Reasoning over natural language is a long-standing goal for the research community. However, studies have shown that existing language models are inadequate in reasoning. To address the issue, we present P\textit{O\textit{E\textit{T}}, a new pre-training paradigm. Through pre-training language models with programs and their execution results, P\textit{O\textit{E\textit{T}}} empowers language models to harvest the reasoning knowledge possessed in program executors via a data-driven approach. P\textit{O\textit{E\textit{T}}} is conceptually simple and can be instantiated by different kinds of programs. In this paper, we show three empirically powerful instances, i.e., P\textit{O\textit{E\textit{T}}}-Math, P\textit{O\textit{E\textit{T}}}-Logic, and P\textit{O\textit{E\textit{T}}}-SQL. Experimental results on six benchmarks demonstrate that P\textit{O\textit{E\textit{T}}} can significantly boost model performance on natural language reasoning, such as numerical reasoning, logical reasoning, and multi-hop reasoning. Taking the DROP benchmark as a representative example, P\textit{O\textit{E\textit{T}}} improves the F1 metric of BART from 69.2% to 80.6%. Furthermore, P\textit{O\textit{E\textit{T}}} shines in giant language models, pushing the F1 metric of T5-11B to 87.6% and achieving a new state-of-the-art performance on DROP. P\textit{O\textit{E\textit{T}}} opens a new gate on reasoning-enhancement pre-training and we will make our code, models, and data publicly available to facilitate future research.

1 Introduction

Recent breakthroughs in pre-training illustrate the power of pre-trained Language Models (LM) on a wide range of Natural Language (NL) tasks. Pre-training on self-supervised tasks, such as auto-regressive language modeling (Brown et al., 2020) and masked language modeling (Devlin et al., 2019; He et al., 2021) using large amounts of NL sentences, boosts the language understanding of models by a large margin (Wang et al., 2018a). However, existing pre-training paradigms have primarily focused on language modeling and paid little attention to advanced reasoning capabilities (Table 1). As a result, though reaching near-human performance on several tasks, pre-trained LMs are still far behind expectation in reasoning-required scenarios, such as numerical reasoning (Wallace et al., 2019; Ravichander et al., 2019) and logical reasoning (Yu et al., 2020; Liu et al., 2020). This observed deficiency calls for the development of general-purpose pre-training approaches suitable for learning reasoning skills.

In light of this, we conceive a new pre-training paradigm, P\textit{O\textit{E\textit{T}}} (Program Executor), to boost various reasoning skills over NL sentences by pre-training LMs with the task of program execution. As illustrated in Figure 1, with a program (e.g., SQL query) and its associated program context (e.g., database) as input, the model receives automatic supervision from an established program executor (e.g., MySQL) and learns to produce correct execution result. We believe that when LMs imitate program execution procedures, they could potentially learn the reasoning knowledge that humans adopted to create the associated program.
<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Dataset</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical</td>
<td>Question: What is the difference in casualty numbers between Bavarian and Austrian? Passage: [DOC] The popular uprising included large areas of . . .</td>
<td>DROP</td>
<td>Reading (RC) Comprehension</td>
</tr>
<tr>
<td>Logical</td>
<td>Conclusion: One employee supervises another who gets more salary than himself. Fact: [DOC] David, Jack and Mark are colleagues in a company. David supervises Jack, and Jack supervises Mark. David gets more . . .</td>
<td>LogiQA</td>
<td>Reading (RC) Comprehension</td>
</tr>
<tr>
<td>Multi-hop</td>
<td>Question: At which university does the biographer of John Clare teach English Literature? Passage: [DOC] John Clare : John Clare was an English poet . . . [DOC] CMS College Kottayam : The CMS College is one . . .</td>
<td>HotpotQA</td>
<td>Reading (RC) Comprehension</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Question: What was the percentage change in gaming between 2018 and 2019? Context: [TAB] Server products and cloud services</td>
<td>TAT-QA</td>
<td>Question Answering (QA)</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Hypothesis: Teva earns $7 billion a year. Premise: After the deal closes, Teva will generate sales of about $7 billion a year, the company said.</td>
<td>EQUATE</td>
<td>Natural Language Inference (NLI)</td>
</tr>
</tbody>
</table>

Table 1: The demonstration of five representative reasoning types. Listed are the types, the example questions, the representative dataset and their corresponding tasks. [DOC] and [TAB] indicates the start of a passage and a semi-structured table respectively. Here we regard **Question**, **Conclusion** and **Hypothesis** as **sentence**, and **Passage**, **Fact**, **Context** and **Premise** as **natural context** in Figure 1.

We propose POET, a new pre-training paradigm for boosting reasoning capability of language models by imitating program executors. Along with this paradigm, we present three exemplary across-program POET instantiations for various reasoning capabilities.

- We show with quantitative experiments that the reasoning ability our models obtains from POET pre-training is transferable to broader natural language scenarios. On six reasoning-focused downstream tasks, POET enables general-purpose language models to achieve comparable or even better performance than previous state-of-the-art specialized models.
- We carry out comprehensive analytical studies on POET and summarize some insightful findings in our pre-training. We hope these insights would shed light on the future research of reasoning like program executors.

2 Related Work

Since we focus on reasoning over natural language, our work is closely related to previous works which also concentrate on reasoning skills in NL tasks. Regarding methods to inject reasoning skills into LMs, our method is related to two lines of work contributing to the topic: the line of specialized models and the line of pre-training. Last, our work is also related to program execution since we use program executors in our pre-training.

