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Abstract

Hierarchical text classification (HTC) is a chal-001
lenging problem with two key issues: utiliz-002
ing structural information and mitigating la-003
bel imbalance. Recently, the unit-based ap-004
proach generating unit-based feature represen-005
tations has outperformed the global approach006
focusing on a global feature representation.007
Nevertheless, unit-based models using BCE008
and ZLPR losses still face static threshold-009
ing and label imbalance challenges. Those010
challenges become more critical in large-scale011
hierarchies. This paper introduces a novel012
hierarchy-aware loss function for unit-based013
HTC models: Hierarchy-aware Biased Bound014
Margin (HBM) loss. HBM integrates learn-015
able bounds, biases, and a margin to address016
static thresholding and mitigate label imbalance017
adaptively. Experimental results on benchmark018
datasets demonstrate the superior performance019
of HBM compared to competitive HTC models.020

1 Introduction021

Hierarchical Text Classification (HTC) aims to clas-022

sify text into a predefined label hierarchy. HTC cur-023

rently faces two fundamental challenges: utilizing024

structural information and mitigating label imbal-025

ance. As shown in Figure 1, recent research can be026

categorized into global and unit-based approaches027

based on exploiting feature representations com-028

bined with text and structural information. The029

global approach, HiAGM (Zhou et al., 2020), Hi-030

Match (Chen et al., 2021), HGCLR (Wang et al.,031

2022a), K-HTC (Liu et al., 2023), HiTIN (Zhu032

et al., 2023), and HJCL (Yu et al., 2023), gener-033

ates a holistic feature representation of text that034

encompasses an entire hierarchy and use it to com-035

pute label scores comprehensively. In contrast, the036

unit-based approach, HPT (Wang et al., 2022b) and037

HiDEC (Im et al., 2023), generates feature repre-038

sentations of text at the unit level, where a unit039

refers to a subset of a hierarchy partitioned by spe-040

cific strategies, and classification is performed on041

Figure 1: Classification processes of (a) Global and (b)
Unit-based HTC models.

labels within these units. Recently, the unit-based 042

approach has achieved significant improvements 043

over the global approach. 044

However, there are two significant limitations in 045

existing research: static thresholding and label im- 046

balance. Static thresholding is problematic because 047

most HTC models utilizing binary cross entropy 048

(BCE) loss predict positive labels using a fixed 049

threshold, typically set at 0.5, when the output 050

probability exceeds this threshold. Determining 051

optimal thresholds for target labels is computa- 052

tionally intensive, particularly when considering 053

various units. Label imbalance can lead to over- 054

training on frequent labels and undertraining on 055

infrequent ones and degrade performance due to 056

the dominance of numerous high-confidence labels 057

in a loss. Previous HTC methods address this is- 058

sue by leveraging hierarchical structures through 059

the exploitation of auxiliary loss functions (Chen 060

et al., 2021; Wang et al., 2022a; Liu et al., 2023; 061

Yu et al., 2023) or per-unit classification (Kowsari 062

et al., 2017; Banerjee et al., 2019; Shimura et al., 063

2018; Wang et al., 2022b; Im et al., 2023). Re- 064
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cently, HPT and HJCL presented Zero-bounded065

