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Abstract

The interaction of light and matter follows physical rules that have been well-modeled
in the vision community. These rules should be available to deep networks when learn-
ing vision tasks. However, typical signal processing pipelines, conversion to sSRGB, and
JPEG compression break the rules and make them unavailable for learning. This, in turn,
makes color and intensity unreliable as features and more difficult to use. Using linear or
log RGB images that preserve the rules of the physics of reflection should make certain

visual tasks simpler to learn and increase robustness to certain types of visual variation.

We demonstrate that using linear RGB or log RGB improves the performance of
a deep network on an image classification task when the same network architecture is
trained on the same images but in different formats. Furthermore, the linear and log
RGB networks are more robust to intensity and color balance variation. In particular,
the network trained on log RGB inputs shows invariance to intensity and color balance
variation when that variation is not included in the training set, while the network trained
on the same images in JPEG format shows severe reductions in performance. We further
explore why this difference exists by visualizing low-level features in log RGB, linear
RGB, and JPEG data and show that log space preserves certain types of features across

intensity and color balance variation.

1 Introduction

Reflection and the capture of images using sensors follow rules of physics that have been ex-
tensively studied in computer vision and related fields. Fundamental work focused on mod-
eling the appearance of surfaces and analyzing the characteristics of reflection [44], [22],
[25], [5], [171, [3], [34]. Subsequent work examined how to use the constraints and mod-
els provided by physics to segment images, recognize objects, detect highlights, calculate

illumination, or identify shadows [16], [36], [12], [20], [42], [37], [49], [35].
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The move to deep networks, and large convolution stacks to learn features, presumably
removes the need to derive features from physical models, as the networks are designed to
learn what features are useful for their specific tasks[27][46][21][47]. However, this assumes
that the data being used actually exhibits the rules of physics and contains the structures and
features identified in the foundational research.

Unfortunately, typical imaging pipelines are designed for human viewing. They modify
or remove the structures and patterns that exist in the original images because they do not
maintain the linearity of the data. In particular, operations such as conversion to SRGB with
gamma compression, saturation enhancement, brightening, sharpening, and JPEG compres-
sion, break the rules of physics, often in a non-reversible manner. For example, gamma com-
pression, brightening, and saturation enhancement tend to generate pixels that are pushed to
the maximum or minimum possible value, in which case the actual measurement is lost.

Most data sets used for deep learning in computer vision are provided only in processed
form, and in almost all cases the linear data was never available as the images were collected
from the web. Some of the most commonly used data sets fit this category, including: Ima-
geNet [9], COCO [29], Pascal VOC [11], Faces in the Wild [24], and Intrinsic Images in the
Wild [2]. Even data sets for tasks like highlight detection, that traditionally have been solved
using physics-based methods, default to scraping web images to create data sets [15].

A few data sets are available with either RAW or linear data, mostly in the field of color
constancy where the processing normally occurs prior to conversion to sSRGB and JPEG
compression [19], [7], [10]. However, these data sets are not collected or annotated for tasks
such as detection, classification, or recognition, so they have not contributed to mainstream
vision tasks. It is worth noting that, because of the availability of linear data, some color
constancy researchers have successfully used physics-based analysis in the design of the
inputs to a deep network as a way of improving performance [45].

The PascalRAW and LOD data sets are two exceptions that support object detection or
instance segmentation [38][23][6]. However, for our purpose of running basic experiments
as to whether log RGB is a better alternative input these data sets are not well-suited due to
the unbalanced categories in PascalRAW, or the special illumination situation in LOD.

While being able to process JPEG images from the web is important in the near term,
this is not a reason to focus on JPEG images in the future. It is not difficult to take images in
RAW format, and both Android and Apple phones are capable of capturing and processing
RAW images [48][1]. Most images captured and processed by deep networks will never
leave the devices on which they are taken, and most of the processed images will never be
stored or seen by humans. Applications like autonomous driving, robotics, or recognition
and detection tasks on cell phones all capture huge amounts of data and process it on the
device. These processing pipelines have access to the linear data from the sensor, or can get
access to that data with minimal changes. Therefore, if linear or log RGB data provides a
benefit in terms of accuracy, training time, computation time, or robustness to illumination,
then using data that preserves the physics of the world has huge potential benefits.

