MimicFunc: Imitating Tool Manipulation from a
Single Human Video via Functional Correspondence
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Abstract: Imitating tool manipulation from human videos offers an intuitive ap-
proach to teaching robots, while also providing a promising and scalable alterna-
tive to labor-intensive teleoperation data collection for visuomotor policy learning.
While humans can mimic tool manipulation behavior by observing others perform
a task just once and effortlessly transfer the skill to diverse tools for functionally
equivalent tasks, current robots struggle to achieve this level of generalization.
A key challenge lies in establishing function-level correspondences, considering
the significant geometric variations among functionally similar tools, referred to
as intra-function variations. To address this challenge, we propose MimicFunc,
a framework that establishes functional correspondences with function frame, a
function-centric local coordinate frame constructed with keypoint-based abstrac-
tion, for imitating tool manipulation skills. Experiments demonstrate that Mimic-
Func effectively enables the robot to generalize the skill from a single RGB-D hu-
man video to manipulating novel tools for functionally equivalent tasks. Further-
more, leveraging MimicFunc’s one-shot generalization capability, the generated
rollouts can be used to train visuomotor policies without requiring labor-intensive
teleoperation data collection for novel objects. Our code and video are available
at https://sites.google.com/view/mimicfunc.
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1 Introduction

The ability to use tools has long been recognized as a hallmark of human intelligence. While recent
advances in developing generalist robots and large robotics foundation models [1, 2] have shown
promise in endowing robots with similar capabilities, these approaches typically rely on extensive
domain expertise and labor-intensive teleoperation data collection. In contrast, humans can mimic
tool manipulation behavior by observing others perform a task just once and seamlessly transfer the
skill to diverse tools for functionally equivalent tasks. Endowing robots with such an ability not
only offers an intuitive approach to teaching robots through human demonstration but also provides
a promising and scalable alternative to labor-intensive teleoperation data collection, unlocking the
potential to leverage Internet-scale human videos for training visuomotor policies efficiently.

Toward this goal, this paper tackles the problem of imitation of tool manipulation through a sin-
gle demonstration. The objective is to enable the robot to imitate from a single human video and
generalize the skill to manipulate novel tools for functionally equivalent tasks. While humans can
effortlessly achieve this goal, it remains a non-trivial challenge for robots due to intra-function varia-
tions among functionally similar tools, such as differences in shape, size, and topology, as illustrated
in Figure 1. The key challenge lies in establishing function-level correspondences among tools in
the presence of such variations, which requires capturing invariances in both functionality, under-
standing how to enable intended uses of tools, and actionability, understanding how to interact with
tools to accomplish tasks. Previous methods [3-10] typically establish correspondences based on
geometric or visual similarities. As a result, they have shown limited flexibility and adaptability.
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Figure 1: Given a single human video, MimicFunc enables the robot to manipulate novel tools
for functionally equivalent tasks. Through the one-shot generalization capability, the rollout data
generated by MimicFunc can be further leveraged to train visuomotor policies efficiently.

This limitation motivates us to ask: How fo capture invariances in tool manipulation despite signifi-
cant intra-function variations? Pioneering studies in cognitive anthropology [11] reveal that humans
exhibit consistent behavioral patterns when using different tools to achieve the same function. For
instance, the behavioral pattern of pouring involves approaching the tool, grasping it, and directing
its spout toward the target container. This spatiotemporal pattern remains invariant across different
tools affording pouring. Inspired by this observation, we propose MimicFunc, which emphasizes the
functional aspects of correspondences over geometric or visual similarities for tool manipulation im-
itation. MimicFunc achieves this by establishing functional correspondences with function frame,
a function-centric local coordinate frame constructed with keypoint-based abstraction, consisting
of a function point, capturing tool-target interaction and serving as a spatial anchor for function
frame construction; a grasp point, capturing hand—tool interaction; and a center point, serving as
a consistent, object-agnostic reference for defining the function frame. Such a state representation
captures the invariant spatiotemporal pattern of tool manipulation, while ignoring function-irrelevant
geometric details, enabling consistent and interpretable correspondences across tools for one-shot,
generalizable skill transfer.

Technically, MimicFunc is factorized into three stages: (1) Functional keypoint extraction, which
detects 3D functional keypoints and extracts their motions from the human video; (2) Functional
correspondence establishment, which constructs function frames with 3D functional keypoints and
establishes functional correspondences via function frame alignment; (3) Function frame-based ac-
tion generation, which transfers the skill by synthesizing a motion trajectory through function frame-
based optimization for robot execution. Extensive real-robot experiments on diverse tool manipu-
lation tasks demonstrate that, given a single RGB-D human video, MimicFunc enables superior
generalization to novel tools with significant intra-function variations, as well as to novel spatial
configurations, different embodiments, and environments. Furthermore, leveraging MimicFunc’s
one-shot generalization capability, the generated rollouts can be used to train visuomotor policies
without requiring labor-intensive teleoperation data collection for novel objects.



