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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive performance in
executing complex reasoning tasks. Chain-of-thought effectively enhances rea-
soning capabilities by unlocking the potential of large models, while multi-agent
systems provide more comprehensive solutions by integrating the collective intelli-
gence of multiple agents. However, both approaches face significant limitations.
Single-agent with chain-of-thought, due to the inherent complexity of designing
cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent sys-
tems consume substantial tokens and inevitably dilute the primary problem, which
is particularly problematic in business workflow tasks. To address these challenges,
we propose Cochain, a collaboration prompting framework that effectively solves
the business workflow collaboration problem by combining knowledge and prompts
at a reduced cost. Specifically, we construct an integrated knowledge graph that
incorporates knowledge from multiple stages. Furthermore, by maintaining and
retrieving a prompts tree, we can obtain prompt information relevant to other stages
of the business workflow. We perform extensive evaluations of Cochain across mul-
tiple datasets, demonstrating that Cochain outperforms all baselines in both prompt
engineering and multi-agent LLMs. Additionally, expert evaluation results indicate
that the use of a small model in combination with Cochain outperforms GPT-4.
The codes are available at https://anonymous.4open.science/r/Cochain-6866.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance in language under-
standing and complex reasoning tasks (Touvron et al., 2023a; Bai et al., 2023; GLM et al., 2024; Bi
et al., 2024), with prompt engineering playing a crucial role in enhancing their reasoning capabilities.
Prompt engineering represented by Chain-of-Thought prompt LLMs in ways that facilitate coherent
and step-by-step reasoning processes, endowing agents with depth of thought (Besta et al., 2024; Wei
et al., 2022). To enhance agent collaborative capabilities, various multi-agent frameworks have been
developed, providing agents with breadth of thought. These frameworks encode carefully designed
agent profiles and collaborative mechanisms into prompts, yielding favorable outcomes across do-
mains such as healthcare (Tang et al., 2024; Kim et al., 2024; Nori et al., 2023), education (Dan et al.,
2023; Qu et al., 2024; Gu et al., 2024), law (Cui et al., 2024), and finance (Yang et al., 2023). Due to
their exceptional problem-solving and collaborative abilities, multi-agent systems are considered a
promising pathway toward Artificial General Intelligence (AGI) (Bo et al., 2024; Zhu et al., 2025).
However, this raises a critical question: Is a multi-agent LLM system all you need?

Evidently not, as both single-agent and multi-agent systems exhibit limitations (Tran et al., 2025).
As illustrated in Figure 1, the inherent complexity in designing cross-domain prompts (Sahoo et al.,
2024) means that single agents employing prompt engineering lack constraint awareness and face
challenges in cross-domain collaboration (under-collaboration). Simultaneously, multi-agent systems
face challenges from expensive token consumption and extensive inference time (Du et al., 2024;
Wu et al., 2025), with inter-agent communications often ineffectively utilized (Zhang et al., 2024c).
More importantly, existing research primarily focuses on maximizing collaboration, extensively
exploring how multi-agent systems can improve decision quality (Zhang et al., 2025b; Qian et al.,
2025), make safe decisions (Li et al., 2023b; Piatti et al., 2024), and solve problems (Zhou et al.,
2024a; Li et al., 2025), while paying insufficient attention to the negative effects of excessive agent
collaboration. When all agents simultaneously participate in every decision-making process, core
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Debateimplementation of new inventory protocols across regional warehouses... carbon footprint analysis... 
a dual electric fan system with PWM control may be a good approach analysis of aluminum price volatility...
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Discuss
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What's the best approach to design a more fuel-efficient engine cooling system for a mid-size sedan?

I recommend a dual electric fan system with variable speed control. This improves cooling efficiency by 15% 
compared to traditional systems and reduces parasitic power loss.

Balances innovation with practical implementation by addressing key production and supply considerations.

(a)

(b)
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Figure 1: The impact of agent collaboration degree on problem-solving effectiveness. Under-
collaboration ignores stage constraints, while over-collaboration dilutes main issues (underlined in
examples). Cochain achieve balance by considering constraints while focusing on key problems,
effectively connecting the dots. Manual responses provided a brief evaluation of the answers.

issues are frequently overwhelmed by non-critical information, leading not only to a decline in
answer quality but also to a preference for consensus-driven answers over accurate ones (Du et al.,
2024), particularly in business workflow tasks (Lei et al., 2025). To our best knowledge, no existing
literature has systematically analyzed and defined this “over-collaboration” phenomenon
or proposed targeted solutions. This prompts us to consider: Why not combine the reasoning
capabilities of chain-of-thought prompting with the collaborative nature of multi-agent systems?

Inspired by these challenges, we propose a collaborative prompting framework, Cochain, designed to
enhance LLM agents collaborative capabilities in business workflow tasks at low cost, while mitigating
over-collaboration through indirect rather than direct agent participation in decision-making. As
shown in Figure 2, Cochain comprises two primary components: collaborative knowledge graph
and prompts tree. We mine agent knowledge through counterfactual reasoning and refine it into a
knowledge graph integrated with explicit dataset knowledge. To mitigate the impact of irrelevant
knowledge on model performance (Zhou et al., 2024b), we introduce causal chain structure to improve
cross-stage reasoning capabilities. Inspired by how the human brain integrates fragmented knowledge
into coherent thought (Courellis et al., 2024), we propose prompts tree that distills prompts from
agent responses. By retrieving from the prompts tree, agents can automatically acquire chain-like
cross-stage prompts, avoiding the high cost of manual prompt design while effectively utilizing
inter-agent communications. The main contributions are summarized as follows:

• Effective Collaboration: We propose an agent collaborative prompting framework, Cochain,
that equips agents with both depth and breadth of thinking, effectively alleviating the
problems of over-collaboration and under-collaboration.
• Cost-Effective yet Efficient: Our extensive experimental results demonstrate that Cochain

exhibits significant improvements over all baselines across different model backbones.
Cochain possesses reasoning speeds comparable to single-agent systems and even lower
inference costs, and surpasses existing multi-agent systems in capability.
• The Small + Cochain Outperforms the Large: Evaluations by domain experts have further

confirmed that the combination of the small model and our framework outperforms the large
model. To support further research on over-collaboration and business workflow tasks, we
will publicly release our collaborative knowledge graph.

2 RELATED WORK

2.1 KNOWLEDGE GRAPH AUGMENTED LLMS

LLM reasoning capabilities are critical for high-quality responses (Jain et al., 2024; Suzgun et al.,
2022; Kojima et al., 2022). Knowledge graphs, with their structured, explicit, and interpretable

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Collaborative

Stage 1

Stage 2
Stage n

...

Datasets

Counterfactual reasoning

Xij

improved will fuel economy be increased?
If engine design efficiency is not 

No, fuel economy is directly related to ...

Agent-1

Agent-n

how will car doors perform?
If no durability testing is conducted

components that weakens them ...
Testing introduces unnecessary stress on

Iteration

Iteration

It ignores the fundamental purpose of 

The answer fails to differentiate between

Reasonable Ambiguous Unreasonable

Suggestion

Reasonable Ambiguous Unreasonable
Evaluation

Suggestion

various engine types (gasoline, diesel, hybrid)

and how efficiency affects each differently...

durability testing, which is to identify

and fix potential failure points...

Xij
~

Cochain

I am looking for a vehicle with a 
lightweight body design.

Design using lightweight materials 
such as carbon fiber.It is five times 

Carbon fiber is prohibitively expensive, 

limited, supply chains are vulnerable ...
our manufacturing capacity remains

User

Agent

User

Counterfactual Questions

Counterfactual Answers

Counterfactual Questions

Counterfactual Answers

Seed Q&A

How can fuel economy be improved through car design?  

Light weight body design using lightweight materials... 

Prompts Distillation

Prompts

1.Lightweight body design 2.Reinforced rib chassis

3.Optimize aerodynamics 4. Other prompts...

Next Seed
Questions

Questions Generation

How to achieve lightweight body design in the supply chain?

How to achieve optimize aerodynamics in the supply chain?

Other questions...

Business Workflow

Seed Q&A

How to achieve lightweight body design in the supply chain?

   Using eco-friendly recyclable materials, such as...

Answer Questions

Other Q&A...

... ...

... ...

Prompts Tree

Stage-1
Prompts

Stage-2
Prompts

Stage-n
Prompts

lighter than steel and has a lower
density than aluminum.

Design using lightweight materials such as aluminum
alloy, which are easier to process in production and can
be reliably supplied in the supply chain. Cars made
from these materials also have well-established quality
inspection methods.

Agent

Explicit

Tacit

Dataset

Counterfactual
Answers

Dataset

Answers
Counterfactual

Prompts Effective
Collaboration 

User

The answer is exactly what I wanted.

Evaluation

Tree KG

(a)

(b)

(c)

(d)

Self-Evalutation

Figure 2: Cochain connects business workflow stages. In part (a), agents address counterfactual
inquiries, with answers undergoing interactive iteration. In part (b), a prompts tree is built. Part (d)
presents our framework: an agent uses the prompts tree and a collaborative knowledge graph built
from counterfactual answers and original data, achieving more collaborative results than part (c).

nature (Zhao et al., 2024b; Pan et al., 2024; Zhou et al., 2025), provide clear representations and
transparent reasoning paths, guiding LLMs toward deeper reasoning and mitigating limitations (Ling
et al., 2023; Yao et al., 2023b; Wang et al., 2024). For domain-specific LLMs, knowledge graphs
enable continuous knowledge updates to accommodate evolving information (Ibrahim et al., 2024;
Mariotti et al., 2024; Lavrinovics et al., 2025). Applications include MindMap (Wen et al., 2024)
in medicine and ChatLAW (Cui et al., 2024) in law. Business workflows, due to their multi-stage,
cross-domain nature, present the unique challenge of multi-stage knowledge fusion. To prevent
performance degradation from irrelevant knowledge (Ouyang et al., 2022), we propose a causal chain
to optimize knowledge selection, enhancing cross-stage understanding and filtering noise.

2.2 PROMPT ENGINEERING

Prompt engineering guides LLMs to maximize their potential via designed prompts (Chen et al.,
2023a; Sahoo et al., 2024; Zhao et al., 2023). It enables model adaptation to new tasks through
in-context learning and instruction following (Brown et al., 2020; Li et al., 2023a). Well-designed
prompts are shown to enhance performance, particularly on complex tasks (Wei et al., 2022; Wang
et al., 2023b; Zhou et al., 2023; Yao et al., 2023a). CoT (Wei et al., 2022) enables models to generate
intermediate reasoning steps via simple prompts. ToT (Yao et al., 2024) explores coherent text units
as intermediate problem-solving steps. CPO (Zhang et al., 2024b) leverages non-optimal reasoning
paths from tree search to speed up inference. However, existing methods lack sustained constraint
awareness and neglect cross-domain collaboration. Cochain enables LLM agents to address this
challenge while balancing interdependent constraints and implementation feasibility.

2.3 COLLABORATION OF LLM AGENTS

Many studies in LLM research solve problems through multi-agent collaboration (Akata et al., 2023;
Du et al., 2024; Guo et al., 2024; Zhao et al., 2024a; Hao et al., 2023). Common paradigms include
discussion (Chen et al., 2024b; Tang et al., 2024; Saha et al., 2024) and debate (Du et al., 2024;
Xiong et al., 2023; Chen et al., 2023b) to enhance reasoning, hierarchical structures with specialized
roles (Zhang et al., 2025a), and sequential or tree-structured architectures (Zhang et al., 2024c; Zhao
et al., 2024a). These have proven effective in domains like medicine (Tang et al., 2024), long-text
processing (Zhang et al., 2024c; Zhao et al., 2024a; Sun et al., 2023; Chen et al., 2024a), social
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simulation (Zhang et al., 2024a; Wei et al., 2024), and code intelligence (Wang et al., 2023a; Huang
et al., 2023). Unlike these approaches, Cochain relies on knowledge fusion rather than token-intensive
role-playing. To the best of our knowledge, we are the first to apply LLM agent collaboration
to business workflow tasks, offering an efficient solution that significantly reduces computational
overhead while maintaining strong real-world performance.

3 METHODS

3.1 COLLABORATIVE KNOWLEDGE GRAPH

The construction of the collaborative knowledge graph relies on a large amount of stage-specific
knowledge. We acquire this knowledge from the training sets of the datasets, which are represented
as Di = {(Xij , Yij)}ni

j=1 where Xij ∈ Xi is the input and Yij ∈ Yi is the corresponding output. The
datasets are subject to data cleaning and triplet extraction to acquire knowledge for constructing the
explicit knowledge graph KGexplicit:

KGexplicit =

N⋃
i=1

ni⋃
j=1

ExtractTriples(Xij , Yij) (1)

In order to leverage the capabilities of other business workflow agents, we need to identify the
tacit variables that play a critical role in the agent’s responses. Since extracting the internal tacit
variables of agents is challenging, we focus on the extraction of tacit knowledge from the hidden
layers. To achieve this, we introduce counterfactual reasoning. Specifically, we perform causal
reasoning, adversarial reasoning, substitution reasoning, extreme counterfactual reasoning, and
backward causal reasoning on the questions within the datasets. For each sample (Xij , Yij), we
generate the corresponding counterfactual input X̃ij :

X̃ij = GenerateCounterfactual(Xij) (2)

We then input these questions into the relevant vertical domain agents to generate answers. To
represent the output of tacit knowledge influenced by tacit variables, we introduce the tacit variable
θij , which represents the tacit knowledge or state inside the model and plays a key role in generating
counterfactual outputs. The tacit knowledge hij is the model’s hidden state under the influence
of the tacit variable θij , which acts as an intermediary in the process of generating counterfactual
outputs. The tacit knowledge hij is influenced by the tacit variable θij where hij | θij ∼ P (hij | θij).
The tacit knowledge hij further influences the generation of the counterfactual output Ỹij , where
Ỹij | hij , X̃ij ∼ P (Ỹij | hij , X̃ij). The final generation process is expressed as (Appendix B):

P (Ỹij | X̃ij) =

∫
Θ

P (Ỹij | hij , X̃ij)P (hij | θij)P (θij | X̃ij)dθij (3)

In this process, P (Ỹij | hij , X̃ij) represents the probability of generating the counterfactual output
given the tacit knowledge hij and the counterfactual input X̃ij . P (hij | θij) represents the generative
distribution of the tacit knowledge hij given the tacit variable θij , and P (θij | X̃ij) represents
the prior distribution of the tacit variable θij given the counterfactual input X̃ij . Subsequently,
these answers are evaluated by a general-purpose LLM, and the evaluation results are classified
into three levels: reasonable, ambiguous, and unreasonable. The general-purpose model provides
feedback on evaluation opinions and suggestions, which are then used by the vertical domain agent
to generate another response. This process iterates until a reasonable answer is obtained. During
knowledge distillation, we apply causal enhancement, with special attention to causal keywords such
as “depends on”, “relies on”, and “applies to”. Using the estimated tacit variable θij , tacit knowledge
is extracted from the counterfactual input-output pairs (X̃ij , Ỹij) completed through iteration, and a
tacit knowledge graph KG tacit is constructed:

KG tacit =

N⋃
i=1

ni⋃
j=1

ExtractTriples(X̃ij , Ỹij , θij) (4)
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Finally, by integrating the explicit and the tacit knowledge graph, we construct a collaborative
knowledge graph KG that contains both stage-specific knowledge and inter-stage connectivity:

KG = KGexplicit ∪ KG tacit (5)

3.2 CAUSAL CHAIN

To enable the agent to organize the causal relationships between various knowledge stages and gener-
ate more accurate and coherent responses, rather than simply listing knowledge, we introduce a causal
chain mechanism. When a user submits a request to the agent, the request is first decomposed, and key-
words are extracted. These keywords are then input into the knowledge graph to match relevant nodes.