Log-sum-exp Pairwise Rank-based (ZLPR) loss066

(Su et al., 2022), but the static thresholding prob-067

lem still remains.068

To tackle these limitations, this paper intro-069

duces a novel hierarchy-aware loss function for070

unit-based HTC models: Hierarchy-aware Biased071

Bound Margin (HBM) loss. Our key innovations072

in HBM are summarized as follows. First, we073

introduce learnable bounds for all units within a074

hierarchy to address the static thresholding prob-075

lem. These bounds are optimized for various units076

during training and serve as dynamic unit thresh-077

olds during inference. Second, we introduce biases078

and a margin to mitigate the label imbalance. The079

biases promote low-confidence labels by adjust-080

ing the bounds of positive and negative label sets.081

These adjustments are dynamically determined082

based on the label logits and amplify the impor-083

tance of undertrained labels. In contrast, the mar-084

gin aims to diminish the domination of overtrained085

labels in a loss by excluding high-confidence la-086

bels.087

Through a series of experiments, we demonstrate088

the effectiveness of our loss function applied to re-089

cent unit-based HTC models, HPT and HiDEC,090

using three benchmark datasets: RCV1-v2 (Lewis091

et al., 2004), NYT (Sandhaus, 2008), and EU-092

RLEX57K (Chalkidis et al., 2019). Notably, our093

loss function outperforms competitive HTC models094

on all three benchmark datasets. We comprehen-095

sively analyze how the bounds address the issue of096

static thresholding, and how the biases and margin097

address the problem of label imbalance in HTC.098

Our contributions are summarized as follows:099

• We propose a novel hierarchy-aware loss func-100

tion, HBM, for unit-based HTC models to ad-101

dress static threshold and label imbalance by102

introducing bounds, biases, and a margin. The103

bounds are optimized during training and used104

as dynamic unit thresholds during inference.105

The biases and margin mitigate label imbal-106

ance by promoting low-confidence labels and107

excluding high-confidence labels from a loss,108

respectively.109

• We demonstrate the effectiveness of our loss110

function applied to recent unit-based HTC111

models by comparing competitive HTC mod-112

els on three benchmark datasets. Our results113

confirm the superiority and behaviors of our114

loss function, supported by in-depth analysis.115

2 Related work 116

Recent HTC research based on deep learning 117

can be categorized into global and unit-based ap- 118

proaches, each with its unique way of creating fea- 119

ture representations that incorporate both text and 120

hierarchy structure. 121

The unit-based approach generates feature rep- 122

resentations at the unit level by partitioning the 123

entire hierarchy into units using specific strate- 124

gies. Each unit corresponds to a subset of labels 125

within a hierarchy. Various models employ diverse 126

unit construction strategies, including “for-each- 127

class” (Banerjee et al., 2019), “for-each-parent” 128

(Kowsari et al., 2017; Im et al., 2023), “for-each- 129

level” (Shimura et al., 2018; Wang et al., 2022b), 130

and “for-each-sub-hierarchy” (Peng et al., 2018). 131

HDLTex (Kowsari et al., 2017) introduces HTC 132

models using DNN, CNN, and RNN architectures. 133

HTrans (Banerjee et al., 2019) enhances HDLTex 134

by employing transfer learning to preserve path in- 135

formation. HR-DGCNN (Peng et al., 2018) utilizes 136

recursive hierarchical segmentation to divide a hier- 137

archy into sub-hierarchies and construct local unit 138

models. However, the unit-based approach often 139

suffers from a lack of hierarchical information. 140

In contrast, the global approach generates a holis- 141

tic feature representation encompassing the entire 142

label hierarchy. HiAGM (Zhou et al., 2020) merges 143

text and structural representations through text 144

propagation, while HGCLR (Wang et al., 2022a) 145

propagates structural representation through a text 146

encoder and employs contrastive learning. Hi- 147

Match (Chen et al., 2021) applies a hierarchy- 148

aware matching loss to HiAGM and adjusts fea- 149

ture representations based on hierarchy informa- 150

tion. K-HTC (Liu et al., 2023) tries to incorporate 151

a knowledge graph into HTC using knowledge- 152

aware hierarchical label attention and contrastive 153

learning. HiTIN (Zhu et al., 2023) reduces the 154

complexity of the existing global models by recon- 155

structing a hierarchy to minimize structural entropy. 156

HJCL (Yu et al., 2023) proposes a unified loss func- 157

tion integrating instance and label-wise contrastive 158

learning losses, along with ZLPR loss (Su et al., 159

2022). The global models effectively leverage hi- 160

erarchical information through structure encoders 161

(Kipf and Welling, 2017; Ying et al., 2021), outper- 162

forming unit-based models. Despite their achieve- 163

ments, they face challenges of label imbalances 164

and hierarchy-dependent model parameters. 165

To address these challenges, HPT (Wang et al., 166
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Figure 2: The illustration of classification losses, (a) BCE, (b) ZLPR, and (c) HBM. The blue line is a threshold
during inference. In BCE, a loss is computed for each label and then averaged. In ZLPR and HBM, a loss is
calculated separately for positive and negative target sets and combined. The green and red lines are positive
and negative biased bounds, respectively, during training. In HBM, a bound is optimized for each unit and used
as dynamic thresholds during inference. The yellow lines represent a margin. Labels exceeding the margin are
excluded in computing a loss.