In this work we explore the use of linear or log RGB data as inputs to deep networks
for a mainstream vision task. We test the hypothesis that if the data preserves the physics
of reflection, then deep networks will be able to learn physics-based features that improve
their performance and robustness. The innovations of our work include: (1) capturing and
processing a RAW data set for an image classification task, (2) evaluating the performance
of networks trained on JPEG sRGB, linear RGB, and log RGB data, (3) exploring the robust-
ness of networks trained on different data types to intensity and color balance variation, and
(4) providing guidance on why using log RGB shows improved performance and robustness.
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2 Related Work

The structure of body and surface reflection under a single illuminant, the dichromatic re-
flection model, was initially proposed and demonstrated by Shafer [44] and Klinker, Shafer,
and Kanade [25]. The dichromatic reflection model has been used to derive numerous color
spaces and features that are invariant to illumination intensity or highlights [20][49].

Both Marchant and Onyango [32], and Finlayson et al. [13][14] showed there was struc-
ture in taking the log of chromaticity (R/G, B/G) such that it was possible to create a one-
dimensional albedo estimate that was invariant to Planckian illuminants. As noted above,
this analysis has been used to design deep networks for color constancy [45].

Maxwell, Friedhoff, and Smith [34] expanded the dichromatic reflection model to in-
corporate an ambient illuminant, proposing the bi-illuminant dichromatic reflection [BIDR]
model. They further demonstrated the structure of real-world material appearance in linear
RGB and log RGB. In particular, they showed that body reflection in log RGB demonstrates
a regular structure across different materials that are under the same ambient/direct illumi-
nation pair. Maxwell et al. [35] further demonstrated that log RGB space could be used to
make shadow-free versions of road images and simplify the task of road feature detection.

Log RGB has been used in other applications to enable illumination invariance. Wang
et al. used log RGB HOG features for illumination invariance in person re-identification
[50]. Both [39] and [31] used log of chromaticity for illumination invariant skin lesion
identification. Liu et al. made use of the BIDR model and log RGB for intrinsic image
decomposition [30], and Put et al. [40] computed material priors using log RGB histograms.

Physics-based features have also been used for object recognition. Nayar and Bolle [36]
showed that Reflectance Ratios could be used for object recognition purposes and were in-
variant to illumination conditions. The relevance to modern deep networks is that subtraction
of nearby pixel values in log space is computing ratios rather than differences.

The most relevant recent work is the development of equivariant networks [8], which are
a modification to convolutional neural networks that enable them to be invariant to offsets
in the input data. For greyscale images, these offsets may be due to variations in brightness.
For color images, the authors note that converting the data to log RGB turns multiplicative
constants (color balance coefficients) to additive offsets. They show that using equivariant
networks and log RGB enables the networks to maintain performance despite synthetically
varying the illuminant on both CIFAR [26] and ImageNet [9] for object recognition and
on the NUS data set for color constancy [7]. In our work, we demonstrate that invariance
to image intensity and color balance requires nothing more than training on log RGB
data. A standard CNN trained on log data exhibits invariance to intensity and color balance
changes in new data without any modifications to the architecture.

Most other prior work on the impact of image quality on network performance focuses
on noise, blur, and compression. Borel et al. examine the impact of blur, noise, resolution,
and compression [4], and [18] examine the impact of compression on network performance.

3 Theory and Methods

As part of this work, we hope to explain why log RGB may be a better input for deep
networks for computer vision tasks.

