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ABSTRACT

Emotional Support Conversation (ESC) is a rapidly advancing task focused on al-
leviating a seeker’s emotional distress. The intricate interplay between cognition,
emotion, and behavior presents substantial challenges for existing approaches,
which often struggle to capture the dynamic evolution of the seeker’s internal
state during conversations. To address this, we propose CausalESC, a model de-
signed to dynamically represent the seeker’s internal states, by assuming that the
generative process governing the mutual influence among these factors follows a
first-order Markov property, with i.i.d. random variables. The model comprises
a prior network, that disentangles the seeker’s emotions, cognition, and behav-
ior, and a posterior network, which decouples the support strategy factors. The
prior network also models the psychological causality of the seeker within each
conversation round. To account for the varying effects of support strategies on
the seeker’s intrinsic states, we incorporate a support intervention module to cap-
ture these impacts. Additionally, a holistic damping transfer mechanism is de-
signed to regulate the complex interactions among cognition, emotion, behavior,
and strategy, ensuring that changes remain within a reasonable range. Our model
effectively breaks causal cycles and achieves causal representation learning. Both
automatic and human evaluations demonstrate the effectiveness of our model, em-
phasizing the advantages of modeling the evolution of the seeker’s internal state
under support strategies.

1 INTRODUCTION

In recent years, mental health problems have become increasingly prevalent, yet access to profes-
sional psychological counselors remains limited and costly. Consequently, there is an urgent need for
a chatbot capable of alleviating psychological issues. Emotional Support Conversation (ESC) (Liu
et al., 2021) is designed to reduce individuals’ distress by generating appropriate support strategies,
as illustrated in Fig. 1. This task holds significant potential in various fields, including mental health
support and social assistance.

An increasing number of researchers are investigating ESC tasks. For instance, MISC(Tu et al.,
2022) uses COMET to infer the fine-grained mental state of the seeker and then employs a mixture
strategy to generate emotional support text. Similarly, GLHG(Peng et al., 2022) also utilizes com-
monsense knowledge to model local and global hierarchical relationships. Additionally, PAL(Cheng
et al., 2023) leverages the seekers’ persona to generate more informative and personalized responses.
Meanwhile, TransESC (Zhao et al., 2023b) constructs a state transition graph to model semantic,
strategy, and emotional transition, thereby generating effective responses.

While previous studies have attempted to model the psychological state of the seeker, they often fall
short by representing it as static snapshots, neglecting the continuous and dynamic evolution of the
seeker’s internal state throughout the conversation. Cognitive Behavioral Therapy (CBT)(Rothbaum
et al., 2000) emphasizes the importance of understanding the dynamic relationship between the indi-
vidual’s internal state and their environment during the therapeutic process, as well as the interaction
mechanisms among emotions, cognition, and behavior. This concept is illustrated in the left sub-
figure (Fig.2). Drawing inspiration from CBT, this work models the dynamic evolution between
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.

Due to this pandemic, I am fearful for my job 

and financial situation.

[Reflection of feelings]Yeah it is a difficult time and understandable 

to be worried about financial stability.

Yea, this is causing me a lot of stress. My firm 

has cut 10% already. 

[Providing Suggestions] It may be a stressful situation, but it may be 

best to update your resume and begin to check out other job listings.

I would appreciate your help if you're there.

…
1[Question] Can you tell me what is bothering you

Cognitive: positive coping 

Emotion: neutral

Behavioral: seeking social support

Cognitive: awfulizing

Emotion: fear

Behavioral: avoidance

Cognitive: overgeneralization

Emotion: fear

Behavioral: avoidance

Figure 1: An example of an emotional support conversation is presented, featuring a seeker and a
supporter delivering a supportive response.

cognition, emotion, and behavior during emotional conversations. However, traditional causal as-
sumptions typically rely on a Directed Acyclic Graph (DAG), and these cycles present challenges
for conventional causal representation learning in capturing the complex relationship in cognition,
emotion, and behavior(Forré & Mooij, 2020).

In this paper, we assume that the generative
process involving the mutual influence of
emotion, behavior, and cognition adheres
to the first-order Markov property, with
the random variables being i.i.d.. Based
on this assumption, cognition, emotion,
and behavior unfold along the temporal
dimension, forming a DAG that satisfies
structural requirements. Consequently, we
design a causal graph (as shown in the right
sub-figure (Fig.2)) to represent the operation
of the emotional support dialogue and define
a joint distribution (as detailed in Formula 2)
to describe the underlying principles govern-
ing the generation of observed embeddings.