2 Related Work

Imitation-based Robotic Manipulation. Imitating human behavior has been a long-standing ap-
proach in robotic manipulation [12, 13]. Recently, there has been a growing trend of training visuo-
motor policies using BC frameworks [14—16] on expert demonstrations. However, these approaches
typically rely on substantial domain expertise and labor-intensive teleoperation data collection. An-
other line of research explores one-shot imitation learning [9, 17-19], yet these approaches often
require extensive data collection for meta-training and struggle to generalize to out-of-domain ob-
jects with geometric or visual differences. More closely related to our work, recent studies [3—
8] investigate imitating tool manipulation from a single human video through techniques such as
keypoint-based pose estimation [3-5], global point set registration [6, 7], and shape warping [8].
Nevertheless, these methods typically assume that demo and test tools share highly similar shapes
or appearances, which limits their generalization to novel tools. More recently, DenseMatcher [10]
learns 3D dense correspondences to enable category-level manipulation from a single demonstration.
However, it exhibits poor generalization under large cross-category, intra-function variations. Our
work is also closely related to motion retargeting [7, 20, 21], as both aim to transfer motions across
embodiments with differing kinematics. In fact, MimicFunc can be viewed as a specialized form
of motion retargeting that uniquely focuses on object-centric functional intent rather than purely on
embodiment-level motion transfer.

Keypoint Representation for Tool Manipulation. Keypoint representation has been extensively
studied in tool manipulation [22-26]. For instance, KPAM [22] and K-VIL [25, 26] leverage 3D
semantic keypoint representation to accomplish category-level tool manipulation tasks. More recent
works leverage foundation models to predict semantic keypoints for tool manipulation. MOKA [23]
generates planar manipulation motions via mark-based visual prompting [27], while MimicFunc ex-
tends this idea by synthesizing 3D tool manipulation trajectories, supporting more complex tasks.
ReKep [24] encodes manipulation tasks as task-specific keypoint constraints in VLM prompts, but
these require substantial manual effort and hand-engineering. In contrast, MimicFunc automatically
extracts constraints from human videos and enables more effective trajectory generation. More im-
portantly, unlike previous methods [23-26] that extract keypoints without explicit semantic ground-
ing, MimicFunc builds upon an abstraction that captures both functional and physical semantics,
forming a structured “functional skeleton” of the tool. Such a formulation enables more consistent
and interpretable correspondences across tools for function-level generalization.

3 MimicFunc

In this section, we introduce MimicFunc, a method for imitating tool manipulation from a single
human video. MimicFunc consists of three stages: (1) Functional keypoint extraction from human
video (Section 3.2), (2) Functional correspondence establishment with function frame (Section 3.3),
and (3) Function frame-based action generation (Section 3.4). Each will be detailed for the rest of
this section. An overview of the pipeline is presented in Figure 2.

3.1 Problem Formulation

We consider the problem of enabling the robot to imitate the tool manipulation behavior from a sin-
gle RGB-D human video to accomplish functionally equivalent tasks using novel tools. Specifically,
each task involves manipulating a tool (object) to interact with a target (object) in a tabletop envi-
ronment. During the demonstration phase, a human performs a tool manipulation task, recording a
sequence of RGB-D frames, Vg = {[, t}i\;}l, where N denotes a finite task horizon. The sequence
Vy is paired with a natural language task description [z (e.g., “use the mug to pour contents into the
bowl”) that specifies three elements: a tool, a target, and a function. lﬁng inference, with novel
tools, environments, and task configurations, the objective is to map the robot observation or and
task description [y to a trajectory 7 = {at}ﬁgl for robot execution. Here, a; = (R, T;) € SE(3)
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Figure 2: Overview of MimicFunc Pipeline. MimicFunc consists of three stages: (1) Functional
keypoint extraction from human video, (2) Functional correspondence establishment with function
frame, and (3) Function frame-based action generation.

represents the 6-DoF end-effector pose at timestep ¢, where R; € SO(3) and T; € R? denote 3D
orientation and translation, respectively.

3.2 Functional Keypoint Extraction from Human Video

Function Plan Generation with Keyframe Discovery. Since a tool manipulation task involves
multiple stages, MimicFunc first generates a function plan with keyframe discovery to guide the
robot’s execution. Specifically, a function plan includes three stages: (1) the initial keyframe I,
(t = 0), where the tool and target are in their initial states; (2) the grasping keyframe I, (t = {,),
where the hand grasps the tool; and (3) the function keyframe Iy (¢t = t), where the tool interacts
with the target. These keyframes satisfy the temporal constraint 0 < t;, < ty < N — 1. We use
VideoCLIP [28] to discover these keyframes by computing similarity between video frames and
predefined keyframe descriptions. For long-horizon tasks, MimicFunc generates a high-level task
plan by chaining multiple function plans.

