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Abstract

Reinforcement Learning (RL) can mitigate the causal confusion and distribution
shift inherent in imitation learning (IL). However, applying RL to end-to-end
autonomous driving (E2E-AD) remains an open problem for its training difficulty,
and IL is still the mainstream paradigm in both academia and industry. Recently
Model-based Reinforcement Learning (MBRL) have demonstrated promising
results in neural planning; however, these methods typically require privileged
information as input rather than raw sensor data. We fill this gap by designing
Raw2Drive, a dual-stream MBRL approach. Initially, we efficiently train an
auxiliary privileged world model paired with a neural planner that uses privileged
information as input. Subsequently, we introduce a raw sensor world model trained
via our proposed Guidance Mechanism, which ensures consistency between the
raw sensor world model and the privileged world model during rollouts. Finally,
the raw sensor world model combines the prior knowledge embedded in the heads
of the privileged world model to effectively guide the training of the raw sensor
policy. Raw2Drive is so far the only RL based end-to-end method on CARLA
Leaderboard 2.0, and Bench2Drive and it achieves state-of-the-art performance.

1 Introduction

Beyond modular systems, end-to-end autonomous driving models [5, 6, 7, 8] are emerging, where
a unified model directly uses raw sensor inputs for planning. As shown in Figure 1, most of these
models [9, 10, 11, 12] are based on imitation learning (IL), which trains models to mimic expert
demonstrations. However, IL faces fundamental limitations such as poor generalization to unseen
situations [2, 13, 14, 15] and causal confusion [1, 16, 17], which occur when the model incorrectly
associates actions with the wrong causes. These issues become problematic in complex and dynamic
driving scenarios where decision-making must account for delicate interactions with environment.

Reinforcement learning (RL) [18, 19, 20] offers a promising alternative by optimizing driving policies
through reward-driven interactions with the dynamic environment [21, 22, 23], beyond the expert
demonstration in imitation learning. Recently, RL has been shown to achieve higher performance
bounds than IL in various domains, such as AlphaZero [24, 19], and OpenAI-O3/DeepSeek-R1 [25].
These successes highlight RL’s ability to adapt policies for complex decision-making tasks.
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Figure 1: Comparison of different training paradigms in end-to-end autonomous driving.
(a) Imitation Learning suffers from causal confusion [1] and distribution shift [2]. Model-free
Reinforcement Learning [3] faces efficiency problem and fails to converge. (b) Model-based
Reinforcement Learning: There are no reported such works for raw sensor input E2E-AD as the
raw data can be noisy and redundant, and Think2Drive [4] assumes the privileged ground truth data
is given, which cannot be directly applied in real-world AD. (¢) In Raw2Drive, we propose the
first feasible model-based reinforcement learning paradigm for end-to-end autonomous driving. By
leveraging low-dimensional, structured privileged input, our approach guides the learning of a world
model from raw sensor data, effectively addressing the issues outlined in (a) and (b).

As shown in Table 1, compared to the extensive research in IL for AD, either through modular
systems [26, 27] or recent end-to-end approaches [9], RL for AD has been comparatively less
explored. Pioneering work MaRLn [3] faced significant efficiency and convergence issues, requiring
approximately S0M steps (57 days of training) with performance lagging far behind contemporary IL
based methods [28, 29]. As of today, IL-based methods achieve saturated performance on CARLA
Leaderboard 1.0 [30] (abbreviated as CARLA v1), while none of them can achieve satisfying scores
on the more challenging CARLA Leaderboard 2.0 [31] (abbreviated as CARLA v2).

This situation recently changed with the seminal work Think2Drive [4], which introduced a model-
based RL (MBRL) approach that successfully solved CARLA v2, with the help of the world
model [32]. However, Think2Drive [4] relies on privileged information (ground-truth states of
environments) and there is still no success reported in the field to apply MBRL with raw sensor
inputs. The main challenge lies in the contrast between privileged information, which is compact and
facilitates efficient training, and raw sensor data, which is high-dimensional, redundant, and noisy,
making the training of world model significantly more difficult. As shown in Table 1, there are no RL
based end-to-end methods in CARLA v2, which is the very setting that this paper seeks to challenge.
Due to limited space, we discuss more details of Related Works in Appendix A.

In this work, we propose Raw2Drive, a dual-stream MBRL method, achieves state-of-the-art perfor-
mance on CARLA v2 and surpasses IL based methods by a large margin. The training is divided into
two stages. In the first stage, we leverage the privileged information to train a privileged world model
and a paired neural planner. Then, we further jointly train a raw sensor world model and an end-to-end



Table 1: Comparison of settings of mainstream algorithms. WM means whether to use the world
model. SSL means self-supervised learning. CoRL2017 [33] and CARLA v1 [30] include 4 and
10 standard cases, respectively. CARLA v2 [31, 34], on the other hand, introduces 39 additional
real-world corner cases, which are significantly more difficult. ROMO3 is based on CARLA vl
including 4 very basic scenes.

