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Abstract

Reasoning over natural language is a long-001
standing goal for the research community.002
However, studies have shown that existing lan-003
guage models are inadequate in reasoning. To004
address the issue, we present POET, a new pre-005
training paradigm. Through pre-training lan-006
guage models with programs and their execu-007
tion results, POET empowers language models008
to harvest the reasoning knowledge possessed009
in program executors via a data-driven ap-010
proach. POET is conceptually simple and can011
be instantiated by different kinds of programs.012
In this paper, we show three empirically pow-013
erful instances, i.e., POET-Math, POET-Logic,014
and POET-SQL. Experimental results on six015
benchmarks demonstrate that POET can sig-016
nificantly boost model performance on natural017
language reasoning, such as numerical reason-018
ing, logical reasoning, and multi-hop reason-019
ing. Taking the DROP benchmark as a rep-020
resentative example, POET improves the F1021
metric of BART from 69.2% to 80.6%. Fur-022
thermore, POET shines in giant language mod-023
els, pushing the F1 metric of T5-11B to 87.6%024
and achieving a new state-of-the-art perfor-025
mance on DROP. POET opens a new gate on026
reasoning-enhancement pre-training and we027
will make our code, models, and data publicly028
available to facilitate future research.029

1 Introduction030

Recent breakthroughs in pre-training illustrate the031

power of pre-trained Language Models (LM) on a032

wide range of Natural Language (NL) tasks. Pre-033

training on self-supervised tasks, such as auto-034

regressive language modeling (Brown et al., 2020)035

and masked language modeling (Devlin et al., 2019;036

He et al., 2021) using large amounts of NL sen-037

tences, boosts the language understanding of mod-038

els by a large margin (Wang et al., 2018a). How-039

ever, existing pre-training paradigms have primar-040

ily focused on language modeling and paid little041

Figure 1: Given a program context and a program as
input, POET pre-trains LMs to output the execution re-
sult. After fine-tuning on downstream tasks, POET can
boost LMs on reasoning-required scenarios. Explana-
tions about program context, program, program execu-
tor and execution result can be found in § 3. More ex-
amples of natural context and sentence are in Table 1.

attention to advanced reasoning capabilities (Ta- 042

ble 1). As a result, though reaching near-human 043

performance on several tasks, pre-trained LMs are 044

still far behind expectation in reasoning-required 045

scenarios, such as numerical reasoning (Wallace 046

et al., 2019; Ravichander et al., 2019) and logical 047

reasoning (Yu et al., 2020; Liu et al., 2020). This 048

observed deficiency calls for the development of 049

general-purpose pre-training approaches suitable 050

for learning reasoning skills. 051

In light of this, we conceive a new pre-training 052

paradigm, POET (Program Executor), to boost var- 053

ious reasoning skills over NL sentences by pre- 054

training LMs with the task of program execution. 055

As illustrated in Figure 1, with a program (e.g., 056

SQL query) and its associated program context 057

(e.g., database) as input, the model receives au- 058

tomatic supervision from an established program 059

executor (e.g., MySQL) and learns to produce cor- 060

rect execution result. We believe that when LMs 061

imitate program execution procedures, they could 062

potentially learn the reasoning knowledge that hu- 063

mans adopted to create the associated program 064

1



Type Example Dataset Task
Numerical Question: What is the difference in casualty numbers between Bavarian and

Austrian? Passage: [DOC] The popular uprising included large areas of . . .
DROP Reading Comprehension

(RC)

Logical Conclusion: One employee supervises another who gets more salary than
himself. Fact: [DOC] David, Jack and Mark are colleagues in a company.
David supervises Jack, and Jack supervises Mark. David gets more . . .

LogiQA Reading Comprehension
(RC)

Multi-hop Question: At which university does the biographer of John Clare teach English
Literature? Passage: [DOC] John Clare : John Clare was an English poet
. . . [DOC] CMS College Kottayam : The CMS College is one . . .

HotpotQA Reading Comprehension
(RC)

Hybrid Question: What was the percentage change in gaming between 2018 and
2019? Context: [TAB] Server products and cloud services | 32, 622 |
26, 129 . . . [DOC] Our commercial cloud revenue, which includes Office . . .

TAT-QA Question Answering (QA)

Quantitative Hypothesis: Teva earns $7 billion a year. Premise: After the deal closes,
Teva will generate sales of about $7 billion a year, the company said.

EQUATE Natural Language Inference
(NLI)

Table 1: The demonstration of five representative reasoning types. Listed are the types, the example questions,
the representative dataset and their corresponding tasks. [DOC] and [TAB] indicates the start of a passage and
a semi-structured table respectively. Here we regard Question , Conclusion and Hypothesis as sentence, and
Passage , Fact , Context and Premise as natural context in Figure 1.

executor, and transfer the reasoning capability to065

NL sentences. This reveals the key hypothesis of066

POET: program executors are crystallized knowl-067

edge of human reasoning, and such knowledge can068

be transferred to natural language via pre-training.069

While it is extremely difficult to obtain large070

amounts of clean natural language sentences con-071

taining clear evidence of reasoning, thanks to the072

artificial and compositional nature of programming073

languages, synthesized programs can be made ar-074

bitrarily complicated but readily available on any075

scale. These merits greatly facilitate the construc-076

tion of a high-quality pre-training corpus, address-077

ing most of unresolved shortcomings in previ-078

ous reasoning-enhancement pre-training. In other079

words, POET differs from existing pre-training080

paradigms relying on noisy NL data. In summary,081

our contribution is three-fold:082

• We propose POET, a new pre-training083

paradigm for boosting reasoning capability084

of language models by imitating program ex-085

ecutors. Along with this paradigm, we present086

three exemplary across-program POET instan-087

tiations for various reasoning capabilities.088

• We show with quantitative experiments that089

the reasoning ability our models obtains from090

POET pre-training is transferable to broader091

natural language scenarios. On six reasoning-092

focused downstream tasks, POET enables093

general-purpose language models to achieve094

comparable or even better performance than095

previous state-of-the-art specialized models.096

• We carry out comprehensive analytical stud-097

ies on POET and summarize some insightful098

findings in our pre-training. We hope these in- 099

sights would shed light on the future research 100

of reasoning like program executors. 101

2 Related Work 102

Since we focus on reasoning over natural language, 103

our work is closely related to previous works which 104

also concentrate on reasoning skills in NL tasks. 105

Regarding methods to inject reasoning skills into 106

LMs, our method is related to two lines of work 107

contributing to the topic: the line of specialized 108

models and the line of pre-training. Last, our work 109

is also related to program execution since we use 110

program executors in our pre-training. 111

Reasoning Skills The literature focuses on rea- 112

soning skills including numerical reasoning (Dua 113

et al., 2019), multi-hop reasoning (Yang et al., 114

2018), reasoning in hybrid context (Chen et al., 115

2020b; Zhu et al., 2021) and logical reasoning (Liu 116

et al., 2020; Yu et al., 2020). Our work concentrates 117

on improving the above reasoning skills, leaving 118

the other reasoning abilities such as commonsense 119

reasoning (Zellers et al., 2018; Talmor et al., 2019; 120

Bhagavatula et al., 2020) for future work. 121

Reasoning via Specialized Models Early works 122

typically design specialized models and augment 123

them into LMs for different types of questions (Dua 124

et al., 2019; Andor et al., 2019; Hu et al., 2019; 125

Ding et al., 2019). Taking Hu et al. (2019) as 126

an example, they first predicted the answer type 127

of a given question (e.g., “how many”), and then 128

adopted the corresponding module (e.g., count 129

module) to predict the answer. Although these 130
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methods work well on a specific dataset, it is chal-131

