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Figure 1: We propose CADGrasp, which learns a contact- and collision-aware intermediate repre-
sentation as a constraint, and further obtains the dexterous grasp pose with an optimization method to
achieve single-view dexterous hand grasping in cluttered scenes.

Abstract

Dexterous grasping in cluttered environments presents substantial challenges due to
the high degrees of freedom of dexterous hands, occlusion, and potential collisions
arising from diverse object geometries and complex layouts. To address these
challenges, we propose CADGrasp, a two-stage algorithm for general dexterous
grasping using single-view point cloud inputs. In the first stage, we predict a

*: equal contribution, †: corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



scene-decoupled, contact- and collision-aware representation—sparse IBS—as
the optimization target. Sparse IBS compactly encodes the geometric and con-
tact relationships between the dexterous hand and the scene, enabling stable and
collision-free dexterous grasp pose optimization. To enhance the prediction of this
high-dimensional representation, we introduce an occupancy-diffusion model with
voxel-level conditional guidance and force closure score filtering. In the second
stage, we develop several energy functions and ranking strategies for optimization
based on sparse IBS to generate high-quality dexterous grasp poses. Extensive
experiments in both simulated and real-world settings validate the effectiveness of
our approach, demonstrating its capability to mitigate collisions while maintaining
a high grasp success rate across diverse objects and complex scenes. More details
and videos are available at https://cadgrasp.github.io/.

1 Introduction

Dexterous grasping in cluttered scenes is a critical step toward enabling a dexterous hand to au-
tonomously perform diverse tasks in real-world environments. Compared to single-object dexterous
grasping [1, 2, 3, 4, 5, 6, 7], the diverse and complex layouts in cluttered scenes [8, 9, 10, 11]
introduce additional challenges beyond generalizing to various objects. The stacking of objects leads
to occlusion, resulting in partial observations without full object geometry. Moreover, the restricted
graspability caused by stacking requires more precise grasp poses while avoiding collisions with
surrounding objects to prevent unintended outcomes, such as target object displacement due to contact
between the dexterous hand and nearby objects.

Current methods focus on constructing large-scale synthetic datasets to capture the distribution of
potential cluttered scenes [10, 11]. Based on these datasets, existing approaches typically first filter
scene points with high graspability. Conditioned on these points, they employ either regression-
based [10] or generative-based models [11] to predict grasp poses. However, directly mapping partial
point cloud observations to grasp poses is challenging to generalize due to the non-linearity of the
mapping from 3D point cloud space to pose space and the sensitivity of physical constraints to
small variations in hand pose [12]. Current methods [13, 14, 15, 12] adopt a two-stage framework
that combines contact map prediction and optimization to enhance generalization. However, these
methods are primarily designed for single-object grasping, assume access to complete object geometry
for optimization, which is not available in real-world cluttered scenes due to partial observation.

To tackle this problem, we propose predicting a contact- and collision-aware intermediate repre-
sentation to serve as the optimization target as shown in Figure 1. The proposed representation,
sparse IBS, is the interaction bisector surface (IBS) [16] between the scene and the dexterous hand,
incorporating compact contact indicators. This representation is decoupled from the scene, elim-
inating the requirement for complete scene geometry, making it well-suited for cluttered scenes.
Additionally, sparse IBS captures both geometric and contact information between the scene and the
dexterous hand, making it effective for optimizing stable and collision-free dexterous grasp poses.
To efficiently generate such a high-dimensional representation, we propose an occupancy-diffusion
model with voxel-level conditional guidance and force closure score filtering. To further obtain stable
and collision-free dexterous grasp poses, we design a set of energy functions tailored to sparse IBS.

In our experiments, we conduct extensive evaluations in simulation environments featuring 670 diverse
cluttered scenes containing over 1300 objects. Comparative results demonstrate the effectiveness of
our framework, while ablation studies further validate the effectiveness of our design. Our analysis
highlights the stability and collision-awareness of the generated grasp poses. Additionally, we
evaluate our method against other baselines in real-world settings to validate its practicality.

In summary, our contribution is as follows:

• We propose a two-stage framework consisting of scene-decoupled, contact- and collision-aware in-
termediate representation prediction and constrained grasp pose optimization for general dexterous
grasping in cluttered scenes.