Method Venue Input Scheme | E2E | w/ WM | Benchmark | Corner Case
Chen [35] ITSC 2019 Privileged RL No No Roundabout No
MaRLn [3] CVPR 2020 Raw RL Yes No CoRL 2017 No
Roach [36] ICCV 2021 Privileged RL No No Carla vl No
UniAD [9] CVPR 2023 Raw IL Yes No Carla vl No
Think2Drive [4] ECCV 2024 | Privileged RL No Yes Carla v2 Yes
LAW [37] ICLR 2025 Raw IL+SSL | Yes Yes Carla vl No
AdaWM [38] ICLR 2025 Privileged RL No Yes ROMO3 No
DriveTrans [39] ICLR 2025 Raw IL Yes No Carla v2 Yes
Raw2Drive(Ours) | NeurIPS 2025 Raw RL Yes Yes Carla v2 Yes

Table 2: Notations of Dual Stream World Models in Raw2Drive. WM means the privileged world
model and WM means the raw sensor world model. ¢ denotes the time-step. Both world models
consist of an Encoder, RSSM, and Heads. The privileged world model is similar to DreamerV3 [40]

while raw sensor world model has a tailored encoder Enc and only has a tailored decoder head Dec.
(D and @ represent the operation during training and inference respectively.

Dual Stream Privileged WM Raw Sensor WM
Observation 04 Oy
Encoder State e; = Enc(oy) ¢, = Enc(6,)
Deterministic State hi = fo(he—1,at-1,5¢—1) ]}t - Jig(@t—l’ C}t—l’ ft_l) @
RSSM hy = fﬁ(htfh at—1, St—l) ®
World Stochastic State Train s¢ = qo(he, er) gtA: (feA(ht, ét)
Model Infer st = pa(ht) 5t = po(he)
Reward ry = Reward(h¢, s¢) /
Heads Decoder dy = Decoder(hy, s¢) d; = Decoder(hy, §;)
Continue ¢; = Continue(hy, s¢) /

planner whose input is directly the raw video. In the training of the raw sensor world model, instead
of reconstructing computationally expensive multi-view videos, it is guided by the alignment with the
frame-wise feature of the trained privileged world model, facilitating an otherwise extremely difficult
training process. We further propose the Guidance Mechanism to enforce alignment, ensuring
consistency in future state predictions during rollouts across both world models. Additionally, it
leverages the prior knowledge embedded in the heads of the privileged world model to effectively
guide the training of the raw sensor policy. The contributions are as follows:

* To our best knowledge, Raw2Drive is the first MBRL framework for E2E-AD, i.e. from raw
image input to planning, beyond existing IL [9, 6] or privileged input based RL approaches [36, 4].

e Raw2Drive achieves state-of-the-art performance on the challenging CARLA v2 and Bench2Drive
and surpasses IL methods by a large margin, validating the power of RL.

*  We only use 64 H800 GPU days in total to deliver our final planner, and the cost can be further
saved to 40 GPU days when Think2Drive is reused which dismisses our phase I training. In
comparison, IL-based UniAD costs about 30 GPU days yet it only solves even 3~4 corner cases in
CARLA v2. We believe it is significantly less than the imitation learning approaches used in industry
and the hope is our work could provide an orthogonal reference for industry applications.

2 Problem Formulation & Related Works

In Figure 2, we give a problem formulation where there are two streams: (I) privileged observations
o with ground-truth bounding boxes, and HD-Map. (II) raw sensor observations 0; with onboard
sensors such as cameras, LiDAR, and IMU. Note that privileged observations are only accessible
during training to facilitate learning. During inference, only raw sensor observations are allowed.
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Figure 2: The Overall Pipeline of Raw2Drive. (a) During training, we use privileged input to train
the privileged world model and paired policy. Then, the privileged world model is used to guide
the training of the raw sensor stream. (b) During inference, only raw sensor inputs are available,
which aligns with real-world autonomous driving. (c) The guidance mechanism consists of two
parts: (I) Rollout Guidance to ensure future modeling consistency; (II) Head Guidance to ensure the
supervision for raw sensor policy is accurate and stable.

3 Method

Instead of directly adopting a classic MBRL structure like Dreamer V3 [40], Raw2Drive is a dual-
stream MBRL framework, as shown in Figure 2. It consists of four key components: two world
models and two corresponding policy models. Detailed symbol definitions are in Table 2.

The rationale behind the two stream design is that: raw sensor data (e.g., high resolution multi-view
videos) are high-dimensional and complex, presenting significant challenges to directly train
a world model with low error [41, 42]. Thus, rather than building the raw sensor world model
from scratch, we first build the privileged stream as an auxiliary since the learning of the world
model under structured and low-dimensional conditions is much easier and there are already some
successes [4]. The raw sensor stream’s learning process is guided by the trained privileged stream,
which eases the task of extracting the decision-making related information from raw sensor data. The
Guidance Mechanism is carefully designed to avoid cumulative error and train-val gaps.

3.1 Privileged Stream

Privileged Input: As shown in Figure 2 (a), similar to Roach [36] and Think2Drive [4], we utilize
time-sequenced BEV semantic masks o; as input. Since it is commonly used in existing works, we
leave details of the privileged input in Appendix C.1.

Privileged World Model: As shown in the upper part of Figure 3, the same as Dreamer V3 [40], the
privileged world model WM is composed of the Encoder, Recurrent State-Space Model (RSSM) [43]
and three heads, defined in the left part of Table 2. These components are used (I) for rollout to train
the privileged policy by RL; (I) to guide the training of the end-to-end raw sensor stream.

Privileged Policy: As shown in the upper part of Figure 3, the privileged policy is composed of
actor-critic networks and is trained through rollouts, same as in Dreamer V3 [32].

