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Abstract
We study differentially private (DP) machine
learning algorithms as instances of noisy fixed-
point iterations, in order to derive privacy and util-
ity results from this well-studied framework. We
show that this new perspective recovers popular
private gradient-based methods like DP-SGD and
provides a principled way to design and analyze
new private optimization algorithms in a flexible
manner. Focusing on the widely-used Alternat-
ing Directions Method of Multipliers (ADMM)
method, we use our general framework to derive
novel private ADMM algorithms for centralized,
federated and fully decentralized learning. For
these three algorithms, we establish strong pri-
vacy guarantees leveraging privacy amplification
by iteration and by subsampling. Finally, we pro-
vide utility guarantees using a unified analysis
that exploits a recent linear convergence result for
noisy fixed-point iterations.

1. Introduction
Controlling the risk of privacy leakage in machine learn-
ing training and outputs has become of paramount impor-
tance in applications involving personal or confidential data.
This has drawn significant attention to the design of Em-
pirical Risk Minimization (ERM) algorithms that satisfy
Differential Privacy (DP) (Chaudhuri et al., 2011). DP
is the standard for measuring the privacy leakage of data-
dependent computations. The most popular approaches to
private ERM are Differentially Private Stochastic Gradient
Descent (DP-SGD) (Bassily et al., 2014; Abadi et al., 2016)
and its variants (Talwar et al., 2015; Wang et al., 2017; Zhou
et al., 2021; Mangold et al., 2022; Kairouz et al., 2021a;b).
DP-SGD is a first-order optimization algorithm, where the
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gradients of empirical risks are perturbed with Gaussian
noise. Algorithms like DP-SGD can be naturally extended
from the classic centralized setting, where a single trusted
curator holds the raw data, to federated and decentralized
scenarios that involve multiple agents who do not want to
share their local data (Geyer et al., 2017; McMahan et al.,
2018; Noble et al., 2022; Cyffers & Bellet, 2022).

In this work, we revisit private ERM from the perspective of
fixed-point iterations (Bauschke & Combettes, 2011), which
compute fixed points of a function by iteratively applying a
non-expansive operator T . Fixed point iterations are well-
studied and widely applied in mathematical optimization,
automatic control, and signal processing. They provide a
unifying framework that encompasses many optimization
algorithms, from (proximal) gradient descent algorithms to
the Alternating Direction Method of Multipliers (ADMM),
and come with a rich theory (Combettes & Pesquet, 2021).
Specifically, we study a general noisy fixed-point iteration,
where Gaussian noise is added to the operator T at each step.
We also consider a (possibly randomized) block-coordinate
version, where the operator is applied only to a subset of
coordinates. As particular cases of our framework, we show
that we can recover DP-SGD and a recent coordinate-wise
variant (Mangold et al., 2022). We then prove a utility bound
for the iterates of our general framework by exploiting recent
linear convergence results from the fixed-point literature
(Combettes & Pesquet, 2019).

With this general framework and results in place, we show
that we can design and analyze new private algorithms for
ERM in a principled manner. We focus on ADMM-type
algorithms, which are known for their effectiveness in
centralized and decentralized machine learning (Boyd et al.,
2011; Wei & Ozdaglar, 2012; 2013; Shi et al., 2014; Vanhae-
sebrouck et al., 2017; Tavara et al., 2022; Zhou & Li, 2022).
Based on a reformulation of ERM as a consensus problem
and the characterization of the ADMM iteration as a Lions-
Mercier operator on post-infimal composition (Giselsson
et al., 2016), we derive private ADMM algorithms for
centralized, federated, and fully decentralized learning. In
contrast to previously proposed private ADMM algorithms
that build upon a duality interpretation and require ad-hoc
algorithmic modifications and customized theoretical anal-
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ysis (Huang et al., 2019; Zhang & Zhu, 2017; Zhang et al.,
2018; Ding et al., 2020; Liu et al., 2022), our algorithms
and utility guarantees follow directly from our analysis of
our general noisy fixed-point iteration. In particular, we are
the first to our knowledge to derive a general convergence
rate analysis of private ADMM that can be used for the
centralized, federated, and fully decentralized settings.
We prove strong DP guarantees for our private ADMM
algorithms by properly binding appropriate privacy ampli-
fication schemes compatible with the three settings, such
as privacy amplification by iteration (Feldman et al., 2018)
and by subsampling (Mironov et al., 2019), with a general
sensitivity analysis of our fixed-point formulation. We
believe our findings will serve as a generic and interpretable
recipe to analyze future private optimization algorithms.

2. Related Work
The ERM framework is widely used to efficiently train
machine learning models with DP. Here, we briefly review
the approaches based on privacy-preserving optimization,
which are closest to our work and popular in practice due to
their wide applicability.1

Private gradient-based methods. Differentially Private
Stochastic Gradient Descent (DP-SGD) (Bassily et al., 2014;
Abadi et al., 2016) and its numerous variants (Talwar et al.,
2015; Wang et al., 2017; Zhou et al., 2021; Mangold et al.,
2022; Kairouz et al., 2021a;b) are extensively studied and de-
ployed for preserving DP while training ML models. Since
these methods interact with data through the computation
of gradients, DP is ensured by adding calibrated Gaussian
noise to the gradients. These approaches naturally extend
to federated learning (Kairouz et al., 2021c), where several
users (clients) aim to collaboratively train a model without
revealing their local dataset (user-level DP). In particular,
DP-FedSGD (Geyer et al., 2017), DP-FedAvg (McMahan
et al., 2018) and DP-Scaffold (Noble et al., 2022) are feder-
ated extensions of DP-SGD that rely on an (untrusted) server
to aggregate the gradients or model updates from (a sub-
sample of) the users. These algorithms provide a local DP
guarantee with respect to the server (who observes individ-
ual user contributions), and a stronger central DP guarantee
with respect to a third party observing only the final model.2

In the fully decentralized setting, the server is replaced by
direct user-to-user communications along the edges of a
communication graph. Cyffers & Bellet (2022) and Cyffers
et al. (2022) recently showed that fully decentralized vari-
ants of DP-SGD provide stronger privacy guarantees than
suggested by a local DP analysis. Their results are based on

1Other techniques such as output and objective perturbation
have also been considered, see e.g. (Chaudhuri et al., 2011).

2The stronger central DP guarantees holds also w.r.t. the server
if secure aggregation is used (Bonawitz et al., 2017).

the notion of network DP, a relaxation of local DP capturing
the fact that users only observe the information they receive
from their neighbors in the communication graph.

As we will show in Section 4, our general noisy fixed-point
iteration framework allows recovering these private gradient-
based algorithms as a special case, but also to derive novel
private ADMM algorithms (in the centralized, federated
and fully decentralized settings) with privacy and utility
guarantees similar to their gradient-based counterparts.

Private ADMM. Due to the flexibility and effectiveness
of ADMM for centralized and decentralized machine learn-
ing (Boyd et al., 2011; Wei & Ozdaglar, 2012; Shi et al.,
2014; Vanhaesebrouck et al., 2017), differentially private
versions of ADMM have been studied for the centralized
(Shang et al., 2021; Liu et al., 2022), federated (Huang et al.,
2019; Cao et al., 2021; Ryu & Kim, 2022; Hu et al., 2019),
and fully decentralized (Zhang & Zhu, 2017; Zhang et al.,
2018; Ding et al., 2020) settings. These existing private
ADMM algorithms are specifically crafted for one of the
three settings, based on ad-hoc algorithmic modifications
and customized analysis that are not extendable to the other
settings. For example, the previous fully decentralized pri-
vate ADMM algorithms use at least 3-4 privacy parameters
and add noise from two different distributions (Zhang &
Zhu, 2017; Ding et al., 2020), while the centralized private
ADMM of Shang et al. (2021) uses one noise generating
distribution. Thus, it is very hard to find an overarching
generic structure in the previous literature. Our work simpli-
fies and unifies the design of private ADMM algorithms by
developing a generic framework: we provide a unified utility
analysis, and the same baseline privacy analysis based on
sensitivity with a clear parametrization by a single parame-
ter, for the three settings (centralized, federated and fully de-
centralized). We achieve this thanks to our characterization
of private ADMM algorithms as noisy fixed-point iterations,
and more specifically as noisy Lions-Mercier operators on
post-infimal composition (Giselsson et al., 2016) rather than
on the dual functions. In contrast, previous work on private
ADMM mostly used a dual function viewpoint, leading to
complex convergence analysis (sometimes with restrictive
assumptions) and privacy guarantees that are difficult to in-
terpret (and often limited to LDP). We also note that, except
for Cao et al. (2021) who considered only the trusted server
setting, we are the first to achieve user-level DP for federated
and fully decentralized ADMM. As discussed below, we are
also the first to show that ADMM can benefit from privacy
amplification to obtain better privacy-utility trade-offs.

Privacy amplification by iteration. The seminal work of
Feldman et al. (2018), later extended by Altschuler & Tal-
war (2022), showed that iteratively applying non-expansive
updates can amplify privacy guarantees for data points used
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in early stages. Although privacy amplification by iteration
is quite general, to the best of our knowledge, it was suc-
cessfully applied only to DP-SGD. In this work, we show
how to leverage it for the ADMM algorithms applied to the
consensus-based problems in the fully decentralized setting.

More generally, our work stands out as we are not aware
of any prior work that considers the general perspective of
noisy-fixed point iterations to design and analyze differen-
tially private optimization algorithms.

3. Background
In this section, we introduce the necessary background that
will constitute the basis of our contributions. We start by
providing basic intuitions and results about the fixed-point
iterations framework. Then, we show how ADMM fits into
this framework. Finally, we introduce Differential Privacy
(DP) and the technical tools used in our privacy analysis.

3.1. Fixed-Point Iterations

Let us consider the problem of finding a minimizer (or gen-
erally, a stationary point) of a function f : U → R, where
U ⊆ Rp. This problem reduces to finding a point u∗ ∈ U
such that 0 ∈ ∂f(u∗), or ∇f(u∗) = 0, when f is differen-
tiable. A generic approach to compute u∗ is to iteratively
apply an operator T : U → U such that the fixed points of T ,
i.e., the points u∗ satisfying T (u∗) = u∗, coincide with the
stationary points of f . The iterative application of T start-
ing from an initial point u0 ∈ U constitutes the fixed-point
iteration framework (Bauschke & Combettes, 2011):

uk+1 ≜ T (uk). (1)

We denote by I the identity operator, i.e. I(u) ≜ u. To
analyze the convergence of the sequence of iterates to a
fixed point of T , various assumptions on T are considered.

Definition 1 (Non-expansive, contractive, and λ-averaged
operators). Let T : U → U and λ ∈ (0, 1). We say that:

• T is non-expansive if it is 1-Lipschitz, i.e., ∥T (u) −
T (u′)∥ ≤ ∥u− u′∥ for all u, u′ ∈ U .

• T is τ -contractive if it τ -Lipschitz with τ < 1.

• T is λ-averaged if there exists a non-expansive opera-
tor R such that T = λR+ (1− λ)I .

