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ABSTRACT

Reasoning language models have demonstrated remarkable performance on many
challenging tasks in math, science, and coding. Choosing the right reasoning
model for practical deployment involves a performance and cost tradeoff at two
key levels: model size and reasoning budget, where larger models and higher rea-
soning budget lead to better performance but with increased cost and latency. In
this work, we tackle this tradeoff from the angle of model configuration routing for
different queries, and present RADAR (Reasoning—Ability and Difficulty-Aware
Routing), a lightweight, interpretable, and scalable routing framework. Inspired
by psychometrics, RADAR learns an item response model from model responses
with different budgets to different queries, with interpretable parameters includ-
ing query difficulties and model-budget abilities. RADAR then routes queries with
higher difficulty to model-budget pairs with higher ability, and vice versa. We
conduct extensive experiments on 8 widely used challenging reasoning bench-
marks, demonstrating the superior performance of RADAR compared to state-of-
the-art model routing methods. RADAR also exhibits guery generalization capa-
bilities, showing strong performance on out-of-distribution queries in all bench-
marks. RADAR is also scalable and can efficiently integrate additional models by
dynamically selecting a small set of evaluation queries to estimate their abilities.

1 INTRODUCTION

Recent advances in large language models (LLMs) have leveraged reinforcement learning
(RL) (Shao et al.l[2024) to train models to reason using chain-of-thought before generating an out-
put. These reasoning language models (RLMs) (Yang et al., [2025} |Guo et al.l 2025} |OpenAl &
et al.| [2024) have demonstrated impressive performance across a diverse range of challenging tasks,
including math (MAA| 2024)), science (Rein et al.,2024), coding (Jimenez et al.| 2024)), visual per-
ception (Lu et al.,|2024), and tool use (Yao et al.l [2025). The excitement has led to a flurry of new
open-source and proprietary RLMs; for example, Hugging Face already lists 2,710 RLMs as of
September 17th, 2025. These models have varying sizes, specialize in different domains, and offer
various configurations, including reasoning efforts to balance performance and cost. For example,
OpenAT’s reasoning models (OpenAl & et al., |2024) have “low”, “medium”, and “high” reasoning
budgets for developers to choose from depending on their application.

Always choosing the “best” and most expensive RLM configuration with the highest level of reason-
ing budget is not always the “right” choice for every query: for some simpler queries, there might
exist a “worse” and cheaper RLM configuration with low or no reasoning budget that correctly an-
swers the query, resulting in significant cost savings without sacrificing performance. Indeed, we
empirically observe the same phenomenon in Figure|[I] where we show that over 50% of the queries
from MATH-500 (Hendrycks et al., 2021c) can be solved using an RLM as small as Qwen3-0.6B
with minimal reasoning budget (measured by the number of reasoning tokens). On the contrary,
some challenging queries require a much more capable RLM with high reasoning effort. Strong
RLMs can also “over-think” which could hurt performance even for simple queries (Su et al., 2025}
Hassid et al., [2025} [Hong et al., 2025} [Shojaee et al., [2025; |Ghosal et al., 2025). This performance-
cost tradeoff presents a challenge for practitioners: how to choose the “right” RLM and its configu-
ration (e.g., the reasoning budget) that is sufficiently capable of correctly answering a query, thereby
maximizing performance while minimizing cost?
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Figure 1: Left: Our pilot study on MATH-500 (Hendrycks et al., 2021c) shows a performance dif-
ferential over (RLM, reasoning budget) configurations with the smallest RLM already solving over
50% of the queries with minimal reasoning. Right: RADAR exploits this performance differential
by jointly estimating query difficulties and configuration abilities, and routing queries to sufficiently
able configurations, thereby optimizing performance-cost tradeoffs towards the Pareto frontier. On
out-of-domain queries from FRAMES (Krishna et al., [2024), RADAR can match 90% of the per-
formance of OpenAl o4-mini with high reasoning effort at just 10% of its cost, with the next best
method |Song et al.| (2025)) requiring 30% of the cost.

In this work, we propose a framework entitled RADAR (Reasoning—Ability and Difficulty-Aware
Routing) to address the above challenge. Given a pool of {RLM, reasoning budget} configurations,
a user-desired performance-cost tradeoff profile, and a new query, RADAR chooses the optimal
configuration for the query according to the tradeoff profile. RADAR is lightweight and efficient:
it decides the configuration in real-time (~7 milliseconds latency overhead) at the query level (it
performs the assignment before the RLM ingests the query) and does not require model switching
during generation, thus avoiding the need to re-query the RLM multiple times or recompute the K'V-
cache that could occur for cascading-based routers (Chen et al., 2023 Zhang et al.,|2024). RADAR
is also designed to be plug-and-play: it treats RLMs as black-boxes and uses them as-is without the
need to fine-tune them, which is convenient for practitioners to use RLMs and their configurations
in a standard API call. When a new RLM becomes available, RADAR can rapidly include it into its
pool of {RLM, reasoning effort} configurations available for future queries.

The key enabling ingredient in RADAR is a custom item response theory (IRT) model, a classic
technique inspired by psychometrics and educational assessment (Rasch, |1960; |Lord, |2012; van der
Linden & Hambleton, |1997;|DeMars| 2010). We use an IRT model to jointly estimate interpretable
query difficulties and RLM abilities at different reasoning budgets. Specifically, we first perform a
calibration step, where we collect evaluation responses of each {RLM, reasoning budget} configu-
ration to a collection of queries. We then model this response matrix via IRT to estimate the latent
ability and difficulty parameters. To make this approach generalizable to out-of-distribution (OOD)
queries, we parametrize the query difficulty using a learnable vector that, when multiplied by the
query embedding obtained from an off-the-shelf embedding model, yields the query difficulty. We
also parametrize each RLM configuration with a learnable, scalar-valued ability. To include a new
RLM configuration in RADAR, we estimate its ability by evaluating it on a small set of dynamically
selected queries, employing a classic technique inspired by adaptive testing in educational assess-
ment (Wainer et al., 2000; Hofmann et al.,|2025)). These design choices enable RADAR to (1) handle
new queries in real-time and (2) generalize well to new RLM configurations.

We formulate model configuration selection as multi-objective optimization (MOO) that searches
for the configuration at the Pareto frontier of the performance-cost tradeoff curve using scalariza-
tion techniques (Miettinen, [1999). MOO (Keeney & Raiffa, 1993 Emmerich & Deutz, 2018)) is a
well-established framework for optimizing multiple objectives, with major applications in engineer-
ing (Marler & Aroral 2004), product design and manufacturing (Wang et al.,[2011}), and economics
(Ponsich et al} 2013). This work is the first application of MOO, beyond linear scalarization, to
LLM routing. We conduct extensive experiments on 8 widely recognized challenging reasoning
benchmarks. RADAR demonstrates superior performance compared to existing state-of-the-art rout-
ing methods. For example, on MATH-500 (Hendrycks et al., 2021c), RADAR can match 90% of
performance of OpenAl o4-mini with high reasoning effort at 1.31% of its cost. RADAR exhibits
strong generalization to OOD queries including long-context multi-document QA (Krishna et al.,
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Figure 2: Illustration of our RADAR framework. Left: RADAR jointly estimates interpretable query
difficulties and RLM configuration abilities using IRT (simplified for illustration purposes; full de-
tails in Section [3.3). New RLM configurations can be rapidly added by estimating their ability on
a small subset of dynamically selected queries using adaptive testing (Section[3.5). Right: RADAR
formulates routing as multi-objective optimization and routes queries to sufficiently capable config-
urations, optimizing performance-cost tradeoffs towards the Pareto frontier (Section @

2024) despite being primarily trained on shorter queries. Further, RADAR scales and generalizes
well to new RLM configurations showing an improvement in routing performance. We summarize
our key contributions below.

[C1] We cast adaptive reasoning as routing over discretized model-budget configurations and select
configurations via a Pareto-optimal performance—cost objective, all in a black-box setting.

[C2] RADAR adapts Item Response Theory to learn interpretable query difficulties and configuration
abilities from data, enabling low-latency routing and generalization to unseen queries.

[C3] RADAR supports plug-and-play integration of new reasoning models via adaptive calibration
that estimates abilities from a small, informative subset of queries.

[C4] Across 8 challenging reasoning benchmarks, RADAR achieves superior performance—cost
tradeoffs and strong out-of-distribution generalization, including long-context document QA tasks.

2 RELATED WORK

Efficient Reasoning. A rapidly growing literature seeks to make reasoning models more effi-
cient; see [Yue et al.| (2025) for an overview. Methods such as L1 (Aggarwal & Welleck, [2025)
and S1 (Muennighoff et al., 2025) provide length control, encouraging shorter reasoning chain-of-
thoughts that lead to correct answers. Others prune or adapt the reasoning process by dynamically
shortening or extending reasoning (Hou et al., [2025; Xu et al., [2025; Wang et al.||2025); adaptively
controlling inference steps (Huang et al., |2025); and analyzing when additional reasoning is ben-
eficial or wasteful (Su & Cardiel, 20255 [Su et al., 2025 [Yu et al., [2025} |Ghosal et al., 2025). Our
approach is complementary to single-model efficiency: RADAR can include these efficient RLMs
as an additional model configuration routing candidates. In contrast to static single-model tuning,
which requires access to RLM weights, RADAR works in a black-box setting, leveraging the com-
plementary performance of multiple RLMs in a rapidly growing heterogeneous RLM landscape, and
dynamically shifts performance-cost tradeoffs depending on user applications.