2022b) and HiDEC (Im et al., 2023) incorporate167

a structure encoder (Veličković et al., 2018) and168

attention mechanism (Vaswani et al., 2017) into169

their unit-based HTC models. HiDEC utilizes an170

encoder-decoder architecture to generate a sub-171

hierarchy sequence based on the target labels of172

each document using a parent-level unit construc-173

tion strategy. By dividing a hierarchy based on174

levels, HPT integrates level-specific feature rep-175

resentations from a structure encoder into a text176

encoder and proceeds with unit-wise prediction.177

Furthermore, HPT incorporates ZLPR loss by intro-178

ducing a zero-bound to MLCE loss (Li et al., 2017;179

Sun et al., 2020). With ZLPR loss, HPT transforms180

HTC into a multi-label masked language modeling181

task. However, these methods still encounter la-182

bel imbalance in large-scale hierarchies and suffer183

from static thresholding.184

3 Proposed Hierarchy-aware Loss185

Function186

3.1 Preliminaries and Notations187

Let a graph G = (V, E) be a predefined hierar-188

chy where V = {v1, . . . , vN} is a set of all la-189

bel nodes and E = {(vi, vj)|vi, vj ∈ V} is a set190

of edges indicating a relation between two nodes.191

D = {(xd,Yd)}
|D|
d=1 is a document dataset where192

xd is d-th document and Yd ⊂ V is a set of target193

labels associated with xd. Note |Yd| ≥ 1 because a194

document xd can have multi-labels. We partition V195

into a set of units W = {U1, . . . ,U|W|} where U196

denotes a unit composed of a set of labels.197

For a given document xd, unit-based HTC mod-198

els generate a unit representation rU , then compute 199

logits lU using the unit representation rU and label 200

embeddings associated with the labels in a unit U . 201

These logits lU are used to make predictions on a 202

unit U . The target label set for each unit is defined 203

as YU
d = {vi|vi ∈ (Yd ∩ U)}. 204

To calculate a loss, we divide a unit U into pos- 205

itive and negative target sets, denoted as N U
pos = 206

{vi|vi ∈ YU
d } and N U

neg = {vi|vi ∈ U\YU
d } . If 207

the target label does not exist within a specific unit, 208

N U
pos can become an empty set. Based on N U

pos and 209

N U
neg in Figure 2-(a), BCE loss is defined as: 210

LBCE = − 1∑
U∈W |U|

∑
U∈W

[
∑

p∈NU
pos

log σ(lUp ) +
∑

n∈NU
neg

log(1− σ(lUn ))],
(1) 211

where lUp and lUn are the logits for positive label p 212

and negative label n, respectively. σ(·) is a sigmoid 213

function. 214

BCE loss has a weakness in dealing with la- 215

bel imbalance. To this end, ZLPR (Zero-bounded 216

Log-sum-exp Pairwise Rank-based) loss (Su et al., 217

2022) is presented in HPT (Wang et al., 2022b) : 218

LZLPR =
1

|W|
∑
U∈W

[log(1 +
∑

p∈NU
pos

e−lUp ) + log(1 +
∑

n∈NU
neg

el
U
n )].

(2) 219

As depicted in Figure 2-(b), ZLPR loss attempts 220

to mitigate label imbalance through the log-sum- 221

exp operation to reduce the dominance of over- 222

trained labels. However, it does not address static 223
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Dataset |V| |W| Level
Average of

Train Dev Test
|Yd| |Wd| |U| |N U

pos| |N U
neg|

RCV1-v2 103 4/22 4 3.24 4/2.98 25.75/5.63 0.80/1.77 24.95/3.86 20,833 2,316 781,265
NYT 166 8/52 8 7.60 8/6.94 20.75/4.17 0.95/1.79 19.80/2.38 23,345 5,834 7,292

EURLEX57K 4,271 6/1,168 6 5.00 6/9.16 752.17/5.15 0.85/1.06 751.32/4.09 45,000 6,000 6,000

Table 1: Data statistics. Level and |V| are the maximum level and number of labels in a hierarchy, while |W| is
the number of units. |Yd| and |Wd| are the average number of target labels and units for a document, while |U| is
the average number of labels in a unit. |NU

pos| and |NU
neg| are the average number of positive and negative labels for

units, respectively. Note that values partitioned by ‘/’ indicate HPT and HiDEC in order.

thresholding because the bounds for all units re-224

main fixed at 0.225

3.2 Hierarchy-aware Biased Bound Loss226

We propose a Hierarchy-aware Biased Bound Mar-227

gin (HBM) loss to simultaneously address the is-228

sues of static thresholding and label imbalance229

within a unit U . HBM is defined as:230

LHBM =
1

|W|
∑
U∈W

[ log(1 +
∑

p∈N ′U
pos

e−lUp +(tU+bUpos))