A common model for body reflection in images is the multiplicative model / = LR, where
I is the captured image value, L is the direct illuminant, and R is the body reflection. The
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(b) linear image

R S SN S

(d) log of JPEG sRGB (e) sRGB image (f) JPEG sRGB
Figure 1: 3D histograms showing the structure of the image in (a) log of linear RGB space,
(b) linear image, (c) linear RGB space, (d) camera JPEG RGB values in log space, (e) camera
JPEG image, and (f) camera JPEG RGB values in linear space.

BIDR model adds an ambient illumination term A, and a direct illuminant modifier 7 that
represents both geometric shading and shadows that modify the strength of L, giving the
appearance model in (1).

I=AR+7YLR = (A+YL)R N

Taking the log of the refactored equation gives two terms in log space, as in (2).

log! =log(R) +1log(A+vL) 2)

The first term is a constant for a single material. The second term varies according to the
strength of the direct illuminant. The result is an approximate line segment, or cylinder in
log space that represents the range of body reflection values for a single material. Because
the second term contains only illumination terms, the orientation and length of the cylinder
is the same for all materials under the same ambient/direct illumination pair: the cylinders
representing each unique material are all translated versions of one another.

Conversion to sSRGB, contrast enhancement, and JPEG compression all conspire to elim-
inate the linearity of the data and break the structure of material appearance in log space.
Figure 1(b) and 1(e) show crops of an image with multiple materials under yellow sunlight
in the lit areas and blue skylight in the shadows. Figure 1(b) is a linear image, and figure
1(e) is the camera JPEG version (the one people see, store, and share). Figures 1(a) and 1(d)
show the log RGB structure as a 3D histogram, and figures 1(c) and 1(f) show the linear
RGB structure as a 3D histogram. Note the clear linear structure present in the histogram for
the linear data and the more convoluted structure in the histograms of the JPEG sRGB data.
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(a) Original JPEG (b) JPEG Gradient (c) Linear Gradient (d) Log Gradient

Figure 2: (a) Original image shown as JPEG. Gradient magnitudes and colors for (b) sSRGB
JPEG, (c) linear RGB, and (d) log RGB image.

While surface reflection, blend pixels, and interreflection all add complexity to surface
appearance, the log of linear and linear RGB histograms in figures 1(a) and (c) have more
consistent structure to them than the equivalent JPEG sRGB histograms in figures 1(d) and
(f). Our hypothesis is that if the structure exists, a deep network can learn to take advantage
of it.

In addition to the overall structure of images in log RGB, computing ratios of nearby
pixels has been shown to be a useful feature in object recognition [36]. Standard CNNs can’t
compute ratios with linear data because convolution is adding or subtracting scaled input
values. However, because subtraction of log data is calculating ratios, a standard CNN can
learn to compute them from log RGB inputs. Ratios of pixels factor out the illumination
signal from body reflection as long as both pixels are under the same illumination condition,
which is usually the case for nearby pixels.

LR R
ratio = —— = ~L 3)
LR, R,

R
log R—; = log(Ry) —log(R») )

To support the hypothesis that ratios can be useful features, Figure 2 shows a visualiza-
tion of the color and intensity of gradient magnitudes calculated in JPEG sRGB, linear RGB,
and log RGB using 3x3 Sobel operators. Note that in log RGB, the gradient color and magni-
tude on material boundaries is constant across illumination conditions, while those features
vary for the other two data types, making the local log data features more consistent.

4 Data and Data Preparation

Given the lack of data sets based on RAW imagery we collected a new data set for an image
classification task. We captured 561 images that contain a Swedish Fish® candy box and 557
images taken in similar locations without the box. We use 100 images for the test set, evenly
split. The images were captured with two devices—a Canon EOS Rebel T7 and an iPhone 13
Pro using the Halide app—and the camera and phone (via Mac Photos) both produced RAW
and proprietary JPEG versions of the images. The RAW images were provided as either CR2
(Canon) or DNG (iPhone) format files. The images were captured in a variety of lighting
situations and environments, including some with cast shadows on the box.
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The RAW data was read and processed with the rawPy library [41] using the default de-
Bayering algorithm, no gamma correction, auto-brightness adjustment on, percent saturated
pixels at 0.001%, and using the camera white balance. The linear data was resized using the
OpenCV resize function with the INTERP_AREA flag so the minimum spatial dimension
was 64 pixels and then saved as 16-bit TIFF files. The log of linear data was generated from
the resized linear data and saved as 32-bit EXR files.