lenging for them to scale to complex reasoning132

scenarios (Chen et al., 2020c). Differently, our133

work follows the line of reasoning via pre-training,134

which enjoys better scalability.135

Reasoning via Pre-training This line of work136

focuses on the continued pre-training of LMs using137

large-scale data which involves reasoning. The pre-138

training data are generally NL text, which are either139

crawled from Web with distant supervision (Deng140

et al., 2021), generated by a model-based gener-141

ator (Asai and Hajishirzi, 2020), or synthesized142

via human-designed templates (Geva et al., 2020;143

Yoran et al., 2021; Campagna et al., 2020; Wang144

et al., 2021). However, large-scale high-quality145

textual data involving reasoning are difficult to col-146

lect (Deng et al., 2021). Meanwhile, as the com-147

plexity of desired reasoning operations increases,148

synthesizing high-quality (e.g., fluent) NL sen-149

tences becomes more challenging. Different from150

the above pre-training methods relying on NL data,151

our pre-training is performed on programs. These152

programs can be synthesized at any scale with high-153

quality and rich-diversity, and thus are much easier154

to collect than NL sentences.155

Program Execution We present a framework to156

leverage program executors to train LMs, and thus157

our work is close to recent works on learning a neu-158

ral program executor. In this line, the most related159

work to ours is Liu et al. (2021), which revealed160

the possibility of SQL execution on helping table161

pre-training. Different from them mainly focus-162

ing on table-related tasks, we present a general-163

ized approach to include Math, Logic, and SQL, as164

well as their applications on many different natural165

language downstream tasks. Other related stud-166

ies include learning program executors on visual167

question answering (Andreas et al., 2016), read-168

ing comprehension (Gupta et al., 2019; Khot et al.,169

2020), knowledge base question answering (Ren170

et al., 2021) and 3D rendering (Tian et al., 2019).171

These works mainly focus on learning a neural172

network to represent the program executor, while173

ours focuses on transferring the knowledge of pro-174

gram executor to downstream tasks via pre-training.175

Other lines of research did not leverage models as176

neural program executors, but instead leveraging177

program execution in inference as a reliable sanity178

guarantee for generated programs by pruning non-179

executable candidates (Wang et al., 2018b; Chen180

et al., 2019, 2021). Others have also noticed that 181

when a target program is sequential, execution of 182

the partially generated program provides reliable 183

guidance towards the final gold output (Odena et al., 184

2020; Ellis et al., 2019; Chen et al., 2019; Sun et al., 185

2018; Zohar and Wolf, 2018). 186

3 Reasoning Like Program Executors 187

Reasoning is the process where deduction and in- 188

duction are sensibly applied to draw conclusion 189

from premises or facts (Scriven, 1976). As a 190

supreme feature of intelligence, humans apply rea- 191

soning across modalities. Taking numerical rea- 192

soning as an example, humans can tell how many 193

chocolates are consumed from a math word prob- 194

lem description, or from a real-world event where 195

a mother gets off work and finds the choco-can 196

empty, aside standing their guilty-looking kids with 197

brownish stains on their faces. Through detach- 198

ment of information from their superficial modality 199

and symbolic abstraction, humans manage to unify 200

input formats and condense their numerical reason- 201

ing knowledge into one executable symbolic sys- 202

tem – This is the origin of an arithmetic program 203

executor. If a model can master these reasoning 204

skills by imitating program executors, we believe 205

in the possibility of transferring those reasoning 206

skills to different modalities. In our case, we ex- 207

pect language models to transfer reasoning to NL 208

related tasks. Given this motivation, we discuss 209

fundamental components of POET in the rest of 210

this section, and present three concrete instantia- 211

tions of our framework in § 4. 212

Program refers to a finite sequence of symbols 213

which can be understood and executed by machines. 214

For example, a program can be a logical form (e.g., 215

Prolog), a piece of code (e.g., Python), or a math ex- 216

pression. Compared with NL sentences, programs 217

are more formal. Each well-established program 218

follows a specific set of syntax rules and can thus 219

be synthesized in a systematic way. The generaliz- 220

ability of POET framework is free from assumption 221

and derived from the set of syntax rules on which a 222

program complies. In POET, as long as a program 223

returns meaningful output to reflect its computa- 224

tional procedure, it is an acceptable program. 225

Program Context is the environment in which 226

a program is running, which holds numerous vari- 227

ables accessible to the program. These variables 228

serve as pivot points that anchor program context 229

3



→

→

→

→

Figure 2: The illustration of three instantiations of POET to inject different kinds of reasoning skills, including
POET-Math, POET-Logic and POET-SQL. The red text indicates the variables read by the program.