Hereafter, we will focus on λ-averaged operators that cor-
respond to a barycenter between the identity mapping and
a non-expansive operator. This family encompasses many
popular optimization algorithms. For instance, when f
is convex and β-smooth, the operator T = I − γ∇f ,
which corresponds to gradient descent, is γβ/2-averaged for
γ ∈ (0, 2/β). The proximal point, proximal gradient and
ADMM algorithms also belong to this family (Bauschke

& Combettes, 2011). By the Krasnosel’skii Mann theorem
(Byrne, 2003), the iterates of a λ-averaged operator con-
verge. Hence, formulating an optimization algorithm as
the application of a λ-averaged operator allows us to reuse
generic convergence results.

The rich convergence theory of fixed point iterations
goes well beyond the simple iteration (1), see (Combettes
& Pesquet, 2021) for a recent overview. In this work,
we leverage several extensions of this theory. First, we
consider inexact updates, where each application of T
is perturbed by additive noise of bounded magnitude.
Such noise can arise because the operator is computed
only approximately (for higher efficiency) or due to the
stochasticity in data-dependent computations. Another
extension considers T operating on a decomposable space
U = U1 × · · · × UB with B blocks, i.e.,

T (u) ≜ (T1(u), . . . , TB(u)), where Tb : U → Ub,∀b.

Here, it is possible to update each block separately in order
to reduce per-iteration computational costs and memory
requirements, or to facilitate decentralization (Mao et al.,
2020). This corresponds to replacing the update in (1) by:

∀b : uk+1,b = uk,b + ρk,b(Tb(uk)− uk,b), (2)

where ρk,b is a Boolean (random) variable that encodes
if block b is updated at iteration k.3 Various strategies
for selecting blocks are possible, such as cyclic updates
or random sampling schemes. A generic convergence
analysis of fixed-point iterations under both inexact and
block updates has been proposed by Combettes & Pesquet
(2019), which we leverage in our analysis.

3.2. ADMM as a Fixed-Point Iteration

We now present how ADMM can be defined as a fixed-point
iteration. ADMM minimizes the sum of two (possibly non-
smooth) convex functions with linear constraints between
the variables of these functions, which can be formulated as:

minimize
x, z

f(x) + g(z)

subject to Ax+Bz = c
(3)

ADMM is often presented as an approximate version of the
augmented Lagrangian method, where the minimization of
the sum in the primal is approximated by the alternating
minimizations on x and z. However, this analogy is not
fruitful for theoretical analysis, as no proof of convergence
only relies on bounding this approximation error to analyze
ADMM (Eckstein & Yao, 2015). A more useful charac-
terization of ADMM is to see it as a splitting algorithm

3Note that these block updates can be seen as projections of
the global update and thus are also non-expansive.
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(Eckstein & Yao, 2015), i.e., an approach to find a fixed
point of the composition of two (proximal) operators by
performing operations that involve each operator separately.

Specifically, ADMM can be defined through the Lions-
Mercier operator (Lions & Mercier, 1979). Given two
proximable functions p1 and p2 and parameter γ > 0, the
Lions-Mercier operator is:

Tγp1,γp2 = λRγp1Rγp2 + (1− λ)I, (4)

where Rγp1 = 2proxγp1
−I and Rγp2 = 2proxγp2

−I .
This operator is λ-averaged, and it can be shown that if the
set of the zeros of ∂(f+g) is not empty, then the fixed points
of Tγp1,γp2

are exactly these zeros (Boyd et al., 2011).

The fixed-point iteration (1) with Tγp1,γp2
is known as

the Douglas-Rachford algorithm, and ADMM is equiva-
lent to this algorithm applied to a reformulation of (3) as
minu p1(u) + p2(u) with p1(u) = (−A ▷ f)(−u− c) and
p2(u) = (−B ▷ g)(u), where we denote by (M ▷ f)(y) =
inf{f(x) | Mx = y} the infimal postcomposition (Gisels-
son et al., 2016). For completeness, we show in Ap-
pendix B.1 how to recover the standard ADMM updates
from this formulation.

3.3. Differential Privacy

In this work, we study fixed-point iterations with Differen-
tial Privacy (DP), which is the de-facto standard to quantify
the privacy leakage of algorithms (Dwork & Roth, 2014).
DP relies on a notion of neighboring datasets. We denote a
private dataset of size n by D ≜ (d1, . . . , dn). Two datasets
D,D′ are neighboring if they differ in at most one element
di ̸= d′i, and we note this relation D ∼ D′. We refer to each
di as a data item. Depending on the context (centralized ver-
sus federated), di corresponds to a data point (record-level
DP), or to the whole local dataset of a user (user-level DP).

Formally, we use Rényi Differential Privacy (RDP)
(Mironov, 2017a) for its theoretical convenience and better
composition properties. We recall that any (α, ε)-RDP algo-
rithm is also (ε+ln(1/δ)/(α−1), δ)-DP for any 0 < δ < 1
in the classic (ε, δ)-DP definition.

Definition 2 (Rényi Differential Privacy (RDP) (Mironov,
2017b)). Given α > 1 and ε > 0, an algorithm A sat-
isfies (α, ε)-Rényi Differential Privacy if for all pairs of
neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ≤ ε , (5)

where for two random variables X and Y , and Dα

(
X ||Y

)
is the Rényi divergence between X and Y , i.e.

Dα

(
X ||Y

)
≜

1

α− 1
ln

∫ (
µX(z)

µY (z)

)α

µY (z)dz ,

with µX and µY the respective densities of X and Y .

Algorithm 1: Private fixed point iteration
Input: Non-expansive operator R = (R1, . . . , RB)

over 1 ≤ B ≤ p blocks, initial point
u0 ∈ U , step sizes (λk)k∈N ∈ (0, 1], active
blocks (ρk)k∈N ∈ {0, 1}B , errors (ek)k∈N,
privacy noise variance σ2 ≥ 0

1 for k = 0, 1, . . . do
2 for b = 1, . . . , B do
3 uk+1,b = uk,b + ρk,bλk(Rb(uk) + ek,b +

ηk+1,b − uk,b) with ηk+1,b ∼ N (0, σ2Ip)
4 end
5 end

A standard method to turn a data-dependent computation
h(D) ∈ Rp into an RDP algorithm is the Gaussian mech-
anism (Dwork & Roth, 2014; Mironov, 2017a). Gaus-
sian mechanism is defined as A(D) ≜ h(D) + η, where
η is a sample from N (0, σ2Ip). This mechanism satis-
fies (α, α∆2/2σ2)-RDP for any α > 1, where ∆ ≜
supD∼D′∥h(D)− h(D′)∥ is the sensitivity of h.

Our analysis builds upon privacy amplification results (we
summarize the ones we use in Appendix C.1). This includes
amplification by subsampling (Mironov et al., 2019): if
the above algorithm A is executed on a random fraction q
of D, then it satisfies (α,O(α∆2q2/2σ2))-RDP. We also
use privacy amplification by iteration (Feldman et al., 2018;
Altschuler & Talwar, 2022). This technique captures the
fact that sequentially applying a non-expansive operator
improves privacy guarantees for the initial point as the
number of subsequent updates increase. Feldman et al.
(2018) and Altschuler & Talwar (2022) applied this result
to ensure differential privacy for SGD-type algorithms. In
this work, we use this result in tandem with the generic
fixed-point iteration approach to develop and analyze the
privacy of ADMM algorithms.

4. A General Noisy Fixed-Point Iteration for
Privacy Preserving Machine Learning

In this section, we formulate privacy preserving machine
learning algorithms as instances of a general noisy fixed-
point iteration. We show that we can recover popular private
gradient descent methods (such as DP-SGD) from this for-
mulation, and we provide a generic utility analysis.

4.1. Noisy Fixed-Point Iteration

Given a dataset D = (d1, . . . , dn), we aim to design differ-
entially private algorithms to approximately solve the ERM
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problems of the form:

minimize
u ∈ U ⊆ Rp

1

n

n∑
i=1

f(u; di) + r(u), (6)

where f(·; di) is a (typically smooth) loss function com-
puted on data item di and r is a (typically non-smooth)
regularizer. We denote f(u;D) ≜ 1

n

∑n
i=1 f(u; di).

To solve this problem, we propose to consider the general
noisy fixed-point iteration described in Algorithm 1. The
core of each update applies a λk-averaged operator con-
structed from a non-expansive operator R, and a Gaussian
noise term added to ensure differential privacy via the Gaus-
sian mechanism (Section 3.3). Algorithm 1 can use (possi-
bly randomized) block-wise updates (B > 1) and accommo-
date additional errors in operator evaluation (in terms of ek).

Despite the generality of this scheme, we show in Sec-
tion 4.3 that we can provide a unified utility analysis under
the only assumption that the operator R is contractive.

4.2. Recovering Private Gradient-based Methods from
the Noisy Fixed-Point Iteration

Differentially Private Stochastic Gradient Descent (DP-
SGD) (Bassily et al., 2014; Abadi et al., 2016) is the most
widely used private optimization algorithm. In Proposi-
tion 1, we show that we recover DP-SGD from our general
noisy fixed-point iteration (Algorithm 1).

Proposition 1 (DP-SGD as a noisy fixed-point itera-
tion). Assume that f(·; d) is β-smooth for any d, and let
r(u) = 0. Consider the non-expansive operator R(u) ≜
u − 2

β∇f(u;D). Set B = 1, λk = λ = γβ
2 with

γ ∈ (0, 2
β ), and ek = 2

β (∇f(uk) − ∇f(uk; dik)) with
ik ∈ {1, . . . , n}.4 Then, Algorithm 1 recovers DP-SGD
(Bassily et al., 2014; Abadi et al., 2016), i.e., the update at
step k + 1 is uk+1 = uk − γ(∇f(uk; dik) + η′k+1) with

η′k+1 ∼ N (0, β2

4 σ2I). The term ek corresponds to the er-
ror due to evaluating the gradient on dik only, and satisfies
E[∥ek∥] ≤ 4L/β when f(·; d) is L-Lipschitz for any d.

The privacy guarantees of DP-SGD can be derived: first, by
observing that R(uk) + ek = uk −∇fik(uk; dik) is itself
non-expansive, and then applying privacy amplification by
iteration, as done in (Feldman et al., 2018). Alternatively,
composition and privacy amplification by subsampling can
be used (Mironov et al., 2019).

Similarly, we also recover Differentially Private Coordinate
Descent (DP-CD) (Mangold et al., 2022).

Proposition 2 (DP-CD as a noisy fixed-point iteration).
Consider the same setting as in Proposition 1, but with B >

4One can draw ik uniformly at random, or choose it so as to do
deterministic passes over D.

1 blocks (coordinates), and Rb(u) ≜ ub − 2
β∇bf(u;D),

where ∇bf is the b-th block of ∇f , and ek = 0. Then
Algorithm 1 reduces to the Differentially Private Coordinate
Descent (DP-CD) algorithm (Mangold et al., 2022).

Utility guarantees for DP-SGD and DP-CD can be obtained
as instantiations of the general convergence analysis of Al-
gorithm 1, presented in Section 4.3.

4.3. Utility Analysis

In this section, we derive a utility result for our general noisy
fixed-point iteration when the operator R is contractive
(see Definition 1). For gradient-based methods, this holds
notably when g is smooth and strongly convex. This is also
the case for ADMM (see Giselsson & Boyd, 2014; Ryu
et al., 2020, and references therein for contraction constants
under various sufficient conditions). Our result, stated below,
leverages a recent convergence result for inexact and block-
wise fixed-point iterations (Combettes & Pesquet, 2019).
Obtaining explicit guarantees for the noisy setting requires a
careful analysis with appropriate upper and lower bounds on
the feasible learning rate, control of the impact of noise, and
finally the characterization of the contraction factor in the
convergence rate. The proof can be found in Appendix A.