Functional Keypoint Extraction. MimicFunc detects 3D functional keypoints, representing a
structured functional abstraction of the tool, using keyframes from the function plan and tracks
their motions. For grasp point detection, MimicFunc first uses HaMeR [29] to reconstruct the hand
mesh using I,. The grasp point is then determined as the center of the intersection between the
fingertip region and the tool. The center point is defined as the 3D bounding box center of the tool
in Iy. Detecting the function point is non-trivial, as the tool may not physically contact the target
(e.g., pouring) and requires commonsense knowledge about tool usage. To address this, MimicFunc
employs mark-based visual prompting [27] to identify the function point on Iy (similar to [23]) and
then projects the point into 3D space. To extract their motions, MimicFunc first estimates the tool’s
relative transformations between consecutive timesteps using CoTracker [30] and then computes the



3D functional keypoint trajectory {K% 0" = {[Phine: Plrasps Plenter) o » Where p € R® and H

denotes human. To ensure that the extracted motion is independent of the absolute positions of the
tool and target, MimicFunc transforms 3D elements from the camera frame to the target (object)
frame by estimating the target object’s pose relative to the camera. Unless otherwise specified, all
3D elements are represented in this relative target frame.

3.3 Functional Correspondence Establishment with Function Frame

Functional Keypoint Transfer. To construct function frames, MimicFunc first transfers keypoints
from the demonstration tool to the test tool in a coarse-to-fine manner. It first performs in-context
visual prompting to propose coarse regions for both function and grasp points, using pQ, . and pgrasp
as references. The decision to propose regions rather than directly predict points stems from two
factors: (1) VLMs lack point-level correspondence, and (2) they may produce discrete point pre-
dictions that do not align with the ideal keypoint locations. Then, a dense semantic correspondence
model [31] with learned geometric priors is used to accurately transfer the keypoints to their corre-
sponding regions, resulting in q?unc and qgrasp. Similarly, the test tool can be functionally abstracted
as K = [qfhne: Qorasps Goenter]» Where ¢ € R? and the R denotes the robot.

Function Frame Construction. Based on two sets of keypoint abstractions, MimicFunc constructs
function frames to represent function-centric spatiotemporal patterns of tool manipulation. Specif-
ically, given K%, and K%, the function frames II%; and IT%; are constructed as follows. For IT%;,
the origin is placed at the function point pf,,., where the interaction between the tool and target
occurs. The orientation is defined by an orthonormal basis constructed from K%, where the unit
vector from the center to the function point, qu, serves as the principal axis, referred to as the func-
tion axis, which provides a stable, reproducible directional cue reflecting how the tool operates. The
same procedure is repeated to construct IT%, with ¢f, . as the origin and the function axis v as the
principal axis. More details on function frame construction are available in Appendix A.2.

Function Frame Alignment. To transfer functional intent across different tools, MimicFunc aligns
the spatiotemporal patterns encoded in function frames. In this section, we specifically focus on
function keyframe alignment Ilg,,., which defines the desired test tool state at timestep ¢, denoted
as Hi{. Aligning this critical state preserves the core functionality of human behavior, while the
remaining motion can be flexibly optimized based on task context, as discussed in the following
section. Function frame alignment is divided into two stages: (1) an initial stage for interaction
primitive-based geometric alignment and (2) a refinement stage for VLM-based semantic alignment.

Inspired by [22, 25], MimicFunc first establishes a coarse alignment by enforcing function-relevant
geometric constraints on function frames. These constraints operate on three types of interaction
primitives, each corresponding to a physically meaningful spatial element critical for manipulation:

1. Interaction primitive 1: point. Function point alignment ensures that the interaction occurs at
the intended location on the test tool by aligning gf,,. with pgfnc.

2. Interaction primitive 2: axis. Function axis alignment ensures the proper operational direction
for executing function-specific actions (e.g., tilting for pouring) by aligning v% with vth’;.

3. Interaction primitive 3: plane. Function plane alignment preserves orientation by aligning the
normal vectors of I1% and H;f,.

Each constraint is represented by a SE(3) transformation. Despite satisfying the geometric con-
straints derived above, the resulting interaction may still be functionally invalid, primarily due to (1)
inaccurate perception and (2) structural differences between tools. To improve the robustness and
adaptability, we further incorporate a VLM-based state evaluator for semantic refinement, similar
to [32]. Specifically, MimicFunc first renders the predicted function keyframe interaction by back-
projecting the combined point cloud of the test tool and the target onto the camera plane. It then
prompts the VLM to evaluate whether the predicted state is functionally valid. If deemed valid, the
alignment is accepted for action generation. Otherwise, the VLM sequentially checks each prim-
itive to automatically identify those contributing to failure. Guided by this feedback, MimicFunc



uniformly resamples candidate (points or axes) around the initial constraint and iteratively repeats
the process until a valid alignment is found. The alignment process is illustrated in Figure 2(b).