with the program. In the same sense, the question230

and the passage in reading comprehension hold a231

similar relationship. This suggests a natural anal-232

ogy between the program to program context and233

the sentence to natural context in Figure 1.234

Program Executor is a black-box software that235

can execute a given program within the program236

context. An example could be the Python inter-237

preter that executes each line of code, with its spe-238

cific input data structures as program context. For239

POET, program executors play the role of teachers240

to educate student (i.e., LMs) on reasoning knowl-241

edge they contain. POET expects program execu-242

tors to deterministically execute an input program243

with respect to a specific program context.244

Execution Result is obtained from the program245

executor, given a program and program context as246

input. It is much analogous to the answer part in247

NL downstream tasks. The execution result is the248

primary observable data reflecting the intermediate249

reasoning process, and serves as the supervision250

provided by the program executor.251

4 Instantiations of POET252

Along with the POET paradigm, we manifest three253

exemplary across-program POET instantiations254

(Figure 2), named POET-Math, POET-Logic and255

POET-SQL, for injecting numerical, logical and256

integrated reasoning capabilities into LMs.257

4.1 POET-Math for Numerical Reasoning258

The POET-Math (Left in Figure 2) aims at injecting259

numerical reasoning skills into LMs. Specifically,260

POET-Math is designed to boost the basic arith-261

metic skills (i.e., addition and subtraction) of LMs262

on downstream tasks. This arithmetic skill aligns263

with requirements to answer questions centered on264

addition / subtraction between two numbers, such 265

as “What is the difference in casualty numbers be- 266

tween Bavarian and Austrian?”. 267

Pre-training Task Given several floating-point 268

variables as the program context and a math ex- 269

pression only involving addition/ subtraction as the 270

program, the pre-training task of POET-Math is to 271

calculate the math expression. Taking the leftmost 272

example from Figure 2, receiving the concatena- 273

tion of the program and the program context as the 274

input, POET-Math is trained to output the number 275

180.7. Considering the output can be an arbitrary 276

number, the encoder-decoder model (Lewis et al., 277

2020) is more suitable for this pre-training task. 278

Pre-training Corpus Each example in the cor- 279

pus contains a math expression containing up to 2 280

operators and 3 variables, and a program context 281

which contains at most 30 floating-point variables 1. 282

The mathematical addition and subtraction opera- 283

tors are denoted by + and -, respectively. The 284

values of variables vary from 0.0 to 1000.0. By 285

random generation, we synthesize 4 million exam- 286

ples as the pre-training corpus for POET-Math. 287

4.2 POET-Logic for Logical Reasoning 288

The POET-Logic (Mid in Figure 2) aims at inject- 289

ing logical reasoning (e.g., necessary conditional 290

reasoning) skills into LMs. For example, taking 291

the facts “Only if the government reinforces basic 292

education can we improve our nation’s education 293

to a new stage. In order to stand out among other 294

nations, we need to have a strong educational en- 295

terprise.” as premises, POET-Logic is intended to 296

help LMs identify whether the conclusion “In order 297

to stand out among nations, we should reinforce 298

basic education” is necessarily implied. 299

1More discussion can be found in Appendix § C.
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Pre-training Task Given a few first-order logic300

premise statements as the program context and301

one conclusion statement as the program, the pre-302

training task of POET-Logic is to identify if the303

program is necessarily implied from the program304

context. The execution result, i.e., the implication305

relationship between the program and the program306

context, is either True or False. Since the output307

is binary, an encoder-only model (Liu et al., 2019)308

is sufficient to perform this pre-training task.309

Pre-training Corpus Each example in the cor-310

pus contains several premise statements and a con-311

clusion statement. Initially, the statement collection312

for each example is empty. To produce it, we first313

allocate 5 Boolean variables (e.g., p and q in Fig-314

ure 2) and randomly sample at most 8 pairs from315

their pairwise combinations. For each sampled pair316

(p, q), we randomly select a statement from the set317

{p → q, p → ¬ q,¬ p → ¬ q,¬ p → q} and add318

it to the collection. Once the statement collection319

is prepared, we randomly select a statement as the320

conclusion statement (i.e., program) and the rest321

as the premise statements (i.e., program context).322

Last, we employ Z3 (De Moura and Bjørner, 2008),323

the well-known satisfiability modulo theory solver,324

as our program executor to obtain the implied re-325

sult. Finally, we synthesize 1 million examples as326

the pre-training corpus for POET-Logic, and nearly327

16% examples correspond to True.328

4.3 POET-SQL for Integrated Reasoning329

POET-Math and POET-Logic each focus on one330

specific reasoning skill. Different from them,331

POET-SQL allows LMs to master different reason-332

ing skills simultaneously via integrated reasoning.333

Pre-training Task Given a database as the pro-334

gram context and a SQL query as the program, the335

pre-training task of POET-SQL is to mimic the336

query result generation. Since the encoder-decoder337

LMs can generate arbitrary tokens, they are well338

suited for the task. On the other hand, encoder-only339

models have insufficient expressiveness to produce340

out-of-context query results. To allow them to ben-341

efit from the SQL execution, we tailor the task into342

a query result selection task for encoder-only mod-343

els, which only utilizes query results that can be344

found in the database. More specifically, the task345

requires encoder-only models to perform an IO se-346

quence tagging process to find the query results in347

the database. Here the tag I is for golden tokens in348

the query results, while O is for other tokens.349

Pre-training Corpus Each example in the cor- 350

pus contains a SQL query, a database and a query 351

result. Notably, following Liu et al. (2021), each 352

database is flattened into a sequence when it is fed 353

into LMs. Meanwhile, to avoid databases being too 354

large to fit into memory, we randomly drop the rows 355

of large databases until their flattened sequences 356

contains less than 450 tokens. For the query result 357

generation task, we follow the same corpus con- 358

struction strategy as described in Liu et al. (2021). 359

Concretely, by instantiating SQL templates from 360

SQUALL (Shi et al., 2020) over databases provided 361

by WIKISQL (Zhong et al., 2017), 5 million ex- 362

amples are synthesized for pre-training. For the 363

query result selection task, the pre-training corpus 364

is constructed in a similar way as above, except that 365

only the examples whose query results are suitable 366

for encoder-only are retained. This filtering results 367

in a corpus containing nearly 2 million examples. 368

5 Experiments & Analysis 369

To verify the effectiveness of our POET frame- 370

work on boosting the reasoning capabilities of LMs, 371

we first apply our method on top of several back- 372

bone models, including encoder-only models and 373

encoder-decoder models. Then we conduct experi- 374

ments on six typical reasoning benchmark datasets 375

and compare POET models with previous state- 376

of-the-art (SOTA) methods. Last, we perform a 377

detailed pre-training analysis to demonstrate key 378

insights with respect to each part in our framework. 379

5.1 Backbone Models 380

RoBERTa (Liu et al., 2019), one of the most popu- 381

lar LMs, is elected as the backbone in encoder-only 382

LMs. We mark the RoBERTa model trained under 383

POET as POET-XRoBERTa, where X is either Logic 384

or SQL. BART (Lewis et al., 2020) is chosen as the 385

backbone in encoder-decoder LMs. We mark the 386

BART model trained under POET as POET-XBART, 387

where X is either Math or SQL. Meanwhile, to ex- 388

plore whether our approach is simultaneously effec- 389

tive for much larger LMs, we also apply our frame- 390

work to T5-11B (Raffel et al., 2020), the largest 391

publicly available language model. 392

5.2 Experimental Datasets 393

We perform experiments on different datasets 394

including DROP (Dua et al., 2019), Hot- 395

potQA (Yang et al., 2018), TAT-QA (Zhu et al., 396

2021), EQUATE (Ravichander et al., 2019) and 397
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(a) The experimental results of POET-Math.