Reasoning Skills The literature focuses on reasoning skills including numerical reasoning (Dua et al., 2019), multi-hop reasoning (Yang et al., 2018), reasoning in hybrid context (Chen et al., 2020b; Zhu et al., 2021) and logical reasoning (Liu et al., 2020; Yu et al., 2020). Our work concentrates on improving the above reasoning skills, leaving the other reasoning abilities such as commonsense reasoning (Zellers et al., 2018; Talmor et al., 2019; Bhagavatula et al., 2020) for future work.

Reasoning via Specialized Models Early works typically design specialized models and augment them into LMs for different types of questions (Dua et al., 2019; Andor et al., 2019; Hu et al., 2019; Ding et al., 2019). Taking Hu et al. (2019) as an example, they first predicted the answer type of a given question (e.g., “how many”), and then adopted the corresponding module (e.g., count module) to predict the answer. Although these
methods work well on a specific dataset, it is challenging for them to scale to complex reasoning scenarios (Chen et al., 2020c). Differently, our work follows the line of reasoning via pre-training, which enjoys better scalability.

Reasoning via Pre-training This line of work focuses on the continued pre-training of LMs using large-scale data which involves reasoning. The pre-training data are generally NL text, which are either crawled from Web with distant supervision (Deng et al., 2021), generated by a model-based generator (Asai and Hajishirzi, 2020), or synthesized via human-designed templates (Geva et al., 2020; Yoran et al., 2021; Campagna et al., 2020; Wang et al., 2021). However, large-scale high-quality textual data involving reasoning are difficult to collect (Deng et al., 2021). Meanwhile, as the complexity of desired reasoning operations increases, synthesizing high-quality (e.g., fluent) NL sentences becomes more challenging. Different from the above pre-training methods relying on NL data, our pre-training is performed on programs. These programs can be synthesized at any scale with high-quality and rich-diversity, and thus are much easier to collect than NL sentences.

Program Execution We present a framework to leverage program executors to train LMs, and thus our work is close to recent works on learning a neural program executor. In this line, the most related work to ours is Liu et al. (2021), which revealed the possibility of SQL execution on helping table pre-training. Different from them mainly focusing on table-related tasks, we present a generalized approach to include Math, Logic, and SQL, as well as their applications on many different natural language downstream tasks. Other related studies include learning program executors on visual question answering (Andreas et al., 2016), reading comprehension (Gupta et al., 2019; Khot et al., 2020), knowledge base question answering (Ren et al., 2021) and 3D rendering (Tian et al., 2019). These works mainly focus on learning a neural network to represent the program executor, while ours focuses on transferring the knowledge of program executor to downstream tasks via pre-training. Other lines of research did not leverage models as neural program executors, but instead leveraging program execution in inference as a reliable sanity guarantee for generated programs by pruning non-executable candidates (Wang et al., 2018b; Chen et al., 2019, 2021). Others have also noticed that when a target program is sequential, execution of the partially generated program provides reliable guidance towards the final gold output (Odena et al., 2020; Ellis et al., 2019; Chen et al., 2019; Sun et al., 2018; Zohar and Wolf, 2018).

3 Reasoning Like Program Executors

Reasoning is the process where deduction and induction are sensibly applied to draw conclusion from premises or facts (Scriven, 1976). As a supreme feature of intelligence, humans apply reasoning across modalities. Taking numerical reasoning as an example, humans can tell how many chocolates are consumed from a math word problem description, or from a real-world event where a mother gets off work and finds the choco-can empty, aside standing their guilty-looking kids with brownish stains on their faces. Through detachment of information from their superficial modality and symbolic abstraction, humans manage to unify input formats and condense their numerical reasoning knowledge into one executable symbolic system – This is the origin of an arithmetic program executor. If a model can master these reasoning skills by imitating program executors, we believe in the possibility of transferring those reasoning skills to different modalities. In our case, we expect language models to transfer reasoning to NL related tasks. Given this motivation, we discuss fundamental components of PoEt in the rest of this section, and present three concrete instantiations of our framework in § 4.

Program refers to a finite sequence of symbols which can be understood and executed by machines. For example, a program can be a logical form (e.g., Prolog), a piece of code (e.g., Python), or a math expression. Compared with NL sentences, programs are more formal. Each well-established program follows a specific set of syntax rules and can thus be synthesized in a systematic way. The generalizability of PoEt framework is free from assumption and derived from the set of syntax rules on which a program complies. In PoEt, as long as a program returns meaningful output to reflect its computational procedure, it is an acceptable program.

Program Context is the environment in which a program is running, which holds numerous variables accessible to the program. These variables serve as pivot points that anchor program context
with the program. In the same sense, the question and the passage in reading comprehension hold a similar relationship. This suggests a natural analogy between the program to program context and the sentence to natural context in Figure 1.

Program Executor is a black-box software that can execute a given program within the program context. An example could be the Python interpreter that executes each line of code, with its specific input data structures as program context. For PoET, program executors play the role of teachers to educate student (i.e., LMs) on reasoning knowledge they contain. PoET expects program executors to deterministically execute an input program with respect to a specific program context.

Execution Result is obtained from the program executor, given a program and program context as input. It is much analogous to the answer part in NL downstream tasks. The execution result is the primary observable data reflecting the intermediate reasoning process, and serves as the supervision provided by the program executor.

4 Instantiations of PoET

Along with the PoET paradigm, we manifest three exemplary across-program PoET instantiations (Figure 2), named PoET-Math, PoET-Logic and PoET-SQL, for injecting numerical, logical and integrated reasoning capabilities into LMs.