Knowledge Structure

I aim to use ergonomics to reduce traffic accident injuries.

KG Retrieval

Related Nodes

Encoder
keywords Compare

.....

vk

vn

Similarity

δ

Semantically
Related Nodes

A∈x1 C∈x2

one-hop 
neighbors

multi-hop 
neighbors

B∈x1∩x2

Embedding Vectors

Causal Chains

Sim(vk,vn)

Figure 3: Retrieving relevant knowledge from the
collaborative knowledge graph and the process of
constructing causal chains.

Specifically, as shown in Figure 3, we use a
pre-trained text encoder (Reimers & Gurevych,
2019) to convert the extracted keywords and
their related nodes into vector representations.
For the vector representation vk of keyword k
and the vector representation vn of node n in
the knowledge graph, we compute the cosine
similarity between these vectors to identify the
most relevant stage knowledge:

Sim(vk, vn) =
vk · vn
∥vk∥∥vn∥

(6)

By setting a similarity threshold δ, we select
knowledge nodes that are highly related to the
semantics of the keywords. For these nodes,
we extend their one-hop neighbors to introduce
additional associated knowledge and construct a
triple-based knowledge structure to enhance the
agent’s understanding capability. To address the challenge of cross-stage integration, we adopt a multi-
hop neighbor exploration method to build causal chains. By leveraging stage-specific knowledge as a
bridge, this approach effectively explains inter-stage knowledge relationships. Specifically, within
the stage set X = {x1, x2, x3, . . . }, for a node A with high semantic similarity, where A ∈ x1, we
expand its one-hop neighbor node B, where B ∈ x1 ∩ xi (i ̸= 1), and use this as a bridge to explore
nodes C from other stages, where C ∈ xi (i ̸= 1), to construct the causal chain:

CausalChain(A,C) = A
B−→ C (7)

Using the causal chain mechanism, the agent is able to comprehend and identify the causal relation-
ships between the knowledge we provide. This enables the agent to consider the interdependencies
between different components when generating responses to user queries.

3.3 PROMPTS TREE

In business workflow tasks, the interconnections between various stages are crucial for effective
collaboration. To achieve this, we propose an innovative prompt distillation method aimed at
constructing a prompts tree. This method derives stage-specific Q&A from the seed Q&A using a
fragmentation approach, where each node at every level of the tree corresponds to prompts from
different stages. By querying the prompts tree, it is possible to obtain prompt information that spans
the entire business workflow. Specifically, we start with seed Q&A in Stage 1 and utilize the agent
from Stage 1 to distill solution-oriented prompts from the answers. The most effective m prompts are
selected through self-evaluation. These m prompts are then used to generate new question templates,
focusing primarily on how to implement or solve the prompts distilled from the previous stage in the
next stage. Each question is answered, forming a new seed Q&A. These Q&A are further involved in
the prompt distillation of the current stage, driving the content to extend to the next stage.

In this process, the user need is treated as the root node, with prompts in Stage 1 derived as child nodes
based on the user need. These Stage 1 prompts further generate Q&A in Stage 2, from which Stage
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Table 1: Performance comparison of different model backbones and multi-agent baselines across three
business domains. We report the mean and standard error (SE) over five experiments. BERTScore F1
is abbreviated as BS-F. We highlight the best and second-best results.

Backbone Baseline Automotive Pharmaceutical E-commerce

BS-F GLEU ROUGE-L BS-F GLEU ROUGE-L BS-F GLEU ROUGE-L

Qwen2-7B

PMC 65.86±0.03 13.23±0.08 18.35±0.07 66.97±0.79 16.25±0.58 24.75±0.62 71.02±0.17 24.18±0.37 29.93±0.45
MedAgents 65.16±0.25 12.37±0.17 18.33±0.18 65.84±0.15 10.68±0.36 20.83±0.50 69.45±0.19 17.42±0.17 33.38±0.18
Debate(short) 65.30±0.26 12.42±0.37 17.63±0.23 70.62±0.41 16.04±0.35 24.12±0.49 73.03±0.43 20.89±0.32 28.27±0.29
Debate(long) 65.61±0.27 12.85±0.47 18.28±0.13 60.57±0.30 10.28±0.39 11.21±0.52 72.41±0.60 20.82±0.59 28.46±0.53
CoA 70.70±0.53 21.51±0.41 22.65±0.68 76.98±0.44 30.45±0.42 34.00±0.17 79.24±0.18 38.60±0.35 39.14±0.62
Cochain 75.05±0.17 27.66±0.26 28.43±0.23 78.50±0.04 34.48±0.28 35.23±0.17 80.22±0.16 37.83±0.38 40.84±0.41

DeepSeek-R1-7B

PMC 65.94±0.13 10.75±0.23 15.78±0.13 68.06±0.27 22.51±0.29 28.07±0.20 66.66±0.43 15.80±0.39 23.62±0.30
MedAgents 65.58±0.60 8.03±0.55 14.08±0.59 70.35±0.14 24.47±0.19 30.90±0.08 66.98±0.49 13.67±0.49 20.31±0.60
Debate(short) 65.93±0.23 11.41±0.44 17.33±0.52 71.46±0.31 27.13±0.27 30.34±0.44 70.71±0.29 23.01±0.22 27.02±0.39
Debate(long) 66.06±0.67 12.13±0.49 17.70±0.26 71.54±0.42 27.34±0.39 30.04±0.39 70.48±0.39 23.07±0.10 27.00±0.44
CoA 70.83±0.29 13.27±0.58 17.51±0.58 77.06±0.15 38.18±0.49 35.53±0.23 80.43±0.32 43.80±0.39 42.03±0.43
Cochain 73.20±0.02 21.45±0.17 23.89±0.13 79.11±0.09 38.27±0.17 37.21±0.21 82.68±0.05 50.19±0.13 47.07±0.13

Claude-3.5-haiku

PMC 64.06±0.04 9.73±0.56 10.12±0.31 66.18±0.16 13.04±0.36 13.91±0.18 66.85±0.07 15.98±0.60 15.88±0.21
MedAgents 64.38±0.10 10.77±0.56 11.02±0.14 66.01±0.17 14.60±0.30 14.66±0.29 68.00±0.13 17.58±0.31 16.51±0.14
Debate(short) 64.36±0.17 11.21±0.39 13.72±0.33 69.11±0.11 14.53±0.26 16.03±0.28 68.41±0.43 19.97±0.32 18.37±0.31
Debate(long) 65.13±0.08 11.79±0.49 12.13±0.39 67.68±0.10 15.94±0.31 15.13±0.32 67.49±0.67 17.23±0.42 18.98±0.56
CoA 63.78±0.26 9.23±0.29 10.28±0.20 66.00±0.39 13.33±0.22 14.25±0.36 67.03±0.35 15.02±0.33 15.12±0.35
Cochain 69.66±0.03 18.62±0.06 16.83±0.24 72.83±0.06 23.47±0.13 19.25±0.22 71.56±0.12 20.11±0.13 20.65±0.17

2-specific prompts are distilled as child nodes of the Stage 1 prompts. In this way, we continuously
build and maintain a prompts tree. By retrieving the prompts tree, we automatically generate a prompt
chain that covers the entire business workflow, thus avoiding the difficulties associated with manually
constructing prompts. These prompts will guide large language models to generate responses that
comprehensively consider the content of each stage, ensuring high collaboration across the stages.

4 EXPERIMENTS

In our experiments, we evaluate our collaboration framework and answer the following questions: (1)
To what extent does Cochain enhance inter-agent collaboration capabilities? (2) How does Cochain
affect agent performance across specialized and cross-domain collaboration tasks? (3) Which key
design elements of Cochain are most critical for enhancing collaboration capabilities?

4.1 EXPERIMENTS SETUP

Datasets. Cochain is evaluated on two benchmarks across four datasets: Auto-SLURP (Shen &
Shen, 2025), for assessing the end-to-end workflow of multi-agent frameworks, and MSCoRe (Lei
et al., 2025), for evaluating multi-stage reasoning and collaboration. It is worth noting that the
automotive workflow test set is rigorously reviewed and optimized by domain experts from a
major automobile manufacturer to ensure its practical industry relevance.

Metrics. BERTScore (Zhang et al., 2019) utilizes contextual word embeddings to evaluate semantic
similarity, while GLEU (Wu et al., 2016) emphasizes grammatical and semantic quality, and ROUGE-
L (Lin, 2004) assesses deep semantic alignment, particularly for extended texts. We employ these
metrics as primary indicators of semantic similarity between generated and reference answers. For
comprehensive experimental results across additional metrics, refer to Appendix D.

LLMs. We utilize sixteen LLMs as the backbone of Cochain. With both proprietary and open-source
models, we examine the differences between reasoning-capable models (DeepSeek-R1-7B (DeepSeek-
AI, 2025)) and standard models (Qwen2-7B (qwe, 2024)). We also investigate using identical versus
mixed models (Llama2-7B (Touvron et al., 2023b), GLM4-9B, Qwen2-7B, DeepSeek-7B) across
workflow stages. All open-source models undergo domain-specific fine-tuning to serve as specialized
agents in target domains. For proprietary models, we assess GPT-3.5-turbo, GPT-4o (Achiam et al.,
2023), DeepSeek-V3.1 (DeepSeek-AI, 2024), and Claude-3.5-haiku (The) performance.

Baselines. Our baseline selection encompasses the predominant multi-agent collaboration method-
ologies (Appendix C). Specifically, PMC (Zhang et al., 2025a) implements multi-agent collaboration
through hierarchical planning. MedAgents (Tang et al., 2024) facilitates collaborative decision-
making via discussion and voting mechanisms. Debate (Du et al., 2024) enables collaboration
through argumentative discourse. CoA (Zhang et al., 2024c) establishes chain-based collaboration.
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Figure 4: (a) Expert evaluation & (b) GPT-4 scores. Figure 5: Reasoning time differential.

Table 2: The performance of GPT-3.5-turbo and
GPT-4o when using CoT, ToT, and Cochain.

Backbone Method BS-F GLEU ROUGE-L

GPT-3.5-turbo

+ IO 72.84±0.07 15.09±0.17 21.98±0.23
+ CoT 71.61±0.17 11.15±0.17 17.92±0.16
+ ToT 66.69±0.05 10.08±0.04 17.74±0.09
+ Cochain 76.94±0.03 28.92±0.12 30.65±0.09

GPT-4o

+ IO 71.92±0.08 23.05±0.17 23.79±0.17
+ CoT 72.57±0.15 23.76±0.14 24.15±0.28
+ ToT 66.23±0.17 12.51±0.14 17.52±0.19
+ Cochain 74.46±0.07 25.16±0.25 25.07±0.14

Table 3: Result of different skip stages on evalu-
ation metrics.

Skip Stage BS-F GLEU ROUGE-L

zero / 75.39 28.17 28.87

one
S1 → S3 → S5 74.00 24.66 25.18

S2 → S4 74.52 25.57 26.18
S3 → S5 74.18 25.45 25.95

two S1 → S3 74.27 25.26 25.74
S2 → S4 74.07 25.00 25.82

Besides, we compare the performance of single-agent prompt engineering methods, namely CoT (Wei
et al., 2022) and ToT (Yao et al., 2024).

4.2 ENHANCING COLLABORATIVE REASONING CAPABILITIES IN AGENTS WITH COCHAIN

Table 4: Accuracy comparison on Auto-SLURP benchmark.

Backbone Baselines Cochain
PMC MedAgents Debate CoA

DeepSeek-V3.1 0.12 0.07 0.32 0.27 0.33
Claude-3.5-haiku 0.29 0.26 0.31 0.37 0.38

Overall Results of Cochain. Table 1
demonstrates Cochain’s performance
on business workflow tasks across
three diverse language models. Re-
sults show Cochain consistently out-
performs all baselines by significant
margins across all datasets. Table 4
shows that Cochain achieves higher
accuracy on the Auto-SLURP bench-
mark. Cochain also exhibits substantial advantages in computational efficiency, with shorter reasoning
times, fewer output tokens, and lower operational costs compared to other baselines (Appendix D.1).
Figure 7 reports consistent performance gains achieved by Cochain as model parameters increase,
demonstrating its strong scalability potential with more powerful foundation models.

Comparative Analysis of Cochain Against Prompting Engineering Approaches. Table 2 presents
a comparative evaluation of Cochain against established prompting methodologies. The results show
that while CoT and ToT approaches enhance reasoning capabilities, they exhibit limited collaborative
advantages compared to our framework. Specifically, these traditional techniques focus on isolated
reasoning paths, whereas Cochain enables agents to incorporate both upstream and downstream
factors into decision-making, yielding more comprehensive solutions for complex, interdependent
problems across multiple domains of expertise.

Qualitative Evaluation. Given the absence of established metrics to evaluate the collaboration of
LLM agents, we use a two-fold validation. First, we recruit five experts from a major automotive
manufacturer. These experts judge Qwen2-7B with Cochain to outperform GPT-4 in approximately
60% of cases, and to achieve performance on par with or even superior to human experts in approxi-
mately 90% of cases (Figure 4(a)). We also employ GPT-4 for quantitative assessment across five
scoring rounds, comparing performance with and without fine-tuning and Cochain. Figure 4(b) shows
models enhanced with Cochain (Raw* and Finetune*) demonstrate higher median scores, with the
fine-tuned version achieving nearly optimal performance (median >9.7).
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Table 5: Results of multi-stage collaboration performance on Automotive datasets, highlighting
fine-tuned results and Cochain application, and improvements(↑). The experimental results reflect
two different scenarios in the workflow. †The score is derived from GPT-4’s rating of the final solution
(10-point scale), which is synthesized by integrating the answers from each stage.