Theorem 1 (Utility guarantees for noisy fixed-point itera-
tions). Assume that R is τ -contractive with fixed point u∗.
Let P [ρk,b = 1] = q for some q ∈ (0, 1]. Then there exists
a learning rate λk = λ ∈ (0, 1] such that the iterates of
Algorithm 1 satisfy:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽

(
1− q2(1− τ)

8

)k

D

+ 8

( √
pσ + ζ

√
q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)
where D ≜ ∥u0 − u∗∥2, p is the dimension of u, σ2 >
1 − τ is the variance of the added Gaussian noise, and
E[∥ek∥2] ≤ ζ2 for some ζ ≥ 0.

Remark 1. The assumption σ2 > 1−τ is used for simplicity
of presentation. More generally, the result holds true for
σ
√
p+ ζ >

√
q(1− τ). In practice, τ is always fairly close

to 1, hence this condition is not restrictive.

Remark 2. Theorem 1 applies to DP-SGD on µ-strongly
convex and β-smooth objectives. Indeed, similar to Propo-
sition 1, we can set R(u) = u − 2

β+µ∇f(u;D) which is

known to be β−µ
β+µ -contractive (Ryu & Boyd, 2015). The first

(non-stochastic) term recovers the classical O
(
(β−µ
β+µ )

k
)

linear convergence rate of gradient descent. The second
term, which captures the error due to stochasticity, is in
O
(
(pσ2 + ζ2)/(1− τ)3

)
. The 1/(1− τ)3 factor, which is

not tight, is due to the particular choice of λ we make in our
analysis to get a closed-form rate in the general case.
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Theorem 1 shows that our noisy fixed-point iteration enjoys
a linear convergence rate up to an additive error term. The
linear convergence rate depends on the contraction factor
τ and the block activation probability q. The additive error
term is ruled by the noise scale σ

√
p+ ζ , where σ is due to

the Gaussian noise added to ensure DP and ζ captures some
possible additional error. Under a given privacy constraint,
running more iterations requires to increase σ (due to the
composition rule of DP), yielding a classical privacy-utility
trade-off ruled by the number of iterations. We investigate
this in details for private ADMM algorithms in Section 5.

5. Private ADMM Algorithms
We now use our general noisy fixed-point iteration frame-
work introduced in Section 4 to derive and analyze private
ADMM algorithms for the centralized, federated and fully
decentralized learning settings.

5.1. Private ADMM for Consensus

Given a dataset D = (d1, . . . , dn), we aim to solve an
ERM problem of the form given in (6). This problem can be
equivalently formulated as a consensus problem (Boyd et al.,
2011) that fits the general form (3) handled by ADMM:

minimize
x ∈ Rnp, z ∈ Rp

1

n

n∑
i=1

f(xi; di) + r(z)

subject to x− In(p×p)z = 0,

(7)

where x = (x1, . . . , xn)
⊤ is composed of n blocks (one for

each data item) of size p and In(p×p) ∈ Rnp×p denotes n
stacked identity matrices of size p× p. For convenience, we
will sometimes denote fi(·) ≜ f(·; di).

To privately solve problem (7), we apply our noisy fixed-
point iteration (Algorithm 1) with the non-expansive opera-
tor Rγp1

Rγp2
corresponding to ADMM (see Section 3.2).

Introducing the auxiliary variable u = (u1, . . . , un) ∈ Rnp

initialized to u0 and exploiting the separable structure of the
consensus problem (see Appendix B for details), we obtain
the following (block-wise) updates:

zk+1 = proxγr
(
1
n

∑n
i=1 uk,i

)
, (8)

xk+1,i = proxγfi(2zk+1 − uk,i) (9)

uk+1,i = uk,i + 2λ
(
xk+1,i − zk+1 +

1
2ηk+1,i

)
. (10)

From these updates and together with the possibility to
randomly sample the blocks in our general scheme, we
can naturally obtain different variants of ADMM for the
centralized, federated and fully decentralized learning. In
the remainder of this section, we present these variants, the
corresponding trust models, and prove their privacy and
utility guarantees.

Algorithm 2: Centralized private ADMM

Input: initial vector u0, step size λ ∈ (0, 1],
privacy noise variance σ2 ≥ 0, γ > 0

1 for k = 0 to K − 1 do
2 ẑk+1 = 1

n

∑n
i=1 uk,i

3 zk+1 = proxγr (ẑk+1)

4 for i = 1 to n do
5 xk+1,i = proxγfi(2zk+1 − uk,i)

6 uk+1,i = uk,i + 2λ
(
xk+1,i − zk+1 +

1
2ηk+1,i

)
with ηk+1,i ∼ N (0, σ2Ip)

7 end
8 end
9 return zK

Remark 3 (General private ADMM). Our private ADMM
algorithms for the consensus problem (7) are obtained as
special cases of a private algorithm for the more general
problem (3). We present this algorithm in Appendix B.2. In
Appendix C, we prove its privacy guarantees via a sensitivity
analysis of the general update involving matrices A and B,
under the only hypothesis that A is full rank. Then, we in-
stantiate these general results to obtain privacy guarantees
for private ADMM algorithms presented in this section.

5.2. Centralized Private ADMM

In the centralized setting, a trusted curator holds the dataset
D and seeks to release a model trained on it with record-level
DP guarantees (Chaudhuri et al., 2011). Our private ADMM
algorithm for this centralized setting closely follows the
updates (8)-(10). The version shown in Algorithm 2 cycles
over the n blocks in a fixed order, but thanks to the flexibility
of our scheme we can also randomize the choice of blocks at
each iteration k, e.g., update a single random block or cycle
over a random perturbation of the blocks. Note that at the
end of the algorithm, we only release zK , which is sufficient
for all practical purposes. Returning xK would violate
differential privacy as its last update interacts with the data
through proxγfi without subsequent random perturbation.
The privacy guarantees of the algorithm are as follows.

Theorem 2 (Privacy of centralized ADMM). Assume that
the loss function f(·, d) is L-Lipschitz for any data record
d and consider record-level DP. Then Algorithm 2 satisfies
(α, 8αKL2γ2

σ2n2 )-RDP.

Sketch of proof. We bound the sensitivity of the ADMM
operator by relying on the structure of our updates, the
strong convexity of proximal operators and known bounds
on the sensitivity of the argmin of strongly convex functions.
The result then follows from composition.

Theorem 2 shows that the privacy loss of centralized ADMM

6
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has a similar form as that of state-of-the-art private gradient-
based approaches like DP-SGD. The factor K comes from
the composition over the K iterations, while the L2γ2/n2

factor comes from the sensitivity of the ADMM operator.
Crucially, the 1/n2 term allows for good utility when the
number of data points is large enough. We also see that,
similar to output perturbation (Chaudhuri et al., 2011), the
strong convexity parameter 1/γ of the proximal updates can
be used to reduce the sensitivity.

By combining Theorem 2 and our generic utility analysis
(Theorem 1 with q = 1), we obtain the following privacy-
utility trade-off.

Corollary 5.1 (Privacy-utility trade-off of centralized
ADMM). Under the assumptions and notations of Theo-
rem 1 and 2, setting K appropriately, Algorithm 2 achieves5

E
(
∥uK − u∗∥2

)
= Õ

( √
pαLγ

√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)
3

)
.

5.3. Federated Private ADMM

We now switch to the Federated Learning (FL) setting
(Kairouz et al., 2021c). We consider a set of n users, with
each user i having a local dataset di (which may consist of
multiple data points). The function fi(·) = f(·; di) thus
represents the local objective of user i on its local dataset di.
As before, we denote the joint dataset by D = (d1, . . . , dn),
but we now consider user-level DP.

As commonly done in FL, we assume that the algorithm is
orchestrated by a (potentially untrusted) central server. FL
algorithms typically proceed in rounds. At each round, each
user computes in parallel a local update to the global model
based on its local dataset, and these updates are aggregated
by the server to yield a new global model. Our federated
private ADMM algorithm follows this procedure by essen-
tially mimicking the updates of its centralized counterpart.
Indeed, these updates can be executed in a federated fashion
since (i) the blocks xi and ui associated to each user i can be
updated and perturbed locally and in parallel, and (ii) if each
user i shares uk+1,i−uk,i with the server, then the latter can
execute the rest of the updates to compute zk+1. In particu-
lar, we do not need to send xi to the server during training
(the consensus is achieved through z). On top of this vanilla
version, we can natively accommodate user sampling (often
called “client sampling” in the literature), which is a key
property for cross-device FL as it allows to improve effi-
ciency and to model partial user availability (Kairouz et al.,
2021c). User sampling is readily obtained from our general
scheme by choosing a subset of m blocks (users) uniformly
at random. Algorithm 3 gives the complete procedure.

The privacy guarantees of FL algorithms can be analyzed

5Õ ignores all the logarithmic terms.

Algorithm 3: Federated private ADMM
Input: initial point z0, step size λ ∈ (0, 1], privacy

noise variance σ2 ≥ 0, parameter γ > 0,
number of sampled users 1 ≤ m ≤ n

1 Server loop:
2 for k = 0 to K − 1 do
3 Subsample a set S of m users
4 for i ∈ S do
5 ∆uk+1,i = LocalADMMstep(zk, i)
6 end
7 ẑk+1 = zk + 1

n

∑
i∈S ∆uk+1,i

8 zk+1 = proxγr(ẑk+1)

9 end
10 return zK

11 LocalADMMstep(zk, i):
12 Sample ηk+1,i ∼ N (0, σ2Ip)
13 xk+1,i = proxγfi(2zk − uk,i)

14 uk+1,i = uk,i + 2λ
(
xk+1,i − zk + 1

2ηk+1,i

)
15 return uk+1,i − uk,i

at two levels (Noble et al., 2022). The first level, corre-
sponding to local DP (Duchi et al., 2013; Kasiviswanathan
et al., 2008), is the privacy of each user with respect to the
server (who observes the sequence of invidivual updates) or
anyone eavesdropping on the communications. The second
level, corresponding to central DP, is the privacy guarantee
of users with respect to a third party observing only the
final model. Our algorithm naturally provides these two
levels of privacy, as shown in the following theorem.

Theorem 3. Assume that the loss function f(·, d) is
L-Lipschitz for any local dataset d and consider user-level
DP. Let Ki be the number of participations of user i.
Then, Algorithm 3 satisfies (α, 8αKiL

2γ2

σ2 )-RDP for user
i in the local model. Furthermore, if m < n/5 and α ≤(
M2σ2/2− log

(
5σ2
))

/
(
M + log(mα/n) + 1/

(
2σ2
))

where M = log(1 + 1/(mn (α − 1))), then it also satisfies

(α, 16αKL2γ2

σ2n2 )-RDP in the central model.

Sketch of proof. The local privacy guarantee follows from a
sensitivity analysis, similarly to the centralized case. Then,
we obtain the central guarantee by using amplification by
subsampling and the aggregation of user contributions.