• We propose an occupancy-diffusion model with voxel-level conditional guidance and force closure
score filtering to enhance representation prediction, along with several energy functions and ranking
strategies to improve final grasp pose optimization.
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• We conduct comprehensive simulation and real-world experiments to demonstrate the effectiveness
of our method.

2 Related Work

2.1 One-stage Dexterous Grasp Pose Prediction

One-stage dexterous grasp pose generation [1, 2, 3, 17, 18, 19] aims to train an end-to-end model to
predict grasp poses. Regression-based methods [18, 19, 20] assume a one-to-one mapping between
the object or scene and the grasp pose, which is limited in capturing the multi-modal dexterous grasp
pose distribution due to the high degree of freedom. Generative-based methods [17, 2] can model
complex distributions, making them more suitable for dexterous grasp pose generation. Current
approaches leverage physical constraints [3, 2], such as contact and penetration, to enhance grasp pose
quality. However, end-to-end methods struggle with generalization due to the non-linearity between
the observation space and pose space, as well as the sensitivity of physical constraints to small errors
in grasp poses [12]. This challenge becomes more pronounced in cluttered environments, where the
diversity of objects and layouts necessitates extremely large-scale grasp pose datasets [10, 11], limiting
generalization. In contrast, we propose a two-stage framework that first predicts an intermediate
representation in the observation space, followed by optimization based on this representation to
enhance generalization.

2.2 Two-stage Dexterous Grasp Pose Prediction

Two-stage dexterous grasp pose generation [15, 13, 21, 22, 23, 24] decomposes grasp pose prediction
into two stages to mitigate the challenges of direct mapping. Typically, the first stage predicts
either the grasp pose [21, 22, 23, 25, 26] or an intermediate representation [24, 15, 13], followed by
optimization based on physical constraints between the object and the dexterous hand. However, these
methods are specifically designed for single-object grasping and assume prior knowledge of complete
object geometries, which is often unavailable in cluttered scenes due to object stacking [11, 10], even
with multi-view cameras. This limitation restricts the applicability of two-stage methods in cluttered
environments. In contrast, we propose a sparse IBS representation that serves as an intermediate
representation, enabling the application of a two-stage framework in cluttered scenes.

2.3 Hand-Object Representation

Hand-object representation can be primarily utilized in two ways. The first is to serve as the
observation [27, 28, 24, 29], compressing the observation feature space and reducing the complexity of
geometric feature learning, thereby enhancing grasp pose generation [24] or grasp policy learning [27,
28]. The second is to act as an intermediate representation for two-stage dexterous grasp pose
generation methods [13, 15]. The most common intermediate representation for two-stage grasp pose
generation is the contact map [15, 14, 12], which computes the distance between each point on the
object and the dexterous hand. However, this representation requires complete object geometry, which
is not accessible in cluttered scenes. The most relevant to our work is Interaction Bisector Surface
(IBS) [28], which computes a surface between the scene and the dexterous hand along with various
spatial and contact information. However, such representation has only been used as an observation
representation [28, 29]. In contrast, we propose using IBS as an intermediate representation for
grasp pose optimization. To reduce the difficulty of predicting such representation, we design a more
compact sparse IBS representation and develop a specialized module to predict sparse IBS along with
optimization strategies tailored to our sparse IBS representation.

3 Method

Problem Formulation. In this work, we consider the problem of generating a set of grasp poses
for a dexterous hand to grasp objects in a cluttered environment. We define a grasp pose of a
dexterous hand as a tuple g = {T,J}, where T ∈ SE(3) indicates the wrist pose, J ∈ Rn is the joint
configuration of the hand, and n is the degree of freedom (DoF) of the hand. Given a single view
pointcloud P ∈ RN×3 of a cluttered scene, we estimate the grasp poses G = {gi}|G|i=1 that are stable
and collision-free for dexterous grasping.
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Figure 2: Overview of CADGrasp, a two-stage framework for dexterous grasping in cluttered scenes.
(I) Conditional IBS Generation: A diffusion model is trained to model the conditional probability
distribution p(I|P,T). (II) Grasp Pose Optimization: We optimize the grasp poses G with predicted
sparse IBS Î as constraints.