Building on this framework, we propose a
Temporal Causal Hidden Markov Model for

time: t - 1
External event

problems with 

friends

𝑐𝑡−1

𝑏𝑡−1

𝑒𝑡−1

𝑡 : round

round: t

𝑐𝑡

𝑏𝑡

𝑒𝑡

s𝑡−1
s𝑡

round: t - 1

Seeker

Supporter

Seeker

Supporter

External event
problems with friends

Cognitive
awfulizing

Behavior
seeking social

support

Emotion
sadness

: cognitive𝑐𝑡 𝑒𝑡 : emotion b𝑡: behavior s𝑡 : strategy

s𝑡−1 s𝑡

Figure 2: The left figure illustrates the inter-
action between an individual and their environ-
ment, highlighting how this interaction impacts
emotions, cognition, and behavior. The right de-
picts a causal Markov model unfolding over time,
resolving the causal loop problem.

the ESC task, referred to as CausalESC, to model the dynamic evolution of the seeker’s internal
state under varying supporter strategies and guide the generation of supporters’ responses. Specifi-
cally, the prior network first utilizes the seeker’s utterance as the observation variable, conditioned
on the emotion label, to disentangle the seeker’s emotional, cognitive, and behavioral factors. Given
the stability of psychological mechanisms, the causal relationships between emotions, cognition,
and behavior are modeled at each time step. Meanwhile, the posterior network decouples the
support strategy factors. Considering that the supporter employs different strategies to support the
seeker at each time step, we introduce a strategy intervention approach to dynamically capture the
influence of the supporter on the seeker’s internal states enhancing the supporters’ responsiveness
to seekers’ needs. Additionally, to model the complex interactions among cognition, emotion,
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behavior, and strategy, a holistic damping transfer mechanism is introduced. This mechanism
regulates these interactions after each time step, ensuring that changes in the variables remain
within a reasonable range. Finally, the causal endogenous variables and strategic factors from the
final time step are inject into the decoder to generate the supporter’s response. Experimental results
from both automatic and human evaluations demonstrate the superiority of our approach. The main
contributions of our work are as follows:

• To the best of our knowledge, this paper is the first to learn causal representations within
causal loops, resolving circular causality by assuming that the generative process governing
the mutual influence of emotions, behaviors, and cognitions follows the first-order Markov
property with i.i.d..

• By expanding cognitive, emotional, and behavioral factors into a directed acyclic graph
(DAG), each dialogue round influences subsequent generations. Based on this, we propose
the CausalESC model to disentangle these causal representations and dynamically capture
the evolution of the seeker’s internal state, thereby guiding supporters in generating respon-
sive outputs.

• Extensive experiments on benchmark datasets demonstrate that CausalESC is a highly com-
petitive approach for Emotional Support Conversation.

2 RELATED WORK

Emotional Support Conversation Since being proposed by (Liu et al., 2021), the ESC task has
gathered significant attention. MISC(Tu et al., 2022) integrates commonsense knowledge and em-
ploys mixed-strategy to guide response generation. GLHG(Peng et al., 2022) utilizes a graph-based
reasoner to model the hierarchical relation between global cause and local intention, capturing the
multi-source information. SUPPORTER(Zhou et al., 2023) formulates ESC as a process of eliciting
positive emotion and designs a mixture-of-expert-based mechanism with a reinforcement learning
approach. TransESC(Zhao et al., 2023b) focuses on the fine-grained turn-level transition of ESC,
including semantics, strategy, and emotion transition. KEMI(Deng et al., 2023) retrieves mental
health knowledge from a pre-trained knowledge graph and evaluates the model from the perspective
of mix-initiative. MFF-ESC(Bao et al., 2024) perceives emotional intensity transitions and proposes
an information network that integrates text semantics, feedback, and emotional intensity streams.
However, all the aforrmentioned methods model the seeker’s state only statically. In contrast, we
disentangle the seeker’s emotion, cognition, and behavior to simulate the dynamic evolution of the
seeker’s internal state during the conversation.

Causal Disentangled Representation Learning In recent years, causal disentangled representa-
tion learning has garnered increasing attention from researchers, with its primary objective being
the discovery of high-level causal variables from low-level observations (Schölkopf, 2022). Most
approaches in this field combine Structural Causal Models (SCM)(Pearl, 2009) with deep learning.
For example, CausalVAE (Yang et al., 2021) employs a causal layer to transform exogenous vari-
ables into causal endogenous factors that correspond to causally related concepts in data. (Li et al.,
2021) present a novel causal hidden Markov model for sequential medical images for future disease
prediction. (Zhao et al., 2023c) analyze physical factors in multimodal traffic flow and proposes a
causal propose causal conditional hidden Markov model to predict traffic flow. For dialogue data,
(Su et al., 2024) propose a temporal causal disentanglement model that effectively decouples the
dialog content and realizes the temporal accumulation of emotions, enabling more accurate emotion
recognition. The concepts in the above causal disentangled learning are all directed acyclic, but
in our task, cognition, emotion, and behavior are interdependent, presenting a challenge for causal
representation learning. In our model, we assume the mutual influence of emotion, behavior, and
cognition follows a first-order Markov process with i.i.d., effectively resolving the issue of circular-
ity.

3 METHODOLOGY

The overall architecture of our proposed approach is illustrated in Fig. 3. Our model is composed
of three components: Dialogue Floor Encoder, Temporal Causal Hidden Markov Module and Psy-
choCausal Hybrid Decoder.
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Figure 3: The architecture of CausalESC.