As expected, the local privacy guarantee does not amplify
with the number of users n: since the server observes all
individual updates, privacy only relies on the noise added
locally by the user. In contrast, the central privacy guarantee
benefits from both amplification by subsampling (Mironov
et al., 2019) thanks to user sampling (which gives a factor
m2/n2) and by aggregation of the contributions of the m
sampled users (which gives a factor 1/m2). In the end, we

7
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thus recover the privacy guarantee of the centralized algo-
rithm with the 1/n2 factor. We stress that the restriction on
m/n and α in Theorem 3 is only to obtain the simple closed-
form solution, as done in other works (see e.g. Altschuler
& Talwar, 2022). In practice, privacy accounting is done
numerically, see Appendix C.4 for details.

Remark 4 (Secure aggregation). Our federated ADMM
algorithm is compatible with the use of secure aggregation
(Bonawitz et al., 2017). This allows the server to obtain∑

i∈S ∆uk+1,i without observing individual user contribu-
tions. In this case, the sensitivity is divided by m and the
privacy of users with respect to the server is thus amplified
by a factor 1/m2. Therefore, for full participation (m = n),
we recover the privacy guarantee of the centralized case.

We provide the privacy-utility trade-off by resorting to The-
orem 1, where we fix q = m/n = r with r ∈ (0, 1/5].

Corollary 5.2 (Privacy-utility trade-off of federated ADMM
in the central model). Under the assumptions and notations
of Theorem 1 and 3, setting K appropriately, and also
m = rn for r ∈ (0, 1/5), Algorithm 3 achieves

E ∥uK − u∗∥2 = Õ
( √

pαLγ
√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)
3

)
.

5.4. Fully Decentralized Private ADMM

Finally, we consider the fully decentralized setting. The
setup is similar to the one of federated learning investigated
in the previous section, except that there is no central server.
Instead, users communicate in a peer-to-peer fashion along
the edges of a network graph. Fully decentralized algorithms
are popular in machine learning due to their good scalability
(Lian et al., 2017; Koloskova et al., 2021), and were recently
shown to provide privacy amplification (Cyffers & Bellet,
2022; Cyffers et al., 2022).

We consider here the complete network graph (all users can
communicate with each others). Instantiating our general
private ADMM algorithm with uniform subsampling of a
single block at each iteration, we directly obtain a fully de-
centralized version of ADMM (Algorithm 4). The algorithm
proceeds as follows. The model z0 is initialized at some
user i. Then, at each iteration k, the user with the model
zk performs a local noisy update using its local dataset di,
and then sends the resulting zk+1 to a randomly chosen
user. In other words, the model is updated by following a
random walk. This random walk paradigm is quite popular
in decentralized algorithms (Johansson et al., 2010; Mao
et al., 2020; Johansson et al., 2010). In particular, it requires
little computation and communication compared to other
algorithms with more redundancy (such as gossip). Allevi-
ating the need of synchronicity and full availability for the
users can lead to faster algorithms in practice.

Algorithm 4: Fully decentralized private ADMM
Input: initial points u0 and z0, step size λ ∈ (0, 1],

privacy noise variance σ2 ≥ 0, γ > 0
1 for k = 0 to K − 1 do
2 Let i be the currently selected user
3 Sample ηk+1,i ∼ N (0, σ2Ip)
4 xk+1,i = proxγfi(2zk − uk,i)

5 uk+1,i = uk,i + 2λ
(
xk+1,i − zk + 1

2ηk+1,i

)
6 ẑk+1 = zk + 1

n (uk+1,i − uk,i)
7 zk+1 = proxγr (ẑk+1)

8 Send zk+1 to a random user
9 end

It is easy to see that our fully decentralized algorithm enjoys
the same local privacy guarantees as its federated counter-
part (see Theorem 3). This provides a baseline protection
against other users, and more generally against any adver-
sary that would eavesdrop on all messages sent by the users.
Yet, this guarantee can be quite pessimistic if the goal is
to protect against other users in the system. Indeed, it is
reasonable to assume that each user i has only a limited
view and only observes the messages it receives, without
knowing the random path taken by the model between two
visits to i. To capture this and improve privacy guarantees
compared to the local model, we rely on the notion of net-
work DP, a relaxation of local DP recently introduced by
Cyffers & Bellet (2022).

Definition 3 (Network Differential Privacy). An algorithm
A satisfies (α, ε)-network RDP if for all pairs of distinct
users i, j ∈ {1, . . . , n} and all pairs of neighboring datasets
D ∼i D′ differing only in the dataset of user i, we have:

Dα (Oj(A(D))∥Oj(A (D′))) ≤ ε. (11)

where Oj is the view of user j.

In our case, the view Oj of user j is limited to Oj(A(D)) =

(zkl(j))
Kj

l=1 where kl(j) is the time of l-th contribution of
user j to the computation, and Kj is the total number of
times that j contributed during the execution of algorithm.
We can show the following network DP guarantees.

Theorem 4. Assume that the loss function f(·, d) is L-
Lipschitz for any local dataset d and consider user-level
DP. Let α > 1, σ > 2Lγ

√
α(α− 1) and Ki the maximum

number of contribution of a user. Then Algorithm 4 satisfies
(α, 8αKiL

2γ2 lnn
σ2n )-network RDP.

Sketch of proof. Fixing a single participation of a given user
(say i), we have the same local privacy loss as in the feder-
ated case. We then control how much this leakage decreases
when the information reaches another user (say j). To do
this, we first quantify the leakage when the z variable is seen

8
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by user j after m steps by relying on privacy amplification
by iteration. Then, thanks to the randomness of the path and
the weak convexity of the Rényi divergence, we can average
the different possible lengths m of the path between users i
and j in the complete graph. We conclude by composition
over the number Ki of participations of a user.

Remarkably, Theorem 4 shows that thanks to decentral-
ization, we obtain a privacy amplification of O(lnn/n2)
compared to the local DP guarantee. This amplification
factor is of the same order as the one proved by Cyffers &
Bellet (2022) for a random walk version of DP-SGD, and
matches the privacy guarantees of the centralized case up to
a lnn factor. To the best of our knowledge, this is the first re-
sult of this kind for fully decentralized ADMM, and the first
application of privacy amplification by iteration to ADMM.

As before, we obtain the privacy-utility trade-off by resort-
ing to Theorem 1, but this time with q = 1/n.

Corollary 5.3 (Privacy-utility trade-off of decentralized
ADMM). Under the assumptions and notations of Theo-
rem 1 and 4, setting K appropriately Algorithm 4 achieves

E
(
∥uK − u∗∥2

)
= Õ

( √
pαLγ

√
εn (1− τ)

+
pαL2γ2

εn (1− τ)
3

)
.

Remark 5 (Utility guarantees for centralized, federated, and
decentralized settings.). From Corollary 5.1, we observe
that the utility for the centralized setting is Õ

(√
pα
ε

1
n

)
(in

the regime n ≫ p). On the other hand, the utility for the
decentralized setting is Õ

(√
pα
εn

)
. This difference captures

the shift in hardness from the centralized setting to the decen-
tralized one. For the federated learning setting, the utility
is Õ

(√
pα
εmn

)
, where m is the number of sampled users at

each step. Thus, if m = n (all users contribute at each step),
we recover the utility of the centralized setting. Instead, if
m = 1, we are back to the utility of the decentralized set-
ting. These observations demonstrate that our results on the
privacy-utility trade-offs reasonably quantify the relative
hardness of these three settings.

Remark 6 (Clipping updates). In practical implementa-
tions of private optimization algorithms, it is very common
to use a form of clipping to enforce a tighter sensitivity
bound than what can be guaranteed theoretically (see e.g.,
Abadi et al., 2016; McMahan et al., 2018). In our private
ADMM algorithms, this can be done by clipping the quantity
(xk+1,i − zk+1) in the u-update, see Appendix E for details.

5.5. Numerical Illustration

We refer to Appendix E for a numerical illustration of our
private ADMM algorithms on a simple Lasso problem. We
empirically observe that private ADMM tends to outperform
DP-SGD in high-privacy regimes.

6. Conclusion
In this work, we provide a unifying view of private opti-
mization algorithms by framing them as noisy fixed-point
iterations. The advantages of this novel perspective for
privacy-preserving machine learning are at least two-fold.
First, we give utility guarantees based only on very general
assumptions on the underlying fixed-point operator, allow-
ing us to cover many algorithms. Second, we show that
we can derive new private algorithms by instantiating our
general scheme with particular fixed-point operators. We
illustrate this through the design of novel private ADMM
algorithms for the centralized, federated and fully decentral-
ized learning and the rather direct analysis of their privacy
and utility guarantees. We note that the generality of our
approach may sometimes come at the cost of the tightness
of utility guarantees, as we do not exploit the properties of
specific algorithms beyond their contractive nature.

We believe that our framework provides a general and prin-
cipled approach to design and analyze novel private op-
timization algorithms by leveraging the rich literature on
fixed-point iterations (Combettes & Pesquet, 2021). In fu-
ture work, we would like to further broaden the applicability
of our framework by proving (weaker) utility guarantees for
λ-averaged operators that are non-expansive but not contrac-
tive. To achieve this, a possible direction is to extend the sub-
linear rates of (Liang et al., 2015) to block-wise iterations.
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A. Generic Utility Analysis of Private Fixed Point Iterations (Algorithm 1)
A.1. Existing Result of Combettes & Pesquet (2019)

Our convergence analysis leverages the generic convergence result of Combettes & Pesquet (2019) for stochastic quasi-Fejér
type block-coordinate fixed-point operators. Here, we briefly summarize their result (Theorem 3.1 in Combettes & Pesquet,
2019) before deriving our specific analysis.

Theorem 5 (Mean-square convergence of stochastic quasi-Fejér type block-coordinate iterations, Combettes & Pesquet,
2019). The update rule of the stochastic quasi-Fejér type block-coordinate iterations is given by

uk+1,b = uk,b + ρk,bλk (Rk,b (uk) + ei,k − ui,k) . (12)

Here, b ∈ [B] denotes the b-th coordinate (block) of u ∈ U = U1 × · · · × UB , i.e. uk = [uk,1, . . . , uk,b, . . . , uk,B ], and k
denotes the number of iterations. We assume that the operators (Rk)k∈N are quasi-non-expansive with common fixed point
u∗ such that:

∥Rk(u)− u∗∥2 ≤
B∑

b=1

τk,b ∥ub − u∗
b∥

2
, ∀k ∈ N,∀u ∈ U , and ∃ τk,b ∈ [0, 1). (13)

Let (Fk)k∈N be a sequence of sub-sigma-algebras of F such that ∀k ∈ N : σ(u0, . . . , uk) ⊂ Fk ⊂ Fk+1.

Given this structure, we assume that the following conditions hold:

[a] infk∈N λk > 0.

[b] There exists a sequence of non-negative real numbers (αk)k∈N such that
∑

k∈N
√
αk < +∞, and E

(
∥ek∥2 | Fk

)
≤ αk

for every k ∈ N.

[c] For every k ∈ N, Ek = σ (ρk) and Fk are independent.

[d] For every b ∈ {1, . . . , B},pb = P [ρ0,b = 1] > 0.