Overview. The overview of our method is shown in Figure 2. We propose a two-stage framework
for dexterous grasping in cluttered scenes, called CADGrasp. We use the sparse IBS I that is
aware of contact and collisions as an intermediate representation between the two stages, which can
efficiently encode the geometric relationship between the dexterous hand and the scene corresponding
to the successful grasp poses ( Section 3.1). In the first stage, we model the conditional probability
distribution p(I|P,T) by a diffusion model, where I is the sparse IBS, P is the single-view observed
scene point cloud, and T is the wrist pose ( Section 3.2). In the second stage, with the predicted sparse
IBS Î as constraints, we get dexterous grasp poses G via an optimization algorithm ( Section 3.3).

3.1 Contact and Collision Aware IBS for Dexterous Grasping.

IBS [16] is the Voronoi diagram between two close 3D geometric objects. Inspired by the efficiency
of IBS in describing the spatial relationship between 3D objects and its successful application in
dexterous hand manipulation [28, 29], we adapt IBS to represent the geometric relationship between
the dexterous hand and the environment as well as the object when a successful grasping state is
achieved. We generate the sparse IBS I in a simulator for training, as shown in Figure 3. Specifically,
for each dexterous grasp pose g, we define a canonical space centered at the grasp seed point ps
with the rotation R of the wrist pose T = [R|t] as the direction. The sparse IBS I ∈ Rn×n×n×3 is
defined with a resolution of n, where the last three dimensions are:

• Occupancy of the IBS surface, which is 1 if the voxel in I in IBS surface, otherwise it is −1.

• Occupancy of contact points between the thumb and the target object, which is 1 if the voxel in I
is a contact point between the thumb and the object, otherwise it is −1.

• Occupancy of contact points between other fingers and the object, which is 1 if the voxel in I is a
contact point between other fingers and the object, otherwise it is −1.

The sparse IBS I encodes the geometric relationship between the hand corresponding to a successful
grasp pose g and the environment, which includes not only the configuration of the hand but also the

4



Cluttered Scene Canonical Space Definition Contact and Collision Aware IBS

Target Object IBS with 
Contact Points

Seed Point 𝒑𝒔

Canonical
Space

Figure 3: Creation of the sparse IBS for dexterous grasping. Given a cluttered scene, we first
generate the grasp pose g using an optimization algorithm. Then, we canonicalize and crop the scene
point cloud P to obtain the canonicalized point cloud P∗. Finally, we compute the sparse IBS I
based on the canonicalized point cloud.

contact relationship between fingers and objects, and specifies a safety bound to ensure collision-free
with environments.

3.2 Conditional IBS Generation.

In this section, our goal is to generate the intermediate representation IBS to provide constraints for
the subsequent grasp pose optimization stage. Specifically, as shown in Figure 2, given a single-view
observed point cloud P , we first predict the wrist pose T of the dexterous hand. Then, given T and
P , we generate multiple IBS candidates {Ii}ni=1, where n is the number of candidates. Finally, we
rank the IBS candidates and select the optimal one Î as the final intermediate representation.

Wrist Pose Estimation. We use the same structure as DexGraspNet2.0 [11]. First, given the
scene point cloud P ∈ RN×3, where N is the number of points, we extract point-wise features
F = {fi}Ni=1 using ResUNet14 [30] and predict point-wise graspness S = {si}Ni=1. Finally, after
ranking and FPS sampling, we obtain the final set of grasp seed points {pis}Mi=1, where M is the
number of sampled points. For each grasp seed point ps, we condition on the corresponding point
feature f , and use a denoising diffusion model [31] to directly model the joint probability distribution
p(T|f) in Euclidean space and obtain the denoised wrist pose T with reverse ODE process.

Noisy Sparse IBS (𝟒𝟎𝟑)

3D Unet

𝟐𝟎𝟑

Occupancy Denoising

Hierarchical Condition

Denoised Sparse IBS

𝟏𝟎𝟑
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𝟓𝟑
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Figure 4: IBS generation. We train a conditional occupancy-diffusion model to model the conditional
probability distribution p(I|P∗), where P∗ is the canonicalized and voxelized point cloud. The
voxel-level alignment provides hierarchical conditions during the denoising process.