+ log(1 +
∑

n∈N ′U
neg

el
U
n−(tU−bUneg))],

(3)

231

where tU ∈ R is a learnable bound for a unit U . bUpos232

and bUneg are positive and negative biases for a unit233

U , respectively. N ′U
pos and N ′U

neg are positive and234

negative target sets, respectively, after excluding235

labels with a margin.236

The bound tU is computed using a unit represen-237

tation rU , allowing us to predict distinct bounds238

for each unit by leveraging text and hierarchy infor-239

mation. During training, we enforce that positive240

labels have higher logits than tU , whereas nega-241

tive labels have vice versa. Subsequently, the opti-242

mized bound tU is utilized as a dynamic threshold243

by ŶU
d = {vi|lUvi > tU , vi ∈ U} during inference.244

The biases bUpos and bUneg can be computed us-245

ing any function g : N → R+ designed to pro-246

mote training on the low-confidence labels in N U
pos247

and N U
neg. We employ the standard deviation,248

g = α · std({lUv |v ∈ N}) where α is a hyperparam-249

eter. Like Figure 2-(c), a high standard deviation250

of logits indicates insufficient model training on251

the labels within N , leading to the assignment of252

higher biases. The bias adjusts the bound applied253

to positive labels higher and negative labels lower.254

These adjustments provide an opportunity to better255

train on low-confidence labels, influenced by the256

log-sum-exp function. Practically, biases bUpos and 257

bUneg are computed with detached gradients on the 258

target sets during training. 259

The margin m is applied to all labels before cal- 260

culating the loss. A logit is transformed into a 261

probability score svi = σ(2(lUvi − tU )) according 262

to Su et al. (2022). We redefine N ′U
pos = {vi|svi < 263

1−m, vi ∈ N U
pos} and N ′U

neg = {vi|svi > m, vi ∈ 264

N U
neg} to retain labels participating in training with 265

the margin. As shown in Figure 2-(c), labels un- 266

satisfying with the margin are regarded as high- 267

confidence labels dominating a loss and are re- 268

moved. Consequently, it can mitigate the label 269

imbalance. 270

3.3 Implementations on Unit-based Model 271

To validate the effectiveness of HBM loss, we 272

have applied it to two recent unit-based HTC mod- 273

els, HPT (Wang et al., 2022b) and HiDEC (Im 274

et al., 2023). These models employ distinct strate- 275

gies for partitioning a hierarchy into a set of units. 276

In HPT, the same units are utilized during both 277

training and inference. In contrast, HiDEC ex- 278

hibits variability in its units. This difference stems 279

from the fact that in HiDEC, for a document xd, 280

units are constructed using the target label set Yd 281

during training, whereas during inference, units 282

are formed through sub-hierarchy expansion start- 283

ing from the root. Specifically, in HPT, each 284

unit encompasses all labels at the same hierar- 285

chy level. We denote a unit and a target label 286

set for the k-th level as Uk = {vi|level(vi) = 287

k, vi ∈ V} and YUk
d = {vi|vi ∈ Yd ∩ Uk}, re- 288

spectively. In HiDEC, for a given document xd, 289

a sub-hierarchy label set Vd = Yd ∪ {vi|vi ∈ 290

ancestor(vj), vj ∈ Yd} and a sub-hierarchy se- 291

quence Hd = [vi|vi ∈ Vd\leaf(G)] are created 292

sequentially. Based on Hd, the k-th parent unit 293

is defined as Uk = {vi|vi ∈ child(Hd
k)} ∪ {vend}, 294

where vend is a special node used to terminate sub- 295
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Model Approach Loss RCV1-v2 NYT EURLEX57K
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT†‡ Global BCE 85.65† 67.02† 78.24† 65.62† 73.20‡ -
HiAGM (Zhou et al., 2020) Global BCE∗ 85.58 67.35 78.64 66.76 - -
HiMatch (Chen et al., 2021) Global BCE∗ 86.33 68.66 - - - -
HGCLR (Wang et al., 2022a) Global BCE∗ 86.49 68.31 78.86 67.96 - -
HiTIN (Zhu et al., 2023) Global BCE∗ 86.71 69.95 79.65 69.31 - -
HJCL (Yu et al., 2023) Global ZLPR∗ 87.04 70.49 80.52 70.02 - -
HPT (Wang et al., 2022b) Unit ZLPR∗ 87.26 69.53 80.42 70.42 - -
HiDEC (Im et al., 2023) Unit BCE 87.96 69.97 79.99 69.64 75.29 -

