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Summary
We propose a novel approach to model-based reinforcement learning by synthesizing sym-

bolic world models in the Lean 4 proof assistant. Leveraging Lean’s formal language for math-
ematics, we encode environment dynamics as interpretable, verifiable rules. Our system inte-
grates a planning agent, an evolutionary algorithm inspired by AlphaEvolve, and a Lean server
that predicts the dynamics of an environment using a set of already synthesized rules. We eval-
uate our approach on a custom cellular automaton environment called FireHelicopter.
This environment simulates the dynamics of a forest fire and requires the agent to maximize
forest preservation. We explore two training objectives: a pragmatic one focused on max-
imizing agent’s return, and a descriptive one prioritizing accurate world prediction. To our
knowledge, this is the first use of a general formal mathematics language for model-based RL.
We hypothesize that this is a promising avenue for sample-efficient, safe, and interpretable re-
inforcement learning in real-world scenarios.

Contribution(s)
1. We propose a novel connection of model-based RL and a general formal mathematics lan-

guage.
Context: Other approaches have experimented with synthesizing symbolic world models
using custom languages, but none used a general-purpose mathematics language.

2. We implement an evolutionary algorithm for symbolic classification where the mutation
function is guided by a large language model, similarly to AlphaEvolve (Novikov et al.,
2025).
Context: None

3. We evaluate our approach on two distinct world modeling objectives – reward maximization
and truthfulness.
Context: None

4. We release a cellular automaton-based environment suitable for evaluating model-based RL
approaches.
Context: A similar environment already exists but is unsuitable in our case (see Section 2).
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Abstract

We propose a novel approach to model-based reinforcement learning by synthesizing
symbolic world models in the Lean 4 proof assistant. Leveraging Lean’s formal lan-
guage for mathematics, we encode environment dynamics as interpretable, verifiable
rules. Our system integrates a planning agent, an evolutionary algorithm inspired by
AlphaEvolve, and a Lean server that predicts the dynamics of an environment using a
set of already synthesized rules. We evaluate our approach on a custom cellular automa-
ton environment called FireHelicopter. This environment simulates the dynamics
of a forest fire and requires the agent to maximize forest preservation. We explore two
training objectives: a pragmatic one focused on maximizing agent’s return, and a de-
scriptive one prioritizing accurate world prediction. To our knowledge, this is the first
use of a general formal mathematics language for model-based RL. We hypothesize
that this is a promising avenue for sample-efficient, safe, and interpretable reinforce-
ment learning in real-world scenarios.

1 Introduction

Modern reinforcement learning (RL) approaches drive progress in complex real-world environments
with unknown dynamics such as robotics or autonomous driving. To this end, model-based RL (Sut-
ton, 1991; Moerland et al., 2023) is a traditional technique of addressing some of the challenges that
arise when an environment simulator is not readily available and when actions of the agent can have
real-world consequences. Specifically, a learned world model can 1) improve sample efficiency,
reducing the number of necessary interactions with the environment, 2) improve generalization by
enabling transfer to unforeseen tasks, serving as a foundational model for the environment, 3) al-
low test-time planning, improving performance in complex environments necessitating backtracking
where some actions are not reversible, and 4) lead to safer exploration where the agent can evaluate
risky strategies before executing them.

Additionally, learned world models can seek to be interpretable by humans. This offers the pos-
sibility of understanding previously unknown dynamics of a complex system and obtaining some
guarantees on the behavior of the learned policy.

One avenue for obtaining interpretable world models is to construct them using a symbolic lan-
guage which can be directly read by humans. For example, the field of genetic programming strives
to automatically synthesize programs expressed as trees using a domain-specific set of operators and
constants. More generally, symbolic regression is the problem of finding a mathematical formula or
program which models an unknown function given a dataset of its inputs and outputs, optimizing for
accuracy and simplicity. Symbolic regression has also been applied to RL, using a model found by a
genetic algorithm to solve classic control RL environments with excellent sample efficiency (Kami-
enny et al., 2022; Gorodetskiy et al., 2024).
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Building on top of these contributions, we recognize that the real world together with many artificial
RL environments can be modeled by the laws of physics which in turn can be described using
mathematics. Therefore, we hypothesize that it is beneficial to construct world models of such
environments using formal languages designed for mathematics, the most prominent of which is
Lean (Moura & Ullrich, 2021).