3.4 Function Frame-Based Action Generation

To enable a functionally consistent rollout of the intended behavior, MimicFunc computes the com-
plete function frame trajectory for the test tool, formulated as a constrained optimization problem,
using the human demonstration as the reference:

N-1
min7 (”qfunc _plftuncHg + HLOg(RE(R]}I)T)HQ) s.t. H(IJ% = Hinita H% = Hf”nc
(It N-1
RIt=0 t=0

where Log : SO(3) — R? [33], and R’ denotes the rotation matrix derived from the function frame.
The constraints IT;,; and ITg, represent the initial and function keyframe alignments, respectively.
This optimization framework provides a flexible mechanism for enforcing semantic-geometric align-
ment between function frames and can be extended to incorporate additional terms such as trajectory
smoothness and collision avoidance. Implementation details are provided in Appendix A.3.

For robot execution, the test function frame trajectory is first transformed into the robot base frame.
Then, MimicFunc samples a 6-DoF grasp pose around qgmsp on the test tool. The robot end-effector
trajectory 7r is subsequently computed and executed.

4 Experiments

The experimental section aims to answer the following questions: (1) How well does MimicFunc
generalize from a single human video to novel tools? (2) How does MimicFunc perform compared
to existing methods? (3) How does MimicFunc perform in long-horizon tasks? (4) Can the rollout
trajectories generated by MimicFunc be leveraged to train visuomotor policies?

4.1 Experimental Setup

Baselines. We compare MimicFunc against the following baselines: (1) DINOBOT [5], which uses
DINOV2 [34] to perform semantic feature extraction and correspondence. (2) DITTO [4], which
employs LOFTR [35] for local feature matching. (3) ORION [6], which establishes geometric
correspondences with point cloud global registration. We adopt the original correspondence imple-
mentations of these baselines while keeping the low-level execution consistent with MimicFunc.

Task Description. We evaluate each method on five functions: Pour, Cut, Scoop, Brush, and
Pound. A task is defined by pairing a function with a tool and a target. For each function, we design
five tasks using different tools, divided into three levels of generalization: (1) spatial generalization,
(2) instance generalization, and (3) category generalization.

Experimental Protocol. Each method is evaluated on 25 tasks across five functions, with 10 trials
per task. The detailed task success conditions are described in Appendix A.1. The average success
rate is used as the evaluation metric. Test objects are randomly initialized within the intersection of
the camera view and the robot workspace.

4.2 Experimental Results

Quantitative Comparison to Baselines. The quantitative results are reported in Figure 3. For each
function, the first object is used to evaluate spatial generalization, the next two evaluate instance-
level generalization, and the final two evaluate category-level generalization. All methods perform
reasonably well in spatial generalization, achieving success rates above 70%. However, all baselines
exhibit significant performance drops (from 20% to 40%) when generalizing to novel tool instances
and categories, especially for those with substantial intra-function variations. Among all baselines,
ORION relies solely on geometric features, rendering it ineffective at handling large intra-function



0.75
0.5
0.25
o

) N 4 /S 7

| ‘ ‘ | | | | | | ‘ =y

«'A/\//r-f/;,;

°
S
@

0.l

°
N
a

(]

Long-Horizon

Figure 3: Quantitative comparison to baselines. Highlighted tools are used in human videos.

variations. DINOBot outperforms both DITTO and ORION, achieving an average success rate of
57.5% when generalizing to novel tools. This performance can be attributed to DINO’s strong visual
correspondence capability. However, DINOBot still struggles to establish correspondences between
visually distinct tools. In contrast, MimicFunc significantly outperforms all baselines, achieving a
high success rate of 79.5% across five functions for novel tool generalization. Figure 5 visualizes
the qualitative results of real-robot executions.

Evaluation on Long-Horizon Tasks. We
evaluate the. performaqce of .MlmICF}JnC Task PP CP SC PCB P.OC ‘ Overall
on long-horizon tasks involving multiple

sequential steps. MimicFunc first gen- TS SIS 45305 315 45 | 76.0%
erates a high-level task plan by chaining SC  10/10 8/10 7/10 10/15 13/15 | 80.0%
multiple function plans and then executes

them sequentially. As reported in Table 1, Table 1: Quantitative results on long-horizon tasks.
MimicFunc achieves a 76.0% task success Abbreviations: P = Pour, C = Cut, S = Scoop, B =
(TS) rate, slightly lower than the single- Brush, O =Pound.

step setting, and an 80% step completion (SC) rate. The primary challenge arises from the limited
reachability of the single-arm manipulator in larger object layouts. Nonetheless, by explicitly rep-
resenting skills as function frame trajectories, MimicFunc can be integrated with Task and Motion
Planning frameworks [36] to handle more complex long-horizon tasks with geometric constraints.