3.2 Raw Sensor Stream

Raw Sensor Input: As in Figure 2 (a), raw sensor input 6, in this work is multi-view images and
IMU. We adopt BEVFormer [44] as the encoder Enc(6;) of the raw sensor stream, which outputs
grid-shaped BEV features for the ease of receiving guidance from privileged streams. The details of
the inputs are in Appendix C.1.
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Figure 4: Training of Raw Sensor World Model. During training, the spatial-temporal feature of
the privileged world model serves as supervision instead of reconstructing multi-view video so that
the learning could focus on decision related information. RSSM parameters are initialized from the

privileged world model.

Raw Sensor World Model: As shown in Figure 4, the raw sensor world model has a similar
architecture as the privileged world model except for the encoder Enc and heads. The different
encoders are used to process different inputs. As for the heads, we only use the decoder head which
provides supervision signals based on BEV semantic masks instead of directly reconstructing
multi-view videos. Additionally, we find that learning rewards or continuous flag (both only one
scalar) could be harmful for the raw sensor stream. Specifically, we observe that two adjacent
similar frames could have very different reward and continuous labels, which is confusing and thus
hampers convergence. We analyze these effects in Section 4.4.

Raw Sensor Policy: As in Figure 5, the raw sensor policy is trained by RL with the dual-stream world
model. During rollouts, the guidance mechanism detailed in Section 3.3 ensures consistency between
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dual-stream world model. The raw model operates under strict deduction, while the reward r,; and
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the two world models in future predictions. We adopt the heads in the privileged world model to
obtain the reward and continuous flag to provide more accurate and stable supervisor signals.

3.3 Guidance Mechanism

In the previous section, we introduced Raw2Drive’s dual-stream MBRL framework. In this section,
we give details of the guidance mechanism about (I) how the privileged stream guide the learning
process of both the raw sensor world and policy; (I) how to alleviate cumulative errors and train-val
gaps of the dual-stream paradigm.
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Figure 6: State Variables Aligned and Sampling Process in the Rollout Guidance. (a) The encoder
state is aligned temporally and spatially. (b) The deterministic state and stochastic state is aligned
to maintain dynamic and static intention consistency. (c¢) Eliminating Cumulative Errors Caused
By Sampling. During the rollout process, when deducting next states, we only sample once for the
stochastic state - from the distribution of the raw sensor stream. The sampled state is fed into both
streams to eliminate the randomness and thus the alignment is more stable.

Rollout Guidance. In MBRL framework, the rollout of world model is crucial for effective policy
learning. Thus, under the proposed dual-stream framework, the first type of guidance is Rollout
Guidance, which adopts the trained privileged world model provides supervisions during the entire
rollout process of the raw sensor world model. Specifically, as shown in Figure 6, there are three
components in the rollout process: (1) Encoded State é, (2) Deterministic State h, (3) Stochastic
State 5. At each timestep ¢, both stream encode the observation (either privileged or raw sensor)
into Encoded State. However, due to the high dimensionality and inherent redundancy of multi-view
video data, its encoded state é of the raw sensor stream may exhibit instability and errors. To address



this, we introduce a loss function to align it with the privileged encoded state e, ensuring spatial
consistency at each timestep, called Spatial-Temporal Alignment Loss.

Meanwhile, as illustrated in the upper part of Figure 2 (c), and Figure 6 (b), during the rollout
process, the deterministic and stochastic states serve distinct modeling purposes. The deterministic
state primarily predicts the ego vehicle’s state, while the stochastic state focuses on anticipating
the behaviors of other traffic participants, such as sudden braking or deceleration. To ensure the
consistency of states in the rollout of the two world models, additional supervisory signals are
introduced to ensure alignment with the privileged world model. Specifically, the deterministic state
employs L2 loss to maintain prediction consistency, whereas the stochastic state is sampled from an
independent one-hot distribution. KL divergence [45] is then used to constrain the distributions of
the two information streams, ensuring they remain as similar as possible. Furthermore, alignment is
enforced across all timesteps, called Abstract-State Alignment Loss. The overall loss function is:

grid num

Lrotow =By > MSE(e, &) + > (B:KL(st,5) + BuMSE(he, hr)) e))
t t

=0

where grid num means the number of grids under BEV-view and ., Sr, (s are the loss weights
of encoder state, deterministic state, and stochastic state. Notably, in the standard RSSM [40], the
deduction of stochastic states employs sampling during rollout. This sampling process can be
detrimental for the training of raw sensor world model, as difference caused by randomness
during sampling between the two models could accumulate over time. As a result, in the later
timesteps, using states from the privileged world model as supervision signals is confusing for the
raw sensor world model to align with. To this end, as shown in Figure 6, we only conduct sampling
from the distribution of raw sensor stream and directly feed the sampled variable into the privileged
world model to deduct its next state. In this way, the cumulative errors caused by randomness is
eliminated and thus is beneficial for the trianing of raw sensor model.

Head Guidance. During the training of the raw sensor world model, as mentioned in Sec 3.2, only
the decoder head is trained. We omit the reward head and continuous head learning because directly
training the two heads with raw sensor inputs has a convergence issue. Adjacent frames in the video
are highly similar while value of reward and continuous flag could fluctuate abruptly, as in Figure 9.
As aresult, it is difficult for the network to learn stable patterns.