Routing for Foundation Models. Recent work in model-routing (Ding et al. 2024} Ong et al.,
2024; |Chen et al.| 2025} Hu et al.| 2024} Zhang et al., [2025)) focuses on model selection with black-
box predictors or model-cascades (Chen et al., 2023). In contrast, we explore adaptive reasoning
through the lens of routing over model-budget configurations of RLMs and provide a novel for-
mulation of routing as an MOO. Unlike opaque routing regressors (Chen et al., 2023} Ding et al.,
2024} |Ong et al., 2024), we employ an IRT parameterization to model latent query difficulties and
model configuration abilities as interpretable parameters. Compared to a concurrent IRT-based rout-
ing method (Song et al., 2025)), our work (1) provides a novel problem formulation of routing, on
previously unexplored reasoning models, as an MOO opening a powerful toolkit of MOO solu-
tion techniques like Chebyshev scalarization, (2) uses a different IRT parameterization with fewer
parameters providing an interpretable scalar-valued ability ordering among models and potentially
requiring less training data, (3) provides new MOO-based routing performance metrics evaluating
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the coverage of the Pareto front, and (4) presents an adaptive-testing based method to quickly gen-
eralize the routing framework to new RLMs for improved performance. We provide an expanded
related work section and detailed comparison in Appendix

3 METHODOLOGY

In this section, we introduce our RADAR framework for adaptive reasoning through routing RLM
configurations. We begin by formulating adaptive reasoning as MOO, where the router selects the
optimal {RLM, reasoning effort} configuration for a chosen performance-cost tradeoff. Under this
formulation, we then detail (1) how to estimate a particular RLM’s performance for a given query
using IRT and (2) how to solve this optimization problem.

3.1 ROUTING-BASED ADAPTIVE REASONING IN RLMS THROUGH DISCRETIZATION TRICK

Unlike classical model routing (Ong et al.| [2024; |Ding et al., 2024)), which chooses from a set of
different base models, choosing the right RLM for practical deployment involves a performance and
cost trade-off at two key levels: base models and reasoning budgets. We unify these decisions by
discretizing each RLM m € M by its available set of reasoning budgets u € U,,. For example,
the available reasoning budgets can be {low, medium, high} for proprietary RLMs (e.g., OpenAl
o4-mini), or a user-defined discrete set of values such as {0, 1k, 2k, 4k, 8k, 16k}, for open-source
RLMs. To enforce a reasoning budget on an open-source RLM (e.g. Qwen3), we count the number
of thinking tokens during generation. If this number exceeds the specified budget, we append an
interruption message (e.g. “output answer based on current thinking”) along with the RLM’s end
of thinking token (e.g., </think>) to complete the thinking chain-of-thought and preemptively start
generating answer completion tokens. Each discretization is referred to as a model configuration
g = (m,u) € G with G C M X U, being the set of all model configurations. Discretization helps
enable routing in RLMs at the configuration level. We use the general term “configuration” here
since, apart from the reasoning budget, RADAR can be used to select among other model settings,
such as parameterizations of the RAG pipeline attached to the RLM or decoding methods employed.

3.2 FORMULATING RLM ROUTING AS A MULTI-OBJECTIVE OPTIMIZATION PROBLEM

We present a novel view of model routing through the lens of MOO, allowing us to leverage effective
solution techniques from MOO literature (Miettinen, |1999; |[Branke et al., 2008} Murata & Ishibuchi,
1995; [Zhang & Golovinl [2020). Given a set of queries @ = {qi,...,qxr} and a set of candidate
model configurations G = {g1,...,gn}, our goal is to assign each query ¢; € Q to the optimal
configuration g; € G which maximizes performance and minimizes cost. For each query ¢ (index ¢
dropped for brevity), we define an MOO with two objective functions: performance and cost. The
performance prediction function p, : G — [0, 1] predicts the probability of a correct response by
running configuration g on query ¢. Similarly, the cost prediction function ¢, : G — [0, 1] predicts
the cost of running configuration g on query ¢, normalized to [0, 1]. We formulate the optimization
problem as a two-dimensional a-priori (Branke et al.| [2008) MOO and solve it using scalarization
techniques (Murata & Ishibuchil |1995; Zhang & Golovin, 2020), written as:

g = argmax f(pq(g),cq(9)), (1)
geqg

where f is a scalarization function. Scalarization aggregates the objective functions of an MOO
to solve a single-objective problem (SOP), such that the optimal solutions to the SOP are Pareto
optimal solutions to the MOO. By using different weights in the aggregation, we can obtain differ-
ent points on the performance-cost Pareto front. We explore two scalarization techniques: linear
scalarization (Murata & Ishibuchil [1995) and Chebyshev scalarization (Zhang & Golovin, |[2020)).

Linear Scalarization. Linear scalarization (Murata & Ishibuchi,|1995) uses non-negative weights
(at least one of the weights is positive) for each objective function of the MOO and maximizes the
weighted sum of objective functions. The linear scalarization problem (LSP) of our MOO with
weight vector w € R2, is given by:

arg max wipg(g) + wz(—cq(g)) 2)
geg

Since we can factor a multiplicative constant out of the weights, we use a weight vector that sums
to 1. Further, since we have a two-dimensional MOO, we can simply set wp = 1 — w;. Our LSP
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becomes:
LSP;! = arg I;leaé{ wipg(g) — (1 — wi)eq(9) (3)

We note that Equation [3|recovers the routing formulation presented in existing routing methods (Hu
et al.,[2024; [Song et al.| 2025; Zhang et al., 2025) but arrived at through the lens of an MOO.

Chebyshev Scalarization. In general, if the Pareto front is non-convex, there could be points
on the Pareto front that cannot be obtained as the solutions of any weight-parameterized LSP. We
therefore also explore Chebyshev scalarization (Zhang & Golovin, [2020), which uncovers points
in the concave parts of the Pareto front by formulating the SOP as a weighted Chebyshev distance
to an ideal reference point. Chebyshev scalarization aims to minimize the maximum weight-scaled
penalty over all dimensions of the MOO from an ideal reference point. The Chebyshev scalarization
problem (CSP) of our MOO with weight vector w € R% is given by:

CSP;" = arg ngin max{wi |1 — pg(g)], (1 —wi)cy(g)} 4)
g€

The weight parameter w; controls the trade-off between performance and cost: a larger value of w;
means a preference for performance over cost by favoring stronger model configurations more often,
while a smaller value of w; prefers weaker but more cost-effective model configurations. Given
a user-specified tradeoff profile with weight w; and query g, RADAR assigns configuration g =
LSP;* (or configuration g = CSP;"* depending on the chosen scalarization scheme) to maximize
performance and minimize cost.

3.3 IRT-BASED CALIBRATION OF RLM REASONING ABILITY AND QUERY DIFFICULTY

A key component in solving the MOO in Equation [I]is an accurate parameterization of the perfor-
mance prediction function p,(g), which predicts the probability of a correct response by configura-
tion g on query q. We leverage item response theory (IRT) (Rasch [1960; |[Lord, 2012; lvan der Lin-
den & Hambleton, |1997; [DeMars|, 2010) that is often used to model student responses to test items,
specifically the two-parameter logistic (2PL) model (Lord, 1951} Birnbaum, [1968), to parameterize
our performance prediction function. IRT assumes monotonicity, i.e., as a model configuration’s
ability increases, its probability of correctly answering a query also increases. The 2PL model takes
two query characteristics into account, difficulty and discrimination. Intuitively, a configuration’s
ability estimate is impacted differently after it answers a query correctly, depending on the difficulty
of the query. Query discrimination encodes the varying rate at which the likelihood of a correct
response increases with the model configuration’s ability.

In RADAR, we embed query ¢ into a d,-dimensional vector e using a frozen embedding model.
Leveraging the content of the queries through embeddings helps RADAR generalize to OOD queries,
including ones from long-context multi-document QA, despite being trained on shorter queries. We
obtain the scalar-valued difficulty b € R and discrimination @ € R by linear transformations of the
query embeddings, i.e., a = w!e, b = w] e, where w,, w, € R% are learnable d,-dimensional
transformation vectors. Our design choice of simple linear transformations and a frozen embedding
model helps ensure minimal router latency, which we analyze in Section 4.3 and Appendix [E.5]
We use scalar-valued ability parameters § € R for model configurations. In the 2PL model, the
probability that a model configuration g correctly answers a query ¢, a binary-valued outcome, is
modeled as a Bernoulli random variable y, where y = 1 means that a model configuration g answers
query ¢ correctly. Its probability is given by: p(y = 1) = o(a(f — b)), where o(-) is the sigmoid
function.

We note that a concurrent work in IRT-based model-routing (Song et al., [2025) uses a multi-
dimensional IRT model (MIRT) (Reckase, [2009) to parameterize the performance function. In con-
trast, we use scalar-valued model configuration abilities, enabling learned ability values to capture
ordering information among model configurations and thus be interpretable. The fewer number of
parameters in the 2PL model means that it requires less data to train than an MIRT model. Fur-
ther, instead of the qualitative model profile embedding approach to model generalization adopted
by (Song et al., [2025), we use an adaptive testing-based approach to quickly estimate the precise
scalar ability of any new RLM configuration, enabling RADAR to rapidly include it in the pool of
RLM configurations for routing for future queries (see Section [3.3)).
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To train the IRT model, we construct a binary-valued evaluation matrix U € {0, 1}"** of responses
by n RLM configurations, i.e., different models with different reasoning budgets, on a set of k
training queries. We minimize the negative log likelihood of the observed evaluation matrix U
using binary cross entropy loss, which for a single entry y € U is given by:

EZPL = _ylogﬁtﬁ(Qaf) + (1 _y) log(l _ﬁtﬁ(Qaf))v (5)
which we average over all entries of U. We minimize this objective to learn parameters for our
routing model, ¢, including w,, wy, and 6;.