Evaluation on Data Generation for Visuo-

motor Policy Training. To support the claim B ACT:DA N ACT
that the rollout data generated by MimicFunc Average Time Task Succoss Rate

can be leveraged for visuomotor policy train- 48s 83.3% 150

ing, we conduct experiments using the BC

method ACT [15] on Pour. We first collect 50 o

teleoperation demonstrations to train ACT. As 25.0%
shown in Figure 4, ACT exhibits limited gen- 5.1s

eralization to novel instances and categories. Data Collection Instance Category

To enhance its performance, we deploy Mim-
icFunc on these novel objects over randomly
initialized layouts, automatically generating 30
rollouts per object using only a single human video. Successful trajectories are collected to train

Figure 4: Performance evaluation of visuomotor
policy training.
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Figure 5: Visualization of grasping and function keyframes of human demonstrations and robot
rollouts for Pour, Scoop, and Cut.

ACT. As illustrated in Figure 4, ACT+DA (data augmentation) improves performance on these in-
stances and categories by 41.6% and 50.0%, respectively, using high-quality, consistently generated
data from MimicFunc without requiring labor-intensive teleoperation data collection for novel ob-
jects. Moreover, this approach surpasses the variability and limited precision typically observed in
human teleoperation. In terms of data collection efficiency, each teleoperation demonstration takes
approximately 48 seconds, while MimicFunc requires only 5.1 seconds on average to capture a hu-
man video. These results demonstrate the potential of MimicFunc as a scalable and efficient data
generator for visuomotor policy learning.

Ablation Study. We conduct an ablation
study on the functional keypoint transfer strat- 1
egy. Three strategies are evaluated: (1)
Demo+VLM+DSC (ours); (2) Demo+DSC, 075

which relies solely on a dense semantic corre- | | ‘

I Demo+VLM+DSC (Ours)

spondence model for keypoint transfer, follow- ~ *°
ing the approach in Robo-ABC [37]; and (3)
VLM only, which directly prompts the VLM

to propose keypoints in a zero-shot manner, as 0
done in ReKep [24]. A§ shown in Figure 6, the () / = 5
proposed strategy consistently outperforms ab- R /

lated versions, demonstrating that (1) the dense
semantic correspondence model alone struggles
with large intra-function variations, and (2) incorporating human demonstrations as references for
VLMs significantly improves keypoint localization accuracy.

Figure 6: Ablation study results.

5 Conclusion

In this work, we present MimicFunc, a method for imitating tool manipulation from a single human
video. At the core of MimicFunc is the ability to establish functional correspondences with function
frame. This enables robots to generalize the skill from a single human video to novel tools despite
significant intra-function variations. Furthermore, leveraging MimicFunc’s one-shot generalization
capability, the generated rollouts can be used to train visuomotor policies without requiring labor-
intensive teleoperation data collection for novel objects.



6 Limitations and Future Work

Despite the promising results, several limitations remain that point to directions for future work. (1)
MimicFunc currently relies on RGB-D input, which limits its applicability in directly leveraging
RGB Internet human videos. Extending MimicFunc to support RGB videos could further enhance
flexibility and reduce the human effort required for data collection. A potential solution is incor-
porating monocular depth estimation models, such as Depth Anything, to infer depth information
from RGB inputs. (2) Although we have demonstrated the potential of data generation for visuo-
motor policy training, the current system remains limited in scope. Future work will aim to extend
MimicFunc into a complete system in simulated environments capable of efficiently generating di-
verse data from a single human demonstration for visuomotor policy learning. (3) Complex tool
manipulation tasks may involve bimanual coordination, whereas the current implementation only
considers single-handed manipulation. Future work will extend MimicFunc to support dual-arm or
even multi-fingered coordination to handle more complex manipulation scenarios.
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A Appendix

A.1 Experimental Setup and Results

A.1.1 Task Success Conditions

* Pour: The particles within the tool are transferred into the target container.

* Cut: The blade of the tool makes contact with the target from above.

* Scoop: The tool collects and securely holds particles from the target container.
* Pound: The bottom of the tool head strikes the nail head.

» Brush: The tool moves across the target’s surface, displacing particles with its bristles.

A.1.2 Examples of Human Demonstrations

A

"3

-
Pound

Figure 7: Visualization of grasping and function keyframes of human demonstrations.