3.1 PROBLEM DEFINITION

The ESC task involves a dialogue designed for seeking emotional support and help, where the seeker
and supporter speak alternately. Formally, let the dialogue between the seeker s and the supporter
p contain T rounds, represented as U = [u

(s)
1 , u

(p)
1 , ..., u

(p)
T ], where ui = (wi1, w

i
2, ..., w

i
M ). Here,

u
(s)
i and u(p)i denote the utterances of the seeker and the suppoter, respectively. Our goal is to use

the conversation history U to generate an appropriate support response u(p)T .

3.2 DIALOGUE FLOOR ENCODER

The Dialogue Floor Encoder serves as the semantic context encoder, sharing the same architecture
as the encoder used in BlenderBot (Roller et al., 2020), which is pre-trained on large-scale dialogue
corpora. Specifically, each utterance is separated by [SEP ], and special tokens [CLS] and [SEP ]
are added at the beginning and end of each sentence in the conversation history, respectively. The
encoder E is then employed to encode each word w, thereby obtaining its contextual representation.

C = E([CLS], u1, [SEP ], [CLS], u2, ..., [CLS], un) (1)

where C means conversation context representation. Additionally, we use C[CLS] to represent the
embedding representation of each sentence in the conversation.

3.3 TEMPORAL CAUSAL HIDDEN MARKOV MODEL

To address the issue of circularity inherent in the causal assumptions, we propose that the generative
process governing the mutual influence of emotion, behavior, and cognition satisfies the first-order
Markov property with independent and identically distributed (i.i.d.) variables. This assumption
enables us to model the progression of the conversation as a DAG, as illustrated in Fig. 3. A detailed
proof of the acyclic of this model is provided in the Appendix Acyclic Proof .

At each time step t, to ensure identifiability(Khemakhem et al., 2020), the seeker’s emotional infor-
mation is combined with the causal endogenous latent variables zt−1 from the previous step. This
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process facilitates the disentanglement of the independent exogenous variables ε = [εct , ε
b
t , ε

e
t ]. Us-

ing a SCM, these independent exogenous variables are transformed into causal endogenous variables
zt = [zct , z

e
t , z

b
t ]. These variables represent approximations of the seeker’s internal states, where zct ,

zet , and zbt correspond to the cognitive state, affective state, and behavioral state of at time step t,
respectively. Similarly, the supporter’s strategy information at time t is integrated with the latent
variable st−1 from the previous time step to extract the strategy latent variables εst at the current
time t.

3.3.1 A PROBABILISTIC GENERATIVE MODEL FOR CAUSALESC

According to the causal Markov codition(Pearl, 2009), the joint distribution of the latent variables
can be factorized based on the DAG structure derived from the Markov assumption as follows:

pθ

(
U

(p)
≤T , z≤T , ε≤T , s≤T

)
=

T∏
t=1

[
pθ (zt, εt | zt−1, st−1) · pθ (st | st−1) · pθ

(
U

(p)
t | st

) ]
(2)

where the first term represents the prior network, denoting the distribution of the exogenous variable
εt conditioned on the latent variable zt−1 and the strategy st−1 from the previous time step. This
distribution can be further factorized into the generation mechanism of exogenous and endogenous
variables based on the causal relationships:

pθ (zt, εt | zt−1, st) =
T∏
t=1

[pθ (εt | zt−1, st−1) · pθ (zt | εt)] (3)

The second term denotes the transiton probablity of the policy state. The third term refers to the
generative model, which characterizes the distribution of the supporter’s observed variable U (p)

≤T at
the current time step, conditional on the current supporter’s strategy st.

p
(
U

(p)
≤T | s≤T

)
=

T∏
t=1

p
(
U

(p)
t | st

)
(4)

Since the true posterior is difficult to handle, a tractable distribution qφ is constructed to approximate
the true posterior pθ defined as follows:

qφ

(
ε≤T , z≤T | U (s)

≤T , s≤T

)
=

T∏
t=1

[
qφ

(
εt | zt−1, U (s)

t , st

)
· qφ (zt | εt)

]
(5)

3.3.2 PRIOR NETWORK

To establish the prior distribution, a prior network is defined within the model. Traditionally, a stan-
dard multivariate Gaussian prior has been commonly employed, but it may limit its ability to handle
complex data. To address this limitation, we introduce a prior network into the model to enhance its
representation capability. The prior network learns the prior distribution pθ (zt, εt | zt−1, st), which
consists of a GRU module, a support intervention module, and a CEB causal module.

1) GRU Module: We use the GRU to model the evolution of the internal state of the seeker. Specif-
ically, we input the observed variable, the seeker’s utterance U , and the hidden variable from the
previous time step into the prior network. A GRU is then employed to propagate the hidden variable
across time steps using its single-step dependency mechanism. Finally, the output is passed through
two fully connected layers (FCs), with one layer outputting the mean and the other outputting the
logarithmic variance.