Our Implementations

HPT Unit
BCE∗ 87.65±0.11 69.87±0.40 79.49±0.22 68.66±0.30 71.57±0.58 25.34±0.59

ZLPR∗ 87.82±0.14 70.23±0.31 80.04±0.23 69.69±0.49 75.54±0.20 28.46±0.26

HBM∗ 87.82±0.06 70.55±0.13 80.42±0.12 70.23±0.18 75.78±0.15 28.70±0.22

HiDEC Unit
BCE 87.70±0.12 70.82±0.20 80.13±0.16 69.80±0.24 75.14±0.19 27.91±0.11

ZLPR 87.59±0.18 70.61±0.36 80.25±0.21 70.14±0.23 76.16±0.16 28.68±0.15

HBM 87.81±0.09 71.47±0.20 80.52±0.18 70.69±0.19 76.48±0.12 28.77±0.11

Table 2: Overall performance. The upper shows the official scores reported in the original papers, whereas the lower
presents the scores from our implementations, with each score accompanied by its standard deviation. Values are
derived by averaging results from ten runs with random weight initialization. ∗ indicates that an auxiliary loss is
used with the classification loss, while _ represents the baseline loss for each model. † and ‡ denotes Wang et al.
(2022a) and Chalkidis et al. (2019), respectively.

hierarchy expansion. Then, a target label set is296

defined as YUk
d = {vi|vi ∈ Vd ∩ Uk}. For a la-297

bel assignment, we re-define YUk
d = YUk

d ∪ {vend}298

if Hd
k ∈ Yd. In both HPT and HiDEC, a sim-299

ple feed-forward network (FFN) is employed to300

learn optimal bounds based on unit representations.301

Consequently, HPT and HiDEC using HBM loss302

require only a modest number of additional param-303

eters compared to the original models.304

4 Experiments305

4.1 Experimental settings306

Datasets and Evaluation Metrics We selected307

two small-scale datasets, RCV1-v2 (Lewis et al.,308

2004) and NYT (Sandhaus, 2008), and a large-scale309

dataset, EURLEX57K (Chalkidis et al., 2019), for310

our standard experiments. To ensure a fair compar-311

ison, we adhered to the same data configuration as312

previous research (Zhou et al., 2020; Chen et al.,313

2021; Wang et al., 2022b; Im et al., 2023) and used314

Micro-F1 and Macro-F1 as our evaluation metrics.315

Table 1 presents the data statistics for three datasets.316

RCV1-v2 offers limited training data, while EU-317

RLEX57K provides a large number of labels. It is318

particularly noteworthy to examine the statistics of319

units. HPT (Wang et al., 2022b) generates a consid-320

erably smaller number of units compared to HiDEC321

(Im et al., 2023). We can see label imbalance ex-322

plicitly as both HPT and HiDEC produce a limited323

number of positive but substantial negative labels.324

As a hierarchy size increases, label imbalance be- 325

comes pronounced in HPT, while it remains stable 326

in HiDEC. NYT has the lowest average number of 327

negative target labels |N U
neg|. 328

Implementation Details We implemented 329

HBM, BCE, and ZLPR losses using the original 330

codes1 based on HPT and HiDEC. The same model 331

architectures and hyperparameters of the model 332

were utilized for all three datasets. 333

In HPT, bert-base-uncased (Devlin et al., 334

2019) and GAT (Veličković et al., 2018) were used 335

as text and structure encoders, respectively. The 336

batch size was set to 16. Adam (Kingma and Ba, 337

2015) optimizer was used with a learning rate of 338

3e-5. The early stop was applied when Macro-F1 339

for developments set after each epoch did not in- 340

crease during 6 epochs. The other hyperparameters 341

were not tuned. 342

In HiDEC, bert-base-uncased was used as a 343

text encoder, while a 2-layer transformer decoder 344

(Vaswani et al., 2017) was used as a hierarchy de- 345

coder. The label embeddings were initialized using 346

a normal distribution with µ = 0 and σ = 768−0.5. 347

The batch size was set to 64. AdamW (Loshchilov 348

and Hutter, 2019) optimizer was used with the 349

learning rate 5e-5. The learning rate was sched- 350

uled using a linear scheduler with a warmup rate 351

of 0.1 over 100 epochs. 352

1Check out code repositories referred to in HPT and
HiDEC papers.
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RCV1-v2 NYT EURLEX57KModel Bounds Biases Margin
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