3.4 COST PREDICTION

Apart from the performance prediction function, the other component in solving our routing MOO
(see Equation 1) is the cost prediction function c,(g). Following prior routing work (Hu et al.,
2024; Song et al., [2025), we adopt a heuristic-based approach. We calculate the output cost of
using configuration g to answer query g by multiplying the cost per token ¢, of the base RLM

of configuration g, with the total number of reasoning tokens n’;é‘q) and completion tokens nf}‘?g)

generated, which is then averaged over all training queries. This heuristic works well in practice and
is given by:

cal9) = 1/191 Xgee(n5ly) + g -to: ©
where we obtain the cost per token ¢, in US dollars of the base RLM from the official website for
proprietary models (e.g., OpenAl for 04-mini) or from cloud providers{ﬂ for open source models
(e.g., Qwen3). We min-max normalize each configuration cost ¢,(g) to the range [0, 1], ensuring

that both predicted cost and performance are on the same scale. We leave the development of more
elaborate cost prediction methods as an important avenue for future work.

3.5 EXPANDING THE PoOL OF RLM CONFIGURATIONS THROUGH ADAPTIVE TESTING

To add a new model configuration g; to RADAR, we need an accurate estimate of its ability, 6;.
Given a fitted 2PL model, the query discrimination a; and difficulty b; parameters can be used to

estimate the ability 6, of the new configuration g; by observing answers to k queries:
A k ij 1—yi;
0 = maxT[j_, [o(a;(0 = b;)]" [1 =0 (a;(0 —b))] ", (7)

where y;; denotes the binary-valued answer for g; on query g;. To alleviate the burden of evalu-
ating this new model configuration on all queries, we can leverage ideas from psychometric test-
ing (Wainer et al., |2000): by adaptively constructing a small set of evaluation queries Q*, it is pos-
sible to obtain a rather accurate ability estimate éi. Inspired by Hofmann et al.| (2025), we prioritize
selecting queries with high Fisher information on the ability estimate, which is given by:

1(0:,a5,b;) = ajo(a;(0; — b;))[1 — o(a;(6; — by))]. ®)

Therefore, the query selection and evaluation set updating process is given by:
Qi (0) = 2; Qi(t) = Qi (t — 1) U{argmax,, cq\qs (¢—1) L (A (mi, Q7 (t = 1)), a;,05)}. (9)

We iterate this procedure to collect a certain number of evaluation queries, resulting in )}, and
estimate the ability of g; using queries from this set. We compare against uniform random sampling

in Appendix[E.€]
4 EXPERIMENTAL EVALUATION

In this section, we detail our evaluation setup, including benchmarks, metrics, and baselines, used
for a comprehensive evaluation of RADAR.

Benchmarks. We evaluate on eight reasoning benchmarks, including AIME (MAA| [2024),
MATH (Hendrycks et al.|[2021c), GPQA (Rein et al., 2024)), LSAT (Wang et al., 2022} Zhong et al.,
2021), MMLU (Hendrycks et al.,|2021bja), MMLU Redux (Gema et al.,[2024), MMLU Pro (Wang
et al., 2024), and FRAMES (Krishna et al.l [2024), spanning competition math, PhD-level sci-
ence, law, and general knowledge with both multiple-choice and open-ended formats. In partic-
ular, FRAMES probes RADAR’s generalization to long-context queries in a multi-doc QA setting;
long-context evaluation is largely absent in prior routing work—RouterBench (Hu et al.,|2024) is a
notable exception, but on a private in-distribution RAG set. See Appendix [C|for details.

1https ://www.together.ai/pricing
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Table 1: Routing performance on ID queries across benchmarks reported on the hypervolume met-
ric (higher is better). RADAR outperforms baselines, denoting better performance-cost tradeoffs
towards the Pareto frontier. See Table E] for performance on OOD queries.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 0.5545 0.6866 0.6942 0.7513
MMLU 0.6905 0.8592 0.8604 0.8720
MMLU-Redux 0.7281 0.9053 0.9117 0.9230
MMLU-Pro 0.5589 0.7819 0.7812 0.7995
LSAT 0.6913 0.9125 0.9163 0.9188
AIME 0.5159 0.7680 0.7766 0.7760
MATH-500 0.7433 0.9528 0.9420 0.9449
FRAMES 0.6589 0.8325 0.8501 0.8762

Table 2: Routing performance on ID queries across benchmarks reported on the CPT (90%) metric
(lower is better). CPT (90%) denotes the fraction of the cost of running OpenAl o4-mini with high
reasoning effort to match 90% of its performance. See Table @ for performance on OOD queries.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 80.36% 57.13% 53.99% 13.21%
MMLU 76.30% 2.71% 2.66% 2.69%
MMLU-Redux 75.06% 2.59% 2.80% 2.42%
MMLU-Pro 83.57% 5.19% 3.83% 3.89%

LSAT 80.14% 2.02% 1.93% 1.82%
AIME 87.22% 65.65% 61.23% 60.69%
MATH-500 76.15% 1.34% 1.44% 1.31%
FRAMES 77.90% 43.50% 31.53% 13.11%

Metrics. We report hypervolume (Emmerich & Deutz, [2018), which, in our setting, corresponds
to the area under the performance-cost trade-off curve across weights w; (higher is better). We also
use the cost—performance threshold (CPT) metric, akin to call-performance thresholds (Ong et al.,
2024): relative to the best-performing configuration, o4-mini-high, CPT(z%) is the minimum cost
required to reach % of that performance, normalized by the cost of 04-mini-high. For example,
CPT(90%) = 0.1 means achieving 90% performance at 10% of the cost.

Baselines. We compare RADAR to several recent, state-of-the-art model routing methods, includ-
ing RouterBench (Hu et al., [2024; [Chen et al., 2025) and IRT-Router (Song et al.| 2025). These
methods do not natively generalize for adaptive reasoning or RLM configuration routing. We there-
fore adapt these methods for our experimental setting; details are available in Appendix We
also compare to several heuristic-based baselines, including All-Large (04-mini, high budget), All-
Small (Qwen3 0.6B, 0 tokens), Oracle (chooses the cheapest best-performing configuration given
test-set performance), and Random-All (uniform over configurations). Random-Pair selects the
largest configuration with probability w;, the user-defined performance—cost weight.

Evaluation Setup and Implementation Details. We conduct both in-distribution (ID) and out-
of-distribution (OOD) evaluations. For ID experiments, we aggregate the training splits of all 8
benchmarks into a single training set for training the 2PL IRT model (see Section [3.3)) and report
performance on the test split of each benchmark separately. We use an 80% — 20% train-test split
for benchmarks without a predefined test set. For OOD, for each benchmark, we aggregate the
training splits of the other remaining non-overlapping benchmarks into a single training set and
report performance on the test split of this benchmark. For example, for the OOD experiment on
AIME, the training split of AIME and of overlapping benchmarks (MATH since MATH includes
questions from AIME), are held out from the training set.

We route over 35 configurations comprising OpenAl o4-mini (budgets: low, medium, high) and
Qwen3 models (0.6B/1.7B/4B/8B) with budgets 0, 256, 512, 1k, 2k, 4k, 8k, 16k (Yang et al., 2025}
OpenAl, 2025). Each configuration is evaluated once per training query with standard prompts
(Appx. [C.2)); for AIME’s small test set, we average over eight runs. Results closely match reported
RLM performance (Yang et al.l 2025} |OpenAl, [2025). In total, we collected 1.75 million binary
responses over 50,139 unique questions across train/test splits of all eight benchmarks. Further
details are in Appendix



Under review as a conference paper at ICLR 2026

Table 3: Routing performance across benchmarks reported on the hypervolume metric (higher is
better), before (RADAR) and after (RADAR++) adding new RLM configurations from Qwen3-14B,
to test RADAR’s model generalization capability. RADAR++ quickly estimates the abilities of new
configurations through adaptive testing for an improved routing performance.

B In-Distribution (ID) Out-of-Distribution (OOD)
enchmark
RADAR RADAR++ ‘ RADAR RADAR++

GPQA-Diamond 0.7513 0.7535 0.7466 0.7463
MMLU 0.8720 0.8731 0.8609 0.8698
MMLU-Redux 0.9230 0.9238 0.9072 0.9091
MMLU-Pro 0.7995 0.8021 0.7858 0.7951
LSAT 0.9188 0.9233 0.9146 0.9255
AIME 0.7760 0.7828 0.7566 0.7566
MATH-500 0.9449 0.9461 0.9368 0.9368
FRAMES 0.8762 0.8830 0.8865 0.8931

4.1 MAIN QUANTITATIVE RESULTS

RADAR outperforms state-of-the-art model routing methods. Table|I|and Table [2| report rout-
ing performance of all methods across 8 reasoning benchmarks evaluated in the ID setting on the hy-
pervolume and CPT(90%) metrics, respectively. We include results on the CPT metric at additional
thresholds in Appendix We see that RADAR outperforms all baselines on most benchmarks
and performs comparably to the best existing baseline on the remaining benchmarks. RADAR out-
performs IRT-Router (Song et al.,[2025)), a concurrent IRT-based routing work, suggesting that our
novel formulation of RLM routing as an MOO, as well as the use of solution techniques like Cheby-
shev scalarization, enable better recovery of the Pareto performance-cost frontier. For example, on
the challenging GPQA-Diamond benchmark, RADAR demonstrates an 8% performance boost over
the second-best baseline on the hypervolume metric. On the CPT metric, on MATH-500, RADAR is
able to match 90% of the performance of o4-mini with a high reasoning budget at 1.31% of its cost.
Similar gains are seen across all benchmark tasks.