2) Support Intervention Module: During the conversation, the supporter offers guidance to the
seeker, influencing the seeker’s internal state. We introduce a novel component, termed the Support
Intervention Module, to model this infulence. Specifically, the influence of the supporter on the
seeker is denoted as do(), as illustrated in Fig. 3. In our work, the do() operator is implemented
using an attention mechanism, which focuses on both the prior at the current time step and the
posterior of the previous step. The process is described as follows:

ε̃prt = do(εpot−1, z
pr
t ) = softmax

(
εpot−1Watt(z

pr
t )T

)
zprt (6)

5
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3) CEB Causal Module: According to cognitive psychology, the causal relationship between cog-
nition, emotion, and behavior is a stable psychological mechanism. To this end, we propose a
Cognitive-Emotional-Behavioral (CEB) causal module to model thses relationship in each dialogue
round. Considering the complex nonlinear relationships between how emotions drive behavior and
how cognition influences emotions, we adopt a general nonlinear SCM to represent these intricate
interactions. In this paper, the CEB Causal Module is expressed as follows:

zpr,it = fi

([(
I− ˜sigh ((αA))

T
)−1

εprt

]
[:,i,]

)
(7)

where A ∈ R3×3 represents the adjacency martrix of DAG, The hyperparameter α is introduced to
accelerate convergence. Subsequently, fully connected layers are employed to obtain the mean and
log variance.

3.3.3 POSTERIOR NETWORK

The purpose of the posterior network is to learn a variational posterior distribution, denoted as
qφ

(
ε≤T , z≤T | U (s)

≤T , U
(p)
≤T , s≤T

)
, which approximates the true posterior distribution of the latent

variables. This network is constructed based on the observed data from the supporter’s utterances.
Unlike the prior network, the posterior network consists solely of GRU modules to model the evo-
lution of the supporter’s strategy. Subsequently, an FC layer is applied to derive the mean and
log-variance vectors of the hidden variables.

3.3.4 GENERATION NETWORK

In the generation network, the updated hidden variables are used to reconstruct the observed vari-
ables. In each dialogue turn, these variables are parameterized by a FC layer to reconstruct the
supporter’s utterance U (p).

3.3.5 HOLISTIC DAMPING TRANSFER MECHANISM

In our model, considering the complex interactions relationships between cognition, emotion, and
behavior, we design a holistic damping transfer mechanism that integrates a multi-dimensional in-
teraction transfer mechanism with a damping module.

At each time step t, the state of each latent variable zt = [zet , z
b
t , z

b
t ] is influenced by the states of

all variables from the previous step and by the perturbation εpot . The multi-dimensional interaction
transfer mechanism can be mathematically expressed as:

zet+1 ∼ fe(zet , zct , zbt , ε
po
t , η

e
t+1)

zct+1 ∼ fc(zet , zct , zbt , ε
po
t , η

c
t+1)

zbt+1 ∼ fb(zet , zct , zbt , ε
po
t , η

b
t+1)

(8)

where f()̇ represents the function that governs the interaction between varibles, ηet+1, ηct+1, and ηct+1
are i.i.d.. random variables.

Inspired by emotion regulation theory (Gross, 2002), there is a buffering process in the transmission
of internal states such as emotions. Therefore, we introduce a damping module to model this regu-
lation mechanism. This ensures that the changes in variables remain within a reasonable range. The
damping module is computed as follows:

zprt = tanh(zprt ) ∗ σ(zprt )

εpot = tanh(εpot ) ∗ σ(εpot )
(9)

where σ represents the sigmoid activation.

3.4 PSYCHOCAUSAL MEMORY DECODER

The final latent variable zT = [zeT , z
c
T , z

b
T ] and the latent representation εpoT for the supporter are

utilized to guide the text generation. Inspired by (Li et al., 2020), we apply the memory schema to

6
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incorporate this knowledge into the decoder. Specifically, the states of both seekers and supporters
are attended to each self-attention layer. The computation is as follows:

K = [zh,H
e]WK V = [zh,H

e]WV (10)

where, zh = [[zet , z
c
t , z

b
t ], st], H

e is encoded context, WK ,WV ∈ Rdh×dh are the projection
matrices.