Stage Method Backbone BS-F GLEU ROUGE-L Backbone BS-F GLEU ROUGE-L

S1
Finetuned

Q
w

en
2-

7B

71.60 22.59 24.51 Llama2-7B 70.68 18.79 21.49
+ Cochain 74.65 26.28 25.97 71.46 20.96 21.58

S2
Finetuned 70.44 19.37 21.70 GLM4-9B 69.34 16.30 19.76
+ Cochain 74.65 26.57 25.74 73.19 22.33 24.06

S3
Finetuned 70.23 19.39 22.39 Qwen2-7B 70.28 18.95 22.38
+ Cochain 74.84 27.39 26.29 74.51 25.76 26.00

S4
Finetuned 69.42 18.71 21.90 DeepSeek-7B 68.96 13.06 18.70
+ Cochain 75.39 29.28 27.94 71.03 14.39 18.89

Score† 6.3 9.2 +2.9 6.5 9.6 +3.1

4.3 COCHAIN EFFICACY ACROSS SPECIALIZED AND CROSS-DOMAIN TASKS

To investigate Cochain’s impact on specialized and cross-domain tasks, we experimented on automo-
tive industry data using two approaches: a multi-domain model (single Qwen2-7B fine-tuned on all
domains) and specialized models (different models each fine-tuned for specific domains), testing on 4
sub-datasets. Table 5 shows Cochain significantly improves both approaches, with particularly strong
GLEU score gains. The specialized configuration demonstrates Cochain’s ability to orchestrate effec-
tive collaboration among domain-expert agents. GPT-4 evaluation scores, assessing comprehensive
solutions resulting from four stages, confirm substantial quality improvements for both approaches.
Further experiments in Appendix D.3 with specialized models of the same architecture also validate
Cochain’s effectiveness in coordinating expert agents toward coherent solutions.

4.4 KEY DESIGN FACTORS AND HYPERPARAMETER INFLUENCE IN COCHAIN

Ablation Study. To validate Cochain’s effectiveness, we conduct ablation experiments with three
variants: (1) w/o Knowledge Graph; (2) w/o Causal Chain; and (3) w/o Prompts Tree. As shown in
Table 6, all variants exhibit performance degradation across all metrics, confirming each component’s
importance. Notably, removing the prompts tree causes the most significant drop, highlighting its
critical role in collaboration(Appendix D.4). The knowledge graph and causal chain components also
prove essential, demonstrating their complementary functions in the reasoning process.

Hyper-parameter Sensitivity Analysis. We investigated key hyperparameters by fixing the number
of nodes (n) from the knowledge graph while varying the prompt count. Figure 6 shows that for any
fixed n, performance follows an inverted U-shaped curve, indicating an optimal range rather than a
monotonic relationship. When fixing prompt count and varying n, no consistent pattern emerged,
suggesting prompt design exerts greater influence than knowledge quantity, aligning with our ablation

Figure 6: Parameter analysis results. In the first five plots,
the top-n value is fixed, while in the last plot, the number
of prompts is fixed.

Figure 7: Comparative analysis of met-
rics scaling with increasing model size
from DeepSeek-R1 7B to 70B.
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Table 6: Result of ablation study. We highlight the most and second-most efficient modules.

Backbone Method Automotive Pharmaceutical E-commerce

BS-F GLEU ROUGE-L BS-F GLEU ROUGE-L BS-F GLEU ROUGE-L

Qwen2-7B

Cochain 75.39 28.17 28.87 78.48 33.98 35.03 79.91 37.08 40.06
w/o KG 75.21 27.81 28.74 76.34 25.92 28.09 76.72 32.40 32.74
w/o Causal Chain 75.20 27.55 28.42 76.20 25.38 27.76 76.86 33.30 32.93
w/o Prompts Tree 73.08 22.45 24.56 76.19 26.84 28.91 76.59 31.83 32.38

DeepSeek-R1-7B

Cochain 73.19 21.73 24.01 78.97 37.94 36.75 82.68 50.30 47.24
w/o KG 72.41 19.71 22.63 78.22 37.33 36.40 77.36 36.54 35.85
w/o Causal Chain 72.67 19.96 22.86 78.41 37.36 36.74 77.60 36.30 35.74
w/o Prompts Tree 72.27 16.54 20.60 76.96 37.98 35.61 79.02 41.03 38.84

Claude-3.5-haiku

Cochain 69.61 18.73 17.30 72.87 23.59 19.67 71.36 20.15 20.78
w/o KG 68.98 16.63 16.31 70.93 16.42 18.45 71.13 18.85 20.22
w/o Causal Chain 69.33 17.31 16.65 71.33 17.43 18.78 71.23 18.89 20.45
w/o Prompts Tree 65.79 12.84 13.71 70.85 16.24 18.31 69.76 15.55 18.59

Figure 8: Cost comparison (Tokens, API Fees, Time) across baselines on pharmaceutical dataset.
Cochain’s total costs include the one-time Prompt Tree setup and costs for varying evaluation queries.

results. Table 3 demonstrates that skipping any stage (Sk) in the prompts tree consistently reduces
performance, confirming each stage’s indispensable role in the collaborative reasoning process.

4.5 EFFICIENCY AND COST ANALYSIS

Figure 5 shows that as reasoning rounds increase, the time gap between thinking and non-thinking
models grows dramatically for PMC but remains moderate for Cochain, demonstrating Cochain’s
superior efficiency as complexity increases. Furthermore, as shown in Figure 8, we present Cochain’s
initial setup overhead as a one-time investment for cost amortization. Our analysis confirms this
strategy’s value: traditional multi-agent systems have no setup cost but high per-inference costs,
whereas Cochain’s is substantially lower. Consequently, with more use, Cochain’s initial investment
is quickly amortized, leading to significant long-term advantages in total cost and time. A further
cost analysis is presented in Appendix D.1.

5 CONCLUSION

In this paper, we propose Cochain, a chain-of-collaboration prompting framework designed to en-
hance the collaboration of LLM agents in workflow tasks. Cochain combines the advantages of both
single-agent and multi-agent systems, achieving depth in thought and breadth in collaboration. It
is characterized by low operational cost, high inference speed, strong interpretability, and robust
reasoning chain resilience. Cochain introduces a prompts tree structure for reasoning, enabling
collaborative inference paths among multiple agents on-chain. By constructing a cross-node tacit
knowledge graph, it improves relational reasoning and reduces hallucinations during collaboration.
Additionally, the causal chain mechanism enhances interpretability. Extensive experiments demon-
strate that Cochain yields effective improvements in scenarios suffering from both undercollaboration
and overcollaboration, excelling in specialized and cross-domain tasks. Expert evaluations also
indicate that combining smaller models with Cochain surpasses GPT-4 in workflow tasks.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the paper. The appendix is organized as follows:

• § A describes algorithms and examples to better understand Cochain.
• § B describes the probabilistic formulations and mathematical proof for modeling an agent’s

unobservable tacit knowledge through the generation of counterfactual outputs.
• § C introduces more details on Cochain.
• § D presents more experiments and analysis on Cochain.
• § E provides a qualitative analysis to interpret the outputs of Cochain, alongside a compara-

tive case study against baseline methods.
• § F presents the prompt templates for Cochain and other baselines.

A ALGORITHMS AND EXAMPLES TO BETTER UNDERSTAND COCHAIN

Algorithm 1 Collaborative Knowledge Graph Construction

Require: Datasets D = {D1, . . . , DN}; LLM agents A = {A1, . . . , AN}; Evaluation LLM E;
Stage Labels L = {L1, . . . , LN}.

Ensure: A collaborative knowledge graph KGcollab.
1: Initialize: KGexplicit ← ∅, KGtacit ← ∅

2: ▷ Phase 1: Build Explicit Knowledge Graph
3: for i← 1 to N do
4: for all (instruction, response) ∈ Di do
5: triples← ExtractTriples(instruction, response)
6: LabelNodesInTriples(triples, Li)
7: KGexplicit ← KGexplicit ∪ triples
8: end for
9: end for

10: ▷ Phase 2: Build Tacit Knowledge Graph
11: for i← 1 to N do
12: for all (instruction, response) ∈ Di do
13: cf_instruction← GenerateCounterfactual(instruction)
14: repeat
15: cf_response← Ai.query(cf_instruction)
16: (evaluation, feedback)← E.evaluate(cf_response)
17: if evaluation ̸= "reasonable" then
18: cf_instruction.append(feedback)
19: end if
20: until evaluation = "reasonable"
21: tacit_triples← ExtractTriples(cf_instruction, cf_response)
22: LabelNodesInTriples(tacit_triples, Li)
23: KGtacit ← KGtacit ∪ tacit_triples
24: end for
25: end for

26: ▷ Phase 3: Merge Graphs
27: KGcollab ← Merge(KGexplicit,KGtacit)
28: return KGcollab
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Algorithm 2 Causal Chain Retrieval and Construction

Require: User query query; Stage-labeled knowledge graph KGcollab; Text encoder Encoder; Seed
nodes count top_n; Chain length limit max_depth.

Ensure: A textual causal chain causal_chain_text.

1: ▷ Phase 1: Two-Stage Seed Node Retrieval
2: keywords← ExtractKeywords(query)
3: query_vector← Encoder.encode(query)
4: candidate_nodes← KGcollab.KeywordSearch(keywords)
5: candidate_vectors← Encoder.encode(candidate_nodes)
6: similarities← CosineSimilarity(query_vector, candidate_vectors)
7: seed_nodes← GetTopN(candidate_nodes, similarities, top_n)

8: ▷ Phase 2: Stage-Aware Multi-hop Expansion
9: all_paths← ∅

10: for each start_node in seed_nodes do
11: ▷ Search paths crossing stages via bridge nodes with multiple labels
12: paths← KGcollab.FindCrossStagePaths(start_node,min_depth← 2,max_depth)
13: all_paths← all_paths ∪ paths
14: end for

15: ▷ Phase 3: Format and Output
16: causal_chain_text← VerbalizePaths(all_paths)
17: return causal_chain_text

Algorithm 3 Prompts Tree Construction

Require: Workflow stages S = {S1, . . . , Sn}; Domain agents A = {A1, . . . , An}; Seed Q-A pair
InitialSeedQA; Best prompts count m.

Ensure: A prompt tree PromptsTree.
1: Initialize:
2: rootNode← CreateNode(InitialSeedQA.question)
3: PromptsTree← InitializeTree(rootNode)
4: queue← [(rootNode, InitialSeedQA.answer, S1)]
5: while queue ̸= ∅ do
6: parentNode, currentAnswer, currentStage← queue.pop_front()
7: ▷ Phase 1: Distill Prompts
8: distilledPrompts← AcurrentStage.DistillPrompts(currentAnswer)
9: ▷ Phase 2: Select Best Prompts

10: bestPrompts← AcurrentStage.SelfEvaluate(distilledPrompts,m)
11: ▷ Phase 3: Grow Tree
12: if currentStage ̸= Sn then ▷ Proceed if not the last stage
13: nextStage← Sindex(currentStage)+1

14: for each promptText in bestPrompts do
15: childNode← CreateNode(promptText)
16: parentNode.add_child(childNode)
17: newQuestion← GenerateQuestionForNextStage(promptText, nextStage)
18: newAnswer← AnextStage.query(newQuestion)
19: queue.push_back((childNode, newAnswer,nextStage))
20: end for
21: end if
22: end while
23: return PromptsTree

As shown in the Figure 10, after applying Cochain, the agent anticipates that carbon fiber requires
complex molding processes, completely different from traditional metal stamping, and that qualified
suppliers are scarce, thus requiring consideration of supply chain stability and high procurement
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costs significantly impacting vehicle pricing and profit margins. The prompts tree anticipates existing
production processes, guiding the agent to consider compatibility constraints between new equipment
and existing stamping-welding lines. Based on this, Cochain generates superior answers compared to
single agents.

Figure 9: Examples of implementing a core component in the Cochain framework.

Figure 10: Examples of single agent and complete workflow of Cochain
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B PROOF: TACIT KNOWLEDGE & COUNTERFACTUAL OUTPUT MODEL

Given the inherent difficulty in directly extracting hidden layer knowledge from agents operating
within complex systems, our approach introduces counterfactual reasoning as a means to probe and
subsequently infer tacit knowledge. This section elucidates the probabilistic formulations developed
to model these inferred internal aspects of each agent. It details the conceptualization of tacit
knowledge, the generation of counterfactual outputs by the agent, and the overall generative process
used to understand these unobservable agent workings.

The foundation of our approach to modeling tacit knowledge within each agent lies in its conditional
generation based on latent tacit variables. We define hij as the tacit knowledge specific to a sample
(Xij , Yij) processed by a particular agent. Within an agent, hij represents an internal state or
representation that is not directly accessible. While hij is an abstract construct for modeling these
unobservable aspects, for illustrative purposes, one might conceptualize it as akin to intermediate
computational states, learned feature representations, or internal configurations within the Agent that
influence its output generation. Concurrently, θij is defined as a latent tacit variable associated with
the same sample and agent. This variable θij is also an abstract construct, encapsulating underlying
factors hypothesized to influence hij , such as specific input characteristics processed by the Agent,
its operational modes, or conditioning contexts it operates under. The introduction of θij and hij

is an attempt to create a probabilistic model for the Agent’s internal, unobservable precursors to
decision-making or generation.

A core assumption of our model is that this tacit knowledge hij is not deterministically derived but is
rather a stochastic realization conditioned on θij . This is particularly relevant for complex Agents,
where output generation can be influenced by internal stochastic mechanisms or intricate decision
processes. This probabilistic relationship is formally expressed as:

hij | θij ∼ P (hij | θij) (8)

This notation signifies that hij is a random variable whose probability distribution P (hij | θij) is
conditional upon the specific value or state of θij . The nature of this distribution would be specific
to the agent and reflects the inherent complexities and uncertainties in how its internal states are
formed. For instance, θij might represent an abstract control signal or a high-level interpretation
of input patterns by the agent, and P (hij | θij) would describe the distribution of possible internal
representations resulting from it. This formulation acknowledges that even with a defined influencing
factor θij , the precise tacit knowledge hij (the agent’s internal processing focus or state) can vary.
The characteristics of P (hij | θij) can be explored and potentially learned through systematic
counterfactual probing of the agent.

Following the generation of tacit knowledge, we model the generation of the counterfactual output
Ỹij by the agent. This output is conditioned not only on the counterfactual input X̃ij but also critically
on the realized tacit knowledge hij derived from Equation 8. We define Ỹij as the Agent’s generated
output when presented with the counterfactual input X̃ij , and hij acts as the mediating internal state
through which X̃ij is processed to produce Ỹij .

