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ABSTRACT

The correct interpretation and understanding of deep learning models is essential
in many applications. (Explanatory) visual interpretation approaches for image
and natural language processing allow domain experts to validate and understand
almost any deep learning model. However, they fall short when generalizing to
arbitrary time series data that is less intuitive and more diverse. Whether a visual-
ization explains the true reasoning or captures the real features is more difficult to
judge. Hence, instead of blind trust we need an objective evaluation to obtain re-
liable quality metrics. This paper proposes a framework of six orthogonal quality
metrics for gradient- or perturbation-based post-hoc visual interpretation methods
designed for time series classification and segmentation tasks. This comprehen-
sive set is either based on ”human perception” or on ”functional properties”. An
extensive experimental study includes commonly used neural network architec-
tures for time series and nine visual interpretation methods. We evaluate the visual
interpretation methods with diverse datasets from the UCR repository and another
complex real-world dataset. We show that none of the methods consistently out-
performs any of the others on all metrics while some of them are ahead in either
functional or human-based metrics. Our results allow experts to make an informed
choice of suitable visualization techniques for the model and task at hand.

1 INTRODUCTION

Due to its high performance on complex multi-modal data, deep learning (DL) becomes increas-
ingly popular in many real-world applications that process time series data (Fawaz et al., 2019b).
While we fundamentally rely on their classification accuracy in many safety-relevant applica-
tions (Berkenkamp et al., 2017) they remain difficult to interpret. Typical applications are the mon-
itoring of industrial processes (Löffler et al., 2021), the support of health care and sports (Dorschky
et al., 2020), or safety in autonomous driving (Schmidt et al., 2021). The need for improved model
understanding (Carvalho et al., 2019), along with regulatory guidelines (Goodman & Flaxman,
2017), led to a myriad of new approaches to the visual interpretation problem (Zhang & Zhu, 2018).

Post-hoc visual interpretation allows a domain expert to validate and understand how (almost) arbi-
trary deep learning models operate. Their central idea lies in highlighting features on the input that
are ”relevant” for the prediction of a learned model (Adebayo et al., 2018). Many of these techniques
do not require a modification of the original model (Simonyan et al., 2014; Ribeiro et al., 2016) and
are compatible with different architectures, which makes them useful as a general-purpose validation
tool for neural networks across different tasks (Arrieta et al., 2020).

However, while visual interpretation yields intuitive and correct explanations for images (Samek
et al., 2021), the application of these methods on time series data is still an unsolved problem (Rojat
et al., 2021). Time series inherently are more diverse (Rojat et al., 2021) (because they may originate
from a variety of different sensors and processes), and often do not allow an obvious patch- or
texture-based localization of critical features for human observers. This makes the application and
the evaluation of visual interpretability methods difficult. A domain expert cannot easily judge if
explanations are correct in (i) explaining the reason for the decision process in the DL model and in
(ii) capturing the real features in the dataset that lead to a correct classification.

Hence, it is important not to blindly apply different visualization methods. This requires quality met-
rics that evaluate visual interpretations and that enable an expert to select a suitable visualization for
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a given model and task at hand. However, both state-of-the-art visualization techniques and metrics
that evaluate visual interpretations (e.g. Pixel Flipping (Samek et al., 2017), Sanity Check (Adebayo
et al., 2018), and sensitivity checks (Rebuffi et al., 2020)) have so far only been examined on im-
ages (Rojat et al., 2021) or on NLP tasks (Arras et al., 2017). This lack of objective and subjective
evaluation seriously limits the application and utility of them for time series.

In this paper, we propose to evaluate visual interpretations for time series combining six orthogonal
metrics: ”sanity” (Adebayo et al., 2018), ”faithfulness” (Alvarez Melis & Jaakkola, 2018), ”sensi-
tivity” (Rebuffi et al., 2020), ”robustness” (Yeh et al., 2019), ”stability” (Fel & Vigouroux, 2020; Li
et al., 2021), and a novel metric based on human preferences: ”localization”. These metrics rate and
validate distinct qualities of saliency. Our metrics are both based on the functional perspective, i.e.,
based on the model-specific operation, and on how well they represent annotators’ semantics.