3.5 LEARNING METHOD

Given a dataset D, the Evidence Lower Bound (ELBO) is represented as follows:

LELBO = ED

[
Eqφ

[
log

(
pθ

(
U

(p)
≤T ,z≤T ,ε≤T ,s≤T

)
qφ(z≤T ,ε≤T ,s≤T ,U

(p)
≤T )

)]]
(11)

Expand and break it down into individual time steps as follow:

LELBO = ED

[
T∑
t=1

Ltqθ,pφ

]
(12)

where:

Ltqφ,pθ = Eqφ

[
log pθ

(
U

(p)
t | st

)]
−KL

[
qφ

(
εt, zt | zt−1, U (p)

t , st

)
‖pθ (εt, zt | zt−1, st)

]
(13)

Due to one-to-one correspondence between ε and z, we can utilize the Dirac delta function δ(·) to
reformulate both the prior and posterior distributions. the variational posterior is as follows:

qφ

(
εt, zt | zt−1, U (p)

t , st

)
= qφ

(
εt | zt−1, U (p)

t , st

)
· δ (zt = φ (εt))

= qφ

(
zt | zt−1, U (p)

t , st

)
· δ
(
εt = φ−1 (zt)

) (14)

pθ (εt, zt | zt−1, st) = pθ (εt | zt−1, st) δ (zt = φ (εt))

= pθ (zt | zt−1, st) δ
(
εt = φ−1 (zt)

) (15)

where φ is an invertible function. We substitute the prior and posterior distributions from formulas
14 and 15 into formula 13, resulting in the variational lower bound Ltqφ,pθ as follows:

Ltqφ,pθ = Eqφ [log pθ

(
U

(p)
t | st

)
]

−KL
[
qφ

(
εt | zt−1, U (s)

t , U
(p)
t , st

)
‖ pθ (εt | zt−1, st−1)

]
−KL

[
qφ

(
zt | zt−1, U (s)

t , U
(p)
t , st−1

)
‖ pθ (zt | zt−1, st−1)

] (16)

The first loss term represents the reconstruction loss, while the latter two correspond to the KL
divergence of the exogenous and endogenous variables from the approximate posterior distribution.

Since the acyclic nature of the causal graph, it is essential to incorporate acyclic constraints, which
are defined as: h(Ã) = tr

[
(I + Ã ◦ Ã)m

]
− m. Furthermore, the negative loglikelihood loss is

employed for the response loss, expressed as Lg = − 1
L

∑L
l=1 log(ρ(rl|r<l,x)). In summary, the

total loss of our model is a summation of the four losses:

L = −LELBO + Lg + λh(Ã) +
c

2
|h(Ã)|2, (17)

where λ is the Lagrange multiplier and c is the penalty parameter.

4 EXPERIMENTS

4.1 DATASETS

The emotional dialogue dataset, ESConv(Liu et al., 2021), is utilized to evaluate our proposed model.
Each dialogue includes the seeker’s situation and dialogue context, with each sentence from the

7
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Table 1: The automatic evaluation result for both the baselines and our model on the ESConv dataset.
†indicates the results are obtained from the paper (Bao et al., 2024), while other results are obtained
from the original paper. - denotes there is no report in the work. ↑ represents the higher the value,
the better the performance.

Model PPL↓ B-1↑ B-2↑ B-3↑ B-4↑ D-1↑ D-2↑ R-L↑
Transformer †(Vaswani et al., 2017) 81.55 17.25 5.66 2.32 1.31 1.25 7.29 14.68

MoEL †(Lin et al., 2019) 62.93 16.02 5.02 1.90 1.14 2.71 14.92 14.21
MIME †(Majumder et al., 2020) 43.27 16.15 4.82 1.79 1.03 2.56 12.33 14.83

BlenderBot-Joint(Liu et al., 2021) 17.39 18.78 7.02 3.20 1.63 2.96 17.87 14.92
MISC †(Tu et al., 2022) 16.32 17.73 6.75 3.23 1.83 4.19 17.76 15.43
PoKE(Xu et al., 2022) 15.84 18.41 6.79 3.24 1.78 3.73 22.03 15.84

GLHG(Peng et al., 2022) 15.67 19.66 7.57 3.74 2.13 3.50 21.61 16.37
KEMI(Deng et al., 2023) 15.92 - 8.31 - 2.51 - - 17.05

TransESC(Zhao et al., 2023b) 15.85 17.92 7.64 4.01 2.43 4.73 20.48 17.51
FADO(Peng et al., 2023) 15.72 - 8.0 4.0 2.32 - - 17.53

PAL †(Cheng et al., 2023) 16.78 18.77 6.91 3.03 1.51 4.10 22.73 15.29
MFF-ESC(Bao et al., 2024) 16.43 20.64 8.87 4.81 2.98 5.34 22.18 18.83

SCBG(Xu et al., 2024) - 12.74 5.51 2.87 1.66 5.05 24.48 14.67
ChatGPT(1 shot) †(Zhao et al., 2023a) - 13.91 4.53 1.96 1.02 5.92 31.38 13.19
LLaMA-7B(0 shot) †(Bao et al., 2024) - 0.99 0.52 - - 4.79 2.00 -

CausalESC(ours) 16.33 20.72 8.58 4.27 2.38 3.33 16.14 17.39

supporter annotated with the corresponding support strategy. Following previous work(Tu et al.,
2022), dialogues are truncated every 10 sentences to form dialogue samples, and the dataset is
randomly divided into training, validation, and test sets in a ratio of 8:1:1. To provide conditional
information, each seeker’s sentence is annotated with 6 categories of emotion labels, in accordance
with the methodology described in the paper(Zhao et al., 2023b).