The generation of Ỹij by such agents is often an inherently probabilistic process. Even with a given
counterfactual input X̃ij and a specific internal tacit knowledge state hij , the agent may not produce
a single, deterministic output. This inherent stochasticity is captured by the following conditional
probability distribution, whose parameters might also be inferred from counterfactual observations:

Ỹij | hij , X̃ij ∼ P (Ỹij | hij , X̃ij) (9)

This expression states that Ỹij (the counterfactual output) is a random variable whose distribution
P (Ỹij | hij , X̃ij) depends on both the specific tacit knowledge state hij and the counterfactual
input X̃ij . The tacit knowledge hij here serves as a crucial intermediary. For agents producing
sequential outputs, P (Ỹij | hij , X̃ij) might be represented as an autoregressive factorization, P (Ỹij |
hij , X̃ij) =

∏
t P (ỹij,t | ỹij,<t, hij , X̃ij).

To determine the overall probability of observing a counterfactual output Ỹij from an agent given
only the counterfactual input X̃ij—a common scenario when internal states are not directly observ-
able—we must account for the entire hypothesized generative pathway. This involves marginalizing
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out the unobserved latent tacit variable θij and, by extension, the intermediate tacit knowledge hij .
The final generation process is thus expressed as:

P (Ỹij | X̃ij) =

∫
Θ

P (Ỹij | hij , X̃ij)P (hij | θij)P (θij | X̃ij)dθij (10)

This equation can be derived by considering the dependencies established in Equations 8 and 9.

The derivation proceeds as follows: First, we apply the law of total probability to marginalize over
the latent tacit variable θij . The probability of Ỹij given X̃ij can be written as an integral over all
possible values of θij in its domain Θ:

P (Ỹij | X̃ij) =

∫
Θ

P (Ỹij , θij | X̃ij)dθij

Using the definition of conditional probability, P (A,B | C) = P (A | B,C)P (B | C), we can
rewrite the integrand P (Ỹij , θij | X̃ij) as:

P (Ỹij , θij | X̃ij) = P (Ỹij | θij , X̃ij)P (θij | X̃ij)

Here, P (θij | X̃ij) represents the prior probability distribution of the tacit variable θij given the
counterfactual input X̃ij . This term reflects how a given counterfactual input might stochastically
lead to different internal configurations or “operational modes” θij within the Agent that are not
directly observable. The nature of this prior can also be investigated through counterfactual analysis.
Substituting this back, we get:

P (Ỹij | X̃ij) =

∫
Θ

P (Ỹij | θij , X̃ij)P (θij | X̃ij)dθij (11)

The term P (Ỹij | θij , X̃ij) is the probability of generating Ỹij given both θij and X̃ij . Our model
posits a specific structure for this, reflecting a Markov chain-like dependency: θij → hij → Ỹij (all
conditioned on X̃ij where appropriate). This structure implies two key conditional independence
assumptions:

1. Given θij , hij is independent of X̃ij if all influence of X̃ij on hij is mediated through θij .
More commonly, P (hij | θij) is defined as the direct influence of θij on hij .

2. Given hij and X̃ij , Ỹij is independent of θij . That is, P (Ỹij | hij , θij , X̃ij) = P (Ỹij |
hij , X̃ij). The tacit knowledge hij fully mediates the influence of θij on Ỹij .

Under these assumptions, we can decompose P (Ỹij | θij , X̃ij):

P (Ỹij | θij , X̃ij) =

∫
P (Ỹij , hij | θij , X̃ij)dhij

=

∫
P (Ỹij | hij , θij , X̃ij)P (hij | θij , X̃ij)dhij

Applying the conditional independence assumptions:

=

∫
P (Ỹij | hij , X̃ij)P (hij | θij)dhij

The form in Equation 10 implies that for a given θij in the outer integral, the relevant hij is the
one generated from that θij , effectively collapsing the inner integral. Thus, P (Ỹij | θij , X̃ij) is
represented by the product P (Ỹij | hij , X̃ij)P (hij | θij), where hij is the specific realization tied to
θij within the integral. Substituting this construction into Equation 11 directly yields Equation 10:

P (Ỹij | X̃ij) =

∫
Θ

P (Ỹij | hij , X̃ij)P (hij | θij)P (θij | X̃ij)dθij

This integral sums the probabilities of Ỹij occurring via all possible latent tacit variables θij . Each
path’s contribution is weighted by the prior probability of θij , the probability of the corresponding
tacit knowledge hij arising from that θij , and finally the probability of the output Ỹij given that hij

and the input X̃ij .
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C IMPLEMENTATION DETAILS

Definition of Business Workflow: It is a complex process with many interconnected stages. These
stages are specialized. The key feature is that these stages strongly depend on each other. A decision
in one stage requires more than just expert knowledge of that area. It must also anticipate and use
knowledge and constraints from the other stages.

Table 7 presents a comprehensive comparison of Cochain against other baseline models. Cochain
demonstrates superior agent collaboration, characterized by faster inference speeds and lower hal-
lucination rates. More critically, Cochain exhibits decomposability, ensuring that the collaboration
process is resilient and does not terminate due to failures in individual components. It is important to
note that for CoA, source documents are not included due to the differing task orientation.

The LLMs referenced in Figure 7 are fine-tuned using QLoRA (Dettmers et al., 2023), configured
with a LoRA rank of 8 and trained for 3 epochs, on two H100 GPUs, with models quantized to 4-bit
precision via bitsandbytes. Other open-source models are fine-tuned for 10 epochs using LoRA (Hu
et al., 2022). The inference times reported in Figure 5 and Table 8 are benchmarked by deploying the
open-source models on a single A40 GPU to mitigate network variability.

Table 7: Comparison of different multi-agent collaboration methods

Baseline Collaboration Method Decomposable Reasoning Speed Hallucination Rate Agent

PMC (Zhang et al., 2025a) Hierarchical Planning ✗ Low Middle Multiple
MedAgents (Tang et al., 2024) Discussion & Voting ✗ Low Middle Multiple
Debate(short) (Du et al., 2024) Debate ✗ Low Middle Multiple
Debate(long) (Du et al., 2024) Debate ✗ Low Middle Multiple
CoA (Zhang et al., 2024c) Chain Collaboration ✗ Low Middle Multiple
Original - ✓ High High Single

Cochain Knowledge Fusion ✓ High Low Multiple

The appendix provides a more extensive report on experimental results across additional metrics.
These include BERTScore-P, BERTScore-R, BLEU-4 (Papineni et al., 2002) for measuring text
alignment, METEOR (Banerjee & Lavie, 2005) which considers semantically equivalent phrases,
ROUGE-2 for assessing content breadth, and ROUGE-L (Lin, 2004) which evaluates deep semantic
alignment, particularly for long texts.

D MORE EXPERIMENTS AND ANALYSIS

D.1 MORE EFFICIENCY AND COST ANALYSIS

Table 8 presents a comparative analysis of Cochain against other multi-agent systems, focusing on key
operational metrics: Inference Time, Token Throughput, and Cost. A noteworthy observation on the
Automotive and E-commerce datasets is that Cochain’s average input token count is approximately
one-twentieth of that utilized by PMC and CoA. This disparity suggests that these alternative
systems expend a considerable volume of tokens on inter-agent communication. In contrast, Cochain
innovatively transforms such communication into structured knowledge graphs and prompts tree, a
mechanism that effectively curtails operational costs. The overall results compellingly demonstrate
that Cochain achieves substantial reductions in inference time, token throughput, and aggregate cost
when benchmarked against other multi-agent approaches. Remarkably, the efficiency metrics for
Cochain closely approximate those observed for single-agent systems, and its average cost is even
lower, underscoring a significant advantage of our proposed framework in terms of computational
resource utilization and operational expenditure. Table 9 presents the retrieval contribution of each
component during the inference process. The prompt tree retrieval employs a depth-first search (DFS)
strategy. In terms of time complexity, this is equivalent to a simple path traversal with a complexity
of O(D), where D denotes the depth of the business process.
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Table 8: Comparative analysis of inference time, token throughput, and cost. †Inference time is
measured using a locally deployed Qwen2-7B model to obviate network latency associated with API
calls. Conversely, token throughput and cost metrics are derived using Claude-3.5-Haiku.

Baselines †Inference Time (s) Avg.Input Avg.Output Avg.Cost ($)

Automotive
PMC (Zhang et al., 2025a) 241.56 11637.94 6644.22 0.0359
MedAgents (Tang et al., 2024) 196.53 3901.03 3483.24 0.0170
Debate(short) (Du et al., 2024) 187.16 3938.35 4809.27 0.0223
Debate(long) (Du et al., 2024) 162.57 4357.87 5278.53 0.0246
CoA (Zhang et al., 2024c) 227.21 11428.06 5446.62 0.0309
Original 37.22 93.49 1041.38 0.0042
Cochain 38.77 501.62 541.74 0.0026

Pharmaceutical
PMC (Zhang et al., 2025a) 198.49 3796.07 2613.73 0.0135
MedAgents (Tang et al., 2024) 169.53 3504.85 3504.85 0.0168
Debate(short) (Du et al., 2024) 548.66 3372.56 3772.79 0.0178
Debate(long) (Du et al., 2024) 574.95 3810.87 4268.74 0.0201
CoA (Zhang et al., 2024c) 253.18 5493.94 3450.45 0.0182
Original 60.96 77.28 1091.32 0.0044
Cochain 44.70 533.88 830.34 0.0037

E-commerce
PMC (Zhang et al., 2025a) 256.84 11319.74 6452.89 0.0349
MedAgents (Tang et al., 2024) 181.61 3816.26 3445.34 0.0169
Debate(short) (Du et al., 2024) 318.51 4414.23 5660.94 0.0261
Debate(long) (Du et al., 2024) 293.42 5438.52 6911.85 0.0321
CoA (Zhang et al., 2024c) 195.49 11446.05 5353.24 0.0306
Original 35.83 60.90 1080.92 0.0044
Cochain 37.10 561.80 620.15 0.0029

Table 9: Latency Breakdown Analysis of Cochain’s Inference Components

Inference Component Average Time (s) Percentage of Total Time (%)
Knowledge Graph Retrieval 0.6200 s 1.57 %
Prompts Tree Retrieval 0.0022 s <0.01 %
LLM Model Inference 38.7700 s 98.42 %
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D.2 MORE EXPERIMENTS ON SINGLE AGENT

Table 10 and Table 11 demonstrate that integrating Cochain markedly enhances single-agent per-
formance across diverse backbone models during two distinct stages of a business workflow. This
enhancement is consistently reflected across all evaluated metrics, irrespective of whether the LLMs
are in their raw, pre-trained state or have undergone fine-tuning. Notably, a synergistic effect be-
tween fine-tuning and the application of Cochain typically yields optimal performance, underscoring
Cochain’s robust capability to leverage specialized model knowledge. The broad-spectrum improve-
ments observed across various model metrics highlight the effectiveness and versatility of Cochain in
mitigating prior issues of undercollaboration.

Table 10: The performance of our proposed method on single-agent. BERTScore F1 is abbreviated
as BS-F, BERTScore Precision as BS-P, and BERTScore Recall as BS-R. We highlight the best and
second-best results.

Backbone Method BS-F BS-P BS-R BLEU-4 GLEU METEOR ROUGE-2 ROUGE-L

Llama2-7B

Raw LLM 62.25 64.41 60.54 6.04 8.28 17.52 7.78 15.64
+ Cochain 65.70 68.25 63.50 10.99 13.84 25.50 10.44 16.46
Finetuned LLM 70.68 70.71 70.67 14.31 18.79 35.03 11.97 21.49
+ Cochain 71.46 71.35 71.59 16.50 20.96 38.69 13.79 21.58

Qwen2-7B

Raw LLM 71.76 71.79 71.75 17.23 22.30 41.13 12.88 24.00
+ Cochain 75.24 74.90 75.58 22.32 26.51 52.00 19.53 27.94
Finetuned LLM 71.72 71.75 71.70 16.90 21.64 40.77 13.35 24.07
+ Cochain 75.39 75.14 75.65 24.17 28.17 51.22 21.22 28.87

Llama3-8B

Raw LLM 68.93 68.38 69.59 7.47 9.14 24.48 10.99 19.28
+ Cochain 73.75 73.36 74.17 19.47 23.52 48.43 17.57 25.10
Finetuned LLM 70.89 70.88 70.91 14.90 19.05 39.83 12.59 22.90
+ Cochain 74.56 74.13 75.01 22.12 26.15 50.59 19.41 27.19

Llama2-13B

Raw LLM 60.79 63.16 59.00 5.73 7.96 16.90 7.52 15.43
+ Cochain 67.47 70.20 65.15 13.42 16.88 29.97 13.65 18.57
Finetuned LLM 70.88 70.88 70.90 14.57 19.14 35.87 12.19 21.85
+ Cochain 71.80 72.08 71.58 18.16 22.29 40.33 14.96 23.18

Qwen2.5-14B

Raw LLM 71.86 72.03 71.70 9.48 12.16 40.71 11.85 17.86
+ Cochain 75.62 75.56 75.69 12.39 14.71 47.95 17.66 19.55
Finetuned LLM 71.50 71.48 71.53 9.25 11.75 40.16 12.01 17.67
+ Cochain 75.18 75.00 75.38 13.11 15.08 48.35 19.70 20.30

Table 11: The performance of our proposed method. The results of this table are in a different stage,
as compared to the stage presented in Table 10. We highlight the best and second-best results.

Backbone Method BS-F BS-P BS-R BLEU-4 GLEU METEOR ROUGE-2 ROUGE-L

Llama2-7B

Raw LLM 61.76 64.72 59.44 6.36 8.69 18.25 8.66 16.17
+ Cochain 63.57 66.31 61.23 9.49 12.37 23.12 8.99 17.46
Finetuned LLM 69.88 69.78 70.00 12.02 17.02 32.59 9.26 20.69
+ Cochain 70.47 70.43 70.55 13.79 18.58 35.44 10.91 20.26

Qwen2-7B

Raw LLM 70.34 71.12 70.60 13.74 19.88 35.29 9.47 22.01
+ Cochain 73.48 72.37 74.63 15.77 19.21 50.38 16.25 21.99
Finetuned LLM 70.28 70.08 70.50 13.61 18.95 35.07 9.96 22.38
+ Cochain 74.51 74.30 74.74 21.99 25.76 50.49 20.71 26.00

As shown in Table 12, to better quantify the impact of insufficient collaboration, we compare
the baseline single agent to one provided with minimal communication, simulated by manually
injecting five prompts containing cross-domain constraints. The results of this table clearly show:
First, under-collaboration is a real problem, as the agent with injected communication showed a
slight performance improvement over the original agent. This directly proves that adding cross-
domain communication improves outcomes, thereby quantifying the performance loss from under-
collaboration. Second, Cochain’s intelligent collaboration is far superior to simple communication,
as the performance improved substantially after applying Cochain. This demonstrates that Cochain’s
value is not just about adding information. Rather, it excels at intelligently filtering, organizing, and
structuring collaborative knowledge. Its effectiveness far surpasses that of unstructured, manually
added information and helps to avoid the risk of over-collaboration.
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Table 12: Quantifying under collaboration.