For MBRL, reward and continuous flag play a crucial role in guiding raw policy training. Thus,
we use the accurate reward and continuous flag from the privileged world model during the
training of raw sensor policy. As shown in Figure 2 (c) Lower Part and Figure 5 , at each timestep ¢,
the raw sensor world model executes the action a; obtained from the raw policy 7, transitioning the
system to next latent state. At the same time, the privileged world model conducts the same action to
rollout. Since Rollout Guidance imposes the consistency between the two world models, the reward
r¢ and the continuation flag ¢; from the privileged world model could be directly used. Finally, the
resulting sequence serves as the training data for optimizing the raw sensor policy. Notably, we
also adopt the technique to eliminate randomness mentioned in Section 4.4 so that the reward and
continuous flag is accurate. Furthermore, we also use the trained privileged policy to collect to replay
buffer and to distill action distributions to raw sensor policy. We summarize our training pipeline in
Appendix B.

4 Experiments

4.1 Datasets and Benchmark

We employ the CARLA simulator [33] (version 0.9.15.1) for closed-loop driving performance
evaluation. Note that during evaluation, the model only has access to raw sensor observations and is
prohibited from utilizing privileged observations. Experimental details are in Appendix C.

Leaderboard 2.0 [33]: It includes two long routes, validation and devtest. Each of which comprises
several routes with lengths of 7-10 kilometers and containing a series of complex corner cases. As
driving inherently follows a Markov decision process [46], evaluating performance over long routes
is unnecessary. Moreover, the penalty mechanism employed in scoring [4] fails to accurately reflect
the true evaluation capability of the model.



Table 3: Performance on Carla Official Town13 Validation and Devtest Benchmark. *denotes
expert feature distillation. As discussed in carla-garage [47] and Section 4.3, long routes evaluation
in Leaderboard 2.0 can’t reflect the actual driving performance [34].

Closed-loop Metric
Method Venue Scheme Modality DS T RC (%) T ISt
Validation | Devtest | Validation | Devtest | Validation | Devtest
AD-MLP [13] Arxiv 2023 IL State 0.00 0.00 0.00 0.00 0.00 0.00
UniAD-Base [9] CVPR 2023 IL Image 0.15 0.00 0.51 0.07 0.23 0.04
VAD [10] ICCV 2023 IL Image 0.17 0.00 0.49 0.06 0.31 0.04
DriveTrans [39] ICLR 2025 IL Image 0.85 0.68 1.42 2.13 0.33 0.35
TCP-traj* [14] NeurIPS 2022 IL Image 0.31 0.02 0.89 0.11 0.24 0.05
ThinkTwice* [16] CVPR 2023 IL Image 0.50 0.64 1.23 1.78 0.35 0.43
DriveAdapter* [17] ICCV 2023 IL Image 0.92 0.87 1.52 243 0.42 0.37
Raw2Drive (Ours) | NeurIPS 2025 RL Image ‘ 4.12 ‘ 3.56 9.32 6.04 043 0.42
[4]

Table 4: Performance on Bench2Drive Multi-Ability Benchmark. * denotes expert feature
distillation. IL represents imitation learning. RL represents reinforcement learning. RL expert
Think2Drive [4] uses privileged information for training.

Modalit Ability (%) 1

Method Venue Scheme y Merging | Overtaking | Emergency Brake | Give Way [ Traffic Sign | Mean
TCP-traj* [14] NeurIPS 2022 IL Image 8.89 2429 51.67 40.00 46.28 3422
AD-MLP [13] Arxiv 2023 1L State 0.00 0.00 0.00 0.00 4.35 0.87

UniAD-Base [9] CVPR 2023 IL Image 14.10 17.78 21.67 10.00 14.21 15.55
ThinkTwice* [16] CVPR 2023 L Image 27.38 18.42 35.82 50.00 54.23 37.17
VAD [10] ICCV 2023 IL Image 8.11 24.44 18.64 20.00 19.15 18.07
DriveAdapter* [17] | ICCV 2023 IL Image 28.82 26.38 48.76 50.00 56.43 42.08
DriveTrans [39] ICLR 2025 1L Image 17.57 35.00 48.36 40.00 52.10 38.60
Raw2Drive (Ours)  NeurIPS 2025 RL Image 43.35 51.11 60.00 50.00 62.26 53.34

| |

Table 5: Results on Bench2Drive Closed-loop Benchmark. *denotes expert feature distillation.
* denotes expert feature distillation. IL represents imitation learning. RL represents reinforcement
learning. RL expert Think2Drive [4] uses privileged information for training.

. Closed-loop Metric
Method Venue Scheme Modality DST SR(%)T Efficiency T Comfort T
TCP-traj* [14] NeurIPS 2022 L Image 59.90 30.00 76.54 18.08
AD-MLP [13] Arxiv 2023 IL State 18.05 0.00 48.45 22.63
UniAD-Base [9] CVPR 2023 1L Image 45.81 16.36 129.21 43.58
VAD [10] ICCV 2023 IL Image 42.35 15.00 157.94 46.01
ThinkTwice* [16] CVPR 2023 1L Image 62.44 31.23 69.33 16.22
DriveAdapter* [17] ICCV 2023 IL Image 64.22 33.08 70.22 16.01
GenAD [48] ECCV 2024 IL Image 44.81 15.90 - -
DriveTrans [39] ICLR 2025 IL Image 63.46 35.01 100.64 20.78
MomAD [49] CVPR 2025 IL Image 44.54 16.71 170.21 48.63
Raw2Drive (Ours) | NeurIPS 2025 RL Image 71.36 50.24 214.17 22.42
[4]

Bench2Drive [34]: A more comprehensive and fair benchmark, it includes 220 short routes with one
challenging corner case per route for analysis of different driving abilities. Following Bench2Drive,
we use 1,000 routes under diverse weather conditions for RL training.