IBS Candidates Generation. As shown in Figure 4, given the selected grasp seed point ps and the
corresponding wrist pose T, we define a canonical space with ps as the coordinate origin and the
rotation of T as the direction. We canonicalize and voxelize the original observed point cloud P
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to obtain P∗ ∈ Rn×n×n×1, where n is the voxelization resolution. The above operations simplify
the modeling of the probability distribution p(I|P,T) to modeling p(I|P∗), making the feature
space more compact and reducing the training difficulty of the network. Specifically, inspired by
the dominance of denoising diffusion models in 3D generation [32, 31], we model p(I|P∗) based
on an occupancy-diffusion model [31]. The I ∈ Rn×n×n×3 has the same resolution as P∗, and
this voxel-level alignment provides hierarchical conditions during the generation of IBS, improving
both the generation quality and efficiency. As shown in Figure 4, for both occupancy network Ωo

and point cloud network Ωp, we use 3D UNet as the backbone network. UNet has 4 levels: 403,
203, 103, 53, with feature dimensions of 32, 64, 128, and 256 respectively at each level. We achieve
voxel-level condition guidance by concatenating the point cloud features at corresponding levels to
the occupancy features. The training of the diffusion network uses the following loss:

LI0
= Eϵ∼N (0,I),t∼U(0,1) ∥Ωo(It, t,Ωp(P∗))− I0∥22 (1)

where ϵ and I0 are the data sample and It is the noisy sample at time step t. N is the Gaussian
distribution, and U is the uniform distribution.

IBS Ranking. Considering that the sampling process has a certain probability of sampling in low-
density regions, we sample multiple IBS candidates {Îi}mi=1 from the estimated distribution p(I|P∗),
where m is the number of samples. Furthermore, we calculate the force closure score {QÎi

}mi=1 for
candidates based on the contact points and directions of the thumb and other fingers, and obtain a
ranked sequence of IBS candidates Îσ0

≻ Îσ1
≻ · · · ≻ Îσm

, where:

Îσi ≻ Îσj ⇐⇒ QÎσi
> QÎσj

(2)

Finally, we select the top-ranked IBS as the final intermediate representation Î.

3.3 Grasp Pose Optimization with IBS Constraints.

Grasp Pose Optimization. Given the predicted IBS Î, we generate the dexterous grasp poses G
through an optimization algorithm. Specifically, we use a gradient-based optimization algorithm
to minimize the energy function E, which consists of four parts: 1) joint limits energy Ej , 2) self-
penetration energy Esp, 3) contact energy Ed, and 4) collision energy Ep. We obtain the dexterous
grasp poses G by minimizing the energy function. Specifically:

Ej is used to limit the joint angles within a preset range, defined as:

Ej =
1

d

d∑
i=1

(
max(θi − θmax

i , 0) + max(θmin
i − θi, 0)

)
(3)

where θi is the angle of the i-th joint, θmax
i and θmin

i are the maximum and minimum angles of the
i-th joint, respectively, and d is the number of joints.

Esp is used to limit the self-penetration of the hand, defined as:

Esp =
1

|Ph|2
∑
p∈Ph

∑
q∈Ph

[p ̸= q] max(δ − d(p, q), 0) (4)

where Ph is the set of points on the hand, d(·) calculates the Euclidean distance between two points,
and δ is the safety distance for self-penetration of the hand.

Ep is used to constrain the contact relationship between fingers and objects, defined as:

Ep =
1

|Ph|
∑
p∈Ph

max

(
0,−

(
p− p∗

∥p− p∗∥
· n

))
(5)

where Ph is the set of points on the hand, p is the point on the hand, p∗ is the nearest point in the IBS
point set PI corresponding to p, and n is the normal vector of the estimated IBS surface at point p∗.
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Ed is used to constrain the optimization of the hand in the safety space without collision with the
environment, defined as:

Ed =
α1

|P∗
t |

∑
p∗∈P∗

t

min
p∈Pt

∥p∗−p∥2+ α2

|P∗
o |

∑
p∗∈P∗

o

min
p∈Po

∥p∗−p∥2+ α3

|Pt|+ |Po|
∑

p∈Pt,Po

min
p∗∈P∗

t ,P∗
o

∥p∗−p∥2

(6)
where P∗

t and P∗
o are the sets of points on the IBS that are in contact with the thumb and other fingers,

respectively, Pt and Po are the sets of points on the thumb and other fingers, respectively. α1, α2,
and α3 are hyperparameters used to balance the weights between different energy terms.

