.80% 1.540
HBFP8 73.79% 1.225 73.82% 1.221
HBFP6 71.47% 1.340 71.55% 1.355

yield predominantly sparsity error. Table 13 shows the WikiText2 perplexities of FP32 sparse models without
sparsity-aware finetuning.

Table 13: Magnitude-based sparsity applied without fine-tuning

Sparsity OPT-125m OPT-6.7b Llama-2-7B Llama-3-8b
50% 146. 81. 27. 34.
2:4 619. 238. 76. 113.

The significant degradation in accuracy makes the scenario without sparsity-aware finetuning impractical.
Therefore, we reproduced the configurations from Table 1 with only a portion of the layers being sparse and
quantized. By applying compression to approximately one-third of the layers, specifically those located at the
beginning and end of the model, we can achieve acceptable perplexity increases. These results support the
optimality of the S→Q order.

Q COLLISION ANALYSIS

In the proof of Theorem J.1, we demonstrated that additional error may arise in suboptimal order when, after
quantization, a larger value and a smaller value collide, causing the originally larger element to be pruned. In
this section, we provide empirical evidence of the fact that these collisions take place.

We extracted the weights of all layers of the OPT-1.3b model and calculated the average reduction in unique
elements after applying quantization (HBFP6). The reduction in unique elements for each layer is computed as:

∆unique = unique(W)− unique(Ŵ) (70)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 14: Perplexities of OPT-125m model without sparsity-aware fine-tuning

OPT-125M
S&Q

Layer Id
Sparsity

type Order INT8 MXFP8 MXFP6 HBFP8 HBFP6 HBFP4

0. 1, 10, 11
50% S→Q 35.85 34.98 35.02 34.73 35.41 230.

Q→S 35.92 35.03 35.23 34.97 36.05 305.

2:4 S→Q 42.97 40.5 40.51 40.19 43.43 471.
Q→S 43.32 40.61 40.59 40.91 48.64 793.

Llama-2-7B

0-4, 27-31
50% S→Q 8.69 8.73 10.04 8.72 9.98 18.

Q→S 8.85 8.74 11.44 8.68 10.43 26.

2:4 S→Q 9.31 9.39 11.21 9.25 10.06 31.
Q→S 9.61 9.92 11.67 9.70 11.24 44.

where unique(X) returns the number of unique elements in X . On average, ∆unique(W, Ŵ) = 24230, with
the total number of unique elements before quantization averaging 24419. Therefore, quantization introduces
significant collisions, which may lead to additional error.

To further validate our findings, we analyzed the reduction of unique elements at the block level rather than
across the entire tensor. Specifically, we examined the 6th layer of OPT-1.3B, selecting random blocks with
a block size of 64. As shown in Figure 7, the reduction of unique elements in a block can reach up to 41,
representing approximately 64% of the elements in the block. These results confirm that quantization introduces
a substantial number of duplicates.

Figure 7: Impact of quantization the number of unique elements in each block.

R OPENLLM EVALUATION

To further validate our findings and expand our experimental setup, we evaluated the models on zero-shot tasks
Gao et al. (2024) under both compression orders (S→Q and Q→S). The results are presented in Table 15 for
OPT-125M and Table 16 for Llama-3-8B. The results show that in all cases, the optimal compression order
(S→Q) yields better performance across all models and tasks, validating our theoretical conclusions.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

S ORDER OF SPARSITY AND QUANTIZATION DURING FINE-TUNING

Our mathematical analysis of sparsity and quantization assumes the model weights to be fixed. However, in our
empirical study, the master weights of compressed layers change during fine-tuning. To bridge the gap between
the static case in our mathematical analysis and the dynamic case in our experimental setup, we demonstrate
that the optimal compression order is independent of the exact model weights, and that quantization minimally
affects the model weights during sparsity-aware fine-tuning.

Zero-shot sparsity and quantization (no fine-tuning). To show that the optimal compression order is
independent from the model weights, we apply zero-shot compression to intermediate checkpoints of the OPT-
125M model collected during dense FP32 fine-tuning. Table 17 demonstrates final perplexities after applying
HBFP6 quantization and 50% unstructured sparsity in S→Q and Q→S orders at various checkpoints of dense
fine-tuning. The perplexity increases as dense fine-tuning progresses, which is expected, as the weights become
less tolerant to sparsity during the dense FP32 fine-tuning process. For each checkpoint, S→Q consistently
outperforms Q→S, achieving a relative gap of up to 7%. This confirms that the optimal compression order is
independent of the model’s specific weights, validating our mathematical analysis.

Weight distributions during fine-tuning. In our experiments, we employ sparsity-aware fine-tuning to mitigate
sparsity-induced errors. A detailed summary of our experimental set-up is presented in Table 6. During fine-
tuning, we store master weights in full precision for each layer, following prior work (Rouhani et al., 2023b).
This approach enables compression of matrix multiplications during the forward and backward stages while
retaining full precision for weight updates. Consequently, quantization during forward and backward phases has
minimal impact on the learning dynamics of the weights.