RADAR exhibits strong query generalization capabilities. Table [5] and Table [6] report routing
performance of all methods across 8 reasoning benchmarks evaluated in the OOD setting on the
hypervolume and CPT (90%) metrics, respectively. We show the Pareto performance-cost tradeoff
curves for all methods on OOD queries from FRAMES (Krishna et al) [2024) in Figure E} We
see that RADAR exhibits strong generalization to OOD queries, outperforming existing state-of-
the-art methods on most benchmarks. In particular, we highlight its dominant performance on the
challenging long-context, multi-document reasoning-based QA task from FRAMES (Krishna et al.,
2024), despite primarily being trained on much shorter queries. When generalizing to OOD queries
with significantly higher difficulty (e.g., AIME) than those seen during training, RADAR tends to
assign a model configuration with a slightly lower ability than optimal, resulting in a slight decrease
in performance. This weakness can be addressed by including a small number of representative
queries during training, as shown in Appendix [E.§

Ablation study. Table [/| shows that Chebyshev scalarization outperforms linear scalarization,
which is adopted in prior routing work (Song et al., 2025; [Hu et al., [2024) in the OOD experi-
mental setting, due to its ability to explore both convex and concave points on the Pareto front.
In the ID experimental setting, both scalarization techniques perform similarly, with linear being
marginally better. Our novel formulation of routing as an MOO opens the door to leveraging other
MOO solution techniques in future work. We also conduct an ablation on the size of the training
matrix. Using just 20% of subsampled training queries, RADAR achieves a similar performance to
using the entire training set as shown in Table [§]

4.2 MODEL SCALABILITY AND GENERALIZATION EVALUATION

We evaluate the scalability of RADAR to new RLMs by adding 8 new model configurations from the
Qwen3 14B RLM. Table [3]shows the result; using adaptive testing, RADAR accurately estimates the
abilities of these new configurations by dynamically selecting just 5k training queries ( 12% of the
training set) for evaluation, resulting in improved routing performance. Figure ] shows how routing
shifts to new RLM configurations. In contrast to a concurrent IRT-based routing method (Song et al.}
2025)), which embeds a qualitative profile of the new model by prompting ChatGPT, or even existing
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Figure 3: RADAR estimates interpretable query difficulties and RLM configuration abilities. Left:
Mean predicted correctness probability of configurations on questions with 5 different ground-truth
difficulty levels in MATH-500. As difficulties increase, configurations with higher abilities are
predicted to perform better. Right: Fraction of routing calls on MATH-500 queries spread across
RLM configurations when varying the performance-cost tradeoff weight. A lower (higher) weight
leverages a higher fraction of Qwen3 (04-mini) configurations, prioritizing cost (performance).

model-pair-based routing methods (Ding et al., 2024), which assume the new model-pair has a sim-
ilar ability difference, RADAR can accurately estimate the ability of any new model configuration.

4.3 INTERPRETABILITY AND LATENCY ANALYSIS

RADAR estimates interpretable query difficulties and RLM configuration abilities. We
highlight the interpretable nature of RADAR through a case study on ID queries from MATH-
500 Hendrycks et al| (2021c) where queries are annotated with one of five levels of increasing
difficulty. On the left panel of Figure[3] we find a moderate Pearson correlation coefficient of 0.509
between RADAR-estimated query difficulties and the five ground-truth levels. With an increase in
query level, we see that configurations with higher abilities are predicted to have higher correctness
probabilities, leading to a mean answer correctness prediction accuracy of 84.42% over all config-
urations and queries. On the right panel of Figure [3] we show the fraction of routing calls across
configurations as the performance-cost tradeoff weight is varied, with cost-effective Qwen3 models
preferred at lower weights and performant o4-mini models preferred at higher weights.

RADAR works in real-time with minimal latency overhead. We measure the latency of RADAR
and compare it to the latency of the smallest RLM configuration (Qwen3-0.6B with 0 reasoning
budget) used to generate answers to queries. The average per query routing latency overhead of
RADAR over three runs of 500 queries from MATH-500 (Hendrycks et al.l [2021c) is 6.89 & 0.53
milliseconds. Compared to the time taken for the smallest RLM configuration to answer the query,
which is 869.56 £ 1.1 milliseconds, RADAR adds negligible overhead. We analyze throughput in

Appendix [E9]

5 CONCLUSIONS AND FUTURE WORK

We introduced RADAR, a reasoning—ability and difficulty-aware routing framework that (1) for-
malizes adaptive reasoning as an MOO and (2) leverages item response theory to adaptively assign
queries to RLM model-budget configurations. RADAR achieves strong cost—performance tradeoffs,
consistently outperforming prior routing methods across eight challenging reasoning benchmarks,
and generalizes well to out-of-distribution queries. Beyond efficiency, RADAR offers interpretabil-
ity by exposing query difficulty and model abilities, and supports plug-and-play integration of new
RLM configurations through adaptive calibration. Several promising avenues for future work ex-
ist. First, we would like to extend RADAR beyond text to multi-modal reasoning settings. Second,
incorporating additional configurations beyond the reasoning budget, such as retrieval, tool usage,
and decoding algorithms, may yield fine-grained routing decisions for a wider range of applica-
tions, such as ultra-long context QA and deep research. Third, exploring RADAR in other constraint
scenarios, such as when there is a total budget constraint on a batch of queries. Together, these direc-
tions highlight the broader potential of RADAR as a principled, interpretable foundation for adaptive
reasoning in an ever-evolving RLM ecosystem.
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REPRODUCIBILITY STATEMENT

We structured the paper and Appendix so the results can be independently re-implemented and re-
produced. The problem setup, routing objective, and IRT modeling details are specified in Section|[3]
Dataset sources, preprocessing, and ID/OOD split procedures are detailed in Appendix [C| Experi-
mental details such as baselines, evaluation protocol, metrics, and other implementation details are
available in Section[4]and Appendix

ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. Our study evaluates routing over public reasoning
benchmarks and does not involve human subjects or personally identifiable data; we follow dataset
licensing and attribution guidance and document detailed preprocessing steps in Appendix [C] We
note that any routed answer inherits the properties, including potential social biases or safety issues,
of the underlying RLM configurations; our method does not itself mitigate these risks, and we
caution against deployment without domain-appropriate safeguards and bias auditing.
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A THE USE OF LLMS FOR THIS PAPER

LLM usage is limited to editing suggestions such as choices of words and phrases and highlighting
grammar issues based on the draft that the authors wrote. Other LLM usage includes using LLM-
augmented search engines to assist finding previous and concurrent related work.

B EXTENDED RELATED WORK

Efficient Reasoning. A rapidly growing literature seeks to make reasoning models themselves
more efficient; see (Yue et al., [2025) for a broader overview of this direction. Methods such as
L1 (Aggarwal & Welleck!|2025) and S1 (Muennighoff et al.,|2025) provide length control, enabling
reasoning models to trade off accuracy and cost by constraining chain-of-thought length. Others
prune or adapt the reasoning process by dynamically shortening or extending reasoning (Hou et al.,
2025; Xu et al., 2025; [Wang et al., |2025); adaptively controlling inference steps (Huang et al.,
2025)); and analyzing when additional reasoning is beneficial or wasteful (Su & Cardie|, 2025} [Su
et al.l 2025} |Yu et al. |2025; |Ghosal et al.l 2025). Theoretical perspectives further study optimal
reasoning length (Lee et al., 2025). These works aim to make a single model more efficient. They
also require access to model weights, which usually do not apply for closed-source or black-box
settings. Our approach is complementary: RADAR treats any such efficient reasoning model as an
additional candidate in its pool of (model, reasoning effort) configurations. This means advances
in adaptive or efficient reasoning can be seamlessly integrated into our framework, while RADAR
contributes orthogonally by providing per-query routing, interpretability through IRT, and Pareto-
optimal cost—performance control. In contrast to static single-model tuning, which requires weight
access, RADAR operates in a black-box setting and leverages the complementary strengths of diverse
RLMs. This enables RADAR to dynamically shift along performance—cost tradeoffs depending on
application needs in a heterogeneous RLM landscape.
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Routing for Foundation Models. Recent work studies cost—quality routing across multiple

LLMs (Chen et al.| 2023; [Zhang et all, 2024} [Ding et al, [2024; [Ong et al 2024} [Hu et al., 2024}
ISakota et al., [2024; [Chen et al.| 2025; Song et al., 2025). Most methods focus on model selec-

tion with black-box predictors or cascades (Chen et al., 2023} Ding et al.| 2024}; [Ong et al.| 2024}
ISakota et al., 2024; (Chen et al.l [2025), though TREACLE additionally co-selects prompt types un-
der budget constraints (Zhang et al.l 2024). We instead study adaptive reasoning and cast this
problem as routing over model-budget configurations, where the budget controls thinking-token ef-
fort, making reasoning cost an explicit decision dimension in addition to the model itself. Routers
also differ in when they commit: cascaded approaches may re-query a model (Chen et al.| 2023}
Zhang et al [2024), while others choose once per query 2024). Our router makes a
single assignment before generation, avoiding mid-turn switching (and KV-cache recomputation) or
multiple re-querying while still retaining favorable cost—quality trade-offs. Finally, we emphasize

interpretability and control. Unlike opaque regressors (Chen et all, 2023} [Ding et al., 2024} [(Ong
2024), we use an IRT parameterization to expose query difficulty and configuration ability.