Cut

A.1.3 Failure Analysis

The modular design of MimicFunc facilitates

the interpretation and in-depth analysis of fail- pom Function Frame Alignment
: . o Functional Keypoint Transfer
ure cases. The result of the failure analysis Trajactory Genarations
is reported in Figure 8. The identified failure Grasping
. . . ers
sources are categorized into: (1) function frame 26.53% 32.85%

alignment, (2) functional keypoint transfer, (3)
trajectory generation, (4) grasping, and (5) oth-

ers (e.g., segmentation, detection). 16.33% o

The primary failures arise from (4) and (3).

Grasping failures often arise from the inherent

constraints of certain gripper types, especially Figure 8: Failure analysis of system components.
rigid or underactuated designs. These grippers

may lack the adaptability required to conform to diverse object geometries or provide sufficient
contact stability, leading to issues such as tool flipping or slipping during tasks. Such failures
are primarily due to unstable contact between the tool and the gripper, preventing the robot from
completing its intended actions. Failures in trajectory generation primarily result from unexpected
contact between the tool and the target, particularly in contact-rich tasks (e.g., “use scrubber to
brush the plate”). These tasks require precise force application and adaptability to varying contact
conditions. Providing visual-tactile feedback is essential for successfully accomplishing such tasks.
Functional keypoint transfer errors are mainly caused by incorrect candidate region proposals for
function points, but contribute less significantly to overall failures. These errors may be mitigated
as VLMs continue to improve. Function frame alignment errors are mainly attributed to inaccu-
rate depth information of the functional keypoints. Empirically, the functional correspondences are
well established with accurate 3D functional keypoint locations. Ensuring precise depth sensing and
calibration can significantly reduce these alignment errors.
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A.1.4 Target Frame Detection

To ensure that the tool motion is independent of the absolute positions of both the tool and the
target, MimicFunc transforms all 3D elements from the camera coordinate frame into the target
object’s coordinate frame. This transformation requires estimating the target object’s pose relative
to the camera, which our method currently performs without relying on pre-existing mesh models.
Instead, the target frame is estimated on the fly from the observed scene.

Specifically, we first acquire the target object’s segmented point cloud from the camera. We then
compute its principal axes via Principal Component Analysis (PCA) to determine the dominant
orientation. The origin of the target frame is set to the center of the object’s 3D bounding box,
computed from the point cloud. Among the principal axes, the one most closely aligned with the
estimated surface normal is assigned as the z-axis, ensuring that the frame is physically consistent
with the object’s geometry. The remaining axes are chosen to form a right-handed coordinate system,
preserving orthogonality.

This procedure produces a stable, object-centered reference frame that remains robust to variations
in both object position and camera viewpoint. Moreover, it can be seamlessly integrated with exist-
ing pose estimators (e.g., FoundationPose) to further improve robustness and adaptability, ensuring
consistent target frame detection across diverse tasks, object geometries, and environments.
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A.1.5 Qualitative Results

Test Tool Trajectory Robot Execution

14



Test Tool Trajectory Robot Execution

Figure 9: Qualitative results of real-robot executions.
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A.2 Function Frame Construction and Alignment
A.2.1 Function Keypoint Transfer

The pseudo-code for functional keypoint transfer is illustrated in Algorithm 1.

Algorithm 1 Functional Keypoint Transfer.

Input:
Demo functional keypoints K% = [pd, pgrasp, P2, )» Initial keyframe Iy, Robot observation o,
Test tool mask M,
Dense semantic correspondence model @,
3D-2D projection Psp.op, 2D-3D projection Pap_sp, 3D center computation Fiepger
Output: Test functional keypoints K = [gfler Gorasp> Geenter)
: Kg + 0
: 1. Coarse-Grained Region Proposal:
for each k € {func, grasp} do
p%D — Pypon(p), Io)
e < VLM(p2P| Iy, 0r, M) > Region proposal
end for
2. Fine-Grained Point Transfer:
for each k € {func, grasp} do
@GP ®(pP,ry, Io, 0R) > Point transfer
10: 4% < Pipap(qiP, or)
11: end for
12: 3. 3D Center Computation:
13: q((:)enter — Fcenter(My OR)
14: 4. Functional Keypoint Transfer Output:
15: K% <; [qglnc7 qgl'ilsp7 qgenter]

PRDIN RN

2

In addition to the real-robot experiments, we compare the performance of different functional key-
point transfer strategies from a perception perspective, focusing on the function point transfer.

Baselines. We evaluate four function point transfer strategies:

* Demo+VLM+DSC (proposed), which utilizes demonstration functional keypoints as references
to prompt the VLM for region proposal, followed by point transfer through a dense semantic
correspondence model;

* Demo+VLM, which removes the dense semantic correspondence model from the proposed im-
plementation;

* Demo+DSC (Robo-ABC), which relies solely on a dense semantic correspondence model for
functional keypoint transfer, following the approach in Robo-ABC;

* VLM (ReKep), which directly prompts the VLM to propose functional keypoints in a zero-shot
manner, as done in ReKep.