4.2 EVALUATION METRICS

Automatic Metrics. For automatic evaluation, various metrics were employed to assess the text
generated by the model. (1) Perplexity (PPL) was used to measure the overall quality of the gener-
ated responses. (2) BLEU-1 (B-1), BLEU-2 (B-2), BLEU-3 (B-3), BLEU-4 (B-4)(Papineni et al.,
2002) and ROUGE-L (R-L)(Lin, 2004) metrics were utilized to evaluate the lexical and semantic
aspects of the generated responses; (3) Distinct-1 (D1) and Distinct-2(D2)(Li et al., 2016) were ap-
plied to assess the diversity of the responses by measuring the proportion of unique n-grams in the
generated responses.

Human Evaluation. Following previous work(Zhao et al., 2023b), three experts were recruited to
interact with the model for manual evaluation. They were asked to rate the generated responses based
on Fluency, Identification, Empathy, Suggestion, and Overall score. To ensure a fair comparison,
the professional annotators were blinded to the source of the generated text.

4.3 BASELINES

We compare CausalESC with several state-of-the-art models: Transformer(Vaswani et al., 2017),
MT Transformer(Rashkin et al., 2019), MoEL(Lin et al., 2019), MIME(Majumder et al., 2020),
Blenderbot-Joint (Liu et al., 2021), MISC(Tu et al., 2022), PoKE(Xu et al., 2022), GLHG (Peng
et al., 2022), KEMI(Deng et al., 2023), TransESC(Zhao et al., 2023b), FADO(Peng et al., 2023),
PAL(Cheng et al., 2023), MFF-ESC(Bao et al., 2024) and SCBG(Xu et al., 2024). More details
about these models are described in Appendix Baselines.

4.4 OVERALL RESULT

Automantic Evaluation The automatic results of our model are shown in Table 1. Compared with
empathy response models (Transformer, MoEL, MIME), our model’s performance is significantly
improved. This improvement may be attributed to the fact that their training objectives are not
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related to emotional support, making it difficult for them to handle challenging ESC tasks. Regard-
ing BlenderBot-based models (MISC, PoKE, GLHG, KEMI, TransESC, FADO, PAL, MFF-ESC,
SCBG), CausalESC does not use any external knowledge, yet its performance surpasses these ex-
ternal knowledge-enhanced methods. This demonstrates the model’s ability to capture the dynamic
evolution of the seeker’s internal state under the supporter’s strategy, improving the quality of gen-
erated responses. Additionally, compared to large models such as ChatGPT and LLaMA-7B, our
model achieves promising results regarding B-n and R-L indicators. Although its performance is
inferior to that of existing large models in terms of D-n, the higher diversity may lead to a larger
deviation from the true responses.

Human Evaluation The results of
the human evaluation, shown in the
Tabel 2, indicate that CausalESC signif-
icantly outperforms BlenderBot-Joint
and MISC. Compared to BlenderBot-
Joint, our model excels in Fluency, Em-
pathy, and Overall score, effectively
demonstrating its ability to perceive the
seeker’s cognitive, emotional, and be-
havioral states and generate more em-
pathetic responses. CausalESC still

Table 2: Human interaction evaluation results (%). Our
model has a significant improvement with p-value < 0.05.

CausalESC vs. BlenderBot-Joint MISC
Win Lose Tie Win Lose Tie

Fluency 55.2 10.0 34.8 60.5 20.5 19.0
Identification 51.0 13.5 35.5 48.0 11.0 41.0

Empathy 53.0 7.0 40.0 55.3 15.5 29.2
Suggestion 49.7 12.3 38.0 47.0 20.0 33.0

Overall 59.0 10.2 30.8 57.0 16.0 27.0

achieves higher performance in all five aspects, even though MISC utilizes more external knowl-
edge. This demonstrates that the temporal causal mechanism of the seeker’s cognitive, emotional,
and behavioral states is conducive to generating supportive responses.

4.5 ABLATION STUDY

An ablation study, summarized in
Table 3, illustrates the contribution
of each component to the final re-
sult. First, removing the support in-
tervention module lowered the au-
tomatic evaluation scores, under-
scoring the importance of the sup-
porter’s strategy in influencing the
seeker’s internal state. Second,
deleting the CEB causal module led
to a significant drop in performance,

Table 3: The evaluation results of ablation study on each
module.

Model PPL↓ B-1↑ R-L↑
CausalESC 16.33 20.72 17.39

w/o support intervention module 17.27 18.94 16.41
w/o CEB causal module 17.85 19.35 17.54

w/o damping module 17.96 19.01 16.73
w/ signal transfer 17.17 20.51 17.31
w hybird schema 16.73 19.24 17.09

emphasizing the necessity of modeling the causal relationships among cognition, emotion, and be-
havior. Similarly, eliminating the damping module reduced scores. Then, we replaced the multi-
dimensional interaction transfer mechanism with a single transfer mechanism resulting in a marked
decline, demonstrating the former’s effectiveness in capturing state interdependence. Finally, using
the hybrid schema caused varying performance reductions for CausalESC.