Backbone Method BS-F GLEU ROUGE-L

Qwen2-7B
Single Agent 71.72 21.64 24.07
+ Manual Prompts 72.54 (↑) 21.83 (↑) 24.34 (↑)
+ Cochain 75.39 (⇑) 28.17 (⇑) 28.87 (⇑)

DeepSeek-R1-7B
Single Agent 71.35 19.55 22.71
+ Manual Prompts 71.83 (↑) 19.90 (↑) 23.38 (↑)
+ Cochain 73.19 (⇑) 21.71 (⇑) 24.01 (⇑)

D.3 MORE EXPERIMENTS ON SPECIALIZED AGENT COLLABORATION

Table 5 presents the results from a distinct experimental configuration designed to further investigate
the coordination capabilities of Cochain. Whereas Table 10 assessed a multi-domain model (a
single Qwen2-7B model fine-tuned on all domains) and specialized models (different models each
fine-tuned for specific domains), Table 13 exclusively focuses on a setup utilizing multiple agents
of the same backbone, each independently fine-tuned for a specific domain. The findings indicate
that Cochain effectively facilitates collaboration among these identically architected yet uniquely
specialized agents. Performance enhancements are observed both within their respective specialized
domains and in the quality of the comprehensive, integrated solutions. This underscores Cochain’s
distinct advantage in synergizing specialized knowledge from a team of uniquely trained agents that
share a common architectural foundation.

Table 13: Results for one model at particular stages. This means that we use Qwen2-7B for four
fine-tunings, and the four fine-tuned models are experimented with at their respective stages. We
highlight the fine-tuned results, Cochain application, and improvements(↑).

Backbone Stage Method BS-F BS-P BS-R BLEU-4 GLEU ROUGE-L

Q
w

en
2-

7B

S1

Finetuned 71.72 71.75 71.70 16.90 21.64 24.07
+ Cochain 75.39 75.14 75.65 24.17 28.17 28.87
↑ +3.67 +3.39 +3.95 +7.27 +6.53 +4.80

S2

Finetuned 70.24 70.47 70.16 13.19 18.29 20.95
+ Cochain 74.23 74.01 74.46 20.05 23.57 24.71
↑ +3.99 +3.54 +4.30 +6.86 +5.28 +3.76

S3

Finetuned 70.28 70.08 70.50 13.61 18.95 22.38
+ Cochain 74.51 74.30 74.74 21.99 25.76 26.00
↑ +4.23 +4.22 +4.24 +8.38 +6.81 +3.62

S4

Finetuned 69.40 69.49 69.32 13.51 18.26 21.82
+ Cochain 75.06 74.99 75.15 23.95 27.70 27.49
↑ +5.66 +5.50 +5.83 +10.44 +9.44 +5.67

Score 6.4 9.5 +3.1

D.4 MORE RESULTS FROM ABLATION STUDIES

On the automotive dataset, we report additional ablation study results focusing on the impact of
different backbone models. As indicated in Table 14, “w/o Prompts Tree” markedly impaired
performance. Specifically, when applied to the Llama-8B backbone, this ablation led to a 1.97%
reduction in the BS-F score, with notable degradations also observed across other evaluation metrics.
These findings are consistent with the experimental results presented in Table 6, further underscoring
the critical role of the Prompts Tree component in our framework.
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Table 14: More results of ablation study. KG represents the knowledge graph. We highlight the most
and second-most efficient modules.

Backbone Method BS-F BS-P BS-R BLEU-4 GLEU METEOR ROUGE-2 ROUGE-L

Llama2-7B

Cochain 71.46 71.35 71.59 16.50 20.96 38.69 13.79 21.58
w/o KG 71.26 71.14 71.41 16.06 20.53 38.21 13.55 21.50
w/o Causal Chain 71.26 71.13 71.44 15.63 19.59 40.32 14.33 21.16
w/o Prompts Tree 71.06 70.92 71.20 15.20 19.61 36.66 13.07 21.38

Qwen2-7B

Cochain 75.39 75.14 75.65 24.17 28.17 51.22 21.22 28.87
w/o KG 75.21 74.91 75.53 23.56 27.81 49.76 20.15 28.74
w/o Causal Chain 75.20 74.92 75.50 23.68 27.55 51.00 21.14 28.42
w/o Prompts Tree 73.08 73.20 72.98 18.40 22.45 45.43 16.06 24.56

Llama3-8B

Cochain 74.56 74.13 75.01 22.12 26.15 50.59 19.41 27.19
w/o KG 74.27 73.80 74.75 21.45 25.46 49.99 19.09 27.13
w/o Causal Chain 73.63 72.79 74.50 17.34 20.70 49.15 18.28 23.78
w/o Prompts Tree 72.59 72.45 72.75 17.01 21.02 45.00 15.18 23.83

Qwen2.5-14B

Cochain 75.18 75.00 75.38 13.11 15.08 48.35 19.70 20.30
w/o KG 74.83 74.41 75.25 12.49 14.55 47.32 18.39 19.76
w/o Causal Chain 74.71 74.66 74.79 12.28 14.17 47.65 19.30 19.44
w/o Prompts Tree 73.01 73.01 73.02 9.98 12.25 42.72 14.15 18.00

D.5 INTEGRATION OF COCHAIN WITH BASELINES

We further investigate the integration of Cochain with existing baseline methods, specifically PMC
and MedAgents, through experiments conducted on a pharmaceutical dataset using Claude-3.5-Haiku.
As reported in Table 15, the combination of Cochain with PMC results in improvements of 2.62%
and 7.55% in the BS-F and BLEU-4 scores, respectively. This outcome further substantiates the
efficacy of Cochain in mitigating issues associated with over-collaboration.

Table 15: The improvement of Cochain over other baselines on pharmaceutical datasets.

Baseline BS-F BS-P BS-R BLEU-4 GLEU METEOR ROUGE-2 ROUGE-L

PMC (Zhang et al., 2025a) 66.51 66.06 66.97 5.17 12.33 20.31 5.48 13.56
PMC (Zhang et al., 2025a) + Cochain 69.13 68.49 69.80 12.72 18.48 27.01 6.93 15.82
MedAgents (Tang et al., 2024) 66.23 66.02 66.48 7.17 14.02 22.59 5.43 14.32
MedAgents (Tang et al., 2024) + Cochain 67.45 66.91 68.00 11.65 17.80 27.06 6.16 15.74

D.6 EVALUATION OF COLLABORATIVE KNOWLEDGE GRAPH

To evaluate the reliability of our final knowledge graph, we randomly sampled 2,000 triplets from it,
consisting of 1,000 from explicit knowledge extraction and 1,000 from our counterfactual method.
We used three core metrics for evaluation: Factual Correctness (Is the knowledge factually correct
in the real world?),Task Relevance (How helpful is the knowledge for solving business workflow
problems?), and Knowledge Depth (Is the knowledge common sense, or does it require professional
insight?) We invited two domain experts for a blind review. We also used Gemini-2.5-Pro as a judge
for an objective evaluation. The average scores (out of 5) are presented in the Table 16.

Table 16: Evaluation of Collaborative Knowledge Graphs by Human Experts and LLMs.

Evaluation Metric Human Expert Score (Avg. / 5.0) Gemini-2.5-Pro Score (Avg. / 5.0)
Factual Correctness 4.99 5.00
Task Relevance 4.76 4.81
Knowledge Depth 4.31 4.54

D.7 OVERCOLLABORATION IS MORE SERIOUS THAN UNDERCOLLABORATION

Business workflow tasks are particularly susceptible to the “overcollaboration” phenomenon. When
multiple agents collaborate, this manifests as responses deviating from core issues and reducing
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answer quality. Comparative analysis of Table 1, Table 5, and additional single-agent experimental
results (Appendix D.2) demonstrates that, despite consuming significantly more computational re-
sources, overcollaboration performs substantially worse than undercollaboration. Overcollaboration’s
challenging nature is its covertness—systems maintain high activity and apparent collaboration, mak-
ing the problem hard to detect and rectify promptly. While task decomposition, such as approaches
like PMC, and summarization, such as strategies like CoA, are considered effective methods for
focusing on core issues (Wu et al., 2024; Chen et al., 2024b), Cochain’s collaboration mechanism
exhibits superior performance in controlling excessive collaboration, enabling a more precise focus
on critical task requirements.

D.8 ROBUSTNESS TO INCOMPLETE RETRIEVAL

To validate the system’s robustness against potential keyword retrieval failures, we conducted a stress
test. We designed 50 structured queries in the format of “How to use [Core Concept A] to solve
problems related to [Target Concept B]”. In the test condition, we deliberately masked all keywords
corresponding to [Target Concept B] to simulate a first-stage retrieval failure. For instance, in the
query “How can ergonomics be used to reduce traffic accident injuries?”, the keywords “traffic” and
“accident” were blocked.

While end-to-end semantic retrieval could theoretically solve keyword-mismatch issues, it becomes
computationally prohibitive for real-time interaction on massive knowledge graphs. We therefore
adopt the Retrieval-Ranking two-stage paradigm, a proven industry standard (Covington et al., 2016).
This approach combines the advantages of both methods: keyword-based retrieval in the first stage
ensures precise matching of technical terms and proper nouns, avoiding omissions from semantic
over-generalization. In the second stage, semantic ranking captures the query’s overall intent, ensuring
system generalization and robustness.

Table 17: Performance comparison under simulated retrieval failure. Masking the target concept’s
keywords results in a negligible performance drop, demonstrating the system’s robustness.

Test Condition BS-F GLEU ROUGE-L
Full Query 74.16 22.08 25.86
Target Concept Masked 73.87 21.42 24.57

Performance Drop (%) -0.29% -0.66% -1.29%

The results in Table 17 confirm the effectiveness of this design. Even when forcing a first-stage
failure, the BS-F score experienced a minimal drop of only 0.29%, from 74.16 to 73.87, with similarly
small decreases in GLEU (-0.66%) and ROUGE-L (-1.29%) scores. This resilience is attributed
to two factors. First, as justified above, the semantic ranking stage corrects for an imperfect initial
candidate set. More critically, the subsequent graph traversal and causal chain stages provide a
powerful secondary path to completeness. Even if “Traffic Accident” is missed during retrieval,
it can be discovered through pre-existing knowledge paths represented as triples (e.g., (Injuries,
is_a_result_of, Traffic Accident)), ensuring the final context remains robust and comprehensive.

E CASE STUDY

E.1 INTERPRETABILITY ANALYSIS

We investigate the interpretability characteristics of the model after the application of Cochain through
a case study. As shown in Table 18, we employ the same color to annotate logically related content
visually. The findings reveal that, following the application of Cochain, the model is capable of
performing multi-dimensional reasoning based on knowledge graphs, causal inference chains, and
contextual cues when addressing user needs, thereby generating outputs that are traceable, reliable,
and interpretable. The application of the Cochain method has significantly enhanced the transparency
and explainability of the model’s reasoning process, providing empirical evidence for understanding
the model’s collaborative decision-making mechanisms.
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E.2 COMPARATIVE ANALYSIS OF MODEL OUTPUTS

To understand how different baselines handle complex instructions, as shown in Figure 11, we
qualitatively analyzed their outputs against a reference answer, focusing on their integration of User
Experience(UX) design within the automotive business workflow. Additionally, we present case
studies for the pharmaceutical business workflow and the e-commerce business workflow, as shown
in Figure 12 and Figure 13.

Cochain: Clear Structure, Focused on UX Integration Process. Cochain’s response was notably
well-structured, using a seven-point list for key UX integration stages, enhancing readability and
providing a clear action framework. It comprehensively covered the UX lifecycle—from user research
and design principles to interdisciplinary collaboration, technological innovation, continuous iteration,
and performance-cost/quality assurance. Its explicit “collaborative perspective of the automotive
business workflow” aligned with the reference answer’s holistic view, effectively capturing its spirit
by offering a structured, UX-centric methodology.

Comparison of Cochain with Other Model Responses. Cochain’s primary strength is its sustained
focus on the UX design integration process and principles, closely matching the prompt’s core intent
and the reference answer. In contrast, PMC and CoA lean towards high-level strategic planning (e.g.,
PLM platforms, KPIs), emphasizing system management rather than the deep UX integration across
workflow stages highlighted by the reference answer. Debate showcases significant depth in UX
concepts and cutting-edge technologies. However, its primary focus is on HMI innovation details,
rather than systematically integrating UX across broader business workflow processes. Cochain
can better balance innovation with this workflow integration. MedAgents share some structural
similarities with Cochain, but Cochain is more direct in articulating the end-to-end UX lifecycle,
especially “Continuous Iteration and Optimization,” and its business workflow perspective. While
other models excel in specific areas (e.g., Debate’s UX tech depth; PMC and CoA’s strategic scope),
Cochain demonstrates the closest overall alignment with the reference answer’s advocated UX-
integrated process throughout the business workflow and its pragmatic perspective, thus performing
excellently in this qualitative assessment.
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Table 18: Case study of interpretability. The three distinct modules, namely Knowledge, Causal
Chain, and Prompts Tree, are each assigned one of the three different color schemes: red, yellow, and
blue. The colors within the modules correspond to those in the output, and logically related content is
annotated using the same color scheme.

User need How can cost optimization be achieved in automotive manufacturing?

Knowledge Cost optimization points include technological innovation, quality control, and environ-
mental and energy management. Design optimization, material selection, and supply chain
network construction strategies are measures for cost optimization...

Cause chain Stamping is primarily used for component forming and can be integrated with
automated and intelligent production lines, intelligent monitoring and optimization sys-

tems, as well as smart mold maintenance...

Prompts tree Prompt 1: User Need: Cost optimization → Design Method: Accelerating prototype itera-
tion → Supply Chain Method: Selection of lightweight materials → Production Method:
Research and analysis of lightweight material performance and cost → Quality Inspection
Method: ensuring materials meet performance and cost requirements.
Prompt 2: User Need: Cost optimization → Design Method: Accelerating prototype itera-
tion → Supply Chain Method: Selection of lightweight materials → Production Method:
Design optimization to enhance material utilization → Quality Inspection Method: Testing
the strength and stability of the optimized structure.
...