Under the assumptions [a]-[d], the iteration defined in Equation (13) satisfies almost surely

B∑
b=1

ωbE
(
∥uk+1,b − u∗

b∥
2 | F0

)
≤

 k∏
j=0

χj

( B∑
b=1

ωb ∥u0,b − u∗
b∥

2

)
+ η̄k, ∀k ∈ N. (14)

Here,

χk = 1− λk (1− µk) +
√

ξkλk (1− λk + λk
√
µk)

η̄k =

k∑
j=0

 k∏
ℓ=j+1

χℓ

λj

(
1− λj + λj

√
µj + λj

√
ξj

)√
ξj

ξk = αk max
1≤b≤B

ωb

µk = 1− min
1≤b≤B

(
pb −

τk,b
ωb

)
max

1≤b≤B
lim τk,b < ωbpb

In this paper, we leverage this result to derive our generic convergence analysis for the private fixed-point iteration
(Algorithm 1), which we then instantiate to the three types of private ADMM algorithms we introduce (Section 5).

A.2. Proof of Theorem 1

For ease of calculations, we mildly restrict the coordinate-wise contraction assumption made in Theorem 5 by the following
assumption of global contraction.
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Assumption 1 (Global contraction constant). In our analysis, we assume that there exists a global contraction constant
τ ∈ [0, 1) for the contraction operator Rk. Mathematically,

∥Rk(u)− u∗∥2 ≤
B∑

b=1

τ2k,b ∥ub − u∗
b∥

2 ≤ τ2 ∥u− u∗∥2 , ∀k ∈ N,∀u ∈ U . (15)

Theorem 1. Assume that R is a τ -contractive operator with fixed point u∗ for τ ∈ [0, 1). Let P [ρk,b = 1] = q for some
q ∈ (0, 1]. Then there exists a learning rate λk = λ ∈ (0, 1] such that the iterates of Algorithm 1 satisfy:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽

(
1− q2(1− τ)

8

)k

D + 8

( √
pσ + ζ

√
q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)
(16)

where D = maxu0 ∥u0 − u∗∥2 is the diameter of the domain, p is the dimension of u, σ2 > 1 − τ is the variance of
Gaussian noise, and E[∥ek∥2] ≤ ζ2 for some ζ ≥ 0.

Proof. We observe that Algorithm 1 satisfies the assumptions of Theorem 5 if we specify pb = q, ωb = 1
q , and µ =

1− q (1− τ). Since ξ ≥ 1
qE[∥ek + ηk∥2], E[∥ηk∥2] ≤ pσ2 as zero-mean Gaussian noise are added independently to each

dimension, and E[∥ek∥2] ≤ ζ2, we can assign ξ = pσ2+ζ2

q . For ease of calculations, hereafter, we refer to ξ as σ2
1 .

Step 1: Instantiating the mean-square convergence result. By substituting the aforementioned parameters in Equa-
tion (14), we obtain

E
(
∥uk+1 − u∗∥2 | F0

)
≤ χk ∥u0 − u∗∥2 + qη

≤ χkD + qη. (17)

Here,

χ = 1− λq (1− τ) + λσ1

(
1− λ+ λ

√
1− q (1− τ)

)
= 1− λ

(
1− b2

)
+ λσ1(1− λ+ λb)

= 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b),

and

η =

k∑
i=0

χk−i−1λσ (1 + λ (σ1 − (1− b)))

=

1
χ − χk

1− χ

(
χ− 1 + λ

(
1− b2

)
+ σ2

1λ
2
)

=

(
χk − 1

χ

)1−
σ1λ

(
σ1λ+ 1−b2

σ1

)
σ1λ

(
(1− b)λ+ 1−b2

σ1
− 1
)


=

(
χk − 1

χ

)(
1−

λσ1 +
1−b2

σ1

(1− b)λ+ 1−b2

σ1
− 1

)
. (18)

For simplicity, we introduce the notation b ≜
√
1− q (1− τ). We observe that b ∈ [0, 1) as q ∈ (0, 1] and τ ∈ [0, 1).

Step 2: Finding a ‘good’ learning rate λ. First, we assume that there exists a c > 0, such that the noise variance can be
rewritten as σ1 = (1 + c)(1− τ). From Lemma A.1, we obtain that

λ ∈

(
1 + c− q

(1 + c)(1− b)
,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

))
.
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For ease of further calculations, we fix λ = 1
1−b

(
1− q

2(1+c)

)
. Before proceeding further, we prove that this choice of λ

belongs to the desired range. We begin by observing that

1− b

1− τ
=

1−
√
1− q (1− τ)

(1− τ)
⩾

q (1− τ)

2(1− τ)
=

q

2
.

The inequality holds due to concavity of the square root, specifically
√
1− x ≤ 1− x

2 .

Thus,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

)
≥ 1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q(1 + c)

(1 + c− q)2

)

=
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q(1 + c− q)

(1 + c− q)2
+

2q2

(1 + c− q)2

)

>
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q

(1 + c− q)
+

q2

(1 + c− q)2

)

=
1 + c− q

(1 + c)(1− b)

(
1 +

q

2(1 + c− q)

)
=

1

1− b

(
1− q

2(1 + c)

)
.

Step 3: Understanding the impact of the noise term η. First, we investigate the term A ≜
λσ1+

1−b2

σ1

(1−b)λ+ 1−b2

σ1
−1

in (18).

Denominator of A = (1− b)λ+
1− b2

σ1
− 1

= 1− q

2(1 + c)
+

q (1− τ)

(1 + c) (1− τ)
− 1

=
q

2(1 + c)

Numerator of A = λσ1 +
1− b2

σ1

=
(1 + c) (1− τ)

1− b

(
1− q

2(1 + c)

)
+

q

1 + c

=
(1 + c) (1 + b)

q

(
1− q

2(1 + c)

)
+

q

1 + c

=
(1 + c) (1 + b)

q
+

q

1 + c

(
1− (1 + c) (1 + b)

2q

)
Thus, we get

A =
2(1 + b)(1 + c)2

q2
+ 2− (1 + c) (1 + b)

q

and,

1−A =
(1 + c) (1 + b)

q
− 1− 2(1 + b)(1 + c)2

q2
.

By substituting (1−A) in Equation (18) and plugging back η into Equation (17), we get

E
(
∥uk+1 − u∗∥2 | F0

)
≤ χkD + q

(
χk − 1

χ

)
(1−A)
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= χk(D + q(1−A))− 1

χ
q(1−A)

= χk

(
D + (1 + c) (1 + b)− q − 2(1 + b)(1 + c)2

q

)
+

1

χ

(
−(1 + c) (1 + b) + q +

2(1 + b)(1 + c)2

q

)
≤ χk (D + (1 + c)(1 + b)) +

1

χ

(
q +

2(1 + b)(1 + c)2

q

)
≤ χk (D + 2(1 + c)) +

1

χ

(
q +

2(1 + b)(1 + c)2

q

)
. (19)

Step 4: Upper & lower bounding χ. We can rewrite χ as follows:

χ = 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b)

= 1 + λ ((1 + c) (1− τ)− q (1− τ))− λ2(1 + c) (1− τ) (1− b)

= 1 + λ (1− τ) (1 + c− q)− λ2(1 + c) (1− τ) (1− b)

= 1 +
(1− τ) (1 + c− q)(1 + c− q/2)

(1 + c)(1− b)
− (1− τ) (1 + c− q/2)2

(1 + c)(1− b)

= 1− q (1− τ) (1 + c− q/2)

2(1− b)(1 + c)

= 1− (1 + b)(1 + c− q/2)

2(1 + c)

Lower bound:

χ = 1− 1 + b

2
+

q(1 + b)

4(1 + c)
>

1− b

2
=

1−
√
1− q(1− τ)

2
≥ q(1− τ)

4

The inequality holds due to the fact that b =
√

1− q (1− τ) < 1− q(1−τ)
2 .

Upper bound:

χ = 1− (1 + b)

2

(
1− q

2(1 + c)

)
=

1− b

2
+

q(1 + b)

4(1 + c)
⩽

1

2
+

q(1 + b)

4

⩽
1

2
+

q

4

(
2− q(1− τ)

2

)
⩽ 1− q2(1− τ)

8
.

The first inequality holds for any non-negative b, c, q. The second inequality leverages the fact that b =
√

1− q(1− τ) ≤
1− q(1−τ)

2 . The final inequality follows from the fact that q ∈ (0, 1].

Step 5: Final touch. By substituting upper and lower bounds of χ in Equation (19), we get

E
(
∥uk+1 − u∗∥2 | F0

)
<

(
1− q2(1− τ)

8

)k

(D + 2(1 + c)) +
4

q(1− τ)

(
q +

2(1 + b)(1 + c)2

q

)
=

(
1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

4

q (1− τ)

(
q +

2(1 + b)σ2
1

q(1− τ)2

)
=

(
1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

4

(1− τ)
+

8(1 + b)σ2
1

q2(1− τ)3
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≤
(
1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

(
4

(1− τ)
+

16σ2
1

q2(1− τ)3

)
≤
(
1− q2(1− τ)

8

)k (
D +

2(σ
√
p+ ζ)

√
q (1− τ)

)
+

(
4

(1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)
≤
(
1− q2(1− τ)

8

)k

D +

(
8(σ

√
p+ ζ)

√
q (1− τ)

+
8(pσ2 + ζ2)

q3(1− τ)3

)

We can also alternatively write the result as follows. Since (1− a)k ≤ exp(−ak) for a ∈ [0, 1) and k ∈ N, we have:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽ exp

(
−q2(1− τ)

8
k

)
D +

(
8(σ

√
p+ ζ)

√
q (1− τ)

+
8(pσ2 + ζ2)

q3(1− τ)3

)

A.3. Technical Lemma on the Learning Rate

We prove below a technical lemma used in the proof of Theorem 1.

Lemma A.1 (Choices of the Learning Rate). In order to ensure convergence of Algorithm 1, we should choose the learning
rate λ in the range (

1 + c− q

(1 + c)(1− b)
,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

))
.

Here, we assume that there exists c > 0 such that σ1 ≜ σ
√
p+ζ√
q ≜ (1 + c)(1 − τ), b ≜

√
1− q(1− τ), σ is the noise

variance, τ ∈ [0, 1) is the contraction factor, and q ∈ (0, 1].

Proof. In order to ensure convergence of the algorithm, we need to satisfy 0 < χ < 1. We observe that

χ = 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b),

As χ is a function of the learning rate, the upper and lower bounds on χ impose lower and upper bounds on the desired
learning rate λ.

Step 1: Lower Bounding λ.

χ < 1 =⇒ 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b) < 1

=⇒
(a)

(
σ1 −

(
1− b2

))
− λσ1(1− b) < 0

=⇒
σ1 −

(
1− b2

)
σ1(1− b)

< λ

=⇒
(1 + c)(1− τ)− q

(
1− τ2

)
(1 + c)(1− τ)(1− b)

< λ

=⇒ 1 + c− q

(1 + c)(1− b)
< λ

Step (a) holds true for λ > 0, i.e. for any positive learning rate.

Step 2: Upper Bounding λ. As χ > 0, we should choose the learning rate λ in a range such that the following quadratic
equation satisfies

1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b) > 0.
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Since the coefficient corresponding to λ2 is negative, the quadratic equation stays positive only between its two roots:

λinf =
(σ1 − (1− b2))−

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)
,

and

λsup =
(σ1 − (1− b2)) +

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)
.