4.6 IN-DEPTH ANALYSIS

Case Study A case study is presented in Table 4, featuring responses generated by CausalESC
and two state-of-the-art baselines. While the reaction from BlenderBot-Joint provides a suggestion,
its hesitant tone undermines the guidance, resulting in a response that lacks enthusiasm (see blue
phrase) and depth (see red phrase). In the case of MISC, the response offered clear affirmation;
however, it was superficial and failed to explain the benefits of spending time with and caring for the
dog (see red phrase). This lack of depth prevented the seeker from elaborating on the emotional or
psychological advantages. In contrast, CausalESC’s response affirmed the seeker’s choice by high-
lighting Corgi’s intelligence(see purple phrase). This demonstrates that our model can understand
the seeker’s genuine needs and provide effective responses, which stems from modeling the seeker’s
emotions, cognition, and behavioral transfer processes during each conversation round.

Interpretability of Latent Variables To evaluate the model’s effectiveness in disentangling cogni-
tion, behavior, and emotion, we employed t-SNE(Van der Maaten & Hinton, 2008) to visualize the
latent representation of the seeker’s internal state at the first and last time step. The specific experi-
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Table 4: Case study of the generated responses by CausalESC and other models. Due to limited
space, we omitted some sentences.

Dialogue Floor
Supporter Awl so sorry to hear that. There are times in all our lives that we feel alone. This feeling

will change

Seeker Thanks for the tip

Seeker I was thinking about getting a dog. Is that a good idea?
......

Seeker Corgi, thoughts?
Response

BlenderBot-Joint i am not sure. i don’t know how to go into more detail.
but i think that you could find a really nice dog. (Lacks the enthusiasm and depth)

MISC i think that would be a great choice. i think it would be great to have a dog that you can
spend time with and care for. (Superficial affirmation)

CausalESC i think that is a great choice. i think you will be surprised at how intelligent a dog
surprised at how intelligent a dog can be. (Affirmative insight)

Ground truth Those use dogs are super smart as well. I think that’s a great choice)
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(a) Data distribution at the first time step
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Figure 4: The t-SNE plot of cognition, emotion, behavior and strategy learned by ours.

ments are presented in the Figure 4. The result reveals that at the first moment, the clustering effect
is poor, with low separation between the latent factors (emotion, cognition, behavior, and strategy).
In contrast, at the last time step, the sepration between the factors is significantly improved, reflect-
ing the model’s dynamic learning capability during the dialogue process. This demonstrates that
our model could decouple and dynamically represent complex emotional, cognitive, behavioral, and
strategic factors.

5 CONCLUSION AND FUTURE WORK

This paper proposes a new model, CausalESC, for capturing the evolution mechanism of cognitive,
emotional, and behavioral during the dialogue process. The key contribution lies in breaking the
causal loop problem by assuming that the mutual influence of emotion, behavior, and cognition
follows a first-order Markov property with i.i.d.. variables. Additionally, a support intervention
module is proposed to consider the impact of the strategy on the seeker state, and a novel module
is developed to capture the complex transfer process. Experimental results on both automatic and
human evaluations show the superiority of our approach. In the future, we will explore more fine-
grained states of the seeker, including physiological responses, and capture the evolution of these
states.
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A APPENDIX

Due to page limitations of the main body, the supplementary material includes theoretical proofs of
acyclicity, additional implementation details and additional case studies that illustrate the following
aspects:

B MORE METHOD DESCRIPTION

B.1 ACYCLIC PROOF

To demonstrate that the interaction among emotion (zet ), cognition (zct ), and behavior (zbt ) over
time forms a DAG under the influence of independently and identically distributed (i.i.d.) random
variables and an external perturbation (εpot ).

Markov Property Definition. The Markov property states that the future state of a process depends
only on its current state, not on the sequence of past states that preceded it:

P (Xt+1|Xt, Xt−1, . . . , X1) = P (Xt+1|Xt) (18)

Theorem. Let us assume that the time series Bt ∈ Rm satisfies the following evolution equation:
Bt+1 = f(Bt, αt+1) (19)

where αt ∈ Rm. Then, Bt is a first-order Markov chain if and only if the sequence {αt} is inde-
pendently and identically distributed (i.i.d.)(see (Sun et al., 2015)).

Proof. Consider the latent variables zt = [zet , z
c
t , z

b
t ] is governed by:

zet+1 ∼ fe(zet , zct , zbt , ε
po
t , η

e
t+1)

zct+1 ∼ fc(zet , zct , zbt , ε
po
t , η

c
t+1)

zbt+1 ∼ fb(zet , zct , zbt , ε
po
t , η

b
t+1)

(20)

where ηet+1, ηct+1, and ηbt+1 are i.i.d. random variables, and εpot represents external perturbations.
Since zet+1, zct+1, and zbt+1 evolve based on the past states and i.i.d. noise, the random sequences
ηet+1, ηct+1, and ηbt+1 are independently and identically distributed. According to equation 18 and
equation 19, this implies that each zet+1, zct+1, and zbt+1 satisfies the first-order Markov property.
Consequently, when considering the interaction across time steps, the variables zet+1, zct+1, and zbt+1
form a Directed Acyclic Graph (DAG) in the time dimension.