To guarantee the linearity of the data, we captured an image of a MacBeth® chart using
both devices and fit the green channel values from the grey sequence to the chart luminosities
(L). The least squares line fit was R> = 0.992 for the iPhone and R? = 0.994 for the Canon,
confirming the data is linear.

From the original data, we created three variations of the original test set: (A) random
intensity variation, (B) random color balance, and (C) both random intensity and color bal-
ance. We applied the color balance as a diagonal matrix on linear RGB. We first calculated
the minimum and maximum possible multiplier coefficients for each of the three color chan-
nels to avoid saturating the data to either O or the max value. We then picked one coefficient
per channel, uniformly distributed between the min and max value for that channel. To gen-
erate random intensity variation, we found the max of the min coefficients and the min of
the max coefficients across color channels and picked a single random multiplier uniformly
distributed between the two values. When applying both modifications, we applied a ran-
dom intensity variation, then recalculated the min/max multipliers and picked a random color
balance.

When creating the JPEG images for the test set and augmented training set, we applied
the color balance or intensity variation to the linear image, converted the data to SRGB, and
saved the image in JPEG format using the defaults for the OpenCV save function.

5 Experiments and Results

5.1 Object Detection Experiment

We used a small CNN structure for the detection task, similar to Lecun ef al. [28]. The
network, built in pyTorch, has three convolution layers with 5x5 filters, stride 1, valid con-
volution, with 16, 32, and 32 channels, respectively. Each convolution layer is followed by a
2x2 max pooling layer and ReLU activation. The final pooling layer is 4x4 spatially with 32
channels and is fully connected to a 64 node linear layer, followed by the output layer with
two nodes. A dropout layer with p = 0.7 sits after the final pooling layer.

We intentionally used a small CNN to guarantee that the data set was large enough to
train the network from scratch without overfitting. Using a pre-trained standard backbone
architecture—e.g. ResNet18—would have introduced bias into the procedure. Training a stan-
dard backbone architecture from scratch on just 1000 images would likely have resulted in
overfitting, making comparative results suspect, because the network would not have needed
to learn any underlying compact rules.

The network was trained with negative log likelihood as the loss and Adam as the opti-
mizer [51]. The learning rate for the networks trained on the JPEG and linear data was 0.001
using an eps of 1e-8. The learning rate for the log network was 0.0003 with an eps of 0.1.
The log-trained network would not consistently train with the JPEG/linear meta-parameters.
For all networks we experimented with the meta-parameters to optimize performance on the
validation set.
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(1) Unmodified Train Set JPEG Linear RGB Log RGB
Original Test Set 89.0% /0.292 90% / 0.455 91% /0.272
Random Color Balance 62% /0.815 75% 1 1.163 89% /0.318
Random Intensity 73% /1 0.669 82% 10.748 94% /0.247
Both 69% /0.750 74% / 1.400 89% /0.292
Validation 88.7% /0.312 93.6% /0.263 87.7% /0.321
(2) Fixed Modified Train Set JPEG Linear RGB Log RGB
Original Test Set 65% /0.683 87% 10.514 90% /0.285
Random Color Balance 78% / 0.455 85% 10.782 92% /0.216
Random Intensity 71% / 0.681 92% /0.392 93% /0.192
Both 78% / 0.444 88% /0.684 93% /0.193
Validation 89.0% /0.283 95.6% /0.156 95.0% /0.179
(3) Dynamic Train Set JPEG Linear RGB Log RGB
Original Test Set 82% 10.527 87% /0.320 94% /0.197
Random Color Balance 56% / 1.090 84% /0.339 92% /0.227
Random Intensity 55% /1.119 85% /0.357 92% /0.210
Both 55% /1.122 85% /0.324 92% /0.213
Validation 90% /0.361 91.7% /0.313 87.3%/0.344

Table 1: Accuracy / Loss for the JPEG, linear RGB, and Log RGB networks using three
variations of the training data and four variations of the test set.