Models DROP♥ (EM) DROP♥ (F1)

BART-Large 66.2 69.2
POET-MathBART 75.2 (+9.0) 78.1 (+8.9)

(b) The experimental results of POET-Logic.

Models LogiQA (EM)

RoBERTa-Large 36.7
POET-LogicRoBERTa 38.9 (+2.2)

(c) The experimental results of POET-SQL.

Models DROP♥ HotpotQA♥ TAT-QA♥ SVAMP EQUATE

EM F1 EM F1 EM F1 EM EM

BART-Large 66.2 69.2 65.6 78.9 38.8 46.7 12.4 62.6
POET-SQLBART 77.7 (+11.5) 80.6 (+11.4) 66.5 (+0.9) 79.7 (+0.8) 41.5 (+2.7) 49.6 (+2.9) 33.5 (+21.1) 66.5 (+3.9)

RoBERTa-Large 78.1 85.3 67.6 81.1 55.2 62.7 – 64.2
POET-SQLRoBERTa 79.8 (+1.7) 87.4 (+2.1) 68.7 (+1.1) 81.6 (+0.5) 59.1 (+3.9) 65.9 (+3.2) – 67.5 (+3.3)

T5-11B 83.5 85.9 71.4 84.5 – – 52.9 –
POET-SQLT5 85.2 (+1.7) 87.6 (+1.7) 71.5∗ (+0.1) 84.4∗ (-0.1) – – 57.4 (+4.5) –

Table 2: The main experimental results of different backbone models on test sets and dev sets (♥) of datasets 2

with or without our proposed POET paradigm. The results of POET are significantly better than the original LMs
(p < 0.05), except for those marked by ∗. POET-SQL / MathBART, POET-SQL / LogicRoBERTa and POET-SQLT5 are
pre-trained from BART-Large, RoBERTa-Large and T5-11B respectively under the POET paradigm. We verify
the performance of POET-SQLT5 on partial datasets considering our computation budget. Note the performance
of RoBERTa-Large and POET-SQLRoBERTa are evaluated on the subset of DROP where the answer is span(s).

LogiQA (Liu et al., 2020). Table 1 shows examples398

of these datasets and highlights their correspond-399

ing reasoning types. More details can be found in400

Appendix § B. Furthermore, SVAMP (Patel et al.,401

2021), the challenging diagnostic dataset for prob-402

ing numerical reasoning, is employed in our ex-403

periments to test the generalization capability of404

our fine-tuned models on DROP. Our models are405

evaluated on its addition and subtraction subsets.406

5.3 Implementation Details407

We implement our models based on transform-408

ers (Wolf et al., 2020), fairseq (Ott et al., 2019) and409

DeepSpeed 3. Hyperparameters during pre-training410

and fine-tuning are provided in Appendix § E.411

Passage Retrieval in HotpotQA Since the total412

length of the original passages in HotpotQA is too413

long to fit into memory, we train a classifier to filter414

out top-3 passages, as done in previous work (Deng415

et al., 2021). Specifically, a RoBERTa-Large model416

is fine-tuned to discriminate if an input passage is417

required to answer the question. The Hits@3 score418

of the classifier on HotpotQA is 97.2%.419

Numerical Design in DROP and SVAMP As420

noticed by previous works, sub-word tokenization421

methods such as byte pair encoding (Sennrich et al.,422

2015) potentially undermines the arithmetic abil-423

2 We compare our models with baselines on dev sets of
partial datasets since their test sets are not publicly available.

3 http://github.com/microsoft/DeepSpeed

ity of models. Instead, the character-level number 424

representation is argued to be a more effective al- 425

leviation (Wallace et al., 2019). Additionally, the 426

reverse decoding of numbers is proposed as a bet- 427

ter way of modelling arithmetic carry (Geva et al., 428

2020). Therefore, we employ these design strate- 429

gies on DROP and SVAMP. 430

5.4 Methods Comparison 431

In this section, we compare our models with origi- 432

nal LMs and previous state-of-the-art methods. 433

5.4.1 Comparing to Original LMs 434

Applying LMs to Different Datasets For any 435

encoder-decoder LM (e.g., BART), we treat all 436

datasets as generative tasks and fine-tune it directly 437

to generate answers. As for the encoder-only LM 438

(e.g., RoBERTa), the fine-tuning strategies on dif- 439

ferent datasets are slightly different. (i) On DROP, 440

we cast the span selection task as a sequence tag- 441

ging problem following Segal et al. (2020). (ii) 442

On TAT-QA, we in-place substitute the RoBERTa- 443

Large encoder in TAGOP (Zhu et al., 2021) with our 444

POET-SQLRoBERTa to verify its effectiveness, and 445

keep the rest of the components unchanged. (iii) On 446

HotpotQA, we train two classifiers independently 447

to predict the start and end positions of the an- 448

swer span, as done in Devlin et al. (2019). (iv) On 449

EQUATE, we train a classifier to perform sequence 450

classification on concatenated premise-hypothesis 451

pairs. Notably, we follow the official setup to 452

train LMs on the MNLI dataset (Williams et al., 453
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2018) and evaluate their zero-shot performance on454