4.1 PoET-Math for Numerical Reasoning

The PoET-Math (Left in Figure 2) aims at injecting numerical reasoning skills into LMs. Specifically, PoET-Math is designed to boost the basic arithmetic skills (i.e., addition and subtraction) of LMs on downstream tasks. This arithmetic skill aligns with requirements to answer questions centered on addition/subtraction between two numbers, such as “What is the difference in casualty numbers between Bavarian and Austrian?”.

Pre-training Task Given several floating-point variables as the program context and a math expression only involving addition/subtraction as the program, the pre-training task of PoET-Math is to calculate the math expression. Taking the leftmost example from Figure 2, receiving the concatenation of the program and the program context as the input, PoET-Math is trained to output the number 180.7. Considering the output can be an arbitrary number, the encoder-decoder model (Lewis et al., 2020) is more suitable for this pre-training task.

Pre-training Corpus Each example in the corpus contains a math expression containing up to 2 operators and 3 variables, and a program context which contains at most 30 floating-point variables. The mathematical addition and subtraction operators are denoted by + and −, respectively. The values of variables vary from 0.0 to 1000.0. By random generation, we synthesize 4 million examples as the pre-training corpus for PoET-Math.

4.2 PoET-Logic for Logical Reasoning

The PoET-Logic (Mid in Figure 2) aims at injecting logical reasoning (e.g., necessary conditional reasoning) skills into LMs. For example, taking the facts “Only if the government reinforces basic education can we improve our nation’s education to a new stage. In order to stand out among other nations, we need to have a strong educational enterprise.” as premises, PoET-Logic is intended to help LMs identify whether the conclusion “In order to stand out among nations, we should reinforce basic education” is necessarily implied.

1 More discussion can be found in Appendix §C.
Pre-training Task Given a few first-order logic premise statements as the program context and one conclusion statement as the program, the pre-training task of POET-Logic is to identify if the program is necessarily implied from the program context. The execution result, i.e., the implication relationship between the program and the program context, is either True or False. Since the output is binary, an encoder-only model (Liu et al., 2019) is sufficient to perform this pre-training task.

Pre-training Corpus Each example in the corpus contains several premise statements and a conclusion statement. Initially, the statement collection for each example is empty. To produce it, we first allocate 5 Boolean variables (e.g., \(p \) and \(q \) in Figure 2) and randomly sample at most 8 pairs from their pairwise combinations. For each sampled pair \((p, q)\), we randomly select a statement from the set \(\{p \rightarrow q, p \rightarrow \neg q, \neg p \rightarrow q, \neg p \rightarrow q\}\) and add it to the collection. Once the statement collection is prepared, we randomly select a statement as the conclusion statement (i.e., program) and the rest as the premise statements (i.e., program context).

Last, we employ Z3 (De Moura and Bjørner, 2008), the well-known satisfiability modulo theory solver, as our program executor to obtain the implied result. Finally, we synthesize 1 million examples as the pre-training corpus for POET-Logic, and nearly 16% examples correspond to True.

4.3 POET-SQL for Integrated Reasoning

POET-Math and POET-Logic each focus on one specific reasoning skill. Different from them, POET-SQL allows LMs to master different reasoning skills simultaneously via integrated reasoning.

Pre-training Task Given a database as the program context and a SQL query as the program, the pre-training task of POET-SQL is to mimic the query result generation. Since the encoder-decoder LMs can generate arbitrary tokens, they are well suited for the task. On the other hand, encoder-only models have insufficient expressiveness to produce out-of-context query results. To allow them to benefit from the SQL execution, we tailor the task into a query result selection task for encoder-only models, which only utilizes query results that can be found in the database. More specifically, the task requires encoder-only models to perform an IO sequence tagging process to find the query results in the database. Here the tag \(I \) is for golden tokens in the query results, while \(O \) is for other tokens.

Pre-training Corpus Each example in the corpus contains a SQL query, a database and a query result. Notably, following Liu et al. (2021), each database is flattened into a sequence when it is fed into LMs. Meanwhile, to avoid databases being too large to fit into memory, we randomly drop the rows of large databases until their flattened sequences contain less than 450 tokens. For the query result generation task, we follow the same corpus construction strategy as described in Liu et al. (2021). Concretely, by instantiating SQL templates from SQUALL (Shi et al., 2020) over databases provided by WIKIQL (Zhong et al., 2017), 5 million examples are synthesized for pre-training. For the query result selection task, the pre-training corpus is constructed in a similar way as above, except that only the examples whose query results are suitable for encoder-only are retained. This filtering results in a corpus containing nearly 2 million examples.

5 Experiments & Analysis

To verify the effectiveness of our POET framework on boosting the reasoning capabilities of LMs, we first apply our method on top of several backbone models, including encoder-only models and encoder-decoder models. Then we conduct experiments on six typical reasoning benchmark datasets and compare POET models with previous state-of-the-art (SOTA) methods. Last, we perform a detailed pre-training analysis to demonstrate key insights with respect to each part in our framework.

5.1 Backbone Models

RoBERTa (Liu et al., 2019), one of the most popular LMs, is elected as the backbone in encoder-only LMs. We mark the RoBERTa model trained under POET as POET-X\textsubscript{RoBERTA}, where X is either Logic or SQL. BART (Lewis et al., 2020) is chosen as the backbone in encoder-decoder LMs. We mark the BART model trained under POET as POET-X\textsubscript{BART}, where X is either Math or SQL. Meanwhile, to explore whether our approach is simultaneously effective for much larger LMs, we also apply our framework to T5-11B (Raffel et al., 2020), the largest publicly available language model.