Experimental Setup. For each test tool used in the real-robot experiment, we capture RGB images
from 6 different views, covering various positions and orientations within the workspace. Each
image has a resolution of 1280*720. A total of 150 images are used for evaluation.

Evaluation Protocol. To collect ground truth for function point transfer evaluation, five volunteers
were asked to annotate keypoints on test images using demonstration function points as references.
Two evaluation metrics are used: (1) Average Keypoint Distance (AKD), which measures the aver-
age pixel distance between ground truth and detected keypoints. (2) Average Precision (AP), which
represents the proportion of correctly detected keypoints under various thresholds. AP is evaluated
under three thresholds: 15, 30, and 45 pixels.

Quantitative results. The quantitative results of function point transfer are presented in Table A.2.1.
The proposed Demo+VLM+DCS consistently outperforms the ablated strategies in both AKD and
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Method AKD (pixel) | AP@15 (%) 1 AP@30 (%)} AP@45 (%)t

Demo+VLM 26.42 38.89 68.44 83.56
Demo+DSC 33.54 47.11 68.67 78.67
VLM 56.09 15.56 36.22 52.67
Demo+VLM+DSC 18.54 51.33 85.78 94.44

Table 2: Quantitative results of function point transfer

AP metrics. Demo+VLM achieves reasonable performance by leveraging the rich commonsense
knowledge embedded in VLMs. However, VLMs alone struggle to provide precise point-level cor-
respondences, which limits the effectiveness of Demo+VLM compared to the proposed strategy.
Meanwhile, relying solely on the dense semantic correspondence model (i.e., Demo+DSC) often
fails when faced with large intra-function variations. The performance gap between Demo+VLM
and VLM highlights the importance of using demonstrations as in-context references for the key-
point proposal.

A.2.2 Function Frame Construction

Function frames II% and II}, are constructed based on the 3D functional keypoints K& =
[Phuncs Pirasps Peenter) a0 K = [@funes Qerasps Geenter]» Tespectively. TI%; is defined by the following
elements:

1. Function axis

¢ Definition: . .
Punc — Peenter
¢
lefunc - pcenterH
* Description: v%; is a normalized vector that defines the function axis. It points from the

center point p’,,, to the function point p},,. at t. This axis represents the principal direction
along which the function operates.

Vi =

2. Grasp vector

* Definition: . .
pgrasp ~ Pfunc
ot
| |pgrasp DPtunc | |
* Description: u; is a normalized vector that points from the function point pf,, . to the grasp
point pi., at t.

uly =

3. Unit normal vector

¢ Definition: . .
t _ Ug XVpy
Ny = t t

[afy x vill

* Description: n; is the unit normal vector of the function plane P%;.
4. Function plane

¢ Definition:

t . t t_
Ph (P = Phunc) -1y =0
* Description: P}, is defined by the function point and its normal vector, describing the tool’s
spatial configuration at ¢.

Similarly, v, u%, n’, and P}, are defined for IT%,.
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A.2.3 Function Frame Alignment

To enhance the robustness and adaptability of MimicFunc, we introduce a VLM-based state evalu-
ator for semantic refinement in the second stage of function frame alignment. In this stage, Mimic-
Func first renders the predicted function keyframe interaction by back-projecting the combined point
cloud of the test tool and target object onto the camera plane. The rendered scene is then provided
as input to the VLM, which assesses whether the predicted state is functionally valid.

If the state is deemed valid, the alignment is accepted for downstream action generation. Otherwise,
the VLM sequentially inspects each primitive to automatically pinpoint those responsible for the
failure. Using this feedback, MimicFunc uniformly resamples candidate points or axes around the
initial constraint and iteratively repeats the evaluation process until a valid alignment is achieved.
Figure 10 illustrates an example of intermediate rendering results during function axis refinement,
where blue denotes the initial alignment and green indicates the refined result.

j 2 @ @
s N 1) © g . . § - ] W’

Figure 10: Intermediate rendering results of function axis refinement.

A.3 Function Frame-based Trajectory Generation

In this section, we provide implementation details for trajectory generation, complementing the
constrained optimization problem formulated in the manuscript.