- - - 87.82 70.23 80.04 69.69 75.54 28.46
⃝ - - 87.78 70.56 80.20 70.04 75.69 28.51
- ⃝ - 87.91 70.30 80.26 70.12 75.78 28.47
- - ⃝ 87.70 70.43 80.21 69.83 75.74 28.71

HPT

⃝ ⃝ ⃝ 87.82 70.55 80.42 70.23 75.78 28.70

- - - 87.59 70.61 80.25 70.14 76.16 28.68
⃝ - - 87.70 70.91 80.28 70.18 76.17 28.68
- ⃝ - 87.43 71.01 80.38 70.51 76.35 28.58
- - ⃝ 87.71 70.80 80.46 70.45 76.31 28.84

HiDEC

⃝ ⃝ ⃝ 87.81 71.47 80.52 70.69 76.48 28.77

Table 3: Ablation results of HBM on three datasets. All performance represents the average of 10 runs with random
weight initialization. The top-ranked scores in each metric are highlighted in red-bolded, while the second-ranked
scores are underlined.

The bias scale factor α was set to 0.1 and 1.0 for353

HPT and HiDEC, respectively (See Appendix A.2).354

The margin m was set to 0.1 for RCV1-v2 and355

NYT whereas 0.01 for EURLEX57K. Note that356

the bias in the final layer of the FFN, employed for357

predicting learnable bounds, was removed.358

Comparison Models For comparison, we se-359

lected recent HTC models that leverage pre-trained360

language models: HiAGM (Zhou et al., 2020), Hi-361

Match (Chen et al., 2021), HGCLR (Wang et al.,362

2022a), HiTIN (Zhu et al., 2023), HJCL (Yu et al.,363

2023), HPT (Wang et al., 2022b), and HiDEC (Im364

et al., 2023).365

HiAGM: HiAGM utilizes the prior probability366

of parent-child label dependency as adjacency of367

Graph Convolution Networks (GCN) (Kipf and368

Welling, 2017). A text representation from a text369

encoder such as TextRCNN (Lai et al., 2015) or370

BERT is propagated to GCN using text propaga-371

tion.372

HiMatch: HiMatch considers HTC as a semantic373

matching problem and conducts text and label se-374

mantic matching to HiAGM through a hierarchy-375

aware matching loss. In addition, the hierarchy-376

aware margin loss learns to adjust the distance377

based on the label’s hierarchical relationship to378

reflect hierarchy in presentation.379

HGCLR: HGCLR points out the limitations of380

the existing models that use separate text and381

structure encoders and proposes a contrastive382

learning method that can inject structural informa-383

tion into the text encoder.384

HiTIN: To address the limitations of the exist-385

ing global approach, HiTIN employs a strategy386

of reconstructing the hierarchy into a code tree387

to reduce structural complexity effectively. This 388

code tree construction aims to minimize structural 389

entropy, resulting in a simplified hierarchy that 390

maximizes the retention of structural information 391

from the original hierarchy. 392

HJCL: To improve upon the limitations of ex- 393

isting contrastive learning HTC methods, HJCL 394

proposes a supervised contrastive approach inte- 395

grating instance-wise and label-wise contrastive 396

learning. It utilizes propagated label embeddings 397

from PLM and GAT to enable contrastive learning 398

and classification training from both the instance 399

and label perspectives. 400

HPT: HPT is the first attempt to address HTC 401

using prompt tuning. It transforms HTC into a 402

hierarchy-aware multi-label MLM to incorporate 403

the HTC and MLM. The hierarchy representation 404

at different levels, represented through GAT, is 405

used in conjunction with text as input to BERT. 406

Classification is performed for labels correspond- 407

ing to units at each level. 408

HiDEC: To address the issue of excessive pa- 409

rameters in the existing models, HiDEC em- 410

ploys a sub-hierarchy composed of labels related 411

to documents rather than the entire hierarchy. 412

HiDEC transforms HTC into a sequence gener- 413

ation problem and conducts training to generate 414

sub-hierarchy sequences. 415

HiAGM, HiMatch, HGCLR, HiTIN, and HJCL are 416

global models, whereas HPT and HiDEC are unit- 417

based models. All models employ BERT as a text 418

encoder. Except for HJCL and HPT, which utilize 419

ZLPR loss, the other models use BCE loss. 420
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Figure 3: Illustration of sample logits of documents obtained from ZLPR and HBM during inference (a, b and c)
in HiDEC. Each point on the graph represents a logit, with target labels in green and non-target labels in black,
respectively. Blue lines denote the threshold used in each unit, while the green and red lines indicate positive and
negative biased bounds, respectively, in HBM. The X marks denote the logits of labels excluded by the margin. In
(a), HBM effectively reduces false predictions through dynamic thresholding. In (b), logits obtained with HBM are
clearly distinguishable beyond the biased bounds. In (c), higher thresholds are observed when a unit comprises
many few-shot labels.