In an extensive evaluation, we train four different architectures on two different types of tasks: U-
Time model (Perslev et al., 2019) and bidirectional Long Short-Term Memory (bi-LSTM) (Schuster
& Paliwal, 1997) on segmentation tasks, and Fully Convolutional Network (FCN) (Long et al., 2015)
and Temporal Convolutional Network (TCN) (Bai et al., 2018) on classification tasks. We use di-
verse datasets from the UCR repository (Dau et al., 2018) (GunPointAgeSpan, FordA, FordB, Elec-
tricDevices, MelbournePedestrian, NATOPS) and for segmentation the more complex real-world
tool tracking dataset (Löffler et al., 2021). The experiments show the necessity of all categories to
create an objective rating for methods, models and tasks, and allow domain experts to understand,
rate, and validate saliency for time series in safety-critical applications.

The rest of the paper is structured as follows. Section 2 discusses background and related work.
Section 3 introduces extended and novel metrics for both the classification and segmentation task.
Section 4 discusses the experimental results and Section 5 proposes recommendations.

2 BACKGROUND AND RELATED WORK

Interpretation methods for DL models can be divided into ante-hoc methods, i.e., methods that are
inherently part of the model, and post-hoc methods, i.e., methods that provide the interpretation after
training (Rojat et al., 2021). We focus on post-hoc methods and divide them into gradient-based and
perturbation-based methods (Li et al., 2021; Warnecke et al., 2020; Ismail et al., 2020).

Gradient-based methods compute the relevance for all input features by passing gradients backwards
through the neural network (Ancona et al., 2018). Gradient (Simonyan et al., 2014) computes a class
c’s saliency map M c using the derivative of the class score P c of the model with respect to the input
sample x, as M c(x) = ∂P c

∂x . The gradient indicates the importance of points in the input sequence
for predictions. The advantage of gradient-based methods lies in their computational efficiency, as
they use only a small number of backward passes to compute M c(x).

Perturbation-based methods perturb known input samples and measure the effects of specific per-
turbations on the predicted class via a forward pass through the network. For instance, Local
Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) fits a local surrogate
model (e.g., a linear regression) as an explanation, and calculates relevance based on this surrogate.
Perturbation-based methods are computationally expensive as they require multiple forward passes
per sample. However, they do not need gradient information and work with black-box models.

2.1 METRICS FOR SALIENCY ON TIME SERIES

Most interpretation methods were originally designed for image or text data. Understanding and
comparing visual interpretation is intuitive on image data, compared to more abstract time series.
Furthermore, the diversity of interpretation methods complicates an objective choice for the model
and task (Rojat et al., 2021). For example, when Wang et al. (2017) and Fawaz et al. (2019b) apply
Class Activation Maps (CAM) (Zhou et al., 2016) on well-known UCR datasets (Dau et al., 2018),
they notice a qualitative difference of CAM interpretations between network architectures. Similarly,
other work relies on domain experts that perform a (costly) qualitative evaluation (Strodthoff &
Strodthoff, 2019; Fawaz et al., 2019a; Oviedo et al., 2019). Hence, there is an increasing need for
objective evaluation metrics to make the interpretations measurable and comparable.
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Figure 1: We show examples for a good (green) and a bad (red) score for each metric. (a) sane
saliency depends on network parameters, tested by randomizing weights and biases. (b) faithful
saliency correlates with predictive accuracy, tested by perturbing the input sequence. (c) sensitive
saliency of the predicted class in one sample is different from others. (d) for robust saliency small
changes to input data cause only small effects. (e) stable saliency of all class samples has a low
variance and standard deviation. (f) saliency should be localized on the predicted segment.