Overall, the final energy function is:

E = λ1Ej + λ2Esp + λ3Ep + λ4Ed (7)

where λ1, λ2, λ3, and λ4 are the weights of each energy term.

Grasp Pose Ranking. Given the inherent uncertainties in the optimization process, we simulta-
neously optimize multiple grasp configurations G based on a predicted sparse IBS Î. We record
the optimization residuals {Egi

}ki=1, where k denotes the number of optimization trials. The grasp
configurations G are then ranked according to their residuals, and the configuration with the minimal
residual is selected as the optimal grasp pose g.

4 Experiments

4.1 Experimental Setup

Datasets. We use the same object datasets and simulation environments as DexGraspNet 2.0 [11].
The object datasets consist of 60 training objects from GraspNet1Billion [8] and 1259 testing objects
from GraspNet1Billion and ShapeNet [33]. We sample 100 scenes from the 7600 training scenes of
DexGraspNet2 [11] for the training of the IBS generation module. And we use the full 670 scenes
from the testing set of DexGraspNet2 [11] for the testing. The testing scenes are categorized into
three density levels: loose, random, and dense.

Baselines. We compare our method with the following dexterous grasp pose prediction methods.

• DexGraspNet2.0[11]: An end-to-end diffusion-based pipeline for grasp pose generation in clut-
tered scenes, directly mapping 3D point cloud observations to grasp poses.

• HGC-Net[10]: A regression-based model for direct pose prediction in cluttered scenes.

• ISAGrasp[34]: This baseline is originally designed for single-object grasping using an end-to-end
regression-based model. Following the adaptation strategy in DexGraspNet2.0 [11], we extend
ISAGrasp to cluttered scenes.

• GraspTTA[13]: A two-stage, single-object grasping framework that needs complete point clouds
for the second-stage optimization, which is impractical in cluttered scenes; we therefore adapt it
for cluttered scenes as DexGraspNet2.0 does and remove the optimization stage. This two-stage
framework is originally designed for single-object grasping and requires complete point clouds
for second-stage optimization, which is not feasible in cluttered scenes. Therefore, following
DexGraspNet2.0 [11], we adapt GraspTTA for cluttered scenes and omit the optimization stage.

Evaluation in Simulation. We report the Success Rate, following the same evaluation protocol as
DexGraspNet2.0 [11]. In the simulation, we evaluate from two perspectives:

• Object and Scene Generalization. We evaluate the performance of our method following the
same protocol as DexGraspNet2.0 [11].

• Cross-Embodiment Generalization. Different from other baselines, our method can directly
zero-shot generalize to unseen embodiments, thanks to the proposed universal intermediate rep-
resentation. We evaluate our method using an unseen dexterous hand (Allegro) in a zero-shot
manner.

Real-world Setup. As shown in Figure 5, we conduct real-world dexterous grasping experiments in
clutter scenes, using a Flexiv Rizon-4 robot arm equipped with a Leap Hand [35] as the end-effector.
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Figure 5: Real-world experiment setup.

A third-person view RealSense D415 camera
is employed for perception. We selected 30 ob-
jects with diverse shapes, sizes, and materials, as
depicted in Figure 6. Following the simulation
experiment setup, we also assess grasping under
varying levels of clutter density, covering the en-
tire object dataset across 5 cluttered scenes with
4 to 8 objects per scene, as illustrated in Figure 6.
For each scene, the policy continues grasping
until two consecutive failures occur. For each
grasp execution, we follow the same sequence
as in the simulation: pre-grasp, grasp, squeeze
fingers, and lift. We report the Success Rate
as the number of successfully grasped objects
divided by the total number of attempts.

Figure 6: Real-world object datasets and evaluated cluttered scenes. The left image shows the
objects used in real-world testing. The right image shows the layouts of objects in five different test
scenes, with 4 to 8 objects per scene.