Comparison with IRT-Router Compared to IRT-Router (Song et all 2025)), a concurrent and
recently released work, RADAR makes the following contributions:

1. Novel MOO Formulation: We’re the first to formulate model routing in a mathematically
principled way as multi-objective optimization (MOO) that searches for the model at the
Pareto frontier of the performance-cost tradeoff curve using scalarization techniques. The
objective used in IRT-Router is introduced ad hoc and is a special case of our MOO for-
mulation with linear scalarization. Beyond simple linear scalarization, which cannot re-
cover non-convex Pareto fronts, our MOO formulation allows the LLM routing community
to leverage powerful solution techniques from well-established MOO literature, including
Chebyshev scalarization. In RADAR, we find that Chebyshev scalarization outperforms
linear scalarization on the stable hypervolume metric, in the challenging OOD experimen-
tal setting, due to its ability to explore both convex and concave points on the Pareto front
(see Table[7). In the easier ID experimental setting, both scalarization techniques perform
similarly, with linear being marginally better. We leave the exploration of other MOO
solution techniques, such as lexicographic methods, for future work.

2. Model Generalizability: Another significant contribution of RADAR is its effective model
generalization capability. IRT-Router uses an ad hoc approach: it queries ChatGPT (web
search mode) for a description of the new LLM, which is then corrected by manual inter-
vention and embedded. IRT-Router notes the limited generalizability of their approach and
highlights model generalizability as an important direction for future work. In contrast, to
add a new RLM configuration in RADAR, we simply need its ability. To precisely estimate
the ability of a new RLM configuration, RADAR follows a principled and fully automated
approach by evaluating it on a small set (12% of training queries) of dynamically selected
queries, employing a classic technique inspired by adaptive testing in educational assess-
ment.

3. Informative Metrics: IRT-Router reports performance at three arbitrary performance-cost
tradeoff weights (0.2, 0.5, and 0.8), which fail to provide an accurate evaluation of rout-
ing methods. In contrast, our MOO-based routing formulation leverages the hypervolume
metric from MOO literature, which corresponds to the area under the performance-cost
trade-off curve across the entire domain (0 to 1) of the trade-off weight, yielding a more
stable and informative metric.

4. Custom Interpretable IRT Model: IRT-Router employs a standard Multidimensional-IRT
(MIRT) model, which uses non-interpretable vectorized abilities. In contrast, RADAR uses
a custom, interpretable IRT model with multidimensional embeddings for queries to enable
OOD generalizability and scalar model abilities to support interpretable ability ordering
across models. This ability ordering, as seen in the y-axis of Figure 3] is helpful for RLM
benchmarking and evaluation.

5. Focus on Reasoning LLMs: In contrast to past work, including IRT-Router, which are pri-
marily focused on LLMs, we present a routing formulation for RLMs incorporating reason-
ing budgets. Choosing the right RLM for practical deployment involves a performance-cost
trade-off at two key levels: base models and reasoning budgets. We unify these decisions by
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Table 4: Dataset statistics of prompt tokens across reasoning benchmarks used.

Dataset Samples Mean Tokens Min Tokens Max Tokens
AIME 1,035 143.00 30 3,312
MATH 8,000 86.16 24 806
GPQA 448 250.27 82 2,812
LSAT 2,025 263.63 174 570
MMLU 13,937 150.50 66 1,040
MMLU Redux 5,298 135.50 68 1,000
MMLU Pro 12,032 237.51 70 1,700
FRAMES 561 16,272.19 690 31,954

discretizing each RLM by its available set of reasoning budgets. Although simple, our dis-
cretization trick easily extends to selecting other model settings, such as parameterizations
of the RAG pipeline attached to the RLM or decoding methods employed.

Item Response Theory in Machine Learning. Originally designed for assessment and other edu-
cational applications, Item Response Theory (IRT) has emerged as a versatile tool for understanding
and improving foundation models. It has been applied to evaluation and benchmarking such as
jointly estimating model ability and item difficulty to build adaptive or efficient test suites (Ro-
driguez et al., 2021} [Zouhar et al.l |2025; Hofmann et al., 2025} [Polo et al., 2024); to training and
curriculum design, where IRT-based difficulty estimates guide data selection for faster and more
effective learning (Meng et al.l 2024} Scarlatos et al.| [2025)); and to the diagnostics and bias anal-
ysis, exposing strengths and weaknesses of models relative to humans or ideological leanings (Gor
et al [2024). Most relevant to our setting, IRT has recently been explored for multi-model routing,
where it parameterizes query difficulty and model ability to guide cost—performance trade-offs with
interpretability (Song et al.,2025)). Our work extends this line by applying IRT not only to model se-
lection, but also to adaptive reasoning configurations (model x effort), contributing to the continuing
exploration of IRT for foundation models.

C DATASET DESCRIPTION

The 9 benchmarks are: 1) AIME (MAA|[2024): A benchmark of competition math problems from
American Invitational Mathematics Examination (AIME), which determines qualification for the
United States Mathematical Olympiad, 2) MATH (Hendrycks et al., 2021c): A benchmark of math
problems drawn from various math competitions, 3) GPQA (Rein et al.| [2024): A benchmark of
PhD-level science multiple-choice questions (MCQs) written by domain experts, 4) LSAT (Wang
et al.}2022;|Zhong et al.|[2021)): A benchmark of MCQs from the three tasks of the Law School Ad-
mission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension,
5) MMLU (Hendrycks et al.,|2021bja): A benchmark of MCQs from various branches of knowledge
covering diverse domains, 6) MMLU Redux (Gema et al.,[2024): A subset of MMLU with manually
corrected MCQs to remove errors from the original benchmark, 7) MMLU Pro (Wang et al., [ 2024)):
An enhanced MMLU benchmark with a focus on reasoning questions with increased answer options
from 4 to 10, 8) DROP (Dua et al.,|2019): A benchmark of reading comprehension questions requir-
ing discrete reasoning over the question’s associated paragraph, and 9) FRAMES (Krishna et al.,
2024): A benchmark of long-context reasoning-based questions associated with multiple wikipedia
articles. Table[d] shows the statistics of each dataset.

C.1 PREPROCESSING DETAILS

Across datasets, we standardize formatting; compute prompt token counts with the
Qwen/Qwen3-0.6B tokenizer (no padding, truncation, or added special tokens); and discard items
exceeding a configured token budget. To prevent leakage, we compute a content-based item key
and apply deduplication when specified for a given dataset, with some datasets deferring duplicate
handling to later analysis. Where applicable, we normalize available metadata and extract missing
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numeric answers. All datasets are mapped into a unified prompt-response format; detailed prompt
templates are provided in Appendix[C.2]

AIME. We preprocess AIME by standardizing sources and prompts, then filtering and deduplicat-
ing. Training data span years 1983—2023E] while test data consist of the union of unique items from
AIME 2024|and 2025|to reduce evaluation variance. Evaluating on AIME 2024 and AIME 2025
separately resulted in high evaluation variance even after averaging over multiple runs. Examples
with prompt length exceeding the maximum token budget are discarded. For AIME 2025, only the
problem text and numeric answer are retained; missing fields such as solution or difficulty are set to
“NA”

MATH. We construct the training split by combining the seven subject configurations of the
MATH datasetE] (7,500 problems total) and use the fixed 500-problem test setE] Examples exceed-
ing the maximum prompt length are removed. When an explicit numeric answer is missing, it is
extracted from the provided solution. Metadata such as subject/type and level are normalized, and
any available unique_id is preserved. We shuffle the data with a fixed seed.

GPQA. We preprocess GPQAE] by combining the main and diamond subsets and verifying that
diamond IDs are contained within the main set. Each example is reformatted into a multiple-choice
format with options A-D, and the correct answer is recorded as a letter. Answer options are ran-
domly permuted with a fixed seed. Items exceeding the maximum prompt length are filtered out.
Deduplication is performed using a content-based key, and evaluation is conducted with the diamond
subset as the test set.

LSAT. We preprocess LSAT by standardizing items from the official AR-LSAT releaseE] spanning
reading comprehension, logical reasoning, and analytical reasoning. Each example is reformatted
into a multiple-choice prompt with options A-E. Items exceeding the token budget are discarded.
We preserve the original section and split labels, and record the gold answer both as an index and as
a letter. Data are shuffled deterministically with a fixed seed.

MMLU. We use only the official test split of MMLUE] Each example is converted into a standard-
ized multiple-choice prompt (options A-D), retaining both the textual correct answer and its letter
index. Items exceeding the token threshold are discarded. Subject metadata are preserved, and the
dataset is shuffled with a fixed seed.

MMLU Pro. We use the public test split of MMLU Pro Each example is constructed into
a multiple-choice prompt with options A-J, and the gold answer is stored as a letter. Prompts
exceeding a 32k token budget are discarded. The dataset is shuffled deterministically with a fixed
seed.

MMLU Redux. We preprocess MMLU ReduxE]by aggregating all subject configurations and dis-
carding items flagged with metadata error_type # ok. Each example is normalized and converted
into a multiple-choice prompt (options A-D), with both the correct answer letter and text recorded.
Items longer than the token budget are removed, and the dataset is shuffled deterministically with a
fixed seed.