4.2 Results421

Table 2 presents the overall performance of three422

datasets. The scores and their variances were ob-423

tained from our implementations by averaging re-424

sults from 10 runs with random weight initializa-425

tion. HBM consistently achieved better perfor-426

mance over BCE and ZLPR on three datasets. It427

reveals that HBM is more effective on a large-428

scale HTC than a small-scale HTC, as the largest429

improvements were obtained from both HPT and430

HiDEC on EURLEX57K. It is worth to note that431

HBM is a single loss function designed to mitigate432

label imbalance compared to the existing research433

utilizing auxiliary loss functions.434

4.3 Ablation studies435

We conducted ablation studies to analyze the im-436

pact of bounds, biases, and a margin in HBM and437

summarized the results in Table 3. In Equations438

2 and 3, HBM is equivalent to ZLPR when the439

bounds are set to 0, biases are removed, and no440

margin is applied. The biases are effective for441

all settings, particularly on RCV1-v2 and NYT.442

On EURLEX57K, the biases and margin improve443

Micro-F1 and Macro-F1, respectively. Compared444

to the biases and margin, the bounds alone seem in-445

significant. However, the combination of the three446

components complements each other and achieves447

improvements. Notably, HiDEC significantly bene- 448

fits from HBM. 449

4.4 Analysis of Bounds, Biases, and Margin 450

Figure 3 illustrates the samples of thresholds, bi- 451

ased bounds, and logits obtained from ZLPR and 452

HBM losses during inference in HiDEC. Each 453

point on the graph represents a logit, with target la- 454

bels in green and non-target labels in black, respec- 455

tively. The X marks represent the logits of labels 456

excluded by the margin from loss calculation. The 457

logits are obtained from test documents in NYT (a 458

and b) and EURLEX57K (c) using HiDEC’s units. 459

Blue lines denote the threshold used in each unit. 460

In HBM, a threshold is determined by a bound 461

predicted for each unit based on a specific docu- 462

ment. The green and red lines indicate positive and 463

negative biased bounds of units, respectively. 464

As in Figure 3, HBM employs dynamic thresh- 465

olds for each document, whereas ZLPR applies a 466

zero threshold to all units. We can see that the dy- 467

namic thresholds reduce false predictions for the 468

specific units. However, the bounds optimized on 469

a training set may be suboptimal. See Top/News 470

on NYT and root on EURLEX57K in Figures 3-(b) 471

and 3-(c). If Top/New/U.S. on NYT in Figure 3-(b) 472

is used for training, only the three negative labels 473

above the bound participate in the loss calculation 474
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Figure 4: The Macro-F1 score differences on the test set
for label clusters in two datasets. Label clusters are con-
structed by sorting in reverse order of frequencies and
dividing them into five equal parts. The graph illustrates
the performance difference of each model compared to
models using BCE loss for each label cluster.