Lean has been used successfully in the formalization of mathematics (van Doorn et al., 2023),
physics (Tooby-Smith, 2024), and chemistry (Bobbin et al., 2024), along with applications in soft-
ware verification (Avigad et al., 2025) and cryptography (Doussot, 2024). The standard library of
Lean currently offers more than 100k1 formal definitions and 200k formal statements together with
their automatically verifiable proofs, which can be utilized in the formalization of new theories.
Instead of being limited to a specific domain, Lean is as expressive as mathematics itself.

In this paper, we present our preliminary results of applying an evolutionary algorithm as a symbolic
classification engine to model the dynamics of a simple cellular automaton-based RL environment.
The model is learned online, gathering experience using a simple planning agent. Our contributions
are as follows:

• We present an end-to-end learning system consisting of a planning agent which collects experience
in an unknown environment, an evolutionary algorithm inspired by AlphaEvolve (Novikov et al.,
2025), and a Lean server that predicts the dynamics of the environment using a set of already
synthesized rules written in Lean. This serves as a proof of concept for using Lean to model RL
environments. To the best of our knowledge, this is the first such attempt.

• We evaluate our approach on two distinct world modeling objectives.

• We present a Gymnasium-compatible (Towers et al., 2024) environment FireHelicopter
suitable for evaluating model-based RL approaches. We release all our code as open source2

and the gym-cellular environment as a user-friendly Python package3.

2 Related Work

Symbolic Regression in Reinforcement Learning Symbolic regression has been applied to RL to
construct interpretable policies that generalize well from limited data. Kamienny et al. (2022) used
a genetic algorithm on a predefined number of operators to synthesize a symbolic world model for
the Cartpole environment (Barto et al., 1983), planning using the cross-entropy method (Rubinstein,
1999) and achieving state-of-the-art at the time in terms of sample efficiency. Similarly, genetic
programming was used by Hein et al. (2018) to directly learn symbolic policies on classical control
tasks and by Gorodetskiy et al. (2024) to generate training data for a model-free algorithm.

Evolutionary and Genetic Algorithms Evolutionary algorithms provide a general framework for
optimizing black-box fitness functions, drawing inspiration from the evolutionary process in na-
ture. Classical methods such as genetic programming (Koza, 1994) and NEAT (Stanley & Mi-
ikkulainen, 2002) demonstrated the potential of this line of research, but struggled to find practical
applications. More recently, evolutionary strategies were revived as scalable RL optimizers, illus-
trating that evolutionary methods can match deep RL performance in some cases due to being better
suited for massively parallel computation. Subsequently, AutoML-Zero (Real et al., 2020) used
evolutionary search to automatically synthesize simple machine learning algorithms. Recently, Al-
phaEvolve (Novikov et al., 2025) successfully scaled evolutionary program synthesis, guiding the
mutation function with a large language model and discovering state-of-the-art solutions to a range
of problems in mathematics, computer science, hardware design, and more.

Cellular Automata Environments In designing the FireHelicopter environment, we take
heavy inspiration from gym-cellular-automata – an existing cellular automaton-based en-

1Retrieved in Jun, 2025.
2https://github.com/Kripner/lean-worlds
3https://pypi.org/project/gym-cellular

https://github.com/Kripner/lean-worlds
https://pypi.org/project/gym-cellular
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vironment modeling a forest fire.4 Instead of utilizing this existing work, we ultimately decided to
implement our own environment for three reasons.

First, we find the cellular automaton implemented in gym-cellular-automata to be too
simple for the purpose of evaluating automatic synthesis of a world model. Second, we
encountered several technical difficulties when interacting with gym-cellular-automata.
For example, its interactive rendering logic does not work out-of-the-box. Most importantly,
gym-cellular-automata is a stochastic environment which prevents the application of our
approach. We discuss this limitation in the Conclusion.