5.2 Experimental Datasets

We perform experiments on different datasets including DROP (Dua et al., 2019), HotpotQA (Yang et al., 2018), TAT-QA (Zhu et al., 2021), EQUATE (Ravichander et al., 2019) and...
LogiQA (Liu et al., 2020). Table 1 shows examples of these datasets and highlights their corresponding reasoning types. More details can be found in Appendix § B. Furthermore, SVAMP (Patel et al., 2021), the challenging diagnostic dataset for probing numerical reasoning, is employed in our experiments to test the generalization capability of our fine-tuned models on DROP. Our models are evaluated on its addition and subtraction subsets.

5.3 Implementation Details

We implement our models based on transformers (Wolf et al., 2020), fairseq (Ott et al., 2019) and DeepSpeed 3. Hyperparameters during pre-training and fine-tuning are provided in Appendix § E.

Passage Retrieval in HotpotQA Since the total length of the original passages in HotpotQA is too long to fit into memory, we train a classifier to filter out top-3 passages, as done in previous work (Deng et al., 2021). Specifically, a RoBERTa-Large model is fine-tuned to discriminate if an input passage is relevant to the question. The Hits@3 score of the classifier on HotpotQA is 97.2%.

Numerical Design in DROP and SVAMP As noticed by previous works, sub-word tokenization methods such as byte pair encoding (Sennrich et al., 2015) potentially undermines the arithmetic ability of models. Instead, the character-level number representation is argued to be a more effective alleviation (Wallace et al., 2019). Additionally, the reverse decoding of numbers is proposed as a better way of modelling arithmetic carry (Geva et al., 2020). Therefore, we employ these design strategies on DROP and SVAMP.

5.4 Methods Comparison

In this section, we compare our models with original LMs and previous state-of-the-art methods.

5.4.1 Comparing to Original LMs

Applying LMs to Different Datasets For any encoder-decoder LM (e.g., BART), we treat all datasets as generative tasks and fine-tune it directly to generate answers. As for the encoder-only LM (e.g., RoBERTa), the fine-tuning strategies on different datasets are slightly different. (i) On DROP, we cast the span selection task as a sequence tagging problem following Segal et al. (2020). (ii) On TAT-QA, we in-place substitute the RoBERTa-Large encoder in TAgOP (Zhu et al., 2021) with our PoET-SQL-RoBERTa to verify its effectiveness, and keep the rest of the components unchanged. (iii) On HotpotQA, we train two classifiers independently to predict the start and end positions of the answer span, as done in Devlin et al. (2019). (iv) On EQUATE, we train a classifier to perform sequence classification on concatenated premise-hypothesis pairs. Notably, we follow the official setup to train LMs on the MNLI dataset (Williams et al.,

Table 2: The main experimental results of different backbone models on test sets and dev sets (\(\circ\)) of datasets\(^2\) with or without our proposed PoET paradigm. The results of PoET are significantly better than the original LMs (\(p \leq 0.05\)), except for those marked by *, PoET-SQL\textsubscript{BART}, PoET-SQL\textsubscript{Logic-RoBERTa}, and PoET-SQL\textsubscript{T} are pre-trained from BART-Large, RoBERTa-Large and T5-11B respectively under the PoET paradigm. We verify the performance of PoET-SQL\textsubscript{T} on partial datasets considering our computation budget. Note the performance of RoBERTa-Large and PoET-SQL\textsubscript{RoBERTa} are evaluated on the subset of DROP where the answer is span(s).

\(2\) We compare our models with baselines on dev sets of partial datasets since their test sets are not publicly available.

3 http://github.com/microsoft/DeepSpeed
evaluate their zero-shot performance on EQUATE. (vi) On LogiQA, we train a classifier to perform binary classification on concatenated question-option-context pairs, as suggested in Liu et al. (2020). (vii) On SVAMP, the encoder-only model is not suitable since the answers are out-of-context. On all datasets, our models are evaluated with official evaluation metrics EM and F1.

Experimental Results Table 2 presents a performance comparison between POET models and their vanilla versions without POET. Across all instances, we observe significant performance improvement on downstream tasks requiring corresponding reasoning skills. Specifically, (a) POET-Math boosts numerical reasoning ability of BART, bringing in 9.0% EM gain on DROP; (b) POET-Logic improves logical reasoning skill of RoBERTa, resulting in a 2.2% EM improvement on LogiQA; (c) POET-SQL equips popular encoder-only and encoder-decoder models with an integrated package of reasoning skills, effectively improving their performance on five benchmark datasets. As a highlighted example, POET-SQL-BART obtains 11.5% (DROP) and 21.1% (SVAMP) improvements on EM, compared with the vanilla BART.

Since POET pre-training is carried purely on program context (Figure 2), whereas all downstream tasks are on natural context, our hypothesis that reasoning capability is transferable from program executors to NL scenarios gets verified. Another interesting observation is that POET also shines in giant LMs. As reflected from the results, T5-11B obtains noticeable performance gains on both DROP (1.7% EM) and SVAMP (4.5% EM).

5.4.2 Comparing to Previous SOTA

Baseline Setup We summarize the baseline methods in short below, and refer readers to their papers for more details. (i) On DROP, we include two families of models for comparison: specialized models such as NumNet+ (Ran et al., 2019), MTSMSN (Hu et al., 2019), NeRed (Chen et al., 2020c), QDGAT (Chen et al., 2020a) and language models such as GenBERT (Geva et al., 2020) and PReaM (Yoran et al., 2021). (ii) Similarly, on HotpotQA (Distractor), specialized model baselines include DFGN (Qu et al., 2019), SAE (Tu et al., 2020), C2F Reader (Shao et al., 2020) and the SOTA model HGN (Fang et al., 2020). The language model baselines consist of BERT (Devlin et al., 2019), SpanBERT (Joshi et al., 2020) and ReasonBERT (Deng et al., 2021). (iii) On TAT-QA, we adopt the official baselines, including Tapas (Herzig et al., 2020), NumNet+ V2 and the SOTA model TATOP (Zhu et al., 2021). (iv) On EQUATE, we compare our methods with BERT (Devlin et al., 2019), GPT (Radford et al., 2019) and Q-REAS (Ravichander et al., 2019). (v) On LogiQA, we compare our methods with Co-Matching Network (Wang et al., 2018c) and the SOTA model DAGN (Huang et al., 2021).