2https://github.com/rllm—org/rllm/blob/deepscaler/deepscaler/data/train/aime.json
3https://github.com/rllm—org/rl1m/b10b/deepscaler/deepscaler/data/test/aime.json
“https://huggingface.co/datasets/yentinglin/aime_2025
Shttps://huggingface.co/datasets/HuggingFaceH4/MATH/viewer
6https://huggingface.co/datasets/HuggingFaceH4/MATH—500
"https://huggingface.co/datasets/Idavidrein/gpqga
8https://github.com/zhongwanjun/AR-LSAT/tree/main/complete_lsat_data
9https://huggingface.co/datasets/cais/mmlu
10https://huggingface.co/datasets/TIGER—Lab/MMLU—Pro
"https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0
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FRAMES. We preprocess FRAMESE by retrieving and cleaning the corresponding Wikipedia
pages for each example. Cleaning removes site chrome, images, hyperlinks, citation markers, and
irrelevant sections, while preserving tables and converting text to Markdown. Examples are then
converted into a document QA style format. Items exceeding the token budget are filtered out, and
unique article texts are cached to avoid re-downloading.

C.2 QA PROMPTS

The prompts below are applied to all RLM configurations.
For AIME and MATH, we use the following prompt:

{question}
Please reason step by step, and put your final answer within \boxed{}.

For GPQA, LSAT, MMLU, and MMLU Redux, we use the following prompt:

Answer the following multiple choice question.
{question}

A) {option_A}
B) {option_B}
C) {option_C}
D) {option_D}

Please reason step by step, and put your final answer option within \boxed{}.
Only put the letter in the box, e.g. \boxed{A}. There is only one correct
answer.

For MMLU Pro, we use the following prompt:

Answer the following multiple choice question.
{question}
{options}

Please reason step by step, and put your final answer option within \boxed{}.
Only put the letter in the box, e.g. \boxed{A}. There is only one correct
answer.

For FRAMES, we assemble the prompt programmatically that includes the context of all documents
relevant to the question:

prompt = £"""You are asked to read {len(docs)} Wikipedia article extracts

and answer a question. Please reason step by step, and put your final

answer within \\boxed{}."""

for i, doc in enumerate(docs):
prompt += f"\n\n# Wikipedia article {i+1}:\n{doc}"

prompt += f"\n\n# Question: {question}"

prompt += """\n\nPlease reason step by step, and put your final answer within
— \\boxed{}."""

Zhttps://huggingface.co/datasets/google/frames-benchmark
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D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EVALUATION SETUP AND IMPLEMENTATION DETAILS.

We conduct both in-distribution (ID) and out-of-distribution (OOD) evaluations. For ID experi-
ments, we aggregate the training splits of all 8 benchmarks into a single training set for training
the 2PL IRT model (see Section [3.3)) and report performance on the test split of each benchmark
separately. We use an 80% — 20% train-test split for benchmarks without a predefined test set. For
OOD, for each benchmark, we aggregate the training splits of the other remaining non-overlapping
benchmarks into a single training set and report performance on the test split of this benchmark. For
example, for the OOD experiment on AIME, the training split of AIME and of overlapping bench-
marks (MATH since MATH includes questions from AIME), are held out from the training set. We
route over 35 configurations comprising OpenAl o4-mini (budgets: low, medium, high) and Qwen3
models (0.6B/1.7B/4B/8B) with budgets 0, 256, 512, 1k, 2k, 4k, 8k, 16k (Yang et al.,[2025} |OpenAl,
2025). Each configuration is evaluated once per training query with standard prompts (Appx. [C.2);
for AIME’s small test set, we average over eight runs. In total, we collected 1.75 million binary
responses over 50,139 unique questions across train/test splits of all eight benchmarks.

D.2 HARDWARE

For all open-source models, we use VLLM (Kwon et al.l [2023)) to host the model. All experiments
involving open-source models are run on NVIDIA A100 80GB GPUs. Each model is hosted using
one single such GPU.

D.3 BASELINES

For RouterBench (Hu et al.|[2024), we adopt its k-nearest neighbors (kNN) parameterization which
performs best (Chen et al., 2025). We adapt a concurrent IRT-based model routing work, IRT-
Router (Song et al., 2025), by using the same 2PL IRT model parameterization and query embed-
der as RADAR, thereby improving its embedder to handle long-context queries for fairness. For
both model routing methods, RouterBench and IRT-Router, we adapt them to RLMs by using all
RLMs at their respective fixed maximum budgets, and use their performance-cost formulation simi-
lar to linear scalarization (see Equation[3). In addition, we include simple heuristic-based baselines:
All-Large (o4-mini at high budget) and All-Small (Qwen3 0.6B at zero budget) as approximate
upper and lower bounds on performance and cost, respectively. The Oracle router, provided with
model configuration performance on test queries, serves as an idealized approximate upper bound of
the performance-cost tradeoff by picking the cheapest best-performing configuration. Random-All
serves as a diversity baseline selecting a configuration at random to answer each query. Random-
Pair selects the largest configuration (o4-mini at high budget) with probability w;, and the smallest
configuration (Qwen3 0.6B at zero budget) with probability 1 — w;, where w; is the user-defined
performance-cost tradeoff weight.

D.4 IRT IMPLEMENTATION DETAILS IN RADAR

We employ a two-parameter logistic (2PL) IRT model implemented as a custom PyTorch
model class. Input queries are first processed into fixed embeddings by a frozen-weight
Qwen/Qwen3-Embedding-8B; the dimension d, = 4096 for both the query embedding and the
learnable weights w,, wy,. Training runs for 100 epochs with learning rate 5 x 10~4, batch size 32
for both training and evaluation, gradient clipping at norm 1.0, and gradient accumulation of 1 step.

D.5 METRICS

Our formulation of adaptive reasoning as an MOO naturally lends the use of the hypervolume
indicator metric (Emmerich & Deutz, [2018)), which measures the size of the dominated space recov-
ered by the MOO solution method, with a higher value indicating performance close to the Pareto
front. In our two-dimensional routing MOO, hypervolume intuitively measures the area under the
performance-cost tradeoff curve recovered by the routing method for various values of tradeoff
weights w;. An advantage of hypervolume over similar area-based metrics defined in existing rout-
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Table 5: Routing performance on OOD queries across benchmarks reported on the hypervolume
metric (higher is better). RADAR outperforms baselines denoting better performance-cost tradeoffs
towards the Pareto frontier.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 0.5369 0.7047 0.6938 0.7466
MMLU 0.6934 0.8398 0.8550 0.8609
MMLU-Redux 0.7298 0.8948 0.9050 0.9072
MMLU-Pro 0.5686 0.7703 0.7800 0.7858
LSAT 0.6887 0.9046 0.9175 0.9146
AIME 0.5283 0.6890 0.7915 0.7566
MATH-500 0.7493 0.9326 0.9385 0.9368
FRAMES 0.6624 0.8230 0.8548 0.8865

Table 6: Routing performance on OOD queries across benchmarks reported on the CPT (90%)
metric (lower is better). CPT (90%) denotes the fraction of cost of running OpenAl o4-mini with
high reasoning effort to match 90% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 82.54% 44.18% 54.19% 17.6%
MMLU 74.53% 2.94% 2.61% 2.63%
MMLU-Redux 74.61% 2.90% 2.71% 2.54%
MMLU-Pro 82.65% 7.67% 4.02% 3.54%
LSAT 80.07% 2.27% 1.96% 2.15%

AIME 84.88% — 55.19% 55.30
MATH-500 74.94% 1.4% 1.29% 1.55%
FRAMES 78.61% 48.52% 29.49% 9.99%

ing work (e.g. AIQ in [Hu et al.|(2024))) is its generalizibility to measuring performance performance
of a multi-dimensional routing MOO. In future work, additional dimensions such as latency, bias,
and carbon emissions can be added to the routing MOO. We also formulate a cost-performance
threshold (CPT) metric, similar to the call-performance threshold metrics in |Ong et al.| (2024), a
useful metric for real-world applications quantifying the cost required to reach a specified perfor-
mance level. Given a performance threshold 2%, CPT(2%) measures the minimum cost required to
achieve 2% of the performance of the largest configuration (OpenAl o4-mini with high reasoning
budget). We normalize this cost to [0, 1] by dividing by the cost of running the largest configuration.
Therefore, a CPT(90%) of 0.1 implies that the routing method can match 90% of the performance
of o4-mini high at 10% of its cost.

E ADDITIONAL RESULTS

E.1 RESULTS ON OOD QUERIES

Table[5|and Table[6]report routing performance of all methods across 8 reasoning benchmarks evalu-
ated in the OOD setting on the hypervolume and CPT (90%) metrics, respectively. RADAR exhibits
strong query generalization capabilities.

E.2 MODEL SCALABILITY AND GENERALIZATION EVALUATION OF RADAR

We evaluate the scalability of RADAR to new RLMs by adding 8 new model configurations from the
Qwen3 14B RLM. Using adaptive testing, RADAR accurately estimates the abilities of these new
configuration by dynamically selecting just 5k training queries ( 12% of training set) for evalua-
tion, resulting in improved routing performance. Figure 4 shows how routing shifts to new RLM
configurations.
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Figure 4: Fraction of routing calls on OOD queries from FRAMES spread across RLM configura-
tions when varying the performance-cost tradeoff weight before (left) and after (right) adding new
RLM configuration from Qwen3-14B. RADAR rapidly estimates the ability of Qwen3-14B at 16K
reasoning budget to leverage it for improved performance.