To demonstrate the minimal effect of quantization during fine-tuning, we compare the distributions of master
weights at various iterations during S→Q and Q→S fine-tuning. Figures 8, 9, 10 show that the master weights
remain nearly identical between the two schedules, with negligible differences in the small magnitude range
[−0.2, 0.2]. Although weight values in the tails of the distributions exhibit more noticeable discrepancies,
reordering sparsity and quantization impacts only the smallest values within each block, which lie within the
range where the distributions are nearly identical.

To further quantify these differences, Figure 11 presents the distribution of discrepancies for a single weight
component. The absolute difference between weight values remains below 0.02, which is negligibly small at the
tensor and model levels. Therefore, mathematical analysis remains valid even during fine-tuning.

0.4 0.2 0.0 0.2 0.4
Weight Magnitude

100

101

102

103

104

Co
un

t

Weight distribution after 500 iterations of sparse-and-quantized fine-tuning
S Q
Q S

Figure 8: Distribution of master weights of Q_proj layer at the beginning of fine-tuning

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0.4 0.2 0.0 0.2 0.4
Weight Magnitude

100

101

102

103

104

Co
un

t

Weight distribution after 1000 iterations of sparse-and-quantized fine-tuning
S Q
Q S

Figure 9: Distribution of master weights of Q_proj layer at the middle of fine-tuning

0.4 0.2 0.0 0.2 0.4
Weight Magnitude

100

101

102

103

104

Co
un

t

Weight distribution after 1500 iterations of sparse-and-quantized fine-tuning
S Q
Q S

Figure 10: Distribution of master weights of Q_proj layer at the end of fine-tuning

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Weight Magnitude

100

101

102

103

104

Co
un

t

Weight difference after 1500 iterations of sparse-and-quantized fine-tuning
|WS Q WQ S|

Figure 11: Distribution of discrepancies between weights of Q_proj layer at the end of fine-tuning

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 15: OPT-125M Zero-Shot Performance. The best results for each configuration are
highlighted in bold.

Sparsity Num format Order ARC-c ARC-e HellaSWAG WinoGrande

0% HBFP6 - 19.62 41.79 28.74 51.46

INT8 - 19.03 36.28 28.45 50.99

50%
HBFP6 S→Q 20.31 39.86 28.01 51.38

Q→S 19.04 38.56 26.41 50.67

INT8 S→Q 20.99 34.18 27.49 52.88
Q→S 20.12 33.70 26.98 51.14

2:4
HBFP6 S→Q 20.31 38.26 27.56 52.17

Q→S 18.92 36.68 27.23 49.96

INT8 S→Q 19.97 34.93 27.81 50.67
Q→S 18.51 30.17 27.35 48.74

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 16: Llama-3 Zero-Shot Performance. The best results for each configuration are highlighted
in bold.

Sparsity Num format Order ARC-c ARC-e HellaSWAG WinoGrande
0% HBFP6 - 48.21 76.43 59.17 71.19

50% HBFP6 S→Q 37.54 69.19 50.64 64.25
Q→S 37.29 67.59 49.54 63.38

2:4 HBFP6 S→Q 31.91 59.6 45.85 60.77
Q→S 29.83 59.48 42.9 58.43

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 17: Perplexities of the intermediate checkpoints during dense fine-tuning of OPT-125m,
HBFP6+50% sparsity. The best results for each configuration are highlighted in bold.

Steps 500 700 900 1100 1300 1500 1700
S→Q 86.09 95.61 100.35 97.22 119.66 126.04 130.31
Q→S 89.03 97.91 107.28 98.58 125.10 127.35 131.01

38

	Introduction
	Related work
	Non-orthogonality of sparsity and quantization
	Tensor-level analysis
	Dot-product-level analysis

	Experimental methodology and results
	Empirical study 1: Order of sparsity and quantization
	Empirical study 2: Non-Orthogonality between sparsity and quantization
	Ablation: Error Propagation Across Layers

	Discussion
	Conclusion
	Appendix
	 Appendix
	Additional related work
	Hyperparameters
	Compute resources and runtime
	Fine-tuning strategies
	Experimental Setup Summary
	Post-training one-shot sparsity methods
	Orthogonality threshold for ViT
	Robustness analysis
	Layer-wise Error Propagation
	Proofs for the mathematical analysis
	Definitions of Lg for numerical formats
	Analysis of the upper bound of the dot product error
	Upper bound is reachable
	Contribution of additional error terms

	Analysis of the Additional Error
	Combining GPTQ with Sparsity
	Convolutional Networks
	Optimal order without fine-tuning
	Collision analysis
	OpenLLM evaluation
	Order of sparsity and quantization during fine-tuning