Experimental Results Table 3 lists all experimental results of baselines and our models on different datasets. As seen, our model generally achieves the best or second-best results over different reasoning skills, showing its strong performance. Meanwhile, POET that utilizes a mix of two different programs (i.e., POET-SQL-MathBART) achieves

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Specialized Models</th>
<th>EM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NumNet</td>
<td>64.9</td>
<td>68.3</td>
<td></td>
</tr>
<tr>
<td>MTSMSN (BERT)</td>
<td>76.7</td>
<td>80.5</td>
<td></td>
</tr>
<tr>
<td>NeRed (BERT)</td>
<td>78.6</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>NumNet+ (RoBERTa)</td>
<td>81.1</td>
<td>84.4</td>
<td></td>
</tr>
<tr>
<td>QDGAT (RoBERTa)</td>
<td>84.1</td>
<td>87.1</td>
<td></td>
</tr>
<tr>
<td>Language Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GenBERT (BERT)</td>
<td>68.8</td>
<td>72.3</td>
<td></td>
</tr>
<tr>
<td>PReaM (T3)</td>
<td>69.4</td>
<td>72.3</td>
<td></td>
</tr>
<tr>
<td>POET-MathBART</td>
<td>75.2</td>
<td>78.1</td>
<td></td>
</tr>
<tr>
<td>POET-SQL-BART</td>
<td>77.7</td>
<td>80.6</td>
<td></td>
</tr>
<tr>
<td>POET-SQL-MathBART</td>
<td>78.0</td>
<td>80.9</td>
<td></td>
</tr>
<tr>
<td>POET-SQL+</td>
<td>85.2</td>
<td>87.6</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: The comparison of our models with previous SOTA methods on test sets and dev sets (✈) of different datasets. LMs used by all baselines are in Large size, except for clarification. Bold and underlined numbers indicate the best and second-best results, respectively.
a slightly better performance than SQL alone. Furthermore, compared with other reasoning-enhanced LMs, PoET-SQL\textsubscript{BART} surpasses them by a large margin, demonstrating the effectiveness of our proposed program execution pre-training. For example, compared with PreaM initialized from TS-Large, PoET-SQL\textsubscript{BART} initialized from BART-Large exceeds it by 8.3%. Finally, along with our proposed PoET framework, PoET-SQL\textsubscript{TS} tops on the challenging benchmark DROP, revealing the great potential of LMs on reasoning scenarios.

5.5 Pre-training Analysis

In this section, we conduct pre-training analysis with respect to (w.r.t.) each part presented in §3 to explore their key insights. We carry all feasible pre-training variants of PoET-SQL and PoET-Math, and then fine-tune them on DROP for performance comparison. All results are shown in Table 4.

w.r.t. Reasoning Although the reasoning knowledge in program executors has been proven to boost downstream tasks, we do not know under what conditions such knowledge would be helpful. To explore it, for PoET-SQL, we ablate all SQL queries containing numbers from its pre-training corpus, while for PoET-Math, we pre-train it to execute multiplication/division instead of addition/subtraction. The poor performance of PoET-SQL and PoET-Math variants indicate that it is important to maintain alignment between the reasoning skills involved in the pre-training tasks and the ones required for downstream tasks.

w.r.t. Program As stated before, PoET does not make assumption on syntax rules a program is built upon. To verify it, we randomly map all SQL reserved keywords to the 100 lowest frequency tokens in the BART vocabulary. Results suggest that even such “broken” syntax rules hardly reduce reasoning capability transferability, demonstrating the generality and adaptability of PoET.

5.6 Comparison with Program Executor* (w.r.t. Program Executor) The key hypothesis of PoET is that the program executor is crucial for our pre-training. To verify that, we ablate the program executor in PoET-SQL\textsubscript{BART} and instead carry out a SQL language modeling pre-training. Practically, we mask each input SQL query in the pre-training corpus of PoET-SQL using the strategy adopted in BART (Lewis et al., 2020), and pre-train BART to output the associated complete SQL query given the masked SQL query and the database. The resulting scarce performance gain suggests what truly brings LMs reasoning ability is the program executor.

6 Conclusion

We introduce PoET, a new pre-training paradigm for boosting reasoning capability of language models via imitating program executors. Experimental results on six datasets demonstrate that PoET can significantly boost existing language models on several reasoning skills, including numerical, logical and multi-hop reasoning. Our best language model under PoET can reach a comparable or better performance than state-of-the-art methods. Finally, we unveil key factors that make PoET successful. In the future, we hope our analysis could inspire more transference of reasoning knowledge from program executors to models.