Output In automotive design, it is essential to consider prototype optimization and innovation in
design methodologies. For instance, to address customer-specific vehicle customization,
cost control during the design phase can be achieved by accelerating prototype iterations
and utilizing lightweight materials. Additionally, the properties and costs of lightweight
materials should be taken into account to optimize structural design and enhance material
utilization.
In supply chain management, cost optimization can also be achieved. This includes strate-
gies for building the supply chain network and optimizing logistics. By consolidating
procurement and leveraging economies of scale, procurement costs can be reduced. Collab-
orative Planning, Forecasting, and Replenishment (CPFR) methods can further optimize
inventory costs.
In the manufacturing stage, cost optimization can be achieved through the introduction
and implementation of automated and intelligent production lines. For example, the use of
automated production lines, coupled with intelligent monitoring and optimization systems,
can reduce redundant tasks and increase production efficiency. Furthermore, for specific
manufacturing processes, such as stamping, material performance costs can be analyzed,
and intelligent molds and automatic maintenance systems can be developed to optimize
costs.
Finally, in the quality inspection stage, ensuring that all materials and products meet the
predetermined performance and cost requirements is crucial. Additionally, improving
production processes to ensure product processing quality is an important aspect of quality
inspection.
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Question In the design process, how can User Experience (UX) design be more effectively integrated to improve the human-computer interaction quality of infotainment systems?

reference In the automotive design process, to more effectively integrate User Experience (UX) design and enhance the human-computer interaction quality of infotainment systems, we need 

to consider the collaborative situation of the entire business workflow. We must first design with a user-centric approach, obtaining user needs and habits through methods such as 

user research, user interviews, questionnaires, behavioral observation, constructing user personas, and user journey maps. At the same time, understanding the user's environment 

and device habits is crucial for designing an automotive infotainment system that meets user needs and habits.

During the design phase, we need to consider incorporating elements of User Experience (UX) design, including the integration of physical controls and digital interfaces, optimizing 

the infotainment system interface, and enhancing its intelligence and convenience. Simultaneously, we should draw on the latest technological trends to keep the infotainment system 

up-to-date. Regarding system performance, we also need to perform optimizations to extend its service life, enabling it to better meet users' long-term usage needs.

Furthermore, we must also consider the selection of lightweight materials in the supply chain. This not only provides a better operational feel but also reduces the overall weight of 

the vehicle, further enhancing the user experience. In terms of production processes, we need to research and analyze the performance and cost of lightweight materials, optimize the 

design structure to improve material utilization, and refine production processes to ensure processing quality, thereby guaranteeing the quality and performance of the infotainment 

system.

Finally, in the quality inspection phase, we need to ensure that the execution results of each stage meet the preset goals. This includes verifying whether materials meet performance 

and cost requirements, inspecting the strength and stability after structural optimization, and examining the product quality after improvements in production processes, ensuring that 

the infotainment system we provide can serve users stably and durably, enhancing their user experience.

In summary, during the design process, we need to integrate multidisciplinary collaboration, including user research, design, supply chain management, production, and quality 

inspection, forming a collaborative work chain aimed at enhancing the user experience. 

Cochain From a collaborative perspective based on the automotive business workflow, I will comprehensively answer how to effectively integrate User Experience (UX) design to enhance 

the human-computer interaction quality of infotainment systems from multiple dimensions.

Firstly, in the User Research and Needs Analysis Phase, conduct comprehensive user research, including user interviews, questionnaires, and behavioral observation; construct 

detailed user personas and user journey maps; and deeply understand the driving habits and interaction preferences of different user groups.

Secondly, regarding Design Principles and Methods, adopt a user-centric approach, focusing on the usability and intuitiveness of interaction design; ensure seamless integration of

physical controls and digital interfaces; and balance technological innovation with actual user needs.

Thirdly, for Interdisciplinary Collaboration, integrate professionals from multiple fields such as human-computer interaction, software engineering, and automotive design, and 

establish multi-departmental collaboration mechanisms to promote innovation and optimization.

Fourthly, in Technology and Interaction Innovation, introduce intelligent interaction technologies, such as voice recognition and gesture control; optimize interface response speed

and interaction fluency; and provide personalized interface customization and recommendation functions.

Fifthly, for Continuous Iteration and Optimization, establish user feedback mechanisms; conduct regular usability testing; and continuously iterate system design based on user 

feedback.

Sixthly, concerning Performance and Cost Balance, control system development costs while enhancing user experience, and ensure the feasibility and economy of technical solutions.

Lastly, for Quality Assurance, conduct rigorous performance testing and quality inspection, and verify system stability, security, and user experience consistency.

Through this comprehensive and systematic approach, the human-computer interaction quality of automotive infotainment systems can be significantly improved, creating a more 

intelligent, convenient, and personalized driving experience for users. 

PMC Based on a comprehensive analysis of four sub-tasks, I will provide a cross-domain, systematic solution for integrating User Experience (UX) in automotive infotainment systems. 

The Comprehensive Solution Framework includes: 1. Global Design Philosophy: Core Objective is to create a user-centric, safe, efficient, intelligent, and personalized in-vehicle 

interaction system. 2. Cross-Domain Collaborative Mechanism: Key Collaboration Points are to establish a PLM digital collaboration platform, build a closed-loop system 

integrating design, manufacturing, supply chain, and quality, and enable real-time demand tracking and rapid response. 3. Core Elements of User Experience Design: For Interaction 

Interface, this includes simplified interface hierarchy, intuitive graphical design, safety-first operational logic, and millisecond-level response speed. For Ergonomics, it involves 

precise adaptation of screen size and position, support for multi-modal interaction (voice/gesture/touch), and personalized configuration and intelligent memory. 4. Technological 

Innovation Path: Key Technologies are AR navigation display, multi-device interconnection, AI intelligent recommendation, blockchain traceability, and machine vision inspection. 

5. Manufacturing and Quality Assurance: Manufacturing Processes include five-axis CNC precision machining, high-performance composite materials, nano surface treatment, and 

intelligent inspection systems. Quality Control involves multi-scenario simulation testing, AI intelligent assessment, user behavior big data analysis, and a continuous iterative 

optimization mechanism. 6. Supply Chain Strategy: Supplier Selection requires strict technical capability assessment, multi-sourcing, and long-term strategic cooperation. Cost 

Control involves economies of scale in procurement, lean production, and cost reduction through technological innovation. 7. Implementation Path and Investment: Suggested 

Investment includes 5-8 million dollars for a digital platform, 2-3 million dollars for supplier capability enhancement, and an annual budget of 1-1.5 million dollars for continuous 

optimization. Expected Outcomes are a 30% improvement in supply chain response speed, a 15-20% reduction in quality costs, and a 25% increase in UX design implementation 

efficiency. 8. Risk Management: Key Risk Points are standardization of technology, cross-departmental collaboration, and digital transformation. Mitigation Strategies include 

phased implementation, continuous iteration, special project team building, and regular performance evaluation. 9. Continuous Optimization Mechanism: Optimization Paths are 

real-time user feedback collection, agile development methodology, cross-team collaboration, and rapid iteration cycles. In conclusion, this comprehensive solution, through 

systematic thinking, deeply embeds the user experience concept into the entire lifecycle of automotive infotainment systems, achieving a perfect balance between technology, user 

needs, and business value. 

MedAgents A Comprehensive Solution for Automotive Infotainment System UX Design involves an Overall Strategic Framework with: 1. A User-Centric Collaborative Design Model, 

including establishing a cross-departmental UX design committee, regular user experience workshops, and a multi-level user feedback loop. 2. Balancing Technological Innovation 

and User Needs, with core principles that technology serves user experience, simplifies complex interaction logic, and ensures system intuitiveness and ease of use. Specific 

Implementation Paths include: I. User Research and Scenario Analysis Phase, involving user persona construction (segmenting users, analyzing scenario needs, user behavior 

database) and scenario simulation and experience testing (virtual simulation, multi-scenario validation, collecting user data and emotional feedback). II. Technology Integration 

Strategy, covering intelligent interaction technologies (multi-modal systems, context-aware tech, NLP, personalized algorithms) and hardware/software synergy (standardized 

interfaces, modular architecture, flexible framework). III. Quality Assurance Mechanism, with performance testing (extreme environment adaptability, long-term reliability, 

security/privacy testing) and continuous iteration and optimization (rapid feedback response, regular performance evaluation, agile development). Key Success Factors are seamless 

cross-departmental collaboration, a user-centric design philosophy, balancing innovation with practicality, and continuous learning with rapid iteration. Expected Outcomes include 

improved user satisfaction, reduced system complexity, enhanced brand competitiveness, and a differentiated user experience. Through this comprehensive strategic framework, 

while maintaining technological leadership, we will create a more intelligent, intuitive, and personalized in-vehicle interaction experience for users. 

Debate As an expert in automotive design, I strongly agree with the in-depth analysis of the previous experts. I will provide more detailed and forward-looking insights from the perspective 

of User Experience (UX) design. The Comprehensive Innovation Strategy for Infotainment System UX Design includes: 1. Perceptual Intelligence in User Experience, which 

involves contextual intelligent perception through multi-sensor fusion, dynamic adjustment of cognitive load based on driving complexity, and emotional interaction design using 

emotional computing. 2. Innovative Paths in Interaction Design, featuring multi-modal intelligent interaction (voice, gesture, eye tracking, haptic feedback) and contextual predictive 

services (scenario prediction, intelligent recommendations). 3. Deep Integration of Human-centric Technology, encompassing privacy and security (data anonymization, user-

controllable sharing, transparent algorithms) and inclusive design (age-friendly, accessible for disabilities, multi-language adaptability). 4. Seamless Ecosystem Connectivity, 

covering in-vehicle (autonomous driving collaboration, vehicle health monitoring), mobile (smartphone sync, wearable data integration), and cloud service ecosystems (real-time 

navigation, personalized services, remote diagnostics). 5. Agile Mechanism for Continuous Innovation, including user feedback loops, open development platforms, interdisciplinary 

R&D, and rapid iteration. 6. Future Technology Foresight, such as immersive interaction (AR navigation, VR entertainment), autonomous learning systems (AI adaptation, dynamic 

preference learning), and biometric technology (multi-factor authentication, personalized configurations). A key insight is that modern infotainment systems are intelligent 

interaction platforms requiring a balance between innovation, UX, and safety. Future systems will be mobile ecosystem portals with high intelligence and emotional perception. This 

multi-dimensional approach will greatly enhance UX quality and found future mobility ecosystems. 

CoA Based on detailed suggestions from experts in various professional segments, I will provide an integrated, collaborative, full value-chain solution for an intelligent infotainment 

system from a senior management perspective. The Intelligent Adaptive Interaction Infotainment System - Comprehensive Management Plan outlines: I. Strategic Vision: To create 

a future-oriented intelligent in-vehicle interaction system, establishing new standards for automotive infotainment systems through user experience, technological innovation, and 

industrial collaboration. II. Overall Design Principles: 1. User-centric, 2. Technology innovation-driven, 3. Full value-chain collaboration, 4. Sustainable development. III. Key 

Integration Strategies: 1. Synergy between User Experience and Technological Innovation involves deep integration of personalized AI algorithms and interaction design, balancing 

innovation and usability in multi-modal interaction technologies, and dynamic adaptive interface design. 2. Synergy between Supply Chain and Production Manufacturing includes 

modular and standardized design, flexible production lines, agile supplier management, and a balance between cost and innovation. 3. Full Lifecycle Quality Management Plan 

encompasses proactive quality management, digital twin technology, continuous improvement mechanisms, and data-driven optimization. IV. Technology Roadmap: Phase 1 (6-12 

months) involves building a prototype system, user testing and iteration, preliminary supplier assessment, and production line proof-of-concept. Phase 2 (12-24 months) includes 

system iteration and optimization, preparation for mass production, establishment of a supply chain network, and improvement of the quality management system. Phase 3 (24-36 

months) focuses on full commercialization, international market expansion, continuous technological iteration, and ecosystem construction. V. Key Integration Mechanisms: 1. A 

Cross-departmental Collaboration Platform features regular technical roadmap discussions, agile decision-making mechanisms, and innovation incentive mechanisms. 2. Risk 

Management includes multi-scenario simulation, alternative technology routes, and rapid response mechanisms. 3. Balance between Innovation and Cost is achieved through cost 

reduction via modular design, economies of scale in procurement, and technological iteration. VI. Key Performance Indicators (KPIs) for User Experience are user satisfaction >95%, 

personalized recommendation accuracy >90%, and interaction response time <100ms. For Technological Innovation, KPIs include >10 patent applications/year, R&D investment 

ratio >5%, and technology iteration cycle <12 months. For Cost Control, targets are system cost 15% lower than similar products, production efficiency increased by 20%, and 

energy consumption reduced by 15%. For Quality Management, goals are product yield rate >99.5%, system reliability >99.99%, and defect rate <50 ppm. VII. Sustainable 

Development Commitment includes green production, low-carbon technologies, social responsibility, and technology inclusiveness. VIII. Implementation Guarantees are continuous 

high-level support, dedicated funding, talent development programs, and an open innovation ecosystem. In summary, this comprehensive plan, through deep collaboration in user 

experience, technological innovation, supply chain management, production manufacturing, and quality inspection, constructs a future-oriented intelligent in-vehicle infotainment 

system solution. The plan balances innovation, feasibility, cost, and quality, providing a systematic path for the development of automotive intelligent interaction systems. 
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Figure 11: Case study on the Automotive dataset. Passages aligning with the reference answer are
highlighted in the same color. The left side of the figure lists the scores for each baseline.
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Question In toxicological research, how can high-throughput screening technology be used for the early identification and assessment of potential drug toxicity risks?

reference In toxicological research, utilizing High-Throughput Screening (HTS) technology for the early identification and assessment of potential drug toxicity risks is an indispensable part 

of modern drug development. The following is a detailed answer to this question: 1. Principles and Applications of High-Throughput Screening Technology Principles: HTS 

technology, through automated equipment and miniaturized experiments, enables rapid screening of a large number of compounds in a short time to detect their effects on specific 

biomarkers or cellular functions. Applications: In toxicological research, HTS is primarily used to assess the potential risks of drugs in terms of cytotoxicity, genotoxicity, metabolic 

toxicity, etc. 2. Strategies for Early Toxicity Identification 2.1 Target-Specific Screening - Receptor/Enzyme Activity Detection: Evaluate the interference of drugs on key biological 

processes by utilizing changes in the activity of specific receptors or enzymes. - Cell Signaling Pathway Analysis: Predict potential toxicity mechanisms by detecting the effects of 

drugs on cell signaling pathways. 2.2 Cytotoxicity Screening - Cell Viability Assay: Use reagents such as MTT, Alamar Blue, etc., to assess the impact of drugs on cell proliferation 

and survival. - Cell Morphology Analysis: Detect changes in cell morphology through microscopic observation or automated image analysis systems. 2.3 Genotoxicity Screening -