3 Cellular Automaton Environment

We present a reinforcement learning environment based on Gymnasium (Towers et al., 2024) driven
by a cellular automaton, called FireHelicopter. The environment is a simplified simulator of
a forest fire where the goal of the agent is to guide a firefighting helicopter and keep as many trees
alive as possible. Below, we detail the mechanics of this environment. For comparison with existing
environments, refer to Section 2.

In FireHelicopter, the agent is positioned on a 10×10 grid where each cell takes on one of
the following values: Empty (E), Tree (T), Igniting Fire (F1), Developing Fire (F2), Developed Fire
(F3), and Rock (R). The cell values evolve as a cellular automaton, where the change of a cell value
is determined only by the values of its four neighbors, and all values are updated simultaneously.

The precise local rule of the cellular automaton is shown in Figure 1 and a progression of an example
episode is shown in Figure 2. In the initial state, Trees span the whole grid except for one square
with Igniting Fire. Additionally, approximately 10% of the squares are occupied by Rocks which
remain inert throughout the episode.

Once an Igniting Fire progresses through Developing Fire into a Developed Fire, it spreads to any
Trees in its 4-neighborhood, leaving the burned square Empty. The fire is extinguished at any stage
if the agent moves to the given square. Finally, a Tree spreads to any Empty neighbor, regenerating
the forest.

Formulated as a Markov Decision Process (MDP), the agent’s observation is its position together
with the current value for each cell in the grid. The set of actions are the four directions in which the
agent can move. Finally, the reward at any given timestep is the number of existing Trees divided
by 100. An episode is terminated after 100 steps have been reached.

We hypothesize that the described environment is suitable for evaluating planning agents with a
learned world model, since predicting the location of fire squares at any point in the future is critical
for deciding where to move next.

4 World Model Synthesis

In general, we identify two distinct objectives against which a world model can be optimized and
evaluated. First, a pragmatic objective seeks to find a world model that enables a planning agent
to achieve the highest possible return. To this end, a pragmatic objective only forces learning the
environment dynamics needed to choose high-reward actions, without necessitating other aspects of
the environment to be modeled.

In contrast, a descriptive objective requires a world model to correctly capture all aspects of an
environment, independent of any single downstream task. As such, a world model optimized using
a descriptive objective is more general in the sense that it can be deployed in a different context or
facilitate the interpretability of the environment dynamics by humans.

4https://github.com/elbecerrasoto/gym-cellular-automata

https://github.com/elbecerrasoto/gym-cellular-automata
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Figure 1: The cellular automaton rule guiding one step of our environment. A tree (T) can grow
to a neighboring empty square (E) or catch fire from a neighboring developed fire (F3), yielding
an igniting fire (F1). Igniting fire transitions through a developing fire (F2) before becoming fully
developed. The fire can be extinguished at any point if the agent (blue triangle) moves to the given
square. After a fire is extinguished or burns through all the stages, it transitions to an empty square.
Additionally, rocks (R) stay unchanged throughout the episode. If no transition is applicable, the
given cell does not change.

(a) Initial position. (b) Fighting the fire. (c) The forest is lost.

Figure 2: Various stages of the episode. Initially, only one tree is burning and the agent is placed in
the center of the grid. When the fire is not contained and all trees are burned down, the forest will
not regenerate and the reward will be zero until episode end.

In light of this distinction, we optimize our learning system individually for each of the two objec-
tives. Both approaches differ only in the fitness function provided to the evolutionary algorithm,
which we detail in Section 4.2. First, Section 4.1 presents a world model is formalized in Lean.