Metrics. There exists a large variety of different metrics. First, the stability of saliency maps can be
evaluated with respect to the sensitivity of the majority class (Yeh et al., 2019). This metric evaluates
the change of interpretation when the input samples are attacked by adversarial noise. It is a spe-
cial form of perturbation, that was so far only applied to image data. Second, Rebuffi et al. (2020)
measure class sensitivity by comparing saliency maps of a min- and max-class. Third, Cho et al.
(2020) perturb the unimportant input samples and preserve only the important inputs. If the predic-
tions are stable compared to the unperturbed input, the interpretation is robust. Similarly, Ates et al.
(2021) evaluate the local robustness (i.e., similar samples should lead to similar interpretations) of
the interpretation by measuring the ratio of change of the interpretation compared to the amount of
input perturbation. Finally, faithfulness is a perturbation-based metric that aims to measure the rela-
tionship between saliency and predictive features (Alvarez Melis & Jaakkola, 2018). Schlegel et al.
(2019) focus on continuous univariate time series. Sub-sequences with high relevance values are
perturbed either by swapping their samples or replacing them with a mean value. Similarly, Ismail
et al. (2020) propose input perturbations to evaluate models on synthetic time series. As they perturb
inputs point-wise instead of sub-sequences their metric does not consider time dependency between
consecutive points. Our faithfulness metric perturbs sub-sequences of high saliency (Schlegel et al.,
2019). We adapt each type of metric into our set to provide a visual interpretation of time series.

Categories of metrics. Metrics can be divided into different categories, depending on the ques-
tion they answer. Doshi-Velez & Kim (2017) propose a distinction between human-grounded and
functional metrics. The former involve human perception and intuition with the goal of generating
qualitative, intuitive visualizations, e.g., bounding boxes for image object detection for testing the
localization of saliency maps (Jianming et al., 2016), or questionnaires to indicate testers’ opinions
on the quality of explanations (Li et al., 2021). Functional metrics provide statistical measures, e.g.,
to aggregate performance metrics automatically (Rojat et al., 2021), and make use of proxy tasks to
generate a quantitative evaluation. Another categorization (Li et al., 2021) identifies multiple broad
categories for image data, that we may transfer to time series, i.e., the faithfulness of salient features,
the class sensitivity of an explanation, and the stability of explanations given noisy inputs.

This paper proposes a framework of metrics with orthogonal categories, specifically to time series.
We adapt and extend metrics to (multivariate) time series and propose an intra-class stability metric
and a concept of relevance localization: we build on the pointing game (Jianming et al., 2016) and
combine it with the precision and recall for time series framework (Tatbul et al., 2018). To our
knowledge we are the first to apply and evaluate sanity check (Adebayo et al., 2018) on time series.

3 SCORING CATEGORIES

We propose a set of six distinct categories (sanity, faithfulness, sensitivity, robustness, stability,
and localization) to assess visual interpretation methods and to determine their performance and
trustworthiness in classification or segmentation tasks on time series. For each of them we propose
a metric that enables a comparative evaluation of diverse types of visual interpretation methods.
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Figure 2: Pairwise Pearson
correlations of scores (also
plotted in Fig. 7b). Every met-
ric is independent of all others.

Why do we need six scoring categories? It seems tempting to
rely on a single metric or on a single aggregated score across
multiple metrics to assess the quality of a visual interpretation.
However, we show that the six presented categories are inher-
ently orthogonal (see Fig. 2) and capture distinct qualities. In-
terpretations depend on model parameters (sanity check (Adebayo
et al., 2018)), predictive features (faithfulness (Alvarez Melis &
Jaakkola, 2018)), coherence of class predictions (intra-class stabil-
ity (Fel & Vigouroux, 2020)), robustness against noise (max sensi-
tivity with adversarial noise (Yeh et al., 2019)), specific sequences
(or even points) in a time series like by Tatbul et al. (2018) (novel
localization metric), and the relevance map’s specificity (inter-
class sensitivity (Rebuffi et al., 2020)). It is important to assess
if a given interpretation accurately captures these dependencies.