Trajectory Warping. Given a demonstration function frame trajectory {Hf_l}ivzf)l and its associ-
ated function point trajectory {pfunc}ivzgl, trajectory warping adapts these references to a new test
scenario by leveraging geometric symmetries and relational transformations. The process consists
of three main stages:

1. Symmetry-Based Repositioning:
If the target object exhibits geometric symmetries (e.g., rotational symmetry about one of the
principal axes), we exploit this property to reposition the demonstration so that the test tool can
adopt a more feasible approach direction. Let Ry, € SO(3) denote a symmetry rotation. Then,
the demonstration function frames and points are transformed as:

t t t t
Iy = Rsym : HH; Ptunc = RS}’m * Ptunc

2. Function Frame Trajectory Pre-processing:
We pre-process the demonstration’s function frame trajectory by first applying a rotation around
one of the principal axes (e.g., z-, y-, or z-axis). The alignment angle 6 is computed based on the
angular difference between the initial function points of the demonstration and the test tool:

0 = é(p?uncﬂ QPunc)ﬂ Ralign(e) S SO(3)
The aligned frame is then obtained by:
I} = Raign(9) - T

3. Function Frame Trajectory Transformation:
To account for differences in position and scale between the demonstration and the test tool, we
apply a translation t € R3 and an optional scaling factor s € R:

t t
Hwarp =S5 Halign +t
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Optimization Constraints and Costs. Beyond the trajectory cost and keyframe constraints detailed
in the manuscript, we introduce the following enhancements:

» Early Trajectory Cost Relaxation. To encourage smoother transitions and allow flexibility dur-
ing the approach phase, the trajectory cost is omitted for the initial 30% of the trajectory. This is
particularly beneficial when the initial states of the demonstration and test tools differ significantly,
as the primary interaction occurs later in the motion.

* Velocity Constraint. We constrain both translational and angular velocities of the test tool to
ensure smooth motion and physical feasibility throughout the trajectory.

* Collision Avoidance Constraint. A minimum Euclidean distance is enforced between the test
tool and the 3D bounding box of nearby obstacles, preventing collisions during execution.

We use CasADi for symbolic modeling and automatic differentiation, and solve the resulting non-
linear constrained optimization problem with IPOPT.

A.4 Data Generation for Visuomotor Policy Training

Data Generation. To acquire data for visuomotor policy training, we leverage MimicFunc to gener-
ate rollout trajectories for novel tools, without requiring labor-intensive teleoperation data collection
for novel objects. The process begins with the robot randomly sampling object layouts, including
the positions and orientations of the tool, within its workspace. The robot then places the tool at
the sampled configuration. MimicFunc then generates a candidate motion to accomplish the task.
After executing the rollout, the final scene is captured by the camera and evaluated using a VLM to
determine task success. Only successful rollouts are retained to construct a demonstration dataset,
which is used to train visuomotor policies capable of generalizing across diverse tools and object
arrangements.

Policy Training. We experiment with two state-of-the-art behavioral cloning approaches: Action
Chunking Transformer (ACT) and Diffusion Policy (DP), both of which utilize a DINOv2-pretrained
ResNet-18 as the visual encoder backbone. ACT has demonstrated effectiveness in learning complex
manipulation skills using transformer architectures. In our implementation, we adapt the standard
ACT by incorporating RGB-D inputs from two viewpoints: a third-person camera and an in-hand
camera. The policy receives the most recent frame from each camera and predicts absolute end-
effector poses. This design enables the generation of long-horizon trajectories by predicting action
chunks of 100 steps in a single forward pass, making it particularly suitable for tasks that demand
precise global positioning. DP takes a generative approach using denoising diffusion probabilistic
models. It receives two consecutive RGB-D frames as input and predicts the next 16 delta end-
effector poses through an iterative denoising process over 100 inference steps. This approach excels
at modeling complex, multimodal action distributions and is well-suited for tasks requiring smooth
and continuous motion. The hyperparameters used for both policies are summarized in Table 3.

Data Quality. In addition to showcasing the capability of MimicFunc for efficient data genera-
tion, we conduct experiments to further evaluate the quality of the generated data. Specifically,
we compare the performance of the ACT trained on two different data sources for the Pour task:
(1) teleoperation-collected demonstrations, and (2) MimicFunc-generated demonstrations (50 sam-
ples). The results show that ACT trained on MimicFunc-generated data achieves a higher success
rate (53.85%) compared to ACT trained on teleoperation data (46.15%). This performance gain
supports our claim that MimicFunc produces more consistent and higher-quality data. In contrast,
teleoperation data often suffers from variability, inconsistencies in execution, and imprecision due
to human control limitations.
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Parameter ACT DP

Visual Encoder DINOv2-ResNet-18 DINOv2-ResNet-18
Action Representation Absolute EE Pose Delta EE Pose
Observation Horizon 1 2

Chunk Size 100 16
Hidden Dimension 512 -
Feedforward Dimension 3200 -
Encoder Layers 4 -
Decoder Layers 7 -
Attention Heads 8 -

Batch Size 64 64
Epochs 500 500
Learning Rate le-4 le-4
Scheduler Cosine Annealing Cosine Annealing
KL Weight 10.0 -
Diffusion Timesteps - 100

EMA Power - 0.75

TR

Table 3: Hyperparameters used for ACT and DP training.
cable.

indicates the parameter is not appli-
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