4.2 Metric

We employ the official metrics of CARLA [33] for evaluation. Infraction Score (IS) measures the
number of infractions made along the route, accounting for interactions with pedestrians, vehicles,
road layouts, red lights, etc. Route Completion (RC) indicates the percentage of the route completed
by the autonomous agent. Driving Score (DS), is calculated as the product of Route Completion and
Infraction Score. In Bench2Drive [34], additional metric Success Rate is used, which measures the
proportion of successfully completed routes within the allotted time and without traffic violations.

4.3 Comparison with State-of-the-Art Works

As in Table 3, similar to the conclusions of Bench2Drive, the long-road evaluation in CARLA 2.0
fails to accurately reflect real driving performance due to its cumulative penalty scoring mechanism.
In its devtest/validation routes, the first scenario is ParkingExit, where traditional imitation learning



methods struggle to solve the task. This is primarily because these models typically rely on L2/L1
loss for training while ParkingExit requires large steering angles, which are challenging to learn
effectively due to the inherent imbalance in the data distribution. Additionally, when a collision causes
a blockage, the evaluation stops immediately, preventing the continuation of subsequent scenarios.
This does not mean that the performance is poor in other scenarios. Therefore, we mainly focus on
the short-route closed-loop evaluation results of Bench2Drive. As shown in Table 4, our method
achieves SOTA performance in multi-ability benchmark. In Bench2Drive’s closed-loop benchmark,
as shown in Table 5, Raw2Drive achieves SOTA performance in raw sensor end-to-end methods.

4.4 Ablation Study

Following Bench2Drive [34] and DriveTransformer [39], the tiny validation set Dev10 comprises 10
carefully selected clips from the official 220 routes. These clips are chosen to be both challenging and
representative, with low variance. 7o avoid overfitting Bench2Drive-220, we use DevI0 for ablations,
repeating each experiment 3 times and reporting the average.

Choice of Heads in Raw Sensor World Model. Due to the high-dimensional redundancy of
image information and the fact that both the reward and continue flags are represented as scalars,
the network struggles to achieve stable convergence during training. To further investigate this, we
conduct an ablation study on the raw sensor world model heads. As shown in Table 6, the decoder
head provides effective supervision, significantly enhancing the learning of the raw sensor world
model. In contrast, the reward and continuation heads introduce ambiguity that hinders convergence,
leading to suboptimal world model training and degraded policy performance. We provide a detailed
visualization in the Appendix H.2.

Table 6: Ablation on the Raw Sensor World Table 7: Ablation on the Abstract-State Align-
Model Heads. Only the decoder head is used. ment in Rollout Guidance.

Heads Latent State

Decoder | Reward | Continue DSt SRt Encoder | Deterministic | Stochastic DSt SRY
X X X 174 1.2/10 x X X 0.0 0.0/10
7 % x 835 17.5/10 5 j X gg;t g.gﬁg
v v X 46.6 3.4/10 X : :
v 7 7 345 2.2/10 v v v 835 7.510

Abstract-State Alignment in Rollout Guidance. We conduct an ablation study to examine the
role of Abstract-State Alignment in rollout guidance. As shown in Table 7, since the world model is
trained during rollouts, any state misalignment can lead to discrepancies between the predictions of
the two world models. Our results show that when any component of the rollout guidance is missing,
the model can only handle simple tasks, such as moving straight or turning left, while failing to
address more complex interactive corner cases. This misalignment significantly hinders the training
of the raw sensor-based world model. All three components of rollout guidance components are thus
essential for robust learning and performance. Loss comparisons are provided in Appendix F.

Spatial-Temporal Alignment in Rollout Guidance. The results on Spatial-Temporal Alignment
(based on Dev10) is shown in Table 8. Spatial Alignment ensures consistency between image repre-
sentations and BEV representations—removing it is similar to “driving blind.” Temporal Alignment
maintains the consistency of future predictions across time. Both components are essential and
complementary for a stable world model rollout.

Table 8: Ablation on the Spatial-Temporal Alignment in Rollout Guidance.

Spatial Alignment Temporal Alignment | DST | SR(%)t

X X 0.0 0.0/10
v X 13.6 1.2/10
X v 9.24 0.8/10
v v 83.5 7.5/10

Head Guidance. For this ablation study, we assume that the raw sensor world model is trained with
three heads. As shown in Table 9, both Setting I and Setting II follow this configuration, aligning
with the setup in the last row of Table 6 and reflecting the same considerations and conclusions



drawn in Ablation 4.4. Our results indicate that head guidance provides some improvement in policy
training. However, the additional heads increase training complexity and degrade performance. Thus,
Raw2Drive adopts only the decoder head with head guidance.

Table 9: Ablation on head guidance for raw sensor policy learning. D/R/C: decoder, reward,
continuation; HG: head guidance.