<table>
<thead>
<tr>
<th>Settings</th>
<th>PoET-SQL</th>
<th>PoET-Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>BART-Large</td>
<td>66.2/69.2</td>
<td>66.2/69.2</td>
</tr>
<tr>
<td>PoET Models</td>
<td>77.7/80.6</td>
<td>75.2/78.1</td>
</tr>
<tr>
<td>w.r.t. Reasoning</td>
<td>67.1/70.4</td>
<td>61.2/64.4</td>
</tr>
<tr>
<td>w.r.t. Program</td>
<td>76.9/79.7</td>
<td>-</td>
</tr>
<tr>
<td>w.r.t. Program Context</td>
<td>-</td>
<td>67.4/70.5</td>
</tr>
<tr>
<td>w.r.t. Program Executor</td>
<td>66.1/69.3</td>
<td>-</td>
</tr>
<tr>
<td>w.r.t. Execution Result</td>
<td>15.8/17.8</td>
<td>11.2/12.2</td>
</tr>
</tbody>
</table>

Table 4: The DROP EM/F\textsubscript{1} of PoET-SQL\textsubscript{BART} and PoET-Math\textsubscript{BART} with respect to each part in PoET.
References

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. **Neural machine translation of rare words with subword units.** CoRR, abs/1508.07909.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. 2018. **Neural program synthesis from diverse demonstration videos.** In International Conference on Machine Learning, pages 4790–4799. PMLR.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu. 2019. **Learning to infer and execute 3d shape programs.**

Table 5: The seven typical SQL types corresponding to numerical reasoning (Top) and multi-hop reasoning (Bottom). Listed are the type and the example SQL programs. [COL] and [VAL] represent the table column and the table cell value, respectively.

<table>
<thead>
<tr>
<th>Type</th>
<th>Example SQL Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>SELECT [COL]1 * [COL]2</td>
</tr>
<tr>
<td>Superlative</td>
<td>SELECT MAX([COL]1)</td>
</tr>
<tr>
<td>Comparative</td>
<td>SELECT [COL]1 WHERE [COL]2 > [VAL]2</td>
</tr>
<tr>
<td>Aggregation</td>
<td>SELECT COUNT([COL]1)</td>
</tr>
<tr>
<td>Intersection</td>
<td>SELECT [COL]1 WHERE [COL]2 = [VAL]2 AND [COL]3 = [VAL]3</td>
</tr>
<tr>
<td>Union</td>
<td>SELECT [COL]1 WHERE [COL]2 = [VAL]2 OR [COL]3 = [VAL]3</td>
</tr>
<tr>
<td>Nested</td>
<td>SELECT [COL]1 WHERE [COL]2 IN (SELECT [COL]1 WHERE [COL]3 = [VAL]3)</td>
</tr>
</tbody>
</table>

Table 6: The statistics of our experimental datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td># Questions</td>
<td># Docs</td>
<td># Questions</td>
</tr>
<tr>
<td>DROPPQA</td>
<td>77,409</td>
<td>5,565</td>
</tr>
<tr>
<td>HotpotQA</td>
<td>90,564</td>
<td>90,564</td>
</tr>
<tr>
<td>TAT-QA</td>
<td>13,215</td>
<td>2,201</td>
</tr>
<tr>
<td>SVAMP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EQUATE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LogiQA</td>
<td>6,942</td>
<td>6,942</td>
</tr>
</tbody>
</table>

Table 7: The DROP performance with different numbers of irrelevant variables in PoET-Math pre-training.

<table>
<thead>
<tr>
<th>Models</th>
<th>EM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BART-Large</td>
<td>66.2</td>
<td>69.2</td>
</tr>
<tr>
<td>PoET-Math buyers with 0 irrelevant variables</td>
<td>71.5</td>
<td>74.5</td>
</tr>
<tr>
<td>PoET-Math buyers with 10 irrelevant variables</td>
<td>74.6</td>
<td>77.5</td>
</tr>
<tr>
<td>PoET-Math buyers with 30 irrelevant variables</td>
<td>75.2</td>
<td>78.1</td>
</tr>
</tbody>
</table>

HotpotQA An extractive reading comprehension dataset that requires models to perform multi-hop reasoning over different passages (Yang et al., 2018). It contains two settings (i) Distractor: reasoning over 2 gold paragraphs along with 8 similar distractor paragraphs and (ii) Full wiki: reasoning over customized retrieval results from full Wikipedia passages. We experiment with its distractor setting since retrieval strategy is beyond our focus in this work.

TAT-QA A question answering benchmark to measure reasoning ability over hybrid context, i.e., passages and tables (Zhu et al., 2021). It is curated by combing paragraphs and tables from real-world financial reports. According to the source(s) the answers are derived from, the dataset can be divided into three subsets: Table, Text and Table-Text(both).

EQUATE The first benchmark dataset to explore quantitative reasoning under the task of natural language inference (Ravichander et al., 2019). As a test-only dataset, it requires fine-tuned models on MNLI to perform zero-shot natural language inference tasks over quantitative statements described in (premise, hypothesis) pairs to reach final entailment decisions.

C Variables Design in PoET-Math

In the pre-training task of PoET-Math, we regard several floating-point variables as the program context. These variables include necessary variables (i.e., variables required by the program) and irrelevant variables. The irrelevant variables exist to make the program context closer to the natural context which generally contains irrelevant sentences. For example, given the program \(a + b \) and the program context \(a = 1; b = 2; c = 3; d = 4; \), variables \(c \) and \(d \) are what we refer to as irrelevant variables. This is motivated by the fact that passages are usually full of irrelevant information regarding a specific question in NL downstream tasks. In this section, we explore impacts on pre-training effectiveness brought by numbers of irrelevant variables. Empirically, we experiment on pre-training with 0, 10, 30 irrelevant variables. The total length of 30 irrelevant variables approaches the maximum input length of pre-trained LMs, and thus we do not try more settings.