We give a brief overview of our frameworks’ functional (Fig. 1a-e) and human-grounded metrics
(Fig. 1f) that we evaluate with time series data. (a) sane saliency depends on network parameters
and is structurally different after randomizing the network’s weights ρi for layers [1, 2, 3] (Adebayo
et al., 2018). (b) faithful saliency correlates with predictive accuracy and perturbing a percentage
of the input sequence with high saliency decreases accuracy (Alvarez Melis & Jaakkola, 2018). (c)
saliency is sensitive when the predicted (max) class in one sample is sufficiently different from any
other (min) class (Rebuffi et al., 2020). (d) saliency is robust, if small changes to the input cause
only small changes to the saliency (Yeh et al., 2019). (e) saliency is stable if it has a low variance
and standard deviation for all samples of a class, with respect to a suitable distance metric (Fel &
Vigouroux, 2020). (f) saliency should be localized on the predicted classes segment (t0 to t1). We
will define those categories on time series after introducing a unified notation.

Notation. We follow the notation adapted from Fawaz et al. (2019b): A multivariate time series is
defined byX = [X1, ..., XH ], whereH is the number of input channels,Xi = (xi1, ..., x

i
T ) ∈ RT is

an ordered set of real values, and T denotes the number of time steps. For H equal to 1, we consider
a univariate time series, otherwise we consider a multivariate time series. Time series often include
complex temporal dependencies, i.e., distinct points are not independent. Time series classification
defines a mapping X → y that minimizes the error on a dataset D = {(X1, y1), ..., (XN , yN )},
where N is the number of data samples, X ∈ D is a time series, yi ∈ RC denotes the one-hot
vector of a class label the input belongs to, and C is the number of classes. In time series segmen-
tation, we search X → Y that maps an input sample to a dense classification Y = [y1, ..., yT ] ∈
RC×T (Perslev et al., 2019), i.e., a class label is predicted for each time step. Post-hoc visual in-
terpretation methods compute a relevance map M c

m ∈ RH×T , M c
m(X) = [R1, ..., RH ], where

Ri = (ri1, ..., r
i
T ), representing the importance of each input feature with respect to the class c and a

model m, for each time step. We use M as a function to produce the saliency map. For clarity, we
will omit the dependency onm, i.e., M c

m ≡M c, if it is not explicitly required. An evaluation metric
for visual interpretation methods defines a score Smetric(·) that rates the quality of the relevance map
M at a sample X given a model m and optional parameters. We provide a unified view, so that for
all scores, a higher score corresponds to a better visualization according to the perspective.

3.1 SANITY

Intuitively, if the weights and biases of trained networks models were re-initialized with random
values, the networks predictions and generated saliency maps should also be different from the
original maps. However, this is not always the case. Despite a drop in model accuracy, saliency
may remain stable. Hence, we test sanity using a variant of sanity check (Adebayo et al., 2018), that
performs a layer-wise cascading randomization of the network’s weights and biases, starting from
the output to the input. In contrast to independent randomization, the cascading approach results in a
mostly continuous performance degradation of predictions, see Fig. 1a for an illustration. Network
accuracy should increasingly resemble random guessing. Following Adebayo et al. (2018), we
compare saliency using the structural similarity index measure (SSIM) (Wang et al., 2004), that
compares the distribution of sub-sequences of M c. We define the sanity score as

SSanity(M,D,m) = − 1
N ·
∑
X∈D

∑L
i=1

SSIM(Mc
m(X),Mc

mi
(X))

L (1)
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where |D| = N , i enumerates the L layers of m, whose parameters are randomized. M c
mi

(x) is the
saliency map after randomizing layer i of m. We average the SSIM over L layers and compute the
average over all samples in D.