and fall below the biased bound of negative labels,475

the red line. Similarly, in the root on EURLEX57K476

of Figure 3-(b), only positive labels near the bound477

contribute to a loss and go above the green line.478

High thresholds are observed with many neg-479

ative target labels because increasing bounds is480

relatively easier than decreasing logits of all nega-481

tive labels during training. So, infrequent positive482

labels struggle to increase logits than bounds. This483

issue can be mitigated by reducing the number of484

negative target labels, as observed on NYT.485

4.5 Analysis of Label Imbalance486

To analyze label imbalance, labels were clustered487

based on their frequency in the training set, and488

model performance was compared on these clus-489

ter. Label clusters were formed by sorting labels490

in reverse order of frequencies and dividing them491

into five equal parts. Simply, >80% cluster de-492

notes frequent labels, whereas <20% is a cluster493

of infrequent labels. Figure 4 shows the perfor-494

mance difference on label clusters sorted by fre-495

quency. The black lines are the baselines for mod-496

els trained with BCE. The red and blue lines indi-497

cate the score differences of HBM and ZLPR with498

respect to BCE, respectively. Notably, HBM effec-499

tively mitigates the label imbalance in most clusters500

as all score differences are positive and greater than501

those of ZLPR. On RCV1-v2, HBM leads to larger502

gains over BCE in all clusters. Specifically, the503

low-frequency clusters have more benefits than the504

high-frequency clusters. On EURLEX57K, HBM 505

is effective, particularly for high-frequency clus- 506

ters, but there is a diminishing tendency from high- 507

to low-frequency clusters. This phenomenon stems 508

from the fact that EURLEX57K has a long-tail dis- 509

tribution, with 83% of labels occurring less than 50 510

times. 511

5 Conclusion 512

This paper introduces a Hierarchy-aware Biased 513

Bound Margin (HBM) loss function, offering two 514

key innovations to address the challenges of static 515

thresholding and label imbalance in HTC. First, 516

HBM introduces learnable bounds for all units 517

within a hierarchy to address static thresholding. 518

These bounds are optimized for various units dur- 519

ing training and are used as dynamic thresholds dur- 520

ing inference. Second, HBM introduces biases and 521

a margin to mitigate label imbalance. The biases 522

promote low-confidence label training, while the 523

margin excludes high-confidence labels from the 524

loss. Third, Extensive experiments on benchmark 525

HTC datasets demonstrate the superiority of HBM 526

loss based on unit-based HTC models by compar- 527

ing competitive HTC models and comprehensive 528

analysis. We plan to extend HBM to extremely 529

large-scale hierarchies and improve imbalance re- 530

lations among units. 531

Limitations 532

When applying HBM to existing unit-based HTC 533

models, additional parameters are required for opti- 534

mizing learnable bounds. In this paper, we simply 535

employed a single Feedforward Neural Network 536

(FFN) with one hidden layer without exploration 537

for model architecture because the FFN is guaran- 538

teed as it is widely used in various tasks. Any struc- 539

ture that allows dynamic optimization of bounds 540

could enable the application of HBM. 541
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A Appendix691

A.1 Dataset Details692

We provide a more detailed examination of the693

datasets as presented in Table 1, yielding several694

key observations:695

• Train-Test Mismatch: In RCV1-v2, there is696

a notable disparity in the sizes of the training697

and test sets, leading to a train-test mismatch.698

• Label Hierarchy Disparities: EURLEX57K699

has a label hierarchy of 42 times and 25 times700

larger than RCV1-v2 and NYT, respectively.701

This substantial discrepancy in size causes a702

significant imbalance between positive and703

negative labels. The average of |N U
pos| re-704

mains relatively stable, while the average of705

|N U
neg| increases significantly from 24.95 and706

19.80 in RCV1-v2 and NYT to 751.32 in EU-707

RELX57K.708

• Unit Imbalance: The disparity in the unit709

construction strategies between HPT and710

HiDEC leads to substantial variations in unit711

statistics. HiDEC divides the hierarchy into712

smaller units than HPT, resulting in a small713

number of labels for each unit (Average of714

|U|) and significantly balances the ratio of715

Figure 5: Hyperparameter exploration was conducted
for EURLEX57K using HiDEC and HPT. All experi-
ments averaged results from 5 runs with random weight
initialization.

positive and negative labels for each unit (Av- 716

erage of |N U
pos| and |N U

neg|). However, HiDEC 717

still suffers from label imbalance. 718

Additionally, EURLEX57K is categorized into 719

three types based on label frequencies: "frequent" 720

labels are those that appeared more than 50 times 721

in the training data, "few-shot" labels are those 722

that appeared less than 50 times, and "zero-shot" 723

labels are those that have never appeared. This 724

paper focuses on frequent and few-shot labels, as 725

our baseline models, HPT and HiDEC, were not 726

designed to handle zero-shot settings. 727

A.2 Exploration of hyperparameters 728

Figure 5 shows the hyperparameter exploration for 729

HBM. For small-scale datasets, the bias scale factor 730

α and margin m were heuristically set to 1.0 and 731

0.1 respectively. For the large-scale EURLEX57K 732

dataset, experiments were conducted with varying 733

combinations of α for bias and margin m. Based 734

on these experiments, α and m of 1.0 and 0.01 735

respectively were chosen for HiDEC, which gave 736

the highest Micro-F1 score. For HPT, α and m 737

of 0.1 and 0.01 were selected, which provided the 738

best Macro-F1 score. 739
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