4.1 Lean Formalization

In our case, a world model attempts to predict the next value for each grid cell given the current state
of the grid and the position of the agent. We use Lean 4 to represent this dynamics.
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Specifically, we factorize the world model into a set of rules that attempt to describe the local rule
for a given cell in the cellular automaton. Each rule consists of a body and a target. The body of a
rule is a predicate written in Lean which evaluates to either true or false given the current state
of the grid, the position of the agent and the coordinates of the given cell. If the rule activates for a
given cell, evaluating to true, the value of the cell is updated to match the rule’s target.

Conflicts arising from the activation of multiple rules are resolved by assigning a precedence to cell
types, which is equal to the order in which they are presented in Section 3. When no rule activates
for a given cell, the cell’s value stays unchanged.

As an example, Figure 3 lists a set of hand-written rules that model the dynamics of the
FireHelicopter environment.

E← grid p = F3

E← grid p = F2 ∧ p = a

E← grid p = F1 ∧ p = a

T← grid p = E ∧ neighbor p (λp 7→ grid p = T)

F1 ← grid p = T ∧ neighbor p (λp 7→ grid p = F3)

F2 ← grid p = F1 ∧ p ̸= a

F3 ← grid p = F2 ∧ p ̸= a

Figure 3: Hand-written Lean rules corresponding to the true behavior of the FireHelicopter
automaton.

We note that the presented world model factorization is relatively natural in Lean due to the func-
tional nature of Lean, as compared to imperative languages.

4.2 Evolutionary Symbolic Classification

We employ an evolutionary algorithm to synthesize a symbolic world model. Although several evo-
lutionary algorithm libraries are readily available (notably the LEAP Library (Coletti et al., 2020)),
we found their interface to be constrained for our specific needs. Specifically, our approach benefits
from evaluating both the fitness function and the mutation function in batches rather than individ-
ually. To achieve this, we opted to implement an evolutionary algorithm manually. The algorithm,
which we detail below, follows the familiar scheme of fitness evaluation, selection, and mutation.

Fitness evaluation. Following the distinction of two different world model objectives described at
the beginning of this section, we define two different fitness functions. In the pragmatic setting, the
fitness function of a world model is simply the return achieved by a planning agent guided by the
world model, averaged over k rollouts.

On the other hand, in the descriptive setting, we set the fitness function to be the F-score of the
world model’s predictions when viewed as a binary classification. Specifically, for each timestep,
we define true positives tp as the number of cells that changed and the world model predicted them
correctly, Analogously, false negatives fn correspond to the cells for which no rule was activated
by their value did change, and false positives fp correspond to cells which did not change although
the world model predicted that they would.

We find that the F-score, calculated as 2 ·tp / (2 ·tp+fp+fn), better represents the performance
of a world model since, in most timesteps, the majority of cells do not change, and thus predicting
them is trivial.

Selection. To select parents for crossover, we use fitness-proportionate selection implemented using
Stochastic Universal Sampling (SUS) (Brindle, 1980) with temperature t. In this approach, the
expected number of times an individual with fitness f is selected is proportional to f t.
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Mutation. Similarly to AlphaEvolve (Novikov et al., 2025), we guide mutations using a large
language model (LLM) rather than hand-crafted rules. Specifically, we use Qwen3-4B (Yang et al.,
2025) prompted with a mutation prompt listed in Appendix A.

Importantly, the premises presented to the LLM are obfuscated by variable renaming to mitigate the
possibility that the model infers any connection with a cellular automaton or the spread of fire. The
goal of this is to make our approach as general as possible.

5 Experiments

We apply our world model synthesis approach presented in Section 4 to the cellular automaton-
based environment described in Section 3 using both a descriptive and a pragmatic objective. For
experience collection and evaluation with the learned world model, we use a simple planning agent
that considers all future trajectories up to depth d = 4 and selects the one maximizing its return.
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E← grid p = F3

E← grid p = E

F3 ← grid p = F2

F1 ← neighbor p (λx 7→ grid x = F3)

F1 ← (grid a = R) ∧ (grid p = 6)

E← grid p = F3

F2 ← grid p = F1

(a) Descriptive objective.
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T← neighbor p (λx 7→ grid x = F3 ∧
grid a = F3 ∧ x = a)

F1 ← grid p = F2

T← R = F2

E← grid p = F1

T← grid p = F1

T← grid a = F1 ∧ true
F1 ← neighbor p (λx 7→ ¬(grid x ̸= F1))

(b) Pragmatic objective.