EQUATE. (v) On LogiQA, we train a classifier455

to perform binary classification on concatenated456

question-option-context pairs, as suggested in Liu457

et al. (2020). (vi) On SVAMP, the encoder-only458

model is not suitable since the answers are out-of-459

context. On all datasets, our models are evaluated460

with official evaluation metrics EM and F1.461

Experimental Results Table 2 presents a per-462

formance comparison between POET models and463

their vanilla versions without POET. Across all464

instances, we observe significant performance in-465

crement on downstream tasks requiring correspond-466

ing reasoning skills. Specifically, (a) POET-Math467

boosts numerical reasoning ability of BART, bring-468

ing in 9.0% EM gain on DROP; (b) POET-Logic469

improves logical reasoning skill of RoBERTa, re-470

sulting in a 2.2% EM improvement on LogiQA;471

(c) POET-SQL equips popular encoder-only and472

encoder-decoder models with an integrated pack-473

age of reasoning skills, effectively improving their474

performance on five benchmark datasets. As a high-475

lighted example, POET-SQLBART obtains 11.5%476

(DROP) and 21.1% (SVAMP) improvements on477

EM, compared with the vanilla BART.478

Since POET pre-training is carried purely on pro-479

gram context (Figure 2), whereas all downstream480

tasks are on natural context, our hypothesis that481

reasoning capability is transferable from program482

executors to NL scenarios gets verified. Another483

interesting observation is that POET also shines484

in giant LMs. As reflected from the results, T5-485

11B obtains noticeable performance gains on both486

DROP (1.7% EM) and SVAMP (4.5% EM).487

5.4.2 Comparing to Previous SOTA488

Baseline Setup We summarize the baseline489

methods in short below, and refer readers to their490

papers for more details. (i) On DROP, we in-491

clude two families of models for comparison: spe-492

cialized models such as NumNet(+) (Ran et al.,493

2019), MTMSN (Hu et al., 2019), NeRd (Chen494

et al., 2020c), QDGAT (Chen et al., 2020a) and lan-495

guage models such as GenBERT (Geva et al., 2020)496

and PReaM (Yoran et al., 2021). (ii) Similarly, on497

HotpotQA (Distractor), specialized model base-498

lines include DFGN (Qiu et al., 2019), SAE (Tu499

et al., 2020), C2F Reader (Shao et al., 2020) and500

the SOTA model HGN (Fang et al., 2020). The501

language model baselines consist of BERT (De-502

vlin et al., 2019), SpanBERT (Joshi et al., 2020)503

Dataset Models EM F1

DROP♥

Specialized Models
NumNet 64.9 68.3

MTMSN (BERT) 76.7 80.5
NeRd (BERT) 78.6 81.9

NumNet+ (RoBERTa) 81.1 84.4
QDGAT (RoBERTa) 84.1 87.1

Language Models
GenBERT (BERT) 68.8 72.3

PReasM (T5) 69.4 72.3
POET-MathBART 75.2 78.1
POET-SQLBART 77.7 80.6

POET-SQL+MathBART 78.0 80.9
POET-SQLT5 85.2 87.6

HotpotQA♥

Specialized Models
DFGN 55.7 69.3

SAE (BERT) 67.7 80.8
C2F Reader (RoBERTa) 68.0 81.2

HGN (RoBERTa) 69.2 82.2
Language Models

BERT 59.1 73.4
ReasonBERT (RoBERTa-Base) 64.8 79.2

POET-SQLBART 66.5 79.7
SpanBERT (BERT) 67.4 81.2
POET-SQLRoBERTa 68.7 81.6

POET-SQLT5 71.5 84.4

TAT-QA♥
TAPAS 18.9 26.5

NumNet+ V2 38.1 48.3
TAGOP (RoBERTa) 55.2 62.7

TAGOP (POET-SQLRoBERTa) 59.1 65.9

EQUATE

BERT 51.8 –
GPT 55.8 –

Q-REAS 60.7 –
POET-SQLBART 66.5 –

POET-SQLRoBERTa 67.5 –

LogiQA
Co-Matching Network 33.9 –

POET-LogicRoBERTa 38.9 –
DAGN (RoBERTa) 39.3 –

Table 3: The comparison of our models with previous
SOTA methods on test sets and dev sets (♥) of different
datasets. LMs used by all baselines are in Large size,
except for clarification. Bold and underlined numbers
indicate the best and second-best results, respectively.

and ReasonBERT (Deng et al., 2021). (iii) On 504

TAT-QA, we adopt the official baselines, includ- 505

ing TAPAS (Herzig et al., 2020), NumNet+ V2 506

and the SOTA model TAGOP (Zhu et al., 2021). 507

(iv) On EQUATE, we compare our methods with 508

BERT (Devlin et al., 2019), GPT (Radford et al., 509

2019) and Q-REAS (Ravichander et al., 2019). (v) 510

On LogiQA, we compare our methods with Co- 511

Matching Network (Wang et al., 2018c) and the 512

SOTA model DAGN (Huang et al., 2021). 513

Experimental Results Table 3 lists all experi- 514

mental results of baselines and our models on differ- 515

ent datasets. As seen, our model generally achieves 516

the best or second-best results over different reason- 517

ing skills, showing its strong performance. Mean- 518

while, POET that utilizes a mix of two different 519

programs (i.e., POET-SQL+MathBART) achieves 520
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Settings POET-SQL POET-Math

BART-Large 66.2 / 69.2 66.2 / 69.2
POET Models 77.7 / 80.6 75.2 / 78.1

w.r.t. Reasoning 67.1 / 70.4 61.2 / 64.4
w.r.t. Program 76.9 / 79.7 –
w.r.t. Program Context – 67.4 / 70.5
w.r.t. Program Executor 66.1 / 69.3 –
w.r.t. Execution Result 15.8 / 17.8 11.2 / 12.2

Table 4: The DROP EM / F1 of POET-SQLBART and
POET-MathBART with respect to each part in POET.