Table 7: Ablation study showing Chebyshev scalarization outperforms linear scalarization on OOD
queries due to its ability to explore both convex and concave points on the Pareto front.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)
RADAR (LS) RADAR (CS) \ RADAR (LS) RADAR (CS)

GPQA-Diamond 0.7280 0.7466 29.94% 17.60%
MMLU 0.8580 0.8609 2.50% 2.63%
MMLU-Redux 0.9049 0.9072 2.25% 2.54%
MMLU-Pro 0.7812 0.7858 3.81% 3.54%
LSAT 0.9165 0.9146 2.00% 2.15%
AIME 0.7464 0.7566 56.23% 55.30%
MATH-500 0.9331 0.9368 1.41% 1.55%
FRAMES 0.8656 0.8865 21.56% 9.99%

E.3 ABLATION STUDY ON SCALARIZATION
See Table [/| for an ablation study which shows Chebyshev scalarization outperforms linear scalar-

ization on OOD queries due to its ability to explore both convex and concave points on the Pareto
front.

E.4 ABLATION STUDY ON MATRIX SIZE
See Table [8| for an ablation study on the size of the training matrix of RADAR. Using just 20% of

subsampled training queries, RADAR achieves a similar performance to using the entire training set.

Table 8: Ablation study on the size of the training matrix of RADAR. Using just 20% of subsampled
training queries, RADAR achieves a similar performance to using the entire training set.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)
RADAR (20%) RADAR | RADAR (20%)  RADAR

GPQA-Diamond 0.7526 0.7513 16.29 13.21
MMLU 0.8726 0.8720 2.67 2.69
MMLU-Redux 0.9207 0.9230 2.69 2.42
MMLU-Pro 0.7990 0.7995 3.59 3.89

LSAT 0.9175 0.9188 1.95 1.82

AIME 0.7832 0.7760 57.85 60.69
MATH-500 0.9450 0.9449 1.15 1.31
FRAMES 0.8940 0.8762 10.70 13.11
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Table 9: Ablation study on the linear transformation for query difficulty in RADAR. Linear transfor-
mation performs similarly to a classic two-layer multilayer perceptron (MLP) model using a ReLU
non-linearity on ID queries.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)
RADAR RADAR (MLP) \ RADAR RADAR (MLP)

GPQA-Diamond 0.7513 0.7308 13.21% 14.11%

MMLU 0.8720 0.8707 2.69% 2.8%

MMLU-Redux 0.9230 0.9239 2.42% 2.51%

MMLU-Pro 0.7995 0.7955 3.89% 3.91%

LSAT 0.9188 0.9132 1.82% 2.32%

AIME 0.7760 0.7687 60.69% 53.28%

MATH-500 0.9449 0.9365 1.31% 1.33%

FRAMES 0.8762 0.8777 13.11% 11.37%

Table 10: Ablation study on the linear transformation for query difficulty in RADAR. Linear transfor-
mation performs similarly to a classic two-layer multilayer perceptron (MLP) model using a ReLU
non-linearity on OOD queries.

Benchmark Hypervolume (higher is better) CPT(90%) (lower is better)
RADAR RADAR (MLP) \ RADAR RADAR (MLP)

GPQA-Diamond 0.7466 0.7245 17.6% 23.49%

MMLU 0.8609 0.8573 2.63% 2.82%

MMLU-Redux 0.9072 0.9067 2.54% 2.63%

MMLU-Pro 0.7858 0.7844 3.54% 4.82%

LSAT 0.9146 0.9101 2.15% 2.12%

AIME 0.7566 0.7726 55.30% 59%

MATH-500 0.9368 0.9424 1.55% 1.46%

FRAMES 0.8865 0.8771 9.99% 11.17%

E.5 ABLATION STUDY ON LINEAR TRANSFORM FOR QUERY DIFFICULTY

To test the sufficiency of our linear transformation for query difficulty, we perform an ablation study
with a classic two-layer multilayer perceptron (MLP) model using a ReLLU non-linearity to obtain
the difficulty and discrimination of queries. Our results reported in Table [9] and Table [I0] show
similar performance in both the ID and OOD experimental settings across benchmarks. These none
to marginal gains, obtained at the cost of diminished interpretability and increased latency, further
justify the simplicity of our design choices in RADAR.

E.6 ABLATION STUDY ON ADAPTIVE TESTING

We conduct an ablation study comparing our Fisher information-based adaptive testing with uni-
form random sampling on routing performance. Similar to well-established findings in adaptive
testing and online learning (Hanneke, [2014} [Balcan et al. [2010) literature, we find
that our method performs better and with lower variance than uniform sampling, especially when the
sample size is small, and both methods converge to perform similarly as the sample size increases.
We report results on ID geuries in Table[TT](hypervolume) and Table[I2](CPT), and on OOD queries
in Table[T3] (hypervolume) and Table [T4](CPT).

For example, with a small sample size of just 100 items, our method consistently outperforms uni-
form sampling by a wide margin on ID benchmarks and on AIME and MATH benchmarks for OOD.
Further, uniform sampling exhibits high variance as seen in FRAMES in the ID setting, achieving
2.6% CPT(90%) with 100 items, which counterintuitively jumps to 22.2% with a larger set of 500
items. When uniform sampling marginally performs better, its high variance might indicate a fortu-
itous estimate of ability rather than an accurate one. In contrast, our method provides a reliable and
precise estimate of ability, which results in stable routing performance across sample sizes.
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Table 11: Routing performance on ID queries across benchmarks reported on the hypervolume
metric (higher is better), before (RADAR) and after (RADAR++) adding new RLM configurations
from Qwen3-14B. Rnd X denotes set of X items selected with uniform random sampling while Fshr
X denotes set of X items selected with our method of maximum Fisher information-based adaptive
testing.

RADAR++
‘ Rnd 100  Fshr 100 Rnd 500 Fshr 500 Rnd 5000  Fshr 5000

Benchmark (ID) RADAR

GPQA-Diamond  0.7513 0.6171 0.7511 0.7017 0.7513 0.7535 0.7535
MMLU 0.8609 0.8591 0.8731 0.8682 0.8720 0.8745 0.8731
MMLU-Redux 0.9072 0.8929 0.9232 0.9168 0.9230 0.9228 0.9238
MMLU-Pro 0.7858 0.7764 0.8009 0.7941 0.7995 0.8038 0.8021
LSAT 0.9146 0.9270 0.9205 0.9283 0.9188 0.9259 0.9233
AIME 0.7760 0.6883 0.7636 0.7311 0.7760 0.7840 0.7828
MATH-500 0.9449 0.9426 0.9456 0.9457 0.9449 0.9478 0.9461
FRAMES 0.8865 0.8629 0.8763 0.8587 0.8762 0.8897 0.8830

Table 12: Routing performance on ID queries across benchmarks reported on the CPT (90%) metric
(lower is better), before (RADAR) and after (RADAR++) adding new RLM configurations from
Qwen3-14B. Rnd X denotes set of X items selected with uniform random sampling while Fshr X
denotes set of X items selected with our method of maximum Fisher information-based adaptive
testing. NR denotes not reachable.

RADAR++

Benchmark (ID) - RADAR "g/4100  Fshr100 Rnd500 Fshr500 Rnd 5000  Fshr 5000
GPQA-Diamond  1321% | NR 13.61%  4524% 1321%  1228%  13.56%
MMLU 263% | 2.67%  2.69%  275%  2.69%  2.69% 2.69%
MMLU-Redux  2.54% | 2.38%  242%  242%  242%  242% 2.42%
MMLU-Pro 3.54% | 373%  3.9% 3.93%  389%  3.9% 3.9%
LSAT 215% | 1.82%  1.82%  1.82%  182%  1.82% 1.82%
AIME 60.69% | NR 65.12%  12.43%  60.69%  57.7% 58.45%
MATH-500 131% | 134%  131%  132%  131%  1.32% 131%
FRAMES 9.99% | 2.62%  13.06%  2220%  13.11%  3.25% 5.97%

Table 13: Routing performance on OOD queries across benchmarks reported on the hypervolume
metric (higher is better), before (RADAR) and after (RADAR++) adding new RLM configurations
from Qwen3-14B. Rnd X denotes set of X items selected with uniform random sampling while Fshr
X denotes set of X items selected with our method of maximum Fisher information-based adaptive
testing.

RADAR++
\Rnd 100 Fshr 100 Rnd 500 Fshr 500 Rnd 5000  Fshr 5000

Benchmark (OOD) RADAR

GPQA-Diamond  0.7466 0.7402 0.6362 0.7466 0.7177 0.7467 0.7463
MMLU 0.8609 0.87 0.8679 0.8697 0.8684 0.8697 0.8698
MMLU-Redux 0.9072 0.9086 0.9093 0.9090 0.9098 0.9094 0.9091
MMLU-Pro 0.7858 0.7966 0.7927 0.7958 0.7928 0.7961 0.7951
LSAT 0.9146 0.9287 0.9273 0.9264 0.9267 0.9278 0.9255
AIME 0.7566 0.6543 0.7566 0.7385 0.7566 0.7694 0.7566
MATH-500 0.9368 0.9186 0.9368 0.9367 0.9368 0.9389 0.9368
FRAMES 0.8865 0.8658 0.8699 0.8864 0.8872 0.8938 0.8931

23



Under review as a conference paper at ICLR 2026

Table 14: Routing performance on OOD queries across benchmarks reported on the CPT (90%)
metric (lower is better), before (RADAR) and after (RADAR++) adding new RLM configurations
from Qwen3-14B. Rnd X denotes set of X items selected with uniform random sampling while Fshr
X denotes set of X items selected with our method of maximum Fisher information-based adaptive
testing. NR denotes not reachable.