Method Ratio GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

HGC-Net† [10] 1 46.0 37.8 26.7 46.4 44.8 30.4
GraspTTA† [13] 1 62.5 54.1 42.8 56.6 57.8 46.4
ISAGrasp† [34] 1 63.4 60.7 51.4 64.0 56.3 52.7
DexGraspNet2.0 [11] 1/1000 83.3 79.5 73.9 81.5 77.1 73.5

Ours 1/1000 86.5 85.5 80.1 79.3 77.7 75.7
Ours (Allegro) 1/1000 77.6 75.0 74.9 75.7 76.6 73.0

Table 1: Comparison results. † indicates the results are from [11]. Ratio refers to the ratio of the
number of grasps for training compared to the whole dataset. Each Dense scene contains 8-11 objects,
and each Random scene contains 1-10 objects, obtained by deleting objects from Dense scenes, and
each Loose scene contains 1-2 objects. Allegro is the result evaluated with the Allegro, and others
use the Leap hand for evaluation. We report only our method, trained on Leap Hand and tested on
Allegro Hand, since other methods do not demonstrate cross-hand generalization.

4.2 Simulation Results

Comparison with Baselines. As shown in Table 1, the regression-based methods HGC-Net and
ISAGrasp struggle with the complex dexterous grasp pose distribution. The generative-based method
GraspTTA performs even worse, likely due to the absence of a second-stage optimization step.
DexGraspNet2.0 achieves a higher success rate by leveraging the diffusion model. However, its direct
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end-to-end mapping is susceptible to challenges associated with non-linear mapping and sensitivity
to physical constraints. In contrast, our two-stage approach demonstrates superior performance.
Furthermore, to evaluate robustness, we report success rates with standard deviations over 20 random
seeds. The consistently small deviations indicate stable performance across initializations.

Cross-Embodiment Generalization. Since our proposed sparse IBS representation is embodiment-
agnostic, we directly use the same generated sparse IBS that was used to evaluate the Leap Hand
to optimize the Allegro Hand grasp pose. As shown in Table 1, the Allegro Hand also achieves
comparable results to the Leap Hand, demonstrating the universality of our proposed representation.

4.3 Real-world Results

As shown in Table2, our method achieves an average grasp success rate of 93.3%, significantly
surpassing the baseline at 83.9%. While the two methods exhibit comparable performance on
medium-scale objects, our approach demonstrates markedly greater robustness for small and flat
objects, in line with the simulation analyses reported in Table7. This improvement can be attributed
to the effectiveness of the IBS. By integrating IBS into the optimization, our method explicitly avoids
collisions with the table and surrounding objects, yielding safer grasps, which is particularly critical in
densely cluttered scenes. The observed real-world performance underscores the practical applicability
of our approach for deployment in real robotic systems.

Method Scene #1 Scene #2 Scene #3 Scene #4 Scene #5 Overall
DexGraspNet2.0 [11] 100.0% (4/4) 50.0% (2/4) 71.4% 5/7) 100.0% (7/7) 88.9% (8/9) 83.9% (26/31)
CADGrasp (Ours) 100.0% (4/4) 100.0% (5/5) 85.7% (6/7) 100% (7/7) 88.9% (8/9) 93.8% (30/32)

Table 2: Real-world results. We evaluated 30 objects across 5 real-world cluttered scenes. In each
scene, the policy continues attempting to grasp until two consecutive failures occur. The number to
the left of ’/’ indicates the number of successful grasps, while the number to the right indicates the
total number of grasp attempts.

4.4 Computational Efficiency

Module Stage Time (s)
Wrist Pose Estimation 1 1.38
IBS Generation 1 1.39
IBS Ranking 1 0.71
Grasp Opt. & Rk. 2 3.03

Total - 6.51

Table 3: Runtime breakdown.

We assess the inference efficiency of our method
on a single NVIDIA RTX 4090 GPU by averaging
50 independent runs to suppress stochastic fluc-
tuations in the sampling-based optimization. A
detailed breakdown of the runtime is reported in
Table 3. The end-to-end time to generate a single
grasp is 6.51 s on average, measured without any
task-specific engineering optimizations. While not
real-time, our method delivers a substantial latency
advantage over existing state-of-the-art two-stage
approaches (see Table 4). We anticipate that real-time feasibility can be pushed closer to real-time by
adopting faster samplers [36, 37] and by increasing parallelism in the optimization stage.