a slightly better performance than SQL alone.521

Furthermore, compared with other reasoning-522

enhanced LMs, POET-SQLBART surpasses them by523

a large margin, demonstrating the effectiveness of524

our proposed program execution pre-training. For525

example, compared with PReasM initialized from526

T5-Large, POET-SQLBART initialized from BART-527

Large exceeds it by 8.3%. Finally, along with our528

proposed POET framework, POET-SQLT5 tops on529

the challenging benchmark DROP, revealing the530

great potential of LMs on reasoning scenarios.531

5.5 Pre-training Analysis532

In this section, we conduct pre-training analysis533

with respect to (w.r.t.) each part presented in § 3 to534

explore their key insights. We carry all feasible pre-535

training variants of POET-SQL and POET-Math,536

and then fine-tune them on DROP for performance537

comparison. All results are shown in Table 4.538

w.r.t. Reasoning Although the reasoning knowl-539

edge in program executors has been proven to540

boost downstream tasks, we do not know under541

what conditions such knowledge would be helpful.542

To explore it, for POET-SQL, we ablate all SQL543

queries containing numbers from its pre-training544

corpus, while for POET-Math, we pre-train it to545

execute multiplication / division instead of addi-546

tion / subtraction. The poor performance of POET-547

SQL and POET-Math variants indicate that it is548

important to maintain alignment between the rea-549

soning skills involved in the pre-training tasks and550

the ones required for downstream tasks.551

w.r.t. Program As stated before, POET does552

not make assumption on syntax rules a program is553

built upon. To verify it, we randomly map all SQL554

reserved keywords to the 100 lowest frequency to-555

kens in the BART vocabulary. Results suggest that556

even such “broken” syntax rules hardly reduce rea-557

soning capability transferability, demonstrating the558

generality and adaptability of POET.559

w.r.t. Program Context In Figure 1, there is a 560

natural analogy between the program to program 561

context and the sentence to natural context, sug- 562

gesting the necessity of program context on the 563

reasoning transferability. To verify that, we employ 564

the variant of POET-Math where there is a variable- 565

free program and an empty program context. Tak- 566

ing the example of POET-Math in Figure 2, the 567

program is transformed into 152.0+99.0-70.3. 568

One can see that there is a dramatic performance 569

drop in the variant compared to POET-MathBART, 570

verifying the importance of program context. 571

w.r.t. Program Executor The key hypothesis 572

of POET is that the program executor is crucial 573

for our pre-training. To verify that, we ablate the 574

program executor in POET-SQLBART and instead 575

carry out a SQL language modeling pre-training. 576

Practically, we mask each input SQL query in the 577

pre-training corpus of POET-SQL using the strat- 578

egy adopted in BART (Lewis et al., 2020), and 579

pre-train BART to output the associated complete 580

SQL query given the masked SQL query and the 581

database. The resulting scarce performance gain 582

suggests what truly brings LMs reasoning ability 583

is the program executor. 584

w.r.t. Execution Result Since the execution re- 585

sult serves as the supervision for LMs to learn from 586

program executors, it must be a correct result. To 587

verify that, we corrupt the correctness in variants 588

of POET-Math and POET-SQL by randomly pair- 589

ing the execution results of one example with the 590

program and program context of another example. 591

The extremely poor performance suggests that an 592

incorrect pre-training corpus can cause significant 593

damage to the reasoning ability of LMs. 594

6 Conclusion 595

We introduce POET, a new pre-training paradigm 596

for boosting reasoning capability of language mod- 597

els via imitating program executors. Experimental 598

results on six datasets demonstrate that POET can 599

significantly boost existing language models on sev- 600

eral reasoning skills, including numerical, logical 601

and multi-hop reasoning. Our best language model 602

under POET can reach a comparable or better per- 603

formance than state-of-the-art methods. Finally, 604

we unveil key factors that make POET successful. 605

In the future, we hope our analysis could inspire 606

more transference of reasoning knowledge from 607

program executors to models. 608
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A POET-SQL for Integrated Reasoning 1026

Table 5 presents seven typical SQL types and their 1027

representative SQL programs. We believe that the 1028

main reason SQL queries involve integrated reason- 1029

ing is that they are complex enough to encompass 1030

a wide variety of computational procedures. For 1031

example, the arithmetic type covers part of the nu- 1032

merical reasoning capability, while the nested type 1033

roughly simulates the multi-hop procedure by re- 1034

cursively querying information on the database. 1035

B Dataset Details 1036

Table 6 presents some statistics about our experi- 1037

mental datasets. Below we introduce each dataset 1038

in detail. 1039

DROP A reading comprehension benchmark to 1040

measure numerical reasoning ability over a given 1041

passage (Dua et al., 2019). It contains three sub- 1042

sets of questions: span, number, and date, each 1043

of which involves a lot of numerical operations. 1044

Unlike traditional reading comprehension datasets 1045

such as SQuAD (Rajpurkar et al., 2016) where 1046

answers are always a single span from context, sev- 1047

eral answers in the span subset of DROP contains 1048

multiple spans. The number and date answers are 1049

mostly out of context and need generative-level 1050

expressiveness. 1051
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Type Example SQL Program

Arithmetic SELECT [COL]1 - [COL]2

Superlative SELECT MAX([COL]1)

Comparative SELECT [COL]1 WHERE [COL]2 > [VAL]2

Aggregation SELECT COUNT([COL]1)

Intersection SELECT [COL]1 WHERE [COL]2 = [VAL]2

AND [COL]3 = [VAL]3

Union SELECT [COL]1 WHERE [COL]2 = [VAL]2

OR [COL]3 = [VAL]3

Nested SELECT [COL]1 WHERE [COL]2 IN (

SELECT [COL]2 WHERE [COL]3 = [VAL]3)

Table 5: The seven typical SQL types corresponding
to numerical reasoning (Top) and multi-hop reasoning
(Bottom). Listed are the type and the example SQL
programs. [COL] and [VAL] represent the table col-
umn and the table cell value, respectively.

Dataset
Train Dev

# Questions # Docs # Questions # Docs

DROP 77, 409 5, 565 9, 536 582
HotpotQA 90, 564 90, 564 7, 405 7, 405
TAT-QA 13, 215 2, 201 1, 668 278
SVAMP – – 726 726
EQUATE – – 9, 606 9, 606
LogiQA 6, 942 6, 942 868 868

Table 6: The statistics of our experimental datasets.

HotpotQA An extractive reading comprehension1052

dataset that requires models to perform multi-hop1053

reasoning over different passages (Yang et al.,1054

2018). It contains two settings (i) Distractor: rea-1055

soning over 2 gold paragraphs along with 8 sim-1056

ilar distractor paragraphs and (ii) Full wiki: rea-1057

soning over customized retrieval results from full1058

Wikipedia passages. We experiment with its dis-1059

tractor setting since retrieval strategy is beyond our1060

focus in this work.1061

TAT-QA A question answering benchmark to1062

measure reasoning ability over hybrid context, i.e.,1063

passages and tables (Zhu et al., 2021). It is curated1064

by combing paragraphs and tables from real-world1065

financial reports. According to the source(s) the an-1066

swers are derived from, the dataset can be divided1067

into three subsets: Table, Text and Table-Text(both).1068

EQUATE The first benchmark dataset to explore1069

quantitative reasoning under the task of natural lan-1070

guage inference (Ravichander et al., 2019). As a1071

test-only dataset, it requires fine-tuned models on1072

MNLI to perform zero-shot natural language infer-1073

ence tasks over quantitative statements described1074

in (premise, hypothesis) pairs to reach final entail-1075

ment decisions.1076

Models EM F1

BART-Large 66.2 69.2

POET-MathBART with 0 irrelevant variable 71.5 74.5
POET-MathBART with 10 irrelevant variables 74.6 77.5
POET-MathBART with 30 irrelevant variables 75.2 78.1

Table 7: The DROP performance with different num-
bers of irrelevant variables in POET-MathBART pre-
training.

LogiQA A multi-choice reading comprehension 1077

dataset that evaluates the logical reasoning abil- 1078

ity, whose questions are designed by domain ex- 1079

perts (Liu et al., 2020). It contains four types of 1080

logical reasoning, including categorical reasoning, 1081

disjunctive reasoning, conjunctive reasoning and 1082

conditional reasoning. 1083

SVAMP A challenging math word problem 1084

dataset (Patel et al., 2021). It is designed specif- 1085

ically to hack models who leverage spurious pat- 1086

terns to perform arithmetic operations without true 1087

understanding of context. We only keep addition 1088

and subtraction problems in accordance with our 1089

pre-training coverage. 1090

C Variables Design in POET-Math 1091

In the pre-training task of POET-Math, we regard 1092

several floating-point variables as the program con- 1093

text. These variables include necessary variables 1094

(i.e., variables required by the program) and ir- 1095

relevant variables. The irrelevant variables exist 1096

to make the program context closer to the natural 1097

context which generally contains irrelevant sen- 1098

tences. For example, given the program a + b and 1099

the program context a = 1; b = 2; c = 3; d = 1100

4;, variables c and d are what we refer to as irrel- 1101

evant variables. This is motivated by the fact that 1102

passages are usually full of irrelevant information 1103

regarding a specific question in NL downstream 1104

tasks. In this section, we explore impacts on pre- 1105

training effectiveness brought by numbers of irrel- 1106

evant variables. Empirically, we experiment on 1107

pre-training with 0, 10, 30 irrelevant variables. The 1108

total length of 30 irrelevant variables approaches 1109

the maximum input length of pre-trained LMs, and 1110

thus we do not try more settings. 1111

The experimental results are shown in Table 7. 1112

As observed, (i) models can still learn numerical 1113

reasoning during pre-training where the program 1114

context is free from irrelevant variables, though less 1115

effective. (ii) the setting of 30 irrelevant variables 1116
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Dataset
Train Dev