The experimental results are shown in Table 7. As observed, (i) models can still learn numerical reasoning during pre-training where the program context is free from irrelevant variables, though less effective. (ii) the setting of 30 irrelevant variables
brings BART-Large more performance improvement than the setting of 10 irrelevant variables. Considering there are plenty of lengthy passages in the DROP dataset, we therefore hypothesize that the noise level brought by irrelevant variables in the program context during pre-training should be made closer with the counterpart in the natural context during fine-tuning.

D NL Understanding Performance

Since the program context used in pre-training differs much from the natural context used in downstream tasks, a reasonable concern immediately follows: whether PoET pre-training improves reasoning ability at the sacrifice of natural language understanding (NLU) ability of LMs? To investigate the concern, we evaluate PoET models on representative benchmarks without emphasis on advanced reasoning skills, also covering the task of reading comprehension (RC) and natural language inference (NLI).

Dataset We fine-tune PoET-SQL-RoBERTa on (i) SQuAD v1.0: (Rajpurkar et al., 2016): one of the most classical single-span selection RC benchmarks measuring understanding over natural language context; (ii) MNLI (Williams et al., 2018): a large-scale NLI dataset measuring cross-domain and cross-genre generalization of NLU. Notably, our model is evaluated on the matched setting for the purpose of simplicity. (iii) QuoRef (Dasigi et al., 2019): A Wikipedia-based multi-span selection RC benchmark with a special emphasis on coreference resolution. All dataset Statistics are shown in Table 8.

Implementation Details (i) On SQuAD, we cast the span selection task as a sequence tagging problem following Segal et al. (2020). (ii) On MNLI-matched, we train both models to perform sequence classification on concatenated premise-hypothesis pairs. (iii) On QuoRef, we cast the span(s) selection task as an IO sequence tagging problem following Segal et al. (2020).

Table 8: PoET on NL understanding experiment dataset statistics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Questions</td>
<td># Docs</td>
</tr>
<tr>
<td>SQuAD v1.0</td>
<td>77, 409</td>
<td>5, 565</td>
</tr>
<tr>
<td>MNLI</td>
<td>392, 702</td>
<td>392, 702</td>
</tr>
<tr>
<td>QuoRef</td>
<td>19, 309</td>
<td>3, 771</td>
</tr>
</tbody>
</table>

Figure 3: The performance comparison between RoBERTa-Large and PoET-SQL-RoBERTa on representative NLU tasks. On SQuAD and QuoRef, we compare F1, whereas on MNLI we compare Accuracy.

Results As can be observed from performance comparison between PoET-SQL-RoBERTa and vanilla RoBERTa shown in Figure 3, across all three experimented NLU-focused datasets, PoET-SQL-RoBERTa performance are almost identical from counterparts of vanilla version. These negligible drops of performance suggest that reasoning capability can be transferred from program execution pre-training to NL downstream tasks, without the expense of LMs’ intrinsic understanding of language.

E Implementation Details

E.1 Pre-training Details

By default, we apply AdamW as pre-training optimizer with default scheduling parameters in fairseq. The coefficient of weight decay is set as 0.05 to alleviate over-fitting of pre-trained models. Additionally, we employ fp16 to accelerate the pre-training.

PoET-Math The pre-training procedure lasts for 10,000 steps with a batch size of 512. After the warm up in the first 2000 steps, the learning rate arrives the peak at 3×10^{-5} during pre-training.

PoET-Logic The pre-training procedure lasts for 5,000 steps with a batch size of 512. After the warm up in the first 1000 steps, the learning rate arrives the peak at 3×10^{-5} during pre-training.

PoET-SQL For PoET-SQL-BART and PoET-SQL-RoBERTa, the pre-training procedure lasts for 50,000 steps with a batch size of 512. After the warm up in the first 5000 steps, the learning rate arrives the peak at 3×10^{-5} during pre-training. To save memory, each example in the pre-training corpus could at most contains 512 tokens. For PoET-SQL-T5, the pre-training procedure lasts for 20,000 steps with a batch size of 512. After the warm
up in the first 2000 steps, the learning rate arrives
the peak at 1×10^{-5} during pre-training. The max-
imum input length in each example is truncated to
384 tokens to increase the batch size.

E.2 Fine-tuning Details

By default, we apply AdamW as fine-tuning op-
timizer with default scheduling parameters on all
datasets. To ensure statistical significance, all fine-
tuning procedures are run with three random seeds,
except for T5-11B and PoET-SQL$_{T5}$ due to the
limit of computation budgets.

DROP PoET-SQL$_{RoBERTa}$ and RoBERTa-Large
are trained with the subset of questions marked as
“span” from the DROP dataset.t Since a gold answer
may occur multiple times in the passage, we opti-
mize over the sum of negative log probability for
all possibly-correct IO sequences where each one
of gold answers is included at least once, as done
in Segal et al. (2020). The fine-tuning procedure
runs up to 25,000 steps with a batch size of 64,
with the learning rate of 7.5×10^{-6}. As for BART-
Large (and PoET-SQL$_{BART}$, PoET-Math$_{BART}$, the
same below) and T5-11B (and PoET-SQL$_{T5}$, the
same below), they are trained with the whole DROP
dataset. For BART-Large, the fine-tuning proce-
dure runs up to 20,000 steps with a batch size as
128 and a learning rate as 3×10^{-5}. For T5-11B,
due to the computational budget, the fine-tuning
procedure only lasts for 10,000 steps with a batch
size of 32, and the learning rate is 1×10^{-5}.