Method D|R | C|HG | DSt SRt
Raw2Drive (Ours) | v | X | X v | 835 17.5/10

Setting 1 VIiv|V 345 2.2/10

Setting IT VIivY x 1264 1.6/10

Shared Parameter. To investigate the impact of parameter sharing, we conduct an ablation study
on whether the Recurrent State-Space Model (RSSM) and the decoder head should share parameters.
As shown in Table 10, we compare different configurations where these components are either shared
or kept separate. Our findings indicate that sharing parameters between the RSSM and the decoder
head leads to better performance. This suggests that parameter sharing facilitates more efficient
representation learning, improving the consistency and generalization of the world model.

Table 10: Ablation Study on the Sharing Table 11: Ablation Study on Raw Sensor Policy

Parameters (RSSM and Decoder Head). Training. Compare two strategies: (1) directly
using the privileged policy, and (2) fine-tuning the
Method DSt  SR? privileged policy on raw sensor inputs.
Raw2Drive (Ours) | 83.5 7.5/10
w/o Shared RSSM | 532 5.4/10 e Mlgthqf — !5)851 Ssél}ITO
1rec S€ Frivilege olic . .
wlo Shared Head | 656 6.1/10 Fine-tuney Privileged P%)licy (Ou};s) 83.5 7.5/10

Policy Finetuning. To evaluate the necessity of the raw sensor world model, we conduct an ablation
study by comparing policy fine-tuning with directly using the privileged policy. Specifically, we
analyze the performance difference between policies trained with and without fine-tuning under the
raw sensor world model. As shown in Table 11, directly applying the pre-trained privileged policy
without fine-tuning results in suboptimal performance, as the policy lacks adaptation to the raw sensor
world model’s learned dynamics. In contrast, fine-tuning the policy within this world model leads to
significant improvements, particularly in handling complex interactive tasks. This result underscores
the importance of the raw sensor-based world model for effective policy learning and adaptation.

Real-time Inference. ~ We conducted latency analysis for each module. In end-to-end autonomous
driving, the perception backbone (e.g., surround-view image encoder) typically dominates the overall
latency. Our world model and policy are highly efficient (each under 2ms), while the raw sensor
stream is mainly bottlenecked by the vision encoder (e.g., BEVFormer). The results in Appendix G.

5 Conclusion

We propose Raw2Drive, the first end-to-end model-based reinforcement learning method in au-
tonomous driving. Our approach introduces a novel dual-stream architecture and a guidance mech-
anism to effectively enable MBRL learning. The approach is fulfilled by the careful treatment of
the two world models for the raw and privileged information, respectively, and achieves the state-of-
the-art performance on recently released benchmarks. We hope this work serves as a stepping stone
toward exploring reinforcement learning for end-to-end autonomous driving.

Limitations: In our setting, the privileged input is ground truth bounding boxes and HD-Map. And
in real-world autonomous driving, for industry, the ground truth bounding boxes and HD-Map can
be from human annotation or advanced perception algorithms. Reinforcement learning in the real
world is also a technical issue that would be solved by 3DGS [50, 51, 52] or a diffusion-based
simulator [53] in the future. While CARLA remains the only viable closed-loop simulator for RL
research at present, our work focuses on policy learning and introduces a dual-stream world model
design that is conceptually decoupled from the specific simulator.

Social Impact: Raw2Drive presents an efficient reinforcement learning framework for end-to-
end autonomous driving, mitigating key issues of imitation learning such as causal confusion and
distribution shift. By learning robust world models from raw sensors, it enhances the safety, reliability,
and generalization of autonomous driving systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Refer to Abstract and Introduction Section 1.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A standalone limitation section is provided in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Refer to Section 3.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Refer to Section 3 and Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: We will release code and models.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to Section 1 and Section 4.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in this paper conforms with the NeurIPS Code of Ethics
in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our training and evaluation are conducted on publicly licensed datasets and
benchmarks and See Section C.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and models will be released with well-organized documentation and
instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdscourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve human participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not utilize LLMs as an important, original, or non-standard
component of its core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

A.1 End-to-End Autonomous Driving Based on Imitation Learning

Imitation Learning (IL) [5, 54, 55, 56, 57, 58, 59, 60] is a foundational method for training agents
by mimicking expert behavior, especially suitable for end-to-end autonomous driving tasks. IL
aims to replicate human driving actions, thus reducing system complexity and simplifying the
decision-making process from perception to control.

Some approaches [14, 16, 17, 61] typically involve collecting large amounts of human driving data
and using supervised learning to directly map sensor inputs (such as camera, LiDAR data, etc.) to
control outputs (such as steering angle, throttle, and brake). The expert driving actions are recorded
as state-action pairs, and imitation learning is used to train a model that approximates this behavior.
The classic TCP model [14] uses a single camera input in a dual-branch design that integrates
trajectory prediction and multi-step control within a single framework. It flexibly combines the
outputs of both branches based on prior planning to optimize the final control signal. The latest
UniAD [9] approach goes further by using surround-view camera inputs and leveraging the query
feature of transformer architectures, integrating detection, tracking, mapping, trajectory prediction,
occupancy grid prediction, and planning into a single differentiable end-to-end pipeline. This design
sets a new benchmark for integrating tasks in autonomous driving. To accelerate grid-based scene
representation in UniAD, VAD [10] proposes a fully vectorized end-to-end framework that uses
vectorized representations for agent motion and map elements, significantly improving task efficiency.