3.2 FAITHFULNESS

A relevance measure is faithful, if input features with a high relevance (w.r.t. M c) have a high influ-
ence on the model prediction, see Fig. 1b for an example. Alvarez Melis & Jaakkola (2018) propose
a perturbation-based metric that evaluates the faithfulness of predictions. The metric measures the
correlation between input (features) with high saliency on the one hand and predictive accuracy on
the other hand. We choose a sub-sequence of the input to perturb by ranking each time step of
XT ∈ RT according to the relevance of its saliency map. Next, we perturb connected sub-sequences
similar to Schlegel et al. (2019). We extend the metric to multivariate data XH

T : Based on the rele-
vance r, we select time points t ∈ {1, ..., T} and features i ∈ {1, ...,H}. We select t according to
the maximum relevance rit and set t as the middle point of the sub sequence. Therefore, we select
and reverse the sequence as xrev = (xi

t+L
2

, ..., xit, ..., x
i
t−L

2

) to break the temporal correlation. Next,
we insert it back into a copy of X that we denote as X ′. With this perturbation we compute the
mean faithfulness score over the whole dataset D as

SFaithfulness(M,D,m) = 1
N ·
∑
X∈Dm

c(X)−mc(X ′). (2)

where mc : Rc → R is the softmax prediction of the target class c. mc(X) −mc(X ′) is the gap
score between the softmax prediction of the original and the perturbed sample.

3.3 INTER-CLASS SENSITIVITY

In multi-class prediction tasks the classifier needs to identify relevant features for each of the classes
to make a correct prediction. Hence, the relevance map M c should identify different salient features
for those different classes (Li et al., 2021), see Fig. 1c. If a method is not sensitive to the class,
the saliency could be misleading, especially if the classifier fails to learn correct features for some
classes. Inter-class sensitivity (Rebuffi et al., 2020) measures class specific sensitivity of the gen-
erated relevance map with respect to the most (cmax) and least (cmin) likely class according to the
model. We compute the mean inter-class sensitivity score as

SInter-Class Sensitivity(M,D) = − 1
N ·
∑
X∈D sim(M cmax(X),M cmin(X)). (3)

We compute similarity of two saliency maps as sim(M cmax(x),M cmin(x)) where sim(·, ·) is a simi-
larity function (e.g. a cosine similarity) that is easy to interpret via its geometric interpretation. It is
defined as the angle between two non-zero vectors that measures the similarity between their inner
product space (Han et al., 2012). Similarity of M in binary classification would result in a negative
cosine similarity, meaning nearly inverted saliency maps for max- and min-classes.

3.4 ROBUSTNESS

We evaluate a method’s robustness with respect to adversarial noise (Yeh et al., 2019) via its sensi-
tivity of the most likely class (cmax) see Fig. 1d. Intuitively, even with noisy inputs the saliency map
of a model should not change significantly (Alvarez-Melis & Jaakkola, 2018) and saliency maps
with high sensitivity are less reliable. Yeh et al. (2019) define the sensitivity of the saliency map
derived from the gradient as

[5XM c(X)]j = limε→0
Mc(X+εej)−Mc(X)

ε (4)

for any j ∈ {1, ..., |H · T |}, where ej∈RH×T is the j-th coordinate vector and the j-th entry is one
while the others are zero. We use Monte Carlo sampling of εej , where |εej |<a (a is a user-specified
radius), to generate different X̂ = X + εej . We compare X̂ with the original X to compute

SMax Sensitivity(M
c, D, a) = − 1

N ·
∑
X∈Dmax||X̂−X||<a ||M c(X̂)−M c(X)||. (5)
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3.5 INTRA-CLASS STABILITY

A method is stable if similar input samples from the same class produce similar interpretations (Fel
& Vigouroux, 2020). We implement this concept to test the intra-class stability of saliency maps
M c for a given dataset D using distance statistics, see Fig. 1e for an example. To this end, we
compute pairwise distances between saliency maps M c for different samples Xi, Xj ∈ D. Then,
we aggregate these distances for all samples from one class:

SIntra-Class Stability(M
c, D) = −

∑
i∈[0,N ]

∑
j∈[i+1,N ]

ddtw(M
c(Di),M

c(Dj))
N ·(N−1) . (6)

We use Dynamic Time Warping (Vintsyuk, 1968) as the distance function dDTW. The score compares
each classes’ sample’s M c with all other samples’ saliency maps in the dataset, using the distance
dDTW. In summary, the mean distance for a class should be small and the variance low.