TAT-QA In the experiment of TAT-QA, we em-
ploy the official implementation and the default

\begin{table}[h]
\centering
\begin{tabular}{lccccc}
\textbf{Models} & \textbf{Number} & \textbf{Span} & \textbf{Spans} & \textbf{Date} & \textbf{Total} \\
\hline
\textit{Previous Systems} & & & & & \\
MTMSN (BERT) & 81.1 & 82.8 & 62.8 & 69.0 & 80.5 \\
NumNet+ (RoBERTa) & 83.1 & 86.8* & 86.8* & 63.9 & 84.4 \\
QDGAT (RoBERTa) & \textbf{86.2} & 88.5* & \textbf{88.5}* & 67.5 & \textbf{87.1} \\
GenBERT & 75.2 & 74.5 & 24.2 & 56.4 & 72.3 \\
PRReaSM & 64.4 & 86.6 & 78.4 & 77.7 & 72.3 \\
\hline
\textit{Original LMs} & & & & & \\
RoBERTa-Large & – & 86.4 & 79.9 & – & – \\
BART-Large & 63.6 & 79.6 & 74.6 & 62.1 & 69.2 \\
T5-11B & 83.2 & \textbf{90.2} & 85.8 & \textbf{84.9} & 85.8 \\
\textit{PoET Models} & & & & & \\
PoET-SQL$_{RoBERTa}$ & – & 88.2 & 83.1 & – & – \\
PoET-SQL$_{BART}$ & 78.9 & 84.5 & 79.6 & 71.9 & 80.6 \\
PoET-SQL$_{T5}$ & 85.2 & \textbf{92.4} & 86.6 & \textbf{84.4} & \textbf{87.6} \\
\end{tabular}
\caption{Breakdown of model F$_1$ score by answer types on the dev set of DROP. Some works only report overall
span type performance (marked by *), and single-span is non-separable from multi-span performance. Bold and
underlined numbers indicate the best and second-best results, respectively.}
\end{table}
Table 10: The EM performance of different models on all subsets of the EQUATE benchmark. Bold and underlined numbers indicate the best and second-best results, respectively.

<table>
<thead>
<tr>
<th>Models</th>
<th>RTE-Q</th>
<th>NewsNLI</th>
<th>RedditNLI</th>
<th>NR ST</th>
<th>AWPNI</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJ</td>
<td>57.8</td>
<td>50.7</td>
<td>58.4</td>
<td>33.3</td>
<td>50.0</td>
<td>50.4</td>
</tr>
<tr>
<td>BERT</td>
<td>57.2</td>
<td>72.8</td>
<td>49.6</td>
<td>36.9</td>
<td>42.2</td>
<td>51.8</td>
</tr>
<tr>
<td>GPT</td>
<td>68.1</td>
<td>72.2</td>
<td>52.4</td>
<td>36.4</td>
<td>50.0</td>
<td>55.8</td>
</tr>
<tr>
<td>Q-REAS</td>
<td>56.6</td>
<td>61.1</td>
<td>50.8</td>
<td>63.3</td>
<td>71.5</td>
<td>60.7</td>
</tr>
<tr>
<td>Original LMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BART-Large</td>
<td>68.1</td>
<td>76.2</td>
<td>65.0</td>
<td>53.7</td>
<td>49.7</td>
<td>62.6</td>
</tr>
<tr>
<td>RoBERTa-Large</td>
<td>69.3</td>
<td>75.5</td>
<td>65.6</td>
<td>60.1</td>
<td>50.7</td>
<td>64.2</td>
</tr>
<tr>
<td>PoET-SQL\text{BART}</td>
<td>72.3</td>
<td>75.2</td>
<td>64.8</td>
<td>70.7</td>
<td>49.5</td>
<td>66.5</td>
</tr>
<tr>
<td>PoET-SQL\text{RoBERTa}</td>
<td>75.3</td>
<td>75.5</td>
<td>68.1</td>
<td>69.2</td>
<td>50.5</td>
<td>67.5</td>
</tr>
</tbody>
</table>

Table 11: The EM performance of TagOp (PoET-SQL\text{RoBERTa}) with respect to answer types and sources on the dev set of TAT-QA.

vanilla BART-large with a wide margin in all types of questions, i.e. number (15.3%), date (9.8%), span (around 5%). (ii) PoET-SQL\text{RoBERTa} only deals with span selection questions, and obtain 1.9%, 3.2% gain on span, spans questions, respectively. (iii) For the giant PoET-SQL\text{TS}, we also observe 2% improvement on number questions, 2.2% on span and 0.8% on spans questions. These model-agnostic performance boost on DROP reveals the extra numerical reasoning knowledge models learned from SQL program executors.

EQUATE Table 10 presents performance breakdown by subsets of EQUATE (Ravichander et al., 2019), where we compare PoET-SQL\text{BART} and PoET-SQL\text{RoBERTa} with their vanilla versions and previous baselines. For both models, we observe around 10% acc improvement on the NR ST subset, where numerical comparison and quantifiers are especially emphasized. Stable performance improvement was also observed in both pre-trained models on the RTE-Q subset, where arithmetics and ranges are primary focus. Interestingly, PoET-SQL\text{RoBERTa} alone demonstrate improvement on RedditNLI (emphasizes approximation and verbal quantitative reasoning) subset. Performance on other subsets are approximately comparable between PoET pre-trained models and vanilla models, suggesting that PoET does not harm intrinsic abilities of language models.

TAT-QA Table 11 shows the detailed experimental results of TagOp (PoET-SQL\text{RoBERTa}). Considering that the pre-training of PoET-SQL\text{RoBERTa} is only performed on table-like texts (i.e., the flatten sequence of databases), it is highly non-trivial for our model to generalize to such a hybrid scenario containing both tables and passages, again illustrating the transferability of reasoning capabilities.