DNA Damage Detection: Utilize the Comet Assay or γH2AX focus formation assay to evaluate the damaging effects of drugs on DNA. - Gene Mutation Detection: Use the Ames 

test or micronucleus test to detect drug-induced gene mutations. 2.4 Metabolic Toxicity Screening - Hepatocyte Toxicity Detection: Utilize hepatocyte cell lines (such as HepG2) to 

assess the interference of drugs on liver metabolic functions. - Mitochondrial Function Detection: Evaluate drug-induced damage to mitochondrial function by measuring ATP 

generation or mitochondrial membrane potential. 3. Application of Latest Technological Methods 3.1 High-Content Screening (HCS) - Multi-Parameter Analysis: Provides more 

comprehensive toxicity information by combining cell morphology, fluorescent labeling, and image analysis. - Time-Resolved Imaging: Dynamically monitors cellular changes 

under drug action, revealing the temporal characteristics of toxic effects. 3.2 Omics Technologies - Genomics: Identify drug-induced gene expression changes through whole-

genome expression analysis. - Metabolomics: Analyze drug-induced changes in metabolites to reveal potential metabolic toxicity. 3.3 Machine Learning and Artificial Intelligence -

Data Mining: Utilize machine learning algorithms to extract toxicity-related features from large HTS datasets. - Predictive Model Construction: Build AI models for predicting drug 

toxicity based on existing data, improving screening accuracy and efficiency. 4. Practical Guidance Significance 4.1 Optimization of Screening Processes - Standardized Operations: 

Establish standardized HTS operating procedures to ensure the reliability and reproducibility of experimental results. - Quality Control: Strictly control experimental conditions to 

reduce inter-batch variability. 4.2 Data Integration and Analysis - Multi-Dimensional Data Integration: Combine HTS data with in vitro and in vivo experimental data for 

comprehensive risk assessment. - Bioinformatics Analysis: Utilize bioinformatics tools for in-depth analysis of toxicity mechanisms. 4.3 Risk Assessment and Management - Early 

Elimination of High-Risk Drugs: Timely eliminate candidate drugs with potential toxicity based on HTS results, reducing R&D costs. - Toxicity Mechanism Research: Conduct in-

depth research on identified toxicity signals to provide guidance for subsequent drug design. 5. Industry Trends and Outlook - Personalized Toxicology: Conduct personalized 

toxicity risk assessment by combining patient genomic information. - Multidisciplinary Integration: Integrate knowledge from multiple disciplines such as chemistry, biology, and 

informatics to enhance the comprehensiveness and accuracy of toxicity screening. - Green Toxicology: Develop environmentally friendly and efficient toxicity screening methods, 

reducing the use of experimental animals. In summary, utilizing HTS technology for early identification and assessment of potential drug toxicity risks requires the comprehensive 

application of various technical means, optimization of experimental processes, and integration with the latest research progress and industry trends to achieve efficient and accurate 

toxicity assessment, providing strong support for drug development.

Cochain I will provide you with a detailed analysis of the application of high-throughput screening technology in early risk assessment in toxicological research within the pharmaceutical 

workflow. Application of High-Throughput Screening Technology in Early Risk Assessment of Drug Toxicology I. Technology Overview High-Throughput Screening (HTS) is a 

key technology in modern drug development for rapidly assessing the safety and toxicity of compounds. Through automated and parallelized methods, it allows for systematic 

toxicity risk assessment of a large number of compounds in a short period. II. Key Technological Strategies 1. Cell-Level Toxicity Screening - Establishment of multiple cell models: 

Utilizing human-derived cell lines, primary cells, etc., to simulate the physiological environments of different organs and tissues. - Key detection indicators: - Cell viability -

Apoptosis - Oxidative stress response - Mitochondrial function 2. Molecular-Level Risk Assessment - Genomic screening: - Detection of gene expression changes - Assessment of 

potential genotoxicity - Analysis of cellular stress response pathways - Proteomic analysis: - Protein interaction networks - Changes in signal transduction pathways - Key target 

toxicity assessment 3. Computational Toxicology Methods - Machine learning algorithms: Constructing toxicity prediction models - Quantitative Structure-Activity Relationship 

(QSAR) analysis - Molecular docking simulations - Bioinformatics risk prediction III. Technology Implementation Process 1. Preliminary Compound Library Construction -

Collection and organization of candidate compounds - Standardized and structured data processing 2. High-Throughput Screening Stage - Multi-dimensional, multi-scale parallel 

detection - Automated experimental platforms - Real-time data acquisition and analysis 3. Risk Stratification and Assessment - Establishment of risk grading standards - Formulation 

of elimination and optimization strategies IV. Key Technological Challenges - Accuracy of simulating complex biological systems - Data standardization and interpretation -

Reliability of computational models - Ethical and regulatory compliance V. Future Development Trends - AI-assisted toxicity prediction - Organoid technology - Personalized 

toxicological assessment - Interdisciplinary collaborative innovation Conclusion High-throughput screening technology, through multi-dimensional and high-efficiency methods, 

significantly enhances the ability to identify toxicity risks in the early stages of drug development, making it an indispensable key technological link in the modern pharmaceutical 

workflow. This systematic analysis report comprehensively elaborates on the application of high-throughput screening technology in the early risk assessment of drug toxicology 

from multiple dimensions such as technology, methods, processes, and future trends. Through collaborative innovation and interdisciplinary integration, this technology is reshaping 

the risk management paradigm in pharmaceutical R&D.

PMC Based on the results of the three sub-tasks, I will provide a comprehensive, cross-domain collaborative integrated solution for drug toxicity risk management: [Integrated Solution: 

Intelligent Drug Full-Lifecycle Toxicity Risk Management System] I. Overall Architecture 1. Core Concept: End-to-end intelligent risk warning and dynamic management 2. Key 

Technologies: Multi-dimensional high-throughput screening + AI risk prediction 3. System Goal: Achieve safety and controllability throughout the drug's full lifecycle II. 

Technological Innovation Pathways 1. R&D Stage (Toxicological Screening) - Build multi-target cell and molecular level screening platforms - Apply human-derived cell lines and 

3D organ-on-a-chip - Integrate computational toxicology models - Key Technologies:  * High-content imaging analysis  * Gene expression microarrays  * Proteomics detection 2. 

Manufacturing Stage - Intelligent real-time monitoring platform - Embed computational toxicology models - Establish multi-dimensional risk warning system - Key Strategies:  * 

High-throughput online testing  * Intelligent equipment transformation  * Ensure GMP compliance 3. Distribution and Marketing Stage - Digital risk traceability platform - Machine 

learning risk classification system - Blockchain technology for tracking - Key Initiatives:  * Real-time risk alerts  * Temperature and environmental monitoring  * Precise product 

recall mechanism III. Core Technology Integration 1. Data-Driven Risk Assessment Model - Establish dose-toxicity correlation models - Assess long-term and cumulative toxicity 

risks - Continuously update risk prediction algorithms 2. Intelligent Risk Management Platform - Cross-departmental collaboration mechanism - Real-time data analysis - Dynamic 

risk file management…

MedAgents Based on the application of High-Throughput Screening (HTS) technology in drug toxicology research, as a senior manager in the pharmaceutical industry, I propose the following 

collaborative plan for the entire workflow: Overall Strategic Plan: Constructing an \"Intelligent-Integrated-Dynamic\" Drug Safety Risk Management Ecosystem I. Organizational 

Structure and Collaborative Mechanisms 1. Establishment of a Cross-Departmental \"Intelligent Drug Safety Risk Assessment Center\" - Composition: Professionals in toxicology, 

bioinformatics, clinical research, AI algorithms, production quality, etc. - Establish a flat, matrix-style management model - Hold regular cross-departmental technical collaboration 

meetings II. Technology Platform Construction 1. Multi-Dimensional HTS Technology Platform - High-throughput cell culture screening platform - Genomics/proteomics analysis 

platform - AI-assisted computational toxicology model platform 2. Key Technology Breakthrough Directions - Improve data processing accuracy - Develop more precise predictive 

models - Integrate machine learning algorithms III. Risk Management Process Re-engineering 1. Early R&D Stage - Establish a multi-parameter, multi-dimensional risk assessment 

indicator system - Implement an \"early-continuous-dynamic\" risk identification mechanism - Embed HTS data into the R&D decision-making process 2. Production and Quality 

Control - Formulate dynamic safety standards based on HTS data - Establish a real-time risk monitoring and warning system - Promote intelligent quality management 3. Market and 

Clinical Feedback - Construct a drug safety big data platform - Achieve closed-loop feedback between clinical data and HTS data - Continuously optimize risk assessment models IV. 

Resource Allocation and Investment 1. Technology R&D Investment - Allocate 20% of the annual R&D budget for HTS technology innovation - Establish an innovation incentive 

mechanism for research personnel 2. Talent Development - Establish joint talent development programs with universities and research institutions - Organize regular 

interdisciplinary technical exchanges V. …

Debate As a pharmaceutical drug R&D expert, I will provide an in-depth analysis and supplement from a professional perspective on the application of high-throughput screening 

technology in toxicological research: 1. Core Advantages of High-Throughput Screening Technology Technological Innovation Dimensions: - Multi-dimensional parallel detection 

capabilities - Rapid and precise risk identification - Significant reduction in R&D costs and time 2. Advanced Technology Platform Expansion Molecular and Cellular Level 

Integration Technologies: - High-content imaging cell analysis systems - Single-cell transcriptomics screening - Microfluidic chip toxicity detection - Electrophysiological function 

assessment technology 3. Precise Risk Assessment Methods In-depth Molecular Toxicology Analysis: - Epigenetic change detection - Panoramic mapping of cellular stress 

responses - Potential immunogenicity risk assessment - Endocrine disruptor identification 4. AI-Empowered Toxicology Intelligent Prediction Technologies: - Deep learning toxicity 

risk models - Cross-species toxicity extrapolation algorithms - Molecular structure-toxicity relationship prediction - Dynamic risk scoring systems 5. Cutting-Edge Integrated 

Innovation Strategies - Multi-omics data fusion - Real-time dynamic risk monitoring - Personalized toxicity risk assessment - Balancing ethics and safety Key Technological 

Features: - Ultra-high throughput - Multi-dimensional detection - Intelligent prediction - Precise risk assessment Through this systematic and intelligent approach, the accuracy, 

efficiency, and comprehensiveness of early drug safety assessment can be significantly improved.

CoA Based on the detailed suggestions from experts in each segment, I will provide an integrated collaborative plan for the entire workflow, ensuring the efficient implementation of 

high-throughput toxicity screening technology throughout the drug R&D, production, and sales processes. Integrated Pharmaceutical Workflow Collaborative Plan: High-

Throughput Toxicity Screening and Risk Management Strategies I. Overall Collaborative Governance Framework 1. Cross-Departmental Integrated Management Committee -

Composition:  • Head of R&D  • Director of Production  • Head of Sales & Marketing  • Quality Compliance Officer  • Chief Scientific Officer 2. Collaborative Goals - Establish an 

end-to-end innovative drug development ecosystem - Ensure seamless collaboration across R&D, production, and sales - Continuously optimize risk management mechanisms II. 

Key Collaborative Mechanisms 1. Information Sharing Platform - Establish a unified data management system - Real-time sharing of toxicity screening, production, and market data 

- Ensure multi-departmental collaborative decision-making 2. Risk Assessment and Management - Establish dynamic risk assessment models - Multi-dimensional risk warning 

mechanism - Rapid response and corrective measures III. …VI. Risk Management and Compliance 1. Regulatory Compliance - Strict adherence to FDA/EMA guidelines - Establish 

a comprehensive compliance audit system - Maintain transparency and traceability 2. Ethics and Safety - Establish an ethics review committee - Ensure ethical standards in R&D and 

production - Protect the rights of subjects and patients VII. Innovation and Continuous Optimization 1. Technology Iteration - Continuously invest in new technology R&D - Focus 

on the application of AI and big data in toxicity screening - Establish a technology radar to track cutting-edge innovations 2. Talent Development - Establish interdisciplinary talent 

development programs - Encourage internal innovation - Attract high-end talent Conclusion: This integrated plan, by establishing strong collaborative mechanisms, achieves 

seamless connection across R&D, production, and sales, ensuring the efficient application of high-throughput toxicity screening technology throughout the drug's full lifecycle. 

Through continuous optimization and innovation, we will establish a dynamic, agile, and risk-controlled drug development ecosystem.
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Figure 12: Case study on the Pharmaceutical dataset. Passages aligning with the reference answer
are highlighted in the same color. The left side of the figure lists the scores for each baseline.
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Question How can e-commerce platforms leverage procurement synergies to achieve cross-category and cross-regional procurement integration?

reference E-commerce platforms can adopt the following strategies and methods to leverage procurement synergies and achieve cross-category and cross-regional procurement integration: 1. 

Data Analysis and Demand Forecasting: - Utilize big data analytics technology to collect and analyze market demand, sales data, inventory status, and other information across 

different categories and regions. - Based on data analysis results, predict sales trends for a future period to provide a basis for procurement decisions. 2. Supply Chain Integration: -

Optimize the supply chain structure, integrate supplier resources, and establish a cross-category, cross-regional supply chain collaboration platform. - Establish long-term 

cooperative relationships with suppliers to achieve resource sharing and reduce procurement costs. 3. Centralized Procurement: - Centralize the processing of procurement needs for 

different categories and regions to achieve volume-based pricing and enhance bargaining power. - Implement unified procurement strategies to avoid duplicate purchasing and 

resource waste. 4. Standardized Processes: - Establish standardized procurement processes and operating procedures to ensure the standardization and consistency of procurement 

activities. - Optimize procurement processes to improve procurement efficiency and reduce procurement costs. 5. Cross-Category Collaboration: - Integrate procurement needs 

across different categories to achieve economies of scale. - Consider inter-category correlations in procurement decisions for comprehensive evaluation. 6. Regional Collaboration: -

Reasonably allocate procurement resources based on sales conditions in different regions to achieve inter-regional procurement collaboration. - Establish regional procurement 

centers to achieve centralized management of procurement activities. 7. Information Sharing and Communication: - Establish an internal information sharing mechanism within the 

e-commerce platform to ensure information flow among procurement, inventory, sales, and other departments. - Strengthen communication with suppliers to promptly understand 

market changes and adjust procurement strategies. 8. Supply Chain Finance: - Utilize supply chain finance tools to provide financing support for suppliers and reduce procurement 

costs. - Optimize supply chain capital flow through financial means to improve the overall operational efficiency of the supply chain. 9. Continuous Optimization: - Regularly 

evaluate procurement synergies, analyze existing problems and shortcomings, and continuously optimize procurement strategies. - Introduce advanced procurement management 

tools and technologies to improve procurement synergies. Through the above measures, e-commerce platforms can effectively achieve cross-category and cross-regional 

procurement integration, improve procurement efficiency, reduce procurement costs, and thereby enhance market competitiveness.