Since the smallest root λinf is negative, and we care about only positive learning rates, it provides a vacuous bound. Thus,
we can ignore it.

Thus, we conclude that

λ <
(σ1 − (1− b2)) +

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)

=
(1 + c− q)(1− τ) +

√
(1 + c− q)2(1− τ)2 + 4(1 + c)(1− b)(1− τ)

2(1 + c)(1− τ)(1− b)

=
(1 + c− q) + (1 + c− q)

√
1 + 4 (1+c)(1−b)

(1−τ)(1+c−q)2

2(1 + c)(1− b)

=
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

)

to obtain a valid convergence of the algorithm.

B. Derivation of Private ADMM Updates
In this section, we give details on how to obtain the private ADMM updates given in Algorithm 2, Algorithm 4 and
Algorithm 3 from our general noisy fixed-point iteration (Algorithm 1).

B.1. Warm-up: Non-Private ADMM

For clarity and self-completeness, we start by deriving the standard ADMM updates from the fixed-point iteration formulation
described in Section 3.2. This derivation follows the lines of (Giselsson et al., 2016, Appendix B therein).

Recall that ADMM solves an optimization problem of the form (3), which we restate here for convenience:

minx,z f(x) + g(z)
s.t. Ax+Bz = c

(20)

We also recall the definition of the infimal postcomposition.

Definition 4 (Infimal postcomposition). Let M be a linear operator. The infimal postcomposition M ▷ f is defined by

(M ▷ f)(y) = inf{f(x) | Mx = y}.

As mentioned in Section 3.2, the minimization problem above can be rewritten as

min
u

(−A ▷ f)(−u− c) + (−B ▷ g)(u).

Introducing p1(u) = (−A ▷ f)(−u − c) and p2(u) = (−B ▷ g)(u) recovers a minimization problem solvable with the
Douglas-Rachford algorithm. Formally, the λ-averaged ADMM can be written as the following fixed-point operator:

uk+1 = uk + λ
(
Rγp1(Rγp2 (uk))− uk

)
, (21)
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where Rγp1
= 2proxγp1

−I and Rγp2
= 2proxγp2

−I .

From this generic formula, we can recover the standard ADMM updates in terms of x and z. We start by rewriting Rγp2
(u):

Rγp2(u) = 2 proxγp2
(u)− u

= 2argmin
v

{
inf
z
{g(z) | −Bz = v}+ 1

2γ
∥u− v∥2

}
− u

= −2B argmin
z

{
g(z) +

1

2γ
∥Bz + u∥2

}
− u.

This leads to the introduction of the z variable with associated update:

zk+1 = argmin
z

{
g(z) +

1

2γ
∥Bz + uk∥2

}
. (22)

Similarly, we can rewrite Rγp1
:

Rγp1(u) = 2 proxγp1
(u)− u

= 2argmin
v

{
inf
x
{f(x) | −Ax = −v − c}+ 1

2γ
∥u− v∥2

}
− u

= 2A argmin
x

{
f(x) +

1

2γ
∥Ax− u− c∥2

}
− 2c− u,

which leads to the introduction of the x variable with associated update:

xk+1 = argmin
x

{
f(x) +

1

2γ
∥Ax+ 2Bzk+1 + uk − c∥2

}
. (23)

Based on (22) and (23), we can rewrite:

Rγp1
Rγp2

(uk) = Rγp1
(−2Bzk+1 − uk)

= 2Axk+1 − 2c− (−2Bzk+1 − uk)

= 2 (Axk+1 +Bzk+1 − c) + uk,

which in turns gives for the update of variable u in (21):

uk+1 = uk + 2λ (Axk+1 +Bzk+1 − c) , (24)

The updates (22), (23) and (24) correspond to the standard ADMM updates (Boyd et al., 2011; Giselsson et al., 2016).

B.2. General Private ADMM

We now introduce a general private version of ADMM to solve problem (20). In this generic part, we consider without
loss of generality that the data-dependent part is in the function f . For clarity, we denote f(x) by f(x;D) to make the
dependence on the dataset D explicit.

Following our general noisy fixed-point iteration (Algorithm 1), the private counterpart of the non-private ADMM iteration
(21) is given by:

uk+1 = uk + λ (Rγp1
(Rγp2

(uk);D)− uk + ηk+1) ,

where the notation Rγp1
(·;D) is again to underline the data-dependent part of the computation.

By following the same derivations as in Appendix B.1, we obtain the following equivalent update:

uk+1 = uk + 2λ

(
Axk+1 +Bzk+1 − c+

1

2
ηk+1

)
,
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Algorithm 5: General Private ADMM to solve problem (20)

Input: initial point u0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, Lagrange parameter γ > 0
1 for k = 0 to K − 1 do
2 zk+1 = argminz

{
g(z) + 1

2γ ∥Bz + uk∥2
}

3 xk+1 = argminx

{
f(x;D) + 1

2γ ∥Ax+ 2Bzk+1 + uk − c∥2
}

4 uk+1 = uk + 2λ
(
Axk+1 +Bzk+1 − c+ 1

2ηk+1

)
with ηk+1 ∼ N (0, σ2I)

5 end
6 return zK

where zk+1 and xk+1 are defined as in (22) and (23) respectively. The full algorithm is given in Algorithm 5. Note that
we return only zK , which is differentially private by postprocessing of uK−1 (see Appendix C). In contrast, returning xK

would violate differential privacy as the last update interacts with the data without subsequent random perturbation. In many
problems (such as the consensus problem considered below), returning zK is sufficient for all practical purposes. Note that
when A is invertible (which is the case for consensus, see below), one can recover from zK the unique x̃K = A−1(c−BzK)
such that (x̃K , zK) satisfies the constraint in problem (20).

B.3. Instantiations for the Consensus Problem

We now instantiate the generic private ADMM update given in Appendix B.2 to the consensus problem and derive centralized,
fully decentralized and federated private ADMM algorithms for ERM.

Recall that the ERM problem (6) can be reformulated as the consensus problem (7), which we restate below for convenience:

min
x∈Rnp,z∈Rp

1

n

n∑
i=1

f (xi; di) + r(z)

s.t xi = z ∀i,

which is a special case of problem (20) with x = (x1, . . . , xn)
⊤ composed of n blocks of p coordinates, f(x) = f(x;D) =

1
n

∑n
i=1 f(xi; di), g(z) = r(z), c = 0, A = I and B = −In(p×p) ∈ Rn×p where In(p×p) ∈ Rn×p denotes n stacked

identity matrices of size p× p.

Centralized private ADMM (Algorithm 2). We use the specific structure of the consensus problem to simply the general
private ADMM updates in Appendix B.2. The z-update gives:

zk+1 = argmin
z

{
r(z) +

1

2γ

∥∥∥∥( I
. . .
I

)
z − uk

∥∥∥∥2
}
,

zk+1 = proxγr

( 1
n

n∑
i=1

uk,i

)
.

For the x-update, we have:

xk+1 = argmin
x

{
f(x;D) +

1

2γ

∥∥∥∥x− 2

( I
. . .
I

)
zk+1 + uk

∥∥∥∥2
}
.

As f is fully separable, this can be decomposed into n block-wise updates as:

xk+1,i = argmin
xi

{
f(xi; di) +

1

2γ
∥xi − 2zk+1 + uk,i∥

}
= proxγfi(2zk+1 − uk,i).
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Finally, the u-update writes:

uk+1 = uk + 2λ

(
xk+1 −

( I
. . .
I

)
zk+1 +

1

2
ηk+1

)
,

which can be equivalently written as block-wise updates:

uk+1,i = uk,i + 2λ

(
xk+1,i − zk+1 +

1

2
ηk+1,i

)
.

Algorithm 2 shows the resulting algorithm when cycling over the n blocks of x and u in lexical order (which is equivalent
to considering a single block, i.e., B = 1). But remarkably, the flexibility of our general noisy fixed-point iteration
(Algorithm 1) and associated utility result (Theorem 1) allows us to cover many other interesting cases, some of which
directly leading to federated and fully decentralized learning algorithms (see below). In particular, we can sample the blocks
in a variety of ways, such as:

1. cycling over an independently chosen random permutation of the blocks at each iteration (the corresponding utility can
be obtained by setting q = 1 in Theorem 1);

2. choosing a single random block at each iteration k (this is used to obtained our fully decentralized algorithm);

3. choosing a random subset of m blocks (this is used to obtain our federated algorithm with user sampling).

The utility guarantees can be obtained from Theorem 1 by setting q = 1 in case 1, q = 1/n in case 2, and q = m in case 3.

Federated private ADMM (Algorithm 3). Our federated private ADMM algorithm exactly mimics the updates of
centralized private ADMM (Algorithm 2), which can be executed in a federated fashion since (i) the blocks xi and ui

associated to each user i can be updated in parallel by each user, and (ii) if each user i shares uk+1,i − uk,i with the server,
then the latter can execute the rest of the updates. The more general version with user sampling given in Algorithm 3 is
obtained by choosing a random subset of m blocks (users) uniformly at random.

Fully decentralized private ADMM (Algorithm 4). In the fully decentralized setting, each user i with local dataset di is
associated with blocks xi and ui. Our fully decentralized private ADMM algorithm (Algorithm 4) directly follows from a
block-wise version of Algorithm 2, where at each iteration k we select uniformly at random a single block (user) to update.
This corresponds to a user performing an update on its local parameters before sending it to another user chosen at random.

C. Privacy Analysis of our ADMM Algorithms
C.1. Reminders on Privacy Amplification

In this appendix, we recap known results on privacy amplification that we use in our own privacy analysis.

C.1.1. PRIVACY AMPLIFICATION BY ITERATION

Privacy amplification by iteration refers to the privacy loss decay when only revealing the final output of successive
applications of non-expansive operators instead of the full trajectory updates. This was introduced by the seminal work of
Feldman et al. (2018), later extended by Altschuler & Talwar (2022).

We recap here the main theorem which characterizes the privacy loss of a given contribution in an algorithm defined as the
sequential applications of non-expansive operators.

Theorem 6 (Privacy amplification by iteration (Feldman et al., 2018)). Let T1, . . . , TK , T ′
1, . . . , T

′
K be non-expansive

operators, U0 ∈ U be an initial random state, and (ζk)
K
k=1 be a sequence of noise distributions. Now, consider the noisy

iterations Uk+1 ≜ Tk+1(Uk) + ηk+1 and U ′
k+1 ≜ Tk+1(U

′
k) + η′k+1, where ηk+1 and η′k+1 are drawn independently from

distribution ζk+1. Let sk ≜ supu∈U∥Tk(u)− T ′
k(u)∥. Let (ak)Kk=1 be a sequence of real numbers such that

∀k ≤ K,
∑
k′≤k

sk′ ≥
∑
k′≤k

ak′ , and
∑
k≤K

sk =
∑
k≤K

ak .
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Then,

Dα(UK ||U ′
K) ≤

K∑
k=1

sup
u:∥u∥≤ak

Dα(ζk ∗ u∥ζk) , (25)

where ∗ is the convolution of probability distributions and u denotes the distribution of the random variable that is always
equal to u.

Informally, this theorem allows an amplification factor proportional to the number of updates performed after the studied
step. If we compare two scenarios where only the step i differs by using di or d′i, such that revealing this step would lead to
a privacy loss ε, it we reveal only step i+ k, an appropriate choice of a sequence leads to a privacy loss of magnitude ε/k.