3.6 LOCALIZATION

The temporal location of class-specific features with high relevance in a time series segmentation
task should be situated within (or close-by) its labeled segment (temporal sub-sequence), see Fig. 1f.
Due to its connection to the annotation task we call it a human-grounded metric. Specifically, we
propose a novel metric that adapts Pointing Game (Jianming et al., 2016) used for object detection to
time series using range-based metrics (Tatbul et al., 2018). We argue that Pointing Game’s original
hit-and-miss accuracy is inadequate for time-series methods, as Segmentation is point-wise exact.
Thus, we replace it with range-based testing, yielding Localization. Furthermore, we observed that
some saliency methods can show strong temporal biases towards the beginning, middle or end of
a segmented class. We would expect high saliency for features within the predicted segment, and
low saliency otherwise, to accurately capture the model’s predictive behavior. Hence, Localization
measures agreement between annotators, models’ predictions and saliency, and can discover issues
like temporal biases and imprecise margins.

First, we filter out non-relevant predictions (according to the relevance map) as follows. A prediction
at time t, denoted with Ŷ (t), is relevant if there exists an i ∈ {1, ...,M} such that rit > max(|r|) · θ.
We select the model’s predicted class at time t if the prediction is relevant, otherwise we set the
class to none. The resulting relevancy-filtered prediction is denoted as Ŷ ′. Finally, we can compare
Ŷ ′ with the ground truth Y and evaluate how well high saliency features lie within the annotated
sub-sequences (Tatbul et al., 2018).

We compute the mean localization score for the whole dataset D. We compare any of the Nsub

existing labeled sub-sequence Ysubi ∈ RT from D each with its temporally co-located prediction Ŷ ′i

Slocalization(Y, Ŷ
′) =

∑Nsub
i=0

Srecall(Ysubi ,Ŷ
′
i )

Nsub
. (7)

For each pair (Ysubi , Ŷ
′
i ) we calculate a range-based recall score based on the point-wise comparison

proposed by Tatbul et al. (2018) as

Srecall(Ysub, Y
′) = α · existence(Ysub, Y

′) + (1− α) · overlap(Ysub, Y
′), (8)

where α weighs the two reward terms for ”existence” and ”overlap”. Existence is 1 if any time point
was correctly predicted within the labeled region, and 0 otherwise. The parameterized ”overlap”
function determines the finer properties of cardinality, size and position. The cardinality parameter
discounts the score if the prediction is an interrupted, fragment range instead of being continuous.
The overall size of the overlap of predicted and label ranges depends on a positional bias. It may
favor ”front”, ”middle”, or ”back” overlap. Practically, for some applications an early detection is
preferable over a late detection. For further details see Appendix A or Tatbul et al. (2018).

4 EXPERIMENTS

Our evaluation compares visual interpretation methods on a set of network architectures and diverse
classification datasets from the UCR repository, and on a more complex segmentation dataset. In
total, we aggregate the results from 540 experiments. This section is divided into two parts. We first
discuss the new localization metric for the segmentation task. Next, we discuss the metrics for the
classification task (faithfulness, sensitivity, stability, robustness, sanity).
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4.1 EXPERIMENTAL SETUP

We evaluate nine visual interpretation methods: Gradient (Simonyan et al., 2014), Integrated Gradi-
ent (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017), Guided Backpropagation (Sprin-
genberg et al., 2015), GradCAM (Selvaraju et al., 2017), Guided-GradCAM (Selvaraju et al., 2017),
Layer-Wise Relevance Propagation (LRP) (Bach et al., 2015), LIME (Ribeiro et al., 2016) and Ker-
nel SHAP (Lundberg & Lee, 2017). See Appendix B.2 for method-specific hyper parameters.