Given our focus on data integrity, we minimized pre-processing of the data prior to ap-
plying it to the network. The JPEG sRGB and linear data is normalized to the range [0, 1]
by dividing by the max value for the data: 255 for JPEG and 65535 for the linear data. The
log data is not normalized or shifted and is in the range [0, 11.1]. The images are 64 pixels
on their short side, and we take a random square 64x64 crop from the image.

We ran three experiments, each evaluating four test set variations on networks trained on
one of three image types: JPEG sRGB, linear RGB, and log RGB. In the first experiment,
one network was trained on each type with no color balance or intensity augmentation. Each
of the networks was then evaluated on each version of the test set.

In the second experiment, the networks were trained on the same training set, but with
modified versions of the training set images with random color balance and intensity vari-
ation. Specifically, the training set contained 1/3 with random intensity variation, 1/3 with
random color balance, and 1/3 with both types of variation. In order to create a fair experi-
ment, the training set was augmented and then fixed so that all three networks trained on the
same set of augmented data.

In the third experiment, we dynamically modified the inputs, with equal probabilities
for no modification, intensity variation, color balance variation, and both color balance and
intensity variation. Table 1 shows the results. For all experiments we trained the network at
least twice and report results from the version with the best validation accuracy.

5.2 Object Detection Results

In all three experiments, the log network demonstrated consistent performance across both
the original and modified test sets, outperforming the other networks despite not having the
highest performance on the validation set. The network trained on log data demonstrates
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Metric JPEG-Linear JPEG-Log  Linear-Log
JMSE/Stdev  4863/4057 5606/3438 3374/2686
1T SSIM/Stdev  0.42/0.21 0.34/0.17  0.53/0.18

Table 2: Differences between grad-CAM heat maps for the three networks. For the MSE
values, smaller is more similar. For SSIM, larger is more similar.

invariance to color balance and intensity even when trained only on the original data.
The linear network showed a drop in performance on the modified test sets when trained
only on the original data. It demonstrated more sensitivity to color balance than to intensity
variation in all three experiments, but it was able to perform more consistently when trained
on the modified data. The linear network had the highest validation accuracy for all three
experiments, but worse generalization to the unmodified test set than the log network, and
the losses indicate the network was exhibiting more uncertainty despite the good accuracy.
The JPEG network showed similar performance on the validation set and the unmodified
data in experiment 1, but did not generalize as well in experiments 2 or 3. In all three
experiments the JPEG network performance decreased for the test sets with color balance
or intensity variation applied. We were expecting the JPG network to be able to learn the
task more effectively with the dynamic data set, and it did improve its performance on the
unmodified test data, but it was unable to learn how to generalize to the modified test sets.

5.3 Analyzing the networks

One question we wanted to explore is whether the linear and log networks were activating
on the same spatial features as the JPEG network. We implemented the grad-CAM [43]
method of building activation maps, computing them for the positive detection class after the
final convolution and pooling layers. We then computed both mean-squared error [MSE] and
structural similarity [SSIM] metrics for the heat maps between all pairs of networks. Table
2 shows the MSE and SSIM comparisons.

Table 2 shows that the linear and log trained networks are learning activation patterns
more similar to one another than to the JPEG trained network. A pairwise ranking using
SSIM shows that the log map is more similar to the linear map in 83 of 100 cases, and the
linear map is more similar to the log map in 67 of 100. The JPEG map is more similar to the
linear map in 69 of 100. These results support the hypothesis that the log and linear networks
are learning different spatial features than the JPEG network, and the learned features for the
linear and log networks are more similar to one another.