RADAR++
Benchmark (OOD) RADAR " "p 14700 Fshr 100 Rnd 500 Fshr500 Rnd 5000  Fshr 5000
GPQA-Diamond  17.6% | 22.6%  NR 158%  37% 1748%  16.63%
MMLU 263% | 263%  2.63%  2.63%  2.63%  2.63%  2.63%
MMLU-Redux  2.54% | 2.54%  2.54%  2.54%  254%  2.54%  2.54%
MMLU-Pro 3.54% | 3.69%  3.54%  3.69%  3.54%  3.7% 3.56%
LSAT 215% | 219%  2.15%  2.53%  2.15%  248%  2.15%
AIME 553% | 592%  553%  565%  553%  52.5%  553%
MATH-500 155% | 198%  155%  1.53%  155%  1.57% 1.55%
FRAMES 9.99% | 872%  2.58%  10% 516%  2.57%  5.25%

Table 15: Routing performance on ID queries across benchmarks reported on the CPT (80%) metric
(lower is better). CPT (80%) denotes the fraction of cost of running OpenAl o4-mini with high
reasoning effort to match 80% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 62.69% 17.69% 8.4% 5.05%
MMLU 52.61% 1.22% 1.31% 1.41%
MMLU-Redux 52.93% 1.32% 1.32% 1.4%
MMLU-Pro 68.24% 1.7% 1.74% 1.37%

LSAT 60.9% 1.47% 1.36% 1.08%
AIME 74.45% 24.73% 24.34% 21.38%
MATH-500 53.79% 0.7% 0.7% 0.79%
FRAMES 60.92% 1.1% 1.08% 0.78%

E.7 RESULTS ON THE CPT METRIC AT VARIOUS THRESHOLDS

In addition to 90%, we report results on the CPT metric at various thresholds, including 80% (Ta-
ble[15]and Table[16)), 85% (Table[I7]and Table[18), and 95% (Table[T9]and Table[20), on both ID and
OOD experimental settings across benchmarks. We observe similar patterns: RADAR outperforms
baselines on a majority of datasets in both ID and OOD experimental settings.

E.8 IMPROVING OOD PERFORMANCE ON AIME

Our analysis reveals two special characteristics of AIME. First, AIME contains queries with the
greatest average difficulty, significantly higher than other benchmarks as seen in Table [21] Second,

Table 16: Routing performance on OOD queries across benchmarks reported on the CPT (80%)
metric (lower is better). CPT (80%) denotes the fraction of cost of running OpenAl o4-mini with
high reasoning effort to match 80% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 66.05% 5.2% 8.49% 5.55%
MMLU 52.58% 1.45% 1.23% 1.42%
MMLU-Redux 52.5% 1.47% 1.29% 1.53%
MMLU-Pro 66.14% 1.73% 1.82% 1.4%

LSAT 61.0% 1.44% 1.36% 1.13%
AIME 71.82% — 13.37% 30.5%
MATH-500 53.58% 0.68% 0.71% 0.63%
FRAMES 60.73% 1.33% 1.05% 1.4%
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Table 17: Routing performance on ID queries across benchmarks reported on the CPT (85%) metric
(lower is better). CPT (85%) denotes the fraction of cost of running OpenAl o4-mini with high
reasoning effort to match 85% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 71.53% 37.41% 31.19% 8.93%
MMLU 64.46% 1.61% 1.85% 1.68%
MMLU-Redux 63.77% 1.85% 1.97% 1.67%
MMLU-Pro 75.91% 2.18% 2.14% 2.23%

LSAT 70.35% 1.73% 1.64% 1.33%
AIME 80.84% 45.19% 42.39% 41.04%
MATH-500 64.97% 0.94% 0.95% 0.93%
FRAMES 69.41% 10.17% 1.22% 1.21%

Table 18: Routing performance on OOD queries across benchmarks reported on the CPT (85%)
metric (lower is better). CPT (85%) denotes the fraction of cost of running OpenAl o4-mini with
high reasoning effort to match 85% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 74.3% 24.53% 31.34% 10.86%
MMLU 63.55% 1.96% 1.88% 1.73%
MMLU-Redux 63.09% 1.99% 1.92% 1.85%
MMLU-Pro 74.4% 2.44% 2.2% 2.13%

LSAT 70.54% 1.73% 1.65% 1.5%

AIME 77.92% — 32.78% 42.9%
MATH-500 63.55% 0.9% 0.97% 0.73%
FRAMES 68.74% 16.7% 1.21% 1.55%

Table 19: Routing performance on ID queries across benchmarks reported on the CPT (95%) metric
(lower is better). CPT (95%) denotes the fraction of cost of running OpenAl o4-mini with high
reasoning effort to match 95% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 89.19% 76.86% 76.78% 21.1%
MMLU 88.15% 15.27% 6.73% 7.52%
MMLU-Redux 86.79% 8.69% 5.45% 5.16%
MMLU-Pro 91.42% 38.78% 43.64% 12.08%
LSAT 90.01% 3.14% 3.48% 3.62%

AIME 93.61% 86.11% 80.61% 80.34%
MATH-500 87.63% 2.03% 2.26% 2.58%
FRAMES 88.84% 77.6% 65.76% 31.81%

Table 20: Routing performance on OOD queries across benchmarks reported on the CPT (95%)
metric (lower is better). CPT (95%) denotes the fraction of cost of running OpenAl o4-mini with
high reasoning effort to match 95% of its performance.

Benchmark Random-Pair RouterBench IRT-Router RADAR (ours)
GPQA-Diamond 90.78% 63.83% 77.05% 36.66%
MMLU 86.42% 29.76% 8.37% 7.14%
MMLU-Redux 86.14% 10.57% 5.81% 5.62%
MMLU-Pro 91.32% 51.8% 45.25% 36.2%

LSAT 90.0% 8.39% 3.52% 5.63%

AIME 92.44% — 77.59% -
MATH-500 86.34% 2.58% 2.13% 2.79%
FRAMES 89.3% - 61.44% 22.13%
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Table 21: Predicted query difficulty on ID test queries comparing AIME against the remaining
benchmarks. IRT difficulty values usually lie in [—3, 3], with higher values indicating greater diffi-
culty.

Benchmark Difficulty Avg  Difficulty Std
AIME 1.038 1.275
All Benchmarks -0.55 1.018

Table 22: Predicted query difficulty on test queries comparing ID AIME queries to OOD AIME
queries. IRT difficulty values usually lie in the range [-3, 3], with higher values indicating greater
difficulty.

Benchmark Difficulty Avg  Difficulty Std

AIME (ID) 1.038 1.275
AIME (OOD) -0.461 1.043

performance on AIME consistently improves with increasing reasoning length and does not plateau,
unlike other benchmarks. In the OOD setting, RADAR, which is not exposed to difficult math
problems, underestimates query difficulty, as shown in Table 22} and underperforms by allocating
less capable models.

In real-world use, it is practical to assume some exposure to math problems during model training.
We perform a partial OOD experiment by exposing RADAR to a fraction of the AIME and MATH
queries in the training data. In Table 23] we see a significant increase in performance with just 5%
of exposure, and a similar performance to the ID setting with 30% of exposure.

E.9 THROUGHPUT ANALYSIS

For a throughput analysis, we compute the queries/second for the smallest (0.6B) and largest (8B)
open-source Qwen3 models on the MATH-500 benchmark, averaged across three runs on a single
Nvidia A100 80GB GPU, using vLLM for batched inference and embedding. We exclude Ope-
nAl o4-mini models due to their variable API-based throughput. Qwen3-0.6B with zero reasoning
budget processes queries at 1.1529 queries/sec, while Qwen3-8B with 16K reasoning budget pro-
cesses queries at 0.2337 queries/sec. Adding RADAR’s routing overhead decreases throughput
by 0.78% for Qwen3-0.6B with zero reasoning budget, to 1.1438 queries/sec, and by 0.15% for
Qwen3-8B with a 16K reasoning budget, to 0.2237 queries/sec. Depending on the user-specified
performance-cost tradeoff weight, RADAR routes queries to a convex combination of model con-
figurations, with the throughput therefore bounded between 1.1438 queries/sec as the upper bound
and 0.2237 queries/sec as the lower bound. Multi-GPU implementation and inference optimization
methods can further improve RADAR’s throughput.

E.10 PERFORMANCE VS REASONING BUDGET CURVES

We include performance vs reasoning budget curves in Figure 3]

E.11 PERFORMANCE-COST PARETO CURVES
We show Pareto performance-cost tradeoff curves for all methods on ID queries across all bench-

marks in Figure[6] and on OOD queries across all benchmarks in Figure 7]

Table 23: Partial OOD experimental setting showing that a small set of training queries can recover
ID performance.

Benchmark RADAR (ID) RADAR (OOD) RADAR (OOD +5%) RADAR (OOD + 30%)
AIME 0.776 0.7566 0.7665 0.7787
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Figure 5: Left: Our pilot study on MATH-500 (Hendrycks et al., 2021c)) shows a performance dif-
ferential over (RLM, reasoning budget) configurations with the smallest RLM already solving over
50% of the queries with minimal reasoning. Right: Performance on AIME consistently increases
with an increase in model size and reasoning budget.
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Figure 6: We show the Pareto performance-cost tradeoff curves for all methods on ID queries across
benchmarks. RADAR outperforms baselines denoting better performance-cost tradeoffs towards the

Pareto frontier.
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Figure 7: We show the Pareto performance-cost tradeoff curves for all methods on OOD queries
across benchmarks. RADAR outperforms baselines, denoting better performance-cost tradeoffs to-

wards the Pareto frontier.
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