Figure 4: Training plots and resulting world models for both objectives.

Figure 4 shows the training plots for both objectives together with the best individual in the last gen-
eration. The results indicate that the evolutionary algorithm is capable of optimizing both objectives
individually. In the descriptive case, the resulting world model qualitatively resembles the true envi-
ronment dynamics, but still contains inaccuracies, redundancies, and omissions. For example, one
of its rules states that a cell transitions to an Igniting Fire if it is currently occupied by a Developed
Fire, which is not true.

In the pragmatic case, the world model is qualitatively bad. Still, it enables the planning agent
to significantly improve its performance compared to a random model. Crucially, the synthesized
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model contains a rule stating that a Tree grows in a cell if it is currently occupied by a Developed
Fire under the condition that the agent (a firefighting helicopter) is present. Although the rule is not
accurate, as such a cell transitions to an Empty state before a Tree can grow, it allows the agent to
understand that when a fire is extinguished, a Tree will later be able to grow.

Conclusion

We presented a novel connection of symbolic model-based RL and the formal verification language
Lean, evaluating an end-to-end learning system individually to achieve high reward in an environ-
ment and to model the environment accurately.

Limitations and future work. Although we demonstrated the technical viability of such an ap-
proach, future work remains before the system is useful in a practical application. Firstly, we used
a standard off-the-shelf evolutionary algorithm without tuning it for our specific use case. Our plan
is to integrate some of the techniques used by FunSearch (Romera-Paredes et al., 2024) and Al-
phaEvolve (Novikov et al., 2025), such as island-based population and diversity score. Additionally,
while the advantage of our mutation function is its generality, it might instead be beneficial to pro-
vide the LLM guiding the mutation with some context about the problem statement or the current
best solution.

Second, we did not address stochastic environments which are commonplace in the real world.
Although Lean is well suited for working with probability distributions,5 additional work is required
before stochastic world models can be synthesized.

Third, our approach does not utilize the potential of Lean as a proof assistant. Aside from being
well suited for formalizing definitions and statements, the main capability of Lean lies in the for-
malization and verification of mathematical proofs. Future work should explore the possibility of
synthesizing formal proofs of various aspects of the world model, such as its internal consistency.

Finally, more robust experimental results are needed to evaluate the potential of symbolic formal
world models in RL. For example, while we evaluated the optimization of both the descriptive
and the pragmatic objectives individually, it would be beneficial to explore how the two objectives
interact and how they can be optimized in parallel. In addition, our experiments should be replicated
to provide error estimates.
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A Mutation Prompt

You will get a Lean 4 expression.
Suggest 3 (three) different mutations of it.
Enclose each one in ```lean4 ... ``` tags.
Be creative, try out different things!

There are three types:
- bool (boolean)
- int (integer)
- Foo (an opaque type)

Allowed binary infix operators:
= : int -> int -> bool
= : Foo -> Foo -> bool
∧ : bool -> bool -> bool

Allowed unary prefix operators:
g : Foo -> int
¬: bool -> bool

Allowed constants:
0 : int
...
5 : int
a : Foo
c : Foo

No other operators or constants are allowed!
Make sure the expression is type-correct.
You can use parenthesis to signify precedence.

Additionally, you can use the exists_foo quantifier over Foo
like this: `exists_foo (fun x => ...)`

There can be at most one exists_foo operator in each formula.
Inside the exists_foo clause, you can additionally use the x
variable, which has type Foo.

Generate a diverse set of mutations - do not repeat the same idea
twice.
The three mutations should accomplish the following:
- One modifies the formula.
- One extends the formula.
- One simplifies the formula.

Now, this is your input formula to mutate:

```lean4
{}
```

<think>
... OK, done. Now I will write the 3 different mutations.
</think>

```lean4