Method Intermediate Rep. Partial Obs. Cluttered Runtime (s)
GraspTTA Contact Map × × 43.23
UniGrasp 3 Contact Points × × 9.33
GenDexGrasp Contact Map × × 16.42

CADGrasp (Ours) Sparse IBS ✓ ✓ 6.51

Table 4: Runtime and capability comparison with representative two-stage methods. Our
approach is faster and enables dexterous grasping under partial observations in cluttered scenes, both
of which are essential for real-world deployment.
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4.5 Ablation Study.

We conduct comprehensive ablation studies on the dense scenes of GraspNet-1Billion test set to
validate our design choices.

• Module Interaction. We first analyze the interaction effects between key modules in Table 5. The
results show that removing any component leads to a performance drop, with the full model achiev-
ing the best success rate 86.5%. Notably, decomposing the contact representation (‘Decompose’)
for the thumb and other fingers provides a substantial improvement (e.g., 86.5% vs. 56.1% without
it). This confirms the critical role of the thumb in dexterous grasping [38] and validates our design
to model it separately. Both the IBS and Grasp Pose Ranking modules are also proven effective.

IBS Ranking Grasp Pose Ranking Decompose Success Rate (%)
× × ✓ 73.1
× ✓ × 53.8
× ✓ ✓ 83.9
✓ × × 26.9
✓ × ✓ 75.7
✓ ✓ × 56.1

✓ ✓ ✓ 86.5

Table 5: Ablation study. The interaction effects between key design elements in the dense-scene
subset from the GraspNet-1Billon test set.

• Voxel Resolution. Next, we study the effect of voxel resolution in Table 6. We select a voxel size
of 5mm to balance accuracy and efficiency. Finer resolutions (2.5mm) offer only marginal gains
while significantly increasing memory usage, whereas coarser resolutions (10mm) lead to a clear
performance drop.

• Object Size. Finally, we analyze the performance on objects of different sizes in Table 7. The
results indicate that the success rate for small objects is indeed lower. However, combined with the
findings in Table 6, we attribute this to the inherently higher precision required for grasping small
objects, rather than insufficient voxel resolution.

Voxel Size (mm) Memory (GB) SR (%)
2.5 2.12 81.2
5 0.84 81.0

10 0.36 72.4

Table 6: Ablation on voxel resolution. Bolded
items denote selected hyperparameters, balanc-
ing computational efficiency and performance.

Volume Range (m³) SR (%) Prop. (%)
(0, 0.00025) 77.0 33.0

[0.00025, 0.0005) 78.8 36.9
[0.0005, 0.001) 82.6 22.3
[0.001, 0.0015) 82.3 6.0

[0.0015, +) 91.5 1.9

Table 7: Success rate vs. object volume.

5 Conclusion

In this paper, we enhance general dexterous grasp pose prediction in cluttered scenes by proposing
a two-stage framework. The first stage predicts our proposed compact, scene-decoupled, contact-
and collision-aware intermediate representation, which serves as the target for the second-stage
optimization. To ensure the quality of the predicted representation, we introduce an occupancy-
diffusion model with voxel-level conditional guidance and force closure filtering. To generate stable
and collision-free grasp poses, we further propose several energy functions and ranking strategies
for pose optimization. Comprehensive simulation and real-world experiments demonstrate the
effectiveness of our method.

Limitations. Although our method demonstrates better generalization, it primarily struggles with
small objects, which could be addressed by incorporating more small objects during training. Addi-
tionally, the current second-stage optimization is time-consuming due to the use of the DDPM [39]for
sampling IBS. This can be further optimized by adopting the DDIM [40].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sec. 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Sec. 5
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Supp.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be released after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Refer to Supp.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: [No]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: refer to supp

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: not mentioned in paper
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: harmless policy and data
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: refer to citations

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: [No]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we first describe the implementation details in Section A, followed by additional
experimental results in Section B.

A Implementation Details

A.1 Training Details

We train our model on 8 NVIDIA RTX 4090 GPUs with a batch size of 64. We use the AdamW
optimizer with a learning rate of 6e−5 and trained the model for 130 epochs. The training procedure
takes about 2 days.