# Questions # Docs # Questions # Docs

SQuAD v1.0 77, 409 5, 565 9, 536 582
MNLI 392, 702 392, 702 9, 815 9, 815
QuoRef 19, 399 3, 771 2, 418 454

Table 8: POET on NL understanding experiment
dataset statistics.

brings BART-Large more performance improve-1117

ment than the setting of 10 irrelevant variables.1118

Considering there are plenty of lengthy passages1119

in the DROP dataset, we therefore hypothesize that1120

the noise level brought by irrelevant variables in1121

the program context during pre-training should be1122

made closer with the counterpart in the natural con-1123

text during fine-tuning.1124

D NL Understanding Performance1125

Since the program context used in pre-training dif-1126

fers much from the natural context used in down-1127

stream tasks, a reasonable concern immediately1128

follows: whether POET pre-training improves rea-1129

soning ability at the sacrifice of natural language1130

understanding (NLU) ability of LMs? To inves-1131

tigate the concern, we evaluate POET models on1132

representative benchmarks without emphasis on ad-1133

vanced reasoning skills, also covering the task of1134

reading comprehension (RC) and natural language1135

inference (NLI).1136

Dataset We fine-tune POET-SQLRoBERTa on (i)1137

SQuAD v1.0: (Rajpurkar et al., 2016): one of1138

the most classical single-span selection RC bench-1139

marks measuring understanding over natural lan-1140

guage context; (ii) MNLI (Williams et al., 2018):1141

a large-scale NLI dataset measuring cross-domain1142

and cross-genre generalization of NLU. Notably,1143

our model is evaluated on the matched setting for1144

the purpose of simplicity. (iii) QuoRef (Dasigi1145

et al., 2019): A Wikipedia-based multi-span se-1146

lection RC benchmark with a special emphasis on1147

coreference resolution. All dataset Statistics are1148

shown in Table 8.1149

Implementation Details (i) On SQuAD, we cast1150

the span selection task as a sequence tagging prob-1151

lem following Segal et al. (2020). (ii) On MNLI-1152

matched, we train both models to perform sequence1153

classification on concatenated premise-hypothesis1154

pairs. (iii) On Quoref, we cast the span(s) selec-1155

tion task as an IO sequence tagging problem fol-1156

lowing Segal et al. (2020).1157
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Figure 3: The performance comparison between
RoBERTa-Large and POET-SQLRoBERTa on representa-
tive NLU tasks. On SQuAD and QuoRef, we compare
F1, whereas on MNLI we compare Accuracy.

Results As can be observed from performance 1158

comparison between POET-SQLRoBERTa and vanilla 1159

RoBERTa shown in Figure 3, across all three exper- 1160

imented NLU-focused datasets, POET-SQLRoBERTa 1161

performance are almost identical from counterparts 1162

of vanilla version. These negligible drops of per- 1163

formance suggest that reasoning capability can be 1164

transferred from program execution pre-training to 1165

NL downstream tasks, without the expense of LMs’ 1166

intrinsic understanding of language. 1167

E Implementation Details 1168

E.1 Pre-training Details 1169

By default, we apply AdamW as pre-training opti- 1170

mizer with default scheduling parameters in fairseq. 1171

The coefficient of weight decay is set as 0.05 to al- 1172

leviate over-fitting of pre-trained models. Addition- 1173

ally, we employ fp16 to accelerate the pre-training. 1174

POET-Math The pre-training procedure lasts for 1175

10, 000 steps with a batch size of 512. After the 1176

warm up in the first 2000 steps, the learning rate 1177

arrives the peak at 3×10−5 during pre-training. 1178

POET-Logic The pre-training procedure lasts 1179

for 5, 000 steps with a batch size of 512. After 1180

the warm up in the first 1000 steps, the learning 1181

rate arrives the peak at 3×10−5 during pre-training. 1182

POET-SQL For POET-SQLBART and POET- 1183

SQLRoBERTa, the pre-training procedure lasts for 1184

50, 000 steps with a batch size of 512. After the 1185

warm up in the first 5000 steps, the learning rate 1186

arrives the peak at 3×10−5 during pre-training. To 1187

save memory, each example in the pre-training cor- 1188

pus could at most contains 512 tokens. For POET- 1189

SQLT5, the pre-training procedure lasts for 20, 000 1190

steps with a batch size of 512. After the warm 1191
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Models Number Span Spans Date Total
Previous Systems

MTMSN (BERT) 81.1 82.8 62.8 69.0 80.5
NumNet+ (RoBERTa) 83.1 86.8∗ 86.8∗ 63.9 84.4
QDGAT (RoBERTa) 86.2 88.5∗ 88.5∗ 67.5 87.1
GenBERT 75.2 74.5 24.2 56.4 72.3
PReasM 64.4 86.6 78.4 77.7 72.3

Original LMs
RoBERTa-Large – 86.4 79.9 – –
BART-Large 63.6 79.6 74.6 62.1 69.2
T5-11B 83.2 90.2 85.8 84.9 85.8

POET Models
POET-SQLRoBERTa – 88.2 83.1 – –
POET-SQLBART 78.9 84.5 79.6 71.9 80.6
POET-SQLT5 85.2 92.4 86.6 84.4 87.6

Table 9: Breakdown of model F1 score by answer types on the dev set of DROP. Some works only report overall
span type performance (marked by *), and single-span is non-separable from multi-span performance. Bold and
underlined numbers indicate the best and second-best results, respectively.