5.4 Training Log Space Networks

Using log RGB as input to a convolutional network changes what the network is computing
in the first layer. Applying standard convolution on log data means the filters are computing
ratios (subtraction in log space) or products (addition in log space). Therefore, it is important
to avoid pre-processing steps that change differences. In particular, we had to avoid normal-
izing the log inputs, such as dividing by the max input value. The log network will not train
if the data is normalized by a scalar. Likewise, we found that subtracting the mean of the log
data to center it around zero in log space—which is identical to dividing by the mean in linear
space—also caused the log network to underperform.
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ber of training

(a) JPEG training (b) Linear training (c) Log training

Figure 3: Training curves for the JPEG, linear, and log networks showing accuracy for the
train and test sets.

Possibly because of the increased range of the input data, the log network training was
more consistent if the learning rate was smaller. Training was also more consistent if we
increased the value of the eps coefficient of the Adam scheduler, which is used to avoid
division by zero errors and modifies the learning rate [51].

A final note about training log space networks is that the training curves tend to be
different than the curves for JPEG or linear networks. In particular, the network does not
display typical overfitting behavior, as shown in figure 3. Both the JPEG and linear networks
display typical overfitting where the training and test data diverge. This suggests that the log
space network may be learning more robust general features than the other two networks.

6 Discussion

Our results and analysis support two hypotheses. (1) Using linear or log data provides
better results on an image classification task when using the same network and training
set. (2) Using log data provides invariance to color balance and intensity variation with
no additional training. These hypotheses have potentially significant broader impacts and
suggest that log RGB inputs should be evaluated on other computer vision tasks. The key
missing element is the need for data sets large enough to support networks of more typical
size (e.g. ResNetl8).

Some questions that may arise from our experiments include the following.

(1) Why not try a standard pre-trained CNN architecture (e.g. ResNet18) on this task?
It’s important to train from scratch, as the log space input will likely compute different types
of features, and the data set is not large enough to train a large network. We wanted to
avoid transfer learning with a network trained on standard data, as it would bias the network
features if not pre-trained on linear or log data.

(2) Is the data set is too small to be significant? We have >500 images of a unique
object, and >1000 images total. That’s 50% of the number of images used for a whole
category (e.g. airplane) in ImageNet. The network we used should have enough data to learn
how to detect the object. We used 64x64 inputs in order to ensure the object was big enough
for the network to have multiple pixels on each color of the object in every image.

(3) How does this work relate to the equivariant networks [8], which used large standard
data sets? Given our results, it’s not clear if the equivariant networks are able to achieve color
balance invariance from the equivariant modification to CNNs or by executing the inverse
sRGB and log conversion. They would need to do two additional experiments in order to
separate the effects of the two modifications: (1) use the log space conversion and standard
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networks, and (2) use the equivariant networks but no log space conversion. In addition, the
JPEG data they use is only 8-bits and likely corrupted by more transformations than sSRGB,
meaning the conversion to log space is most likely producing only approximate log data.

Future work on this topic should explore larger data sets carefully captured to preserve
the linearity of the data, other computer vision tasks, and larger networks (enabled by larger
data sets). It is also important to explore whether objects for which color is not a defining fea-
ture of the category—such as mugs or chairs—also receive a boost in performance from using
log RGB. Reflectance ratios, for example, can be both a characteristic of an object—such as a
boundary between two colors on the same object—and an indicator that two adjacent regions
are not part of the same surface [33]. Giving deep networks access to the structure and infor-
mation present in linear and log RGB images may provide across-the-board improvements
in many vision tasks with smaller and simpler networks.

7 Summary

Log of linear RGB contains consistent structure that is not present in data converted to JPEG
sRGB, especially with other potential image processing applied. Using log data also makes it
possible for a standard convolution layer to compute pixel ratios, which have been shown to
be useful as illumination invariant features of objects. There is still much more exploration
to be done, but this work suggests that log RGB space may have important benefits as an
input to deep networks for computer vision tasks.
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