Although behavioral cloning methods perform well in simple driving environments, they still cannot
successfully complete long-term sequence decisions in complex traffic scenarios [34, 13, 62], which
also called corner case. The reason is that its network uses regression loss to generate future
trajectories, and scenes with large turns will be averaged by straight road scenes. For example, the
recent closed-loop Bench2Drive [34] evaluation showed that supervised learning models are sensitive
to shifts in data distribution; they perform well in simple driving interactions but tend to accumulate
errors in dynamic traffic settings, causing the model to deviate from the intended driving path.

A.2 End-to-End Autonomous Driving based on Model-free Reinforcement Learning

Model-free reinforcement learning [36, 3, 63, 64, 65, 66, 67, 68, 69, 70] is another key approach
for end-to-end autonomous driving, optimizing decision-making through rewards rather than direct
imitation. Early RL work, such as MaRLn [3], demonstrated the potential of reinforcement learning
in autonomous driving. However, it required extensive pre-training, with around 20M (23 days)
of training in a single town or 50M (57 days) in multi-towns to solve only 4 standard cases in
CoRL 2017 [33]. The complexity of perception in autonomous driving makes it difficult to optimize
perception and control jointly, increasing the challenge of training end-to-end systems with RL. To
reduce the impact of perception on decision training, some classic RL methods, such as Roach [36],
use 2D Bird’s Eye View (BEV) representations as input observations, simplifying the task of learning
from raw sensor data and focusing on high-level environmental features. And then use RL methods
to collect offline data for training the end-to-end method [14, 71, 72].

A.3 End-to-End Autonomous Driving based on Model-based Reinforcement Learning

Model-free RL suffers challenges in complex driving scenarios or corner cases that require long-term
memory. Think2Drive [4] combines Roach’s [36] 2D BEV inputs with a world model, significantly
improving sampling efficiency and effectively modeling sequential interactions, leading to strong
performance in complex traffic scenarios. To our best knowledge, there is no model-based RL
end-to-end method in autonomous driving.

B Details of Training Pipeline

As shown in Alogrithm 1,the training pipeline of Raw2Drive consists of two stages. In Stage I, we
use privileged observations for MBRL training. The world model and behavior policy are updated
alternately.

In Stage II, we train the raw sensor world with the help of the proposed guidance mechanism.
Compared to Stage I, the world model is trained with an additional loss derived from the rollout
guidance. For behavior policy training, we fine-tune the privileged policy by interacting with the raw
sensor world model with head guidance.
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Algorithm 1: Training Pipeline of Raw2Drive

Privileged Observation o, World Model WM, Policy m

Raw Sensor Observation 6, World Model WM, Policy 7

Privileged Replay Buffer B, Replay Buffer B Training iterations N

Stage 1: Privileged World Model and Policy Training

for i =1t N do

Collect trajectories (0¢, at, 7+, Ct, 0¢+1) With current 7 to interact with simulator and store them in
Buffer B;

Sample a trajectory (o+.7, at.T, re:T, Ct:T, Ot+1:7+1) from Privileged Replay Buffer B;

Train Priviledged World Model WM with prediction loss £.cq, dynamics loss Lgyn, and
representation 1oss Lrep With weights Bpred, Bayns Brep;

LWM =E Z?:l (ﬂpredﬁpred + den»cdyn + Brepcrep) 5

Sample a trajectory o;.7 from Privileged Replay Buffer B;

Rollout in Priviledged World Model to obtain the predicted latent state (h¢.7, St.7), as well as the
predicted reward and continuous flag. These predictions are then combined to construct the trajectory:
(oe:1, ae:r, TeT, CtTy P 1:T 41, St4+1:T+1)5

Train privileged policy 7 based on the actor-critic algorithm with the above trajectory which rollouts in
Priviledged World Model;

Stage 2: Raw Sensor World Model and Policy Training

fori =1t N do

Collect trajectories (o¢, G¢, G, T't, ét, Or+1) by using raw sensor policy # to interact with simulator and
store them in Raw Replay Buffer B;

Sample a trajectory (0¢:e+7, Ot:t+T, At:t+T, Tr:t+T, Cost+T, Ot+1:¢47+1) from Raw Replay Buffer B;

Train Raw Sensor World Model WM with additional loss in Rollout Guidance for latent state
alignment;

Lyim = Lwm + Lroltout;

Sample a trajectory 6.7 from Raw Replay Buffer B;

Rollout in Raw Sensor World Model to obtain the predicted latent state (iLt;T, 3¢.7). Using Head
Guidance to obtain the predicted reward and continuous flag. These predictions are then combined to
construct the trajectory: (6¢.7, Ge.7, Pe.7, Ce.T, Rep 1:7+1, St+1:741)5

Train Raw Sensor Policy 7 based on the actor-critic algorithm with the above trajectory which rollouts
in Raw Sensor World Model;

C Details of the Experiment

C.1 Details of the Dual Stream Input

For the privileged inputs, we utilize BEV semantic segmentation masks € {0, 1}#*WxC a5 image

input and ego vehicle info as vector input. Each channel in the BEV masks represents the presence of
a specific type of object. It is generated from the privileged information obtained from the simulator
and consists of C' masks of size H x W. Note that the C' = 43 channels of semantic segmentation
masks correspond to static objects (e.g. roads, lines, lanes, and the ego vehicle) and dynamic objects
(signs, lights, pedestrians, vehicles, and obstacles).