A.2 Hyperparameters

The hyperparameters employed in our experiments are detailed in Table 8. The size of IBS volume
is configured to 0.2m × 0.2m × 0.2m, adequately encompassing the interaction space between
the dexterous hand and the object, while remaining sufficiently compact to focus on the critical
local grasping region. The resolution of the IBS volume is set to 40× 40× 40, striking a balance
between computational efficiency and the accuracy of the IBS surface representation. Both the IBS
sampling and grasp pose optimization processes are executed concurrently, with the number of IBS
candidates and grasp poses each limited to 5. The weights in the contact energy Ed are meticulously
adjusted to balance the contacts between the object and the thumb, as well as the other fingers,
whereas the weights in the overall energy E are calibrated to harmonize the various energy terms.
The hyperparameter for denoising timesteps is adopted from [31].

Hyperparameter Value

IBS Volume Size 0.2m× 0.2m× 0.2m
IBS Resolution (n) 40× 40× 40
Number of IBS Candidates (m) 5
Number of Grasp Poses (k) 5
Weights in Contact Energy Ed (α1, α2, α3) 80, 100, 2
Weights in Overall Energy E (λ1, λ2, λ3, λ4) 5, 1, 1000, 1
Denoising Timesteps 50

Table 8: Hyperparameters used in our experiments.

B More Results

In this section, we provide additional results of our method to demonstrate the effectiveness, robust-
ness, scalability, and generalization ability of our method.

B.1 Qualitative Results

In this section, we present additional qualitative evaluations of our proposed method. Figure 7
showcases the perception results of our method in both simulated and real-world environments. The
results clearly demonstrate that our approach successfully discerns the sparse IBS volume pertinent to
a success grasp pose from a single-view point cloud in cluttered settings. It effectively differentiates
the contact regions of the thumb and other fingers with the object. Furthermore, the second-stage
optimization, guided by Sparse IBS constraints, adaptly refines collision-free and plausible grasp
poses. Notably, the adoption of point cloud representation minimizes the sim-to-real gap, ensuring
that our method can generalize to real-world settings without additional training, thereby achieving
robust dexterous grasping capabilities.
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Figure 7: Qualitative results of our method in simulated (upper panel) and real-world environments
(lower panel). From left to right: the initial single-view point cloud input, the sparse IBS prediction
from the initial stage, and the optimized grasp pose from the subsequent stage. The purple areas
indicate thumb contact, red areas denote contact by other fingers, and green areas represent non-
contact regions on the IBS surface.
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B.2 Grasp Diversity Analysis

We analyze the distribution of joint configurations for all predicted grasp poses by CADGrasp and
DexGraspNet2.0 [11] within the GraspNet-1B loose scenarios [11]. This analysis aimed to compare
the diversity of grasp poses generated by the two methods. Taking the thumb as an example, Figure 8
illustrates that our method can generate diverse grasps with significantly higher dexterity compared
to DexGraspNet2.0. This highlights our approach’s capability to produce a wider range of effective
grasp configurations, enhancing its applicability in complex scenarios.
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Figure 8: Grasp diversity analysis of CADGrasp and DexGraspNet2.0 within the GraspNet-1B loose
scenarios. The histogram illustrates the distribution of joint configurations for the thumb.
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Figure 9: Penetration depth analysis of predicted grasp poses by CADGrasp and DexGraspNet2.0
within the GraspNet-1B loose scenarios. The histogram illustrates the distribution of maximal
penetration depths.
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B.3 Grasp Quality Analysis

In evaluating grasp quality, the proximity and penetration between the predicted grasp pose and the
object serve as crucial indicators. We analyzed the maximal penetration depth (in cm) of all predicted
grasp poses by CADGrasp and DexGraspNet2.0 within the GraspNet-1B loose scenarios. This
metric is defined as the maximal penetration depth from the object point cloud to the hand meshes.
As illustrated in Figure 9, our method demonstrates a concentration of penetration depths near the
object’s surface (penetration depth = 0), attributed to the constraints imposed by the IBS Surface
and contact points. This further underscores the superiority of our approach in achieving precise and
effective grasping.
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