up in the first 2000 steps, the learning rate arrives1192

the peak at 1×10−5 during pre-training. The maxi-1193

mum input length in each example is truncated to1194

384 tokens to increase the batch size.1195

E.2 Fine-tuning Details1196

By default, we apply AdamW as fine-tuning op-1197

timizer with default scheduling parameters on all1198

datasets. To ensure statistical significance, all fine-1199

tuning procedures are run with three random seeds,1200

except for T5-11B and POET-SQLT5 due to the1201

limit of computation budgets.1202

DROP POET-SQLRoBERTa and RoBERTa-Large1203

are trained with the subset of questions marked as1204

“span” from the DROP dataset.t Since a gold answer1205

may occur multiple times in the passage, we opti-1206

mize over the sum of negative log probability for1207

all possibly-correct IO sequences where each one1208

of gold answers is included at least once, as done1209

in Segal et al. (2020). The fine-tuning procedure1210

runs up to 25, 000 steps with a batch size of 64,1211

with the learning rate of 7.5×10−6. As for BART-1212

Large (and POET-SQLBART, POET-MathBART, the1213

same below) and T5-11B (and POET-SQLT5, the1214

same below), they are trained with the whole DROP1215

dataset. For BART-Large, the fine-tuning proce-1216

dure runs up to 20, 000 steps with a batch size as1217

128 and a learning rate as 3×10−5. For T5-11B,1218

due to the computational budget, the fine-tuning1219

procedure only lasts for 10, 000 steps with a batch1220

size of 32, and the learning rate is 1×10−5.1221

TAT-QA In the experiment of TAT-QA, we em-1222

ploy the official implementation and the default1223

hyperparameters provided in TAGOP 4. The fine- 1224

tuning procedure runs up to 50 epochs with a batch 1225

size of 48. For modules introduced in TAGOP, the 1226

learning rate is set as 5×10−4, while for RoBERTa- 1227

Large (and POET-SQLRoBERTa), the learning rate is 1228

set as 1.5×10−5. 1229

HotpotQA The fine-tuning procedure runs up 1230

to 30, 000 steps with a batch size of 64. The 1231

learning rate is 1×10−5. Overlong inputs are trun- 1232

cated to 512 tokens for both RoBERTa-Large (and 1233

POET-SQLRoBERTa), T5-11B (and POET-SQLT5) 1234

and BART-Large (and POET-SQLBART). 1235

EQUATE The fine-tuning procedure runs up to 1236

20, 000 steps on MNLI with a batch size of 128 1237

for both RoBERTa-Large (and POET-SQLRoBERTa) 1238

and BART-Large (and POET-SQLBART), with learn- 1239

ing rate is 1×10−5. After fine-tuning, models are 1240

directly evaluated on EQUATE. 1241

LogiQA In the experiment of LogiQA, we em- 1242

ploy the open-source implementation and the de- 1243

fault hyperparameters provided in ReClor 5 (Yu 1244

et al., 2020) to fine-tune RoBERTa-Large (and 1245

POET-SQLRoBERTa). The fine-tuning procedure 1246

runs up to 10 epochs with a batch size of 24. The 1247

learning rate is set as 1×10−5. 1248

F Fine-grained Results 1249

DROP In Table 9 we report model F1 scores by 1250

question type on DROP. Comparing three POET 1251

pre-trained models with their vanilla versions, we 1252

observe that: (i) POET-SQLBART outperforms the 1253

4https://github.com/NExTplusplus/TAT-QA
5https://github.com/yuweihao/reclor
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Models RTE-Q NewsNLI RedditNLI NR ST AWPNLI Average

Previous Systems
MAJ 57.8 50.7 58.4 33.3 50.0 50.4
BERT 57.2 72.8 49.6 36.9 42.2 51.8
GPT 68.1 72.2 52.4 36.4 50.0 55.8
Q-REAS 56.6 61.1 50.8 63.3 71.5 60.7

Original LMs
BART-Large 68.1 76.2 65.0 53.7 49.7 62.6
RoBERTa-Large 69.3 75.5 65.6 60.1 50.7 64.2

POET Models
POET-SQLBART 72.3 75.2 64.8 70.7 49.5 66.5
POET-SQLRoBERTa 75.3 75.5 68.1 69.2 50.5 67.5

Table 10: The EM performance of different models on all subsets of the EQUATE benchmark. Bold and underlined
numbers indicate the best and second-best results, respectively.

Table Text Table-Text Total

EM / F1 EM / F1 EM / F1 EM / F1

Arithmetic 50.1 / 50.1 43.8 / 50.0 55.6 / 55.6 51.5 / 51.5
Counting 66.7 / 66.7 – / – 90.0 / 90.0 81.3 / 81.3
Spans 67.4 / 80.6 54.2 / 80.8 79.2 / 84.8 71.4 / 82.6
Span 68.4 / 68.4 51.2 / 76.0 76.2 / 77.8 61.9 / 74.6
Total 56.5 / 58.0 51.1 / 75.0 69.0 / 70.7 59.1 / 65.9

Table 11: The EM performance of TAGOP (POET-SQLRoBERTa) with respect to answer types and sources on the
dev set of TAT-QA.

vanilla BART-large with a wide margin in all types1254

of questions, i.e. number (15.3%), date (9.8%),1255

span (around 5%). (ii) POET-SQLRoBERTa only1256

deals with span selection questions, and obtain1257

1.9%, 3.2% gain on span, spans questions, re-1258

spectively. (iii) For the giant POET-SQLT5, we1259

also observe 2% improvement on number ques-1260

tions, 2.2% on span and 0.8% on spans questions.1261

These model-agnostic performance boost on DROP1262

reveals the extra numerical reasoning knowledge1263

models learned from SQL program executors.1264

EQUATE Table 10 presents performance break-1265

down by subsets of EQUATE (Ravichander et al.,1266

2019), where we compare POET-SQLBART and1267

POET-SQLRoBERTa with their vanilla versions and1268

previous baselines. For both models, we observe1269

around 10% acc improvement on the NR ST sub-1270

set, where numerical comparison and quanti-1271

fiers are especially emphasized. Stable perfor-1272

mance improvement was also observed in both1273

pre-trained models on the RTE-Q subset, where1274

arithmetics and ranges are primary focus. In-1275

terestingly, POET-SQLRoBERTa alone demonstrate1276

improvement on RedditNLI (emphasizes approxi-1277

mation and verbal quantitative reasoning) subset.1278

Performance on other subsets are approximately1279

comparable between POET pre-trained models and1280

vanilla models, suggesting that POET does not 1281

harm intrinsic abilities of language models. 1282

TAT-QA Table 11 shows the detailed experimen- 1283

tal results of TAGOP (POET-SQLRoBERTa). Consid- 1284

ering that the pre-training of POET-SQLRoBERTa is 1285

only performed on table-like texts (i.e., the flatten 1286

sequence of databases), it is highly non-trivial for 1287

our model to generalize to such a hybrid scenario 1288

containing both tables and passages, again illustrat- 1289

ing the transferability of reasoning capabilities. 1290
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