C.1.2. PRIVACY AMPLIFICATION BY SUBSAMPLING

When a DP algorithm is executed on a random subsample of data points, and the choice of this subsampling remains
secret, we can obtain privacy amplification. This privacy amplification by subsampling effect has been extensively studied
under various sampling schemes (Balle et al., 2018; Mironov et al., 2019) and is classically used in the privacy analysis
of DP-SGD (Bassily et al., 2014; Abadi et al., 2016; Altschuler & Talwar, 2022). While tighter bounds can be computed
numerically, here for the sake of simplicity we use a simple closed-form expression which gives the order of magnitude of
the amplification.

Lemma C.1 (Amplification by subsampling, Altschuler & Talwar, 2022). Let q < 1/5, α > 1 and σ ≥ 4. Then, for
α ≤

(
M2σ2/2− log

(
5σ2
))

/
(
M + log(qα) + 1/

(
2σ2
))

where M = log(1 + 1/(q(α− 1))), the subsampled Gaussian
mechanism with probability q and noise parameter σ2 satisfies (α, εsamp)-RDP with

εsamp ≤ 2αq2∆2

σ2
.

C.2. Sensitivity Bounds

We aim at bounding the privacy loss of the general centralized ADMM introduced in Section B.1. We assume that K
iterations are done with only f interacting with data, i.e., the data-dependent step lies in the x-update. We assume that all
data points are used with uniform weighting, meaning that f can be written as f(x;D) = 1

n

∑n
i=1 f(x; di).

To bound the privacy loss, we aim at computing the Rényi divergence between the distribution of the outputs, which can be
linked to the sensitivity of the fixed-point update (24) to the change of one data point. For any pair of neighboring datasets
D ∼ D′ that differs only on data item di (i.e., dj ̸= d′j =⇒ i = j) and any u, we thus want to bound the difference
between T (u) computed on dataset D and T ′(u) computed on the dataset D′. We note x (resp. x′) and z (resp. z′) the
primal variables in the calculation.

We first investigate how the sensitivity of the data-dependent update propagates to u. As only x-updates are data-dependent,
the z stays identical for D and D′ and thus we have:

T (u)− T ′(u) = 2λA(x− x′). (26)

We bound the sensitivity by assuming that A has its smallest singular value ωA > 0.

Let us define φ(x) = 1
2γ ∥Ax+Bz + u+ c∥2. φ is twice differentiable and we have

∇xφ(x) =
1

2γ
∇x

(
x⊤A⊤Ax− 2(Bz + u+ c)⊤Ax+ (Bz + u+ c)⊤(Bz + u+ c)

)
=

1

2γ

(
2A⊤Ax− 2A(Bz + u+ c)

)
,

∇2
xφ(x) =

1

γ
A⊤A.

Thus, φ is µ-strongly convex if and only:

µIn ⪯ 1

γ
ATA.
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This is satisfied when the smallest eigenvalue of A⊤A is larger than µ. This corresponds to the same condition on the
smallest singular value ωA of A, hence

ωA ≥ µγ,

and thus φ is ωA

γ -strongly convex.

Let us now consider F (x) = f(x;D) + φ(x) and F ′(x) = f ′(x;D′) + φ(x). We assume that fi(·) = f(·; di) are convex,
differentiable and L-Lipschitz with respect to the l2 norm for all possible d. Then, using a classic result on the sensitivity of
the argmin of strongly convex functions (Chaudhuri et al., 2011), the sensitivity of argminF (x) is bounded by:

∥x− x′∥ ⩽
2Lγ

nωA
.

Finally, by re-injecting this formula into (26), we get the final bound:

∥T (u)− T ′(u)∥ ≤ 4λLγ∥A∥2
nωA

. (27)

Special case of the consensus problem. In the case of the consensus problem, we can derive a tighter upper bound for the
sensitivity of the block-wise update for which the data point is different between D and D′:

T (u)i − T ′(u)i = 2λ(xi − x′
i).

In this case, the xi can be simply rewritten as proxγfi(2z − u), where fi is L-Lipschitz, and we have:

∥xi − x′
i∥ ≤ 2Lγ.

Therefore, ∥T (u)i − T ′(u)i∥ ≤ 4λLγ and then

∥T (u)− T ′(u)∥ ≤ 4λLγ

n
. (28)

C.3. General Centralized Private ADMM

We can now derive the privacy loss of our general private ADMM algorithm (Algorithm 5).
Theorem 7 (Private classic centralized ADMM). Let A be full rank and ωA > 0 the minimal module of its singular values.
After performing K iterations, Algorithm 5 is (α, ε(α))-RDP with

ε(α) =
8Kα∥A∥22L2γ2

σ2n2ω2
A

. (29)

Proof. Recall that the output of the algorithm is zK . We also recall that, for a function of sensitivity ∆, we know that the
addition of Gaussian noise of parameter σ2 gives (α, α ∆2

2σ2 )-RDP.

Hence, using the sensitivity bound given in (27), a single update leads to a privacy loss of

ε(α) =
8α∥A∥22L2γ2

σ2n2ω2
A

.

We conclude by using by the composition property of RDP over the K iterations and the robustness to postprocessing.

Note that the theorem only requires the matrix A to be full rank, which is a mild assumption.

In particular, for the consensus problem, A is the identity matrix. This leads to the following privacy guarantee.
Theorem 8. After performing K iterations, Algorithm 2 is (α, ε)-RDP with

ε(α) =
8KαL2γ2

σ2n2
.

Proof. The proof is the same as that of Theorem 7 except that we use the improved sensitivity bound given in (28).
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C.4. Federated Private ADMM with Subsampling

As explained in the main text, we can derive two levels of privacy for the federated algorithm. One is achieved at the level of
users thanks their local injection of noise: this ensures local DP. The second one in achieved with respect to a third party
observing only the final model: this is central DP. In the latter case, the local privacy level is amplified by the subsampling
of users and the sensitivity is further reduced by the aggregation step.

We start by the local privacy guarantee.

Theorem 9 (LDP of federated ADMM). Let Ki be the number of participations of user i. Algorithm 3 satisfies (α, εi) local
RDP for user i with

εi ≤ O
(
8KiαL

2γ2

σ2

)
.

Proof. We first derive the local privacy loss of sharing z. Using the sensitivity bound (28) derived for the centralized case
and the fact that we consider a post-processing of u, we have

εloc ≤
8αL2γ2

σ2
. (30)

We obtain the total local privacy loss by composition over the Ki participations of user i.

We now turn to the central privacy guarantee.

Theorem 10. Let m < n/5, α > 1 and σ ≥ 4, then for α ≤
(
M2σ2/2− log

(
5σ2
))

/
(
M + log(mα/n) + 1/

(
2σ2
))

where M = log(1 + 1/(m(α− 1)/n)). Then, Algorithm 3 has for central DP loss the following bound:

ε ≤ 16KαL2γ2

n2σ2

Proof. Recall that we subsample m participants at each round. By the reduction of sensitivity due to the aggregation of the
m participations, the initial privacy loss for one iteration is εloc/m2, where εloc is given in (30). Then, applying privacy
amplification by subsampling (see Appendix C.1.2) of m users among n leads to

ε ≤ 8αL2γ2

m2σ2

2m2

n2
.

We conclude using composition over the K rounds of the algorithm.

C.5. Fully Decentralized Private ADMM

In the fully decentralized setting, the local privacy loss is the same as in the previous section for the federated case. However,
the threat model is quite different. The privacy guarantees are with respect to the other users’ view, and each user will only
observe information in time steps where he/she participates.

We characterize the privacy loss by decomposing the problem as follows. Starting from the LDP loss, we derive the privacy
loss suffered by a user i when the z variable is observed m steps after the contribution made by i. This is similar to the
classic setting of privacy amplification by iteration where a model is only available after a given number of steps (see
Appendix C.1.1). Then, from the formula for a fixed number of steps, we derive the privacy loss that accounts for the secrecy
of the path and the randomness of its length. This is done by using the weak convexity property of the Rényi divergence
(Feldman et al., 2018) to weight each scenario according to the probability of the possible lengths. These probabilities
can be easily computed as we consider a complete graph for the communication graph. We conclude the proof by using
composition over the maximum number of times Ki any user participates to the computation.

For convenience, we first restate the theorem, and then give the full proof.

Theorem 4. Assume that the loss function f(·, d) is L-Lipschitz for any local dataset d and consider user-level DP.
Let α > 1, σ > 2Lγ

√
α(α− 1) and Ki the maximum number of contribution of a user. Then Algorithm 4 satisfies

(α, 8αKiL
2γ2 lnn

σ2n )-network RDP.
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Proof. Here, a given user j can only infer information about the other users when it participates, by observing the current
value of the z variable. Therefore, we can write the view of user j as:

Oj(A(D)) =
(
zkl(j)

)Kj

l=1
,

where kl(j) is the time of l-th contribution of user j to the computation, and Kj is the total number of times that j contributed
during the execution of algorithm. As we consider the complete graph, the probability to visit j at any step is exactly 1/n.
Hence, we have closed forms for the probability that the random walk goes from a user i to another user j in m steps.
Specifically, it follows the geometric law of parameter 1/n.

As an intermediate step of the proof, we thus express the privacy loss induced by a user i with respect to another user j
when there is exactly m steps after the participation of i to reach j, meaning than j will only observe the variable zk+m if i
participated at time k, and thus the contribution of i has already been mixed with m subsequent steps of the algorithm.

In this case, the privacy loss can be computed from the local privacy loss εloc in Equation (30), and the use of privacy
amplification by iteration in Theorem 6 where we have s1 = εloc and si>1 = 0, and we set ai = εloc/m. This leads to
following bound:

ε ≤
m∑
i=1

Dα(N (0, σ2)||N (ai, σ
2)) ≤ 8αL2γ2

σ2m
.

Now that we have a bound for a fixed number of steps between the two users, we can compute the privacy loss for the
random walk. Using the fact that the walk remains private to the users, i.e. they do not observe the trajectory of the walk
except the times it passed through them, we can apply the weak convexity of the Rényi divergence.

Proposition 3 (Weak convexity of Rényi divergence, Feldman et al., 2018). Let µ1, . . . , µm and ν1, . . . , νm be probability
distributions over some domain Z such that for all i ∈ [m], Dα (µi∥νi) ≤ c/(α − 1) for some c ∈ (0, 1]. Let ρ be a
probability distribution over [m] and denote by µρ (resp. νρ) the probability distribution over Z obtained by sampling i
from ρ and then outputting a random sample from µi (resp. νi). Then we have:

Dα (µρ∥νρ) ≤ (1 + c) · E
i∼ρ

[Dα (µi∥νi)] .

Let us fix a contribution of user i at some time k(i). We apply this lemma to ρ the distribution of the number of steps before
reaching user j, which follows a geometric law of parameter 1/n. This gives:

Dα(zj ||z′j) ≤
∑K−k(i)

k=1
1
n (1−

1
n )

k 8αL2γ2

2σ2k

≤ 8αL2γ2

σ2n

∑∞
k=1

(1−1/n)k

k

≤ 8αL2γ2 lnn
σ2n .