C MORE IMPLEMENTATION DETAILS

C.1 EXPERIMENTAL SETUPS

For a fair comparison with previous work, we use the 90M BlenderBot(Roller et al., 2021) as the
base model. AdamW (Loshchilov & Hutter, 2019) is employed as the optimizer, and training is
conducted for 4 epochs with a batch size of 20. The learning rate starts at 2e-5 and incorporates a
linear warmup over 120 steps. The latent variable has a dimension of 48, with the dimension of the
cognitive, emotional, and behavioral factors each being 16. During the training process, we use the
KL annealing method to mitigate the KL vanishing problem. Training and testing are performed on
a single GeForce RTX 3090 GPU. For inference, the decoding algorithm utilized Top-p and Top-k
sampling with parameters set to p = 0.3 and k = 30.
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C.2 BASELINES

We compare our proposed model with several state-ofthe-art models:

• Transformer Vaswani et al. (2017): This model is a Seq2Seq model based on the Trans-
former architecture.

• MoEL (Lin et al., 2019): A Transformer-based model that combines sentiment distribution
representation from multiple decoders to enhance the empathy of generated responses.

• MIME (Majumder et al., 2020): Another transformer-based model employs emotion po-
larity and emotion mimicry to generate empathetic responses, while also introducing ran-
domness into the emotion mixture to produce more diverse responses.

• Blenderbot-Joint (Liu et al., 2021): The Blenderbot model fine-tuned on the ESConv
dataset, serving as a baseline model for this dataset. The generation strategy involves
adding a special support strategy token at the beginning of the response to guide its gener-
ation.

• MISC (Tu et al., 2022): This model incorporates COMET to improve the understanding
of the seeker’s emotions and generate more supportive responses through mixed strategy
representation.

• PoKE(Xu et al., 2022) Latent variables are utilized to represent the one-to-many relation-
ship of support strategies.

• GLHG (Peng et al., 2022): A hierarchical graph neural network captures various infor-
mation, including global reasons, local intentions, and conversation history, and builds
hierarchical readability between them to generate emotional support response.

• KEMI(Deng et al., 2023) The model retrieves real-world case knowledge from a large-
scale mental health knowledge graph to generate mixed-initiative responses.

• TransESC (Zhao et al., 2023b) The state transition graph network captures three types
of turn-level transmission information: semantic transmission, strategy transmission, and
sentiment transmission, facilitating effective dialogue generation smoothly and naturally.

• FADO(Peng et al., 2023) The model leverages turn-level and conversation-level feedback
to penalize strategy and present context-to-strategy and strategy-to-context flow, generating
responses.

• PAL(Cheng et al., 2023) The model employs personal information alongside a controllable
strategy-based generation method to provide personalized emotional support.

• MFF-ESC(Bao et al., 2024) This paper propose a multi-stream information fusion frame-
work that fully integrates the text semantic stream, sentiment intensity stream, and feedback
stream to simulate the transformatioiin of sentiment intensity.

• SCBG(Xu et al., 2024) The model leverages semantic constraints during the generation
process to produce supportive responses that are relevant to the user.

D MORE EXPERIMENTAL RESULT

D.1 CEB CAUSAL ANALYSIS

To explore the causal graph between the seeker’s cognition, emotion, and behavior, experiments
were conducted to analyze the learned causal graph, as shown in Fig.5. It was found that the causal
graph of the seeker’s internal state remains consistent across all samples and time steps, demon-
strating a high degree of stability and consistency. Specifically, the cognitive state c directly affects
both the emotional state e and the behavioral state b, while the behavioral state further influences
the emotional state. This observation aligns with the conclusion on psychological mechanisms and
response patterns, implying that CausalESC can learn psychological concept representations that
conforms to true causal relationships.
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Figure 5: The learned causal graph A. The concepts include: 0 Cognition; 1 Behavior; 2 Emotion.
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Figure 6: Effects of latent space dimensionality on the disentanglement of cognition, behavior,
emotion and strategy.

D.2 EFFECT OF HIDDEN SIZE

We evaluate the impact of varying latent space dimensions on the experimental results, as shown in
Fig.6. Specifically, we test five configurations: 36, 42, 48, 54, and 60 dimensions. As the result indi-
cates, the model performs best when the latent space is 48. We observe that larger latent spaces may
lead to overfitting, while smaller spaces can restrict the model’s capacity to learn. Therefore, careful
selection of latent space dimensions is crucial for optimal performance. This further demonstrates
the model’s ability to capture the dynamic evolutions in the conversation.
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