For the raw sensor inputs, we use BEVFormer [44] as the encoder surrounding RGB images to
achieve grid-shape BEV features.

C.2  Action Space in Raw2Drive

To simplify the action space, we design a set of 39 discrete actions. The full list of actions is provided
in Table 12.
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Table 12: The Discrete Actions. The continuous action space is decomposed into 39 discrete actions,
each for specific values of throttle, steer, brake and reverse. Each action is rational and legitimate.

Throttle Brake Steer Reverse | Throttle Brake Steer Reverse | Throttle Brake Steer Reverse

0 0 1 False 0.3 0 -0.2 False 0 0 0.1 False
0.7 0 -0.5 False 0.3 0 -0.1 False 0 0 0.3 False
0.7 0 -0.3 False 0.3 0 0 False 0 0 0.6 False
0.7 0 -0.2 False 0.3 0 0.1 False 0 0 1.0 False
0.7 0 -0.1 False 0.3 0 0.2 False 0.5 0 -0.5 True
0.7 0 0 False 0.3 0 0.3 False 0.5 0 -0.3 True
0.7 0 0.1 False 0.3 0 0.5 False 0.5 0 -0.2 True
0.7 0 0.2 False 0.3 0 0.7 False 0.5 0 -0.1 True
0.7 0 0.3 False 0 0 -1 False 0.5 0 0 True
0.7 0 0.5 False 0 0 -0.6 False 0.5 0 0.1 True
0.3 0 -0.7 False 0 0 -0.3 False 0.5 0 0.2 True
0.3 0 -0.5 False 0 0 -0.1 False 0.5 0 0.3 True
0.3 0 -0.3 False 1 0 0 False 0.5 0 0.5 True

C.3 Model Configuration

We implement the model using PyTorch. Both world models are trained with a learning rate of le-5,
weight decay of 0.00, and the AdamW optimizer. The behavior policy is trained with a learning rate
of 3e-5, weight decay of 0.00, also using AdamW. The weights 3., 8r, and 3, are set to 10, 5, and
10, respectively.

C.4 Reward Design in Raw2Drive
We adopt the reward design and reward shaping approach from Think2Drive [4].

D Details of the losses in World Model

Train the World Model W), using prediction loss £¢q, the dynamics loss L4y, and the representa-
tion loss L,..p,, the loss weights are respectively Bpred, Bdyns Brep:

Lored(0) =—Inpg(es | s, he) — Inpg(re | s¢, he)
—Inpg(ce | se, he)

Layn(#) =max (1, KL [sg (qo(st | he,ex)) || po(se | he)])

Lrep(0) =max (1, KL [go (st | he,er) || sg (po(se | he))])

@)

E Details of the losses in Behavior Policy

The critic network p,, estimates the distribution of future returns R?‘, while the value function vy
represents the expected value of the return at state s;, train Critic network in the Privileged Behavior
Policy 7, by maximum likelihood loss:

T
L) == Inpy(RY[s:)
t=1

3)
R? =r; 4+ vy ((1 - N + )\RQ\H)

R} =vp

Train the actor network through policy optimization, using entropy regularization 7, exponential
moving average (EMA) for smoothing, entropy regularization coefficient 7 and the sg operation for
gradient stability.

L N — vy (s
£0)= = 3 se (P2 Y tog )

— max(1, 5)
+nH [mo(ar|st)]
S =EMA (Per(R;, 95) — Per(R;,5),0.99)
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Figure 7: Comparison of the Raw Sensor World Model Loss w/ and w/o Guidance.

F Rollout Guidance

As shown in Figure 7, the rollout guidance ensures consistency between the dual-stream world models
during rollouts, playing a critical role in training the raw sensor world model; without it, the network
struggles to converge.

G Inference Latency

Table 13: Latency Comparison between Privileged and Raw Sensor Streams.

Method Modality Encoder Latency (ms) World Model Latency (ms) Policy Latency (ms)
Privileged Stream BEV State 2 (5xConv) 2 2
Raw Sensor Stream  Multi-view images 600 (BEVFormer) 2 2

H Visualization
H.1 Decoder Output by the World Model

We visualize the output of the raw sensor decoder to evaluate its reconstruction quality. In our
dual-stream architecture, the raw sensor world model replaces expensive video reconstruction with a
more efficient BEV reconstruction. As shown in the Figure 8, under the guidance mechanism, the
raw sensor world model successfully learns to reconstruct the BEV representation with reasonable
accuracy. However, due to the inherent limitations of the camera sensor, the model struggles to
reconstruct occluded regions or areas beyond its direct line of sight.

H.2 Perception Confusion

As shown in Figure 9, adjacent frames exhibit a high degree of similarity. In the upper section, the
ego vehicle is in a corner case of ParkingExit. Despite minimal visual differences between adjacent
frames, identical actions can yield opposite rewards, causing model confusion. In the lower section,
as the ego vehicle nears task completion, the visual change remains subtle. However, the binary
nature of the continuation flag (0 or 1) provides limited information, further hindering convergence.
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Figure 8: Ground Truth VS Raw Sensor Decoder Output by the World Model (The red circle is
the blind spot of the camera).
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Figure 9: Perception Confusion in Reward and Continuous Head.
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