Finally, we use composition to bound the total privacy loss. Each user participates K/n times in average, and this estimate
concentrates as K increases. For the sake of simplicity, we use Ki = O(K/n) as an upper bound.

D. Privacy-Utility Trade-offs of Private ADMM Algorithms
Now, we amalgamate the privacy analysis of the three private ADMM algorithms (Appendix C) with the generic convergence
analysis of fixed-point iterations (Theorem 1) to obtain the privacy-utility trade-off for these three algorithms.

D.1. Centralized Private ADMM

Here, we present the detailed proof of Corollary 5.1.

Corollary 5.1. Under the assumptions and notations of Theorem 1 and 2, and for number of iterations K =

O
(
log
(

Lγ
nD(1−τ)

(
pα
ε

)1/2
+ pαL2γ2

εn2D(1−τ)3

))
, Algorithm 2 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

(
Lγ

√
pα

√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)
3

)
. (31)
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Proof. We recall from Theorem 1 that

E[∥uk+1 − u∗∥2] ⩽
(
1− q2(1− τ)

8

)k (
D +

2(σ
√
p+ ζ)

√
q (1− τ)

)
+

8(pσ2 + ζ2)

q3(1− τ)3
+

4

(1− τ)

≤
(
1− q2(1− τ)

8

)k

D +

(
8(σ

√
p+ ζ)

√
q (1− τ)

+
8(pσ2 + ζ2)

q3(1− τ)3

)
In case of centralized private ADMM, ζ = 0, q = 1, and σ2 = 8KαL2γ2

εn2 (Theorem 2). Thus, we obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(
7 + τ

8

)K

D +

(
8
√
p

(1− τ)

√
8KαL2γ2

εn2
+

8p

(1− τ)3

(
8KαL2γ2

εn2

))

≤
(
7 + τ

8

)K

D + 2

(
4
√
p

(1− τ)

√
8αL2γ2

εn2
+

8p

(1− τ)3

(
8αL2γ2

εn2

))
K

=

(
7 + τ

8

)K

D +O

(
Lγ

(1− τ)n

(pα
ε

)1/2
+

pαL2γ2

εn2 (1− τ)
3

)
K

Now, if we consider K such that (
7 + τ

8

)K

D = O

(
Lγ

(1− τ)n

(pα
ε

)1/2
+

pαL2γ2

εn2 (1− τ)
3

)

=⇒ K = O

(
log

(
Lγ

nD (1− τ)

(pα
ε

)1/2
+

pαL2γ2

εn2D (1− τ)
3

))
,

we obtain

E
(
∥uK+1 − u∗∥2

)
=O

((
Lγ

n (1− τ)

(pα
ε

)1/2
+

pαL2γ2

εn2 (1− τ)
3

)
log

(
Lγ

nD (1− τ)

(pα
ε

)1/2
+

pαL2γ2

εn2D (1− τ)
3

))

=Õ

(
Lγ

√
pα

√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)
3

)

D.2. Federated Private ADMM with Subsampling

Here, we present the detailed proof of Corollary 5.2.

Corollary 5.2. Under the assumptions and notations of Theorem 1 and 3, for number of iterations K =

O
(
log
( √

pαLγ√
εrnD(1−τ)

+ pαL2γ2

εr2n2D(1−τ)3

))
, and m = rn for r ∈ (0, 1), Algorithm 3 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

( √
pαLγ

√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)
3

)
. (32)

Proof. In case of federated private ADMM, ζ = 0, q = m
n , and σ2 = 16KαL2γ2

εn2 (Theorem 3). Thus, using Theorem 1, we
obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(
1− m2(1− τ)

8n2

)K

D +

(
8
√
p

(1− τ)

√
n

m

√
16KαL2γ2

εn2
+

8p

(1− τ)3

(
16KαL2γ2

εn2

)( n

m

)3)

≤
(
1− m2(1− τ)

8n2

)K

D + 2

(
8
√
p

(1− τ)

√
8αL2γ2

εnm
+

8p

(1− τ)3

(
8αL2γ2

εn2

)
n

m3

)
K
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=

(
1− m2(1− τ)

8n2

)K

D +O

(
Lγ

(1− τ)

( pα

εnm

)1/2
+

L2γ2pα

ε (1− τ)
3

n

m3

)
K

=

(
1− m2(1− τ)

8n2

)K

D +O

( √
pαLγ

√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)
3

)
K

The last equality holds true when we choose m = rn, where r ∈ (0, 1/5] is a constant subsampling ratio.

Now, if we consider K = O
(
log
( √

pαLγ√
εrnD(1−τ)

+ pαL2γ2

εr2n2D(1−τ)3

))
, we obtain

E
(
∥uK+1 − u∗∥2

)
=O

(( √
pαLγ

√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)
3

)
log

( √
pαLγ

√
εrnD (1− τ)

+
pαL2γ2

εr2n2D (1− τ)
3

))

=Õ

( √
pαLγ

√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)
3

)

D.3. Fully Decentralized Private ADMM

Here, we present the detailed proof of Corollary 5.3.
Corollary 5.3. Under the assumptions and notations of Theorem 1 and 4, and for number of iterations K =

O
(
log

(
Lγ

D(1−τ)

(
pα lnn

εn

)1/2
+ L2γ2

D(1−τ)3

(
pα lnn

εn

)))
, Algorithm 4 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

( √
pαLγ

√
εn (1− τ)

+
pαL2γ2

εn (1− τ)
3

)
. (33)

Proof. In case of decentralized private ADMM, ζ = 0, q = 1
n , and σ2 = 8KiαL

2γ2 lnn
σ2n = 8KαL2γ2 lnn

σ2n2 (Theorem 3). Thus,
using Theorem 1, we obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(
1− q2(1− τ)

8

)k

D +

(
8(σ

√
p+ ζ)

√
q (1− τ)

+
8(pσ2 + ζ2)

q3(1− τ)3

)
≤
(
1− 1− τ

8n2

)K

D +

(
8
√
p

(1− τ)

√
n

√
8KαL2γ2 lnn

εn2
+

8p

(1− τ)3

(
8KαL2γ2 lnn

εn2

)
n3

)

≤
(
1− 1− τ

8n2

)K

D + 2

(
8
√
p

(1− τ)

√
8αL2γ2 lnn

εn
+

8p

(1− τ)3

(
8αL2γ2 lnn

εn

))
K

=

(
1− 1− τ

8n2

)K

D +O

(
Lγ

(1− τ)

(
pα lnn

εn

)1/2

+
L2γ2

(1− τ)
3

(
pα lnn

εn

))
K

Now, if we consider K = O
(
log

(
Lγ

D(1−τ)

(
pα lnn

εn

)1/2
+ L2γ2

D(1−τ)3

(
pα lnn

εn

)))
, we obtain

E
(
∥uK+1 − u∗∥2

)
=O

((
Lγ

(1− τ)

(
pα lnn

εn

)1/2

+
L2γ2

(1− τ)
3

(
pα lnn

εn

))
log

(
Lγ

D (1− τ)

(
pα lnn

εn

)1/2

+
L2γ2

D (1− τ)
3

(
pα lnn

εn

)))

=Õ

( √
pαLγ

√
εn (1− τ)

+
pαL2γ2

εn (1− τ)
3

)
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Algorithm 6: Centralized private ADMM for Lasso

Input: initial vector u0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, γ > 0, clipping threshold C
1 for k = 0 to K − 1 do
2 ẑk+1 = 1

n

∑n
i=1 uk,i

3 zk+1 = Sγκ (ẑk+1)
4 for i = 1 to n do
5 xk+1,i = (Ai(Ai)⊤ + (2n/γ)I)−1(biAi + (2n/γ)(2zk − uk,i))

6 uk+1,i = uk,i + 2λ
(
Clip(xk+1,i − zk+1, C) + 1

2ηk+1,i

)
with ηk+1,i ∼ N (0, σ2Ip)

7 end
8 end
9 return zK

E. Numerical Experiments
In this section, we illustrate the performance of our private ADMM algorithms on the classic Lasso problem, which is widely
used to learn sparse solutions to regression problems with many features. Lasso aims to solve the following problem:

minimize
x ∈ Rp

1

2n
∥Ax− b∥2 + κ∥x∥1, (34)

where the dataset D = (A, b) consists of n labeled data points in p dimensions, represented by a matrix A ∈ Rn×p and a
vector of regression targets b ∈ Rn. The previous objective can be rewritten as a consensus problem of the form (7), with
the same notations:

minimize
x ∈ Rnp, z ∈ Rp

1

2n

n∑
i=1

(
(Ai)⊤x− bi

)2
+ κ∥z∥1

subject to x− In(p×p)z = 0,

(35)

where Ai is the i-th row of A and bi the i-th coordinate of b.

The corresponding ADMM updates take simple forms (Boyd et al., 2011). The z-update, defined as proxγκ∥·∥1
(ẑ), corre-

sponds to the soft thresholding function with parameter γκ. For the x-update, we have xi = proxγ/2n((Ai)⊤·−bi)2 (2z − ui).
This also gives a closed-form update:

xi = (Ai(Ai)⊤ + (2n/γ)I)−1(biAi + (2n/γ)(2z − ui)).

Note that the matrix to invert is a rank-one perturbation of the identity, so the inverse can be computed via the Sherman
Morrison formula. As usually done in privacy-preserving machine learning, we ensure a tight evaluation of the sensitivity by
using clipping. The full algorithm is given in Algorithm 6.

We generate synthetic data by drawing A as random vectors from the p-dimensional unit sphere, and draw the ground-truth
model x from a uniform distribution with support of size 8. Labels are then obtained by taking b = Ax + η where
η ∼ N (0, 0.01). We use n = 1000 and p = 64.

As reference, we solve the non-private problem with scikit-learn, and we use the best regularization parameter κ
obtained by cross-validation. For comparison purposes, we also implement (proximal) DP-SGD where noise is added to
the gradients of the smooth part. For both approaches, we tune the step size and clipping threshold using grid search. For
ADMM, we also tune the γ parameter. For simplicity, we tune these parameters on the smallest privacy budget and use the
obtained parameters for all budgets, even if slight improvements could be achieved by tuning these parameters for each
setting. We use the same number of iterations K for both algorithms.

We report the objective function value on the test set at the end of the training for several privacy budgets. Privacy budgets are
converted to (ε, δ)-DP for the sake of comparison with existing methods. The conversion to Rényi DP is done numerically.
We set δ = 10−6 in all cases.

The resulting privacy-utility trade-offs for the federated setting with central DP are shown in Figure 1, where each user has a
single datapoint and users are sampled uniformly with a 10% probability. We see that private ADMM performs especially
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Figure 1. Comparison of DP-SGD and our DP-ADMM algorithm for the Lasso problem on synthetic data (n = 1000, p = 64). The same
regularizer parameter is used. We show here results for the federated setting, with a user sampling probability of 10%. Each setting is run
10 times, and we report average and standard deviation

well in high privacy regimes. Note that the y axis is in logscale, so the improvement over DP-SGD is significant. This could
be explained by the fast convergence of ADMM at the beginning of training, and by the robustness of its updates. The two
curves go flat for low privacy budgets: this is simply because these regimes would require more training steps and smaller
step-sizes to converge to more precise solutions.

The code is available at https://github.com/totilas/padadmm.
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