Cochain From the collaborative perspective of the e-commerce workflow, I will comprehensively answer from multiple dimensions how e-commerce platforms can achieve cross-category 

and cross-regional procurement integration: 1. Data-Driven Procurement Collaboration Strategy - Utilize big data analytics and demand forecasting technology to build a cross-

category, cross-regional intelligent procurement model. - Accurately identify consumer demand in different regions and categories through user behavior data and market trend 

analysis. - Establish a unified data analysis platform to achieve scientific and precise procurement decision-making. 2. Supplier Ecosystem Collaboration - Build a diversified and 

standardized supplier management system. - Establish a cross-category, cross-regional supplier evaluation and admission mechanism. - Promote collaborative development among 

suppliers in terms of compliance, social responsibility, and sustainability. 3. Key Measures for Procurement Integration - Establish a centralized procurement platform to achieve 

economies of scale in purchasing. - Reduce logistics and procurement costs through regional collaboration. - Build flexible procurement strategies to quickly respond to different 

regional market demands. 4. Risk Management and Compliance Control - Formulate unified procurement compliance policies. - Establish a cross-departmental risk assessment and 

control mechanism. - Ensure the legality and transparency of the procurement process. 5. Technology Empowerment and Innovation - Use AI and machine learning to optimize 

procurement forecasting models. - Build an intelligent supply chain management system. - Achieve digitalization and intelligence throughout the entire procurement process. 

Through the above strategies, e-commerce platforms can achieve procurement synergies, improving overall operational efficiency and market competitiveness.

PMC Based on the comprehensive results of four sub-tasks, I will provide a cross-domain, systematic e-commerce platform procurement collaboration solution: E-commerce Platform 

Cross-Category and Cross-Regional Procurement Collaboration Integrated Solution I. Strategic Architecture and Core Objectives 1. Overall Strategic Positioning - Build an 

\"Intelligent + Collaborative\" full-link procurement ecosystem. - Core Objectives: Enhance procurement efficiency, reduce costs, and strengthen supply chain resilience. - Achieve 

cross-category and cross-regional collaborative optimization. II. System Architecture and Key Elements 1. Technology Foundation - Big data analytics platform - AI and machine 

learning algorithms - Blockchain technology - IoT device network - Cloud computing infrastructure 2. System Functional Modules (1) Data Mid-platform - Cross-departmental, 

cross-category data integration - Unified data standards - Real-time data processing (2) Intelligent Decision Layer - Machine learning correlation analysis - Collaborative filtering 

recommendation models - Dynamic strategy adjustment algorithms (3) Execution Layer - Refined procurement management - Supplier capability profiling - Regionalized 

procurement strategies 3. Core Collaborative Mechanisms - Centralized procurement platform - Integration of supplier resource pools - Unified procurement standards and processes 

III. Key Implementation Strategies 1. Procurement Collaboration Optimization (1) Category Cross-Collaboration - Identify categories with similar supply chain characteristics -

Consolidate bargaining power - Reduce overall procurement costs (2) Supplier Resource Management - Establish a multi-category supplier evaluation mechanism - Develop 

strategic partnerships - Promote supplier capability enhancement 2. Regional Supply Chain Network (1) Layout of Regional Procurement Centers - Based on transportation hubs and 

economically dense areas - Achieve localized procurement with national coordination - Reduce logistics costs (2) Regional Differentiated Management - Adjust strategies based on 

regional market characteristics - Flexibly respond to local supply chain challenges 3. Warehousing and Logistics Collaboration (1) Intelligent Warehousing Network - Precise 

positioning of regional warehousing centers - Intelligent cross-warehouse resource allocation - RFID and blockchain technology for tracking (2) Logistics Dispatch Optimization -

AI algorithms for real-time route optimization - Cross-category order consolidation - Dynamic routing adjustments 4. User Experience Optimization (1) Personalized 

Recommendations - Machine learning algorithms for precise matching - Dynamic updates of user preferences - Expand product discovery range (2) Price Transparency - Directly 

convert procurement cost savings into user benefits - Long-term user price discount mechanisms 5. …

MedAgents An integrated solution for cross-category and cross-regional procurement collaboration on e-commerce platforms: [Overall Strategic Framework] I. Overall Collaborative 

Governance Model 1. Establish a \"Headquarters-Region-Category\" three-tier collaborative governance architecture - Headquarters level: Formulate overall strategy and standards -

Regional level: Responsible for localized execution and optimization - Category level: Provide specialized procurement insights 2. Construct a Cross-Functional Collaborative 

Committee - Members include procurement, technology, operations, finance, etc. - Hold regular cross-departmental strategic coordination meetings - Establish rapid decision-

making mechanisms [Technology Support System] II. Intelligent Procurement Collaboration Platform 1. Technology Architecture - Build a cloud-native distributed procurement 

management system - Integrate big data, AI algorithms, and blockchain technology - Ensure system real-time performance, security, and scalability 2. Core Functional Modules -

Panoramic supplier profiling - Intelligent matching and recommendation - Dynamic price forecasting - Real-time risk monitoring [Supplier Management Mechanism] III. 

Standardized Supplier Ecosystem Governance 1. Admission and Evaluation System - Establish unified supplier evaluation standards - Construct a dynamic rating mechanism -

Implement differentiated management strategies 2. Collaborative Incentive Mechanism - Establish a long-term strategic partnership program - Design a multi-dimensional 

performance evaluation system - Provide precise capability training and support [Operational Optimization Strategy] IV. Full-Link Cost and Efficiency Optimization 1. Procurement 

Cost Control - Establish a centralized procurement platform - Achieve economies of scale in bargaining - Promote category integration 2. Logistics and Warehousing Collaboration -

Build a regional logistics center network - Optimize inventory management - Reduce warehousing and delivery costs [Risk Management] V. Multi-Dimensional Risk Prevention and 

Control 1. Supply Chain Resilience - Establish diversified supplier reserves - Formulate emergency plans - Construct a risk warning mechanism 2. Data Security - Implement strict 

data protection measures - Establish a compliance management framework - Protect business privacy [Implementation Path] VI. …

Debate As an expert in e-commerce merchandise procurement, I strongly agree with the systematic solution proposed by the previous expert. On this basis, I will further deepen and 

supplement the implementation path for achieving procurement synergies from a practical perspective. In-depth Practical Paths for E-commerce Platform Cross-Category and Cross-

Regional Procurement Synergies: 1. Refined Collaborative Management (1) Dynamic Collaborative Matrix - Establish a cross-category, cross-regional procurement collaboration 

matrix - Formulate differentiated procurement strategies - Achieve dynamic optimization and allocation of procurement resources (2) Collaborative Performance Evaluation System 

- Construct multi-dimensional collaborative performance indicators - Establish cross-team, cross-category incentive mechanisms - Quantify collaborative effects and value creation 2. 

Data-Driven Precise Collaboration (1) Full-Link Data Integration - Integrate procurement, sales, and inventory data - Build a panoramic data insight platform - Achieve real-time 

data sharing and collaboration (2) Intelligent Prediction and Decision-Making - Develop machine learning-based demand forecasting models - Establish dynamic pricing and 

inventory optimization algorithms - Achieve precision and intelligence in procurement 3. Supplier Ecosystem Collaboration (1) Tiered Management - Construct a supplier tiered 

evaluation system - Establish differentiated cooperation mechanisms - Promote supplier capability enhancement (2) Co-creating Value Ecosystem - Build a supplier collaborative 

innovation platform - Promote product R&D and technology iteration - Build mutually beneficial long-term partnerships 4. Scenario-Based Collaborative Innovation (1) Cross-

Border Integration - Explore cross-industry, cross-domain procurement collaboration - Discover emerging procurement scenarios and business models - Promote procurement model 

innovation (2) Flexible Supply Chain - Build an agile and resilient supply chain network - Establish rapid response mechanisms - Enhance supply chain resilience and risk resistance 

5. Sustainable Development Collaboration (1) Green Procurement - Formulate green supply chain standards - Promote supplier sustainable development - Build a responsible 

procurement ecosystem (2) Social Responsibility - Establish a supplier social responsibility assessment mechanism - Promote social value creation in the supply chain - Balance 

economic benefits with social value Implementation Path: 1. Top-down strategic guidance 2. Continuous technological and managerial innovation 3. Open and shared ecosystem 

construction 4. Data-driven lean management Core Competencies: - Ecosystem collaboration capability - Data insight capability - Scenario innovation capability - Sustainable 

development capability Summary: Procurement synergy for e-commerce platforms is a systemic project that requires systematic promotion from multiple dimensions such as…

CoA Based on the detailed suggestions from experts in various segments of the e-commerce platform workflow, I will provide an integrated, collaborative final solution. This plan, from a 

strategic height, will balance multiple dimensions such as procurement, operations, logistics, and user experience to build a comprehensive and efficient e-commerce platform 

ecosystem. E-commerce Platform Full Workflow Collaborative Development Strategy Plan 1. Strategic Vision Build an intelligent e-commerce platform ecosystem centered on 

data-driven insights, technological innovation, and user experience, achieving economies of scale, cost optimization, and differentiated competitive advantages through cross-

segment collaboration. 2. Core Collaborative Mechanisms 2.1 Data Mid-platform and Intelligent Platform 1. Unified Data Governance   - Construct a centralized data mid-platform   

- Integrate procurement, operations, logistics, and user data  - Achieve real-time data sharing and analysis 2. AI Intelligent Decision System   - Build cross-segment intelligent 

algorithms   - Support decisions in procurement, inventory, pricing, recommendations, etc.   - Achieve data-driven precise operations 2.2 Supply Chain Collaboration 1. Full-Link 

Supplier Management   - Unified supplier evaluation standards   - Establish a dynamic performance mechanism   - Form a strategic partner ecosystem 2. Flexible Supply Chain   -

Rapid response to market demands   - Support cross-category, cross-regional procurement   - Optimize inventory and delivery efficiency 3. Key Collaborative Strategies 3.1 

Procurement and Operations Collaboration 1. Data-Driven Merchandise Strategy   - Based on user behavior and market insights   - Formulate precise procurement plans   - Optimize 

product structure and listing strategies 2. Promotion and Procurement Linkage   - Cross-category, cross-regional combined promotions   - Leverage procurement scale advantages   -

Increase average transaction value and conversion rates 3.2 Logistics and User Experience Collaboration 1. Personalized Delivery Services   - Delivery strategies based on user 

profiles   - Flexible delivery time choices   - Real-time logistics transparency 2. Intelligent Warehousing Supports User Experience   - Rapid order processing   - Precise inventory 

management   - Support innovative experiences like AR/VR 4. Technological Innovation Pathways 4.1 Core Technology Architecture 1. Microservices Architecture   - Highly 

decoupled system design   - Rapid iteration and flexible scalability   - Support independent optimization of each module 2. Blockchain and Security Technology   - Enhance supply 

chain transparency   - Protect user data security   - Establish a trustworthy business ecosystem 4.2 Artificial Intelligence Applications 1. Intelligent Recommendations and 

Personalization   - Multi-dimensional user profiling   - Real-time interest analysis   - Dynamic personalized content 2. Predictive Analytics   - Demand forecasting   - Price 

optimization   - Risk management 5. Organizational Capability Building…
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Figure 13: Case study on the E-commerce dataset. Passages aligning with the reference answer are
highlighted in the same color. The left side of the figure lists the scores for each baseline.
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F PROMPTS TEMPLATE

We provide the prompt templates for all multi-agent baselines presented in the paper, exemplified
using the automotive business workflow.

F.1 COCHAIN

We present a specific overview of the prompts template in the Cochain. As illustrated in Figure 14,
the prompt template adopts a modular design comprising three core components: the knowledge
module retrieved from the collaborative knowledge graph, the causal chain module, and the business
workflow prompts module generated through prompts tree retrieval. In the template, the gray box
represents fixed prompt content, while the colored boxes denote dynamic content that adapts based
on user needs.

Prompts Template How to enhance vehicle safety through automotive design？

Enhancements in vehicle safety are contingent upon the performance of
tires and braking systems;
Improvements in vehicle safety rely on the optimization of structural
design;
Advancements in vehicle safety depend on passive safety systems; 
The degree of tire wear impacts vehicle safety.

Vehicle safety enhancements rely on passive safety systems that are
informed by the integration of biomechanical research with injury
thresholds.
Vehicle safety performance is optimized through driving behavior data, 
which is utilized to construct user profiles, ultimately aiming to design 
targeted products.

User Need: Enhancement of vehicle safety -> Design Method:   
Utilization of high-strength steel and advanced welding techniques -> 
Supply Chain Method: Selection of lightweight materials -> Production 
Method: Structural design optimization to improve material utilization 
-> Quality Inspection Method: Verification of the strength and 
stability post-structural optimization.

You are an expert in the field of automotive 

design. When addressing the following user 

needs relating to automotive design, please 

provide a comprehensive answer that 

considers the entire business workflow, 

utilizing the provided knowledge and following 

the existing prompts.

User Need: {user_need}

Knowledge: {integrated_knowledge}

Causal chains : {causal_chain}

Prompts regarding the entire automotive 
business workflow: {prompts_tree}

Please provide an answer to the question 
based on the above knowledge and prompts.

Figure 14: The prompts template of Cochain for final input to LLM.
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F.2 PMC

Figure 15: The manager agent prompts template of PMC.

Figure 16: The supervisor agent prompts template of PMC.

Figure 17: The deliverer agent prompts template of PMC.
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Figure 18: The executor agent prompts template of PMC.
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F.3 MEDAGENTS

Figure 19: The prompt templates for stages 1 through 3 of MedAgents.
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Figure 20: The prompt templates for stages 4 and 5 of MedAgents.
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F.4 DEBATE

Figure 21: The prompts template of Debate for final input to LLM.
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F.5 COA

Figure 22: The prompt templates for the worker agent and manager agent of CoA.
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Figure 23: The prompt templates for each worker agent on the Automotive dataset.
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