For the segmentation task, we consider two models: U-time (Perslev et al., 2019) (derived for time
series from U-Net (Ronneberger et al., 2015)), and a bi-LSTM (Schuster & Paliwal, 1997). We pro-
vide details on each architecture in Appendix B.3. We evaluate them on the tool tracking (Löffler
et al., 2021) dataset, a complex multivariate, multi-class time series from a 9-D magneto-inertial
sensor, and use the electric screwdriver’s data. For the classification task, we select two com-
monly used model architectures, i.e, a Fully Convolutional Network (FCN) (Long et al., 2015) and
a Temporal Convolutional Network (TCN) (Bai et al., 2018). We do not focus on simpler architec-
tures such as Multilayer Perceptrons and LSTMs (Hochreiter & Schmidhuber, 1997) due to noisy
or vanishing saliency in preliminary studies. Our dataset selection follows related work (Fawaz
et al., 2019b; Wang et al., 2017; Schlegel et al., 2019; Ates et al., 2021) that uses large, multivari-
ate, multi-class datasets from diverse domains (GunPointAgeSpan, FordA, FordB, ElectricDevices,
MelbournePedestrian and NATOPS from the UCR repository (Dau et al., 2018)).

4.2 EVALUATION ON SEGMENTATION TASK

This section presents the key findings from our evaluation when applying the localization metric
on saliency maps generated from U-time (results for bi-LSTM are in Appendix C.1), trained for a
segmentation task on the tool tracking dataset. Fig. 3a shows the localization metrics’ positional
biases ”classic”, ”front”, ”middle” and ”back” for each visualization method. Fig. 3b shows an
exemplary saliency map for each method.
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Figure 3: Results for the localization metric on the tool
tracking dataset and with all methods on U-time. We
show detailed values for the localization metric in (a)
and examples of saliency maps in (b).

GradCAM clearly outperforms the other
methods on the localization metric. It’s
saliency maps are smoother, with high
relevance located on the annotated seg-
ments. This may result from its coarser
relevance, as its gradients do not flow to
the input but stop at the last convolution
layer. In contrast, LRP and Integrated
Gradient perform worst. As Fig. 3b
shows, the saliency maps highlight fewer
relevant input features for the segmenta-
tion task, but instead features within the
labeled sub-sequence that may be impor-
tant for a classification. Saliency maps
are located better in the ”middle” of the
annotated segments, compared to ”front”
and ”back”, see Fig. 3a. This is also visible in the example in Fig. 3b where the relevance values
start decreasing below the threshold of 0.5 already before the end of the labeled segment at 100ms.
This points towards a biased labeling process with longer sub-sequences assigned to the classes than
necessary, and can help identifying faulty labels.

Furthermore, the high variance of most results (except for GradCAM) reveals that saliency maps for
time series segmentation are noisy. This is especially the case for Kernel SHAP, see Fig. 3b, where
relevance is assigned seemingly at random. In summary, GradCAM performs best with respect to
the human-grounded metric of localization, compared to all other methods in this study. It exhibits
low variance in the results and focus on the ”middle” segment, while other methods hardly align
with annotated relevant segments in the input features or their saliency maps are noisy.

Conversely, no method works reliably on the bi-LSTM. We identify a lack of useful visualization
methods for LSTMs, as CAM variants (GradCAM, Guided GradCAM, and Guided Backprop) are
not applicable, see Fig. 6a and 6b in Appendix C.1 for detailed results.

7



Under review as a conference paper at ICLR 2022

4.3 EVALUATION ON CLASSIFICATION TASK

In this section, we discuss the five visual interpretation quality metrics for the classification task.
Fig. 4a summarizes the scores for each metric over model architectures (FCN, TCN) and datasets.

Sanity. Across all datasets, we find that Gradient, Integrated Gradients, LIME, and Kernel-SHAP
consistently achieve high sanity scores. In contrast, LRP, Guided GradCAM and Guided Backprop-
agation often assign similar saliency even after randomizing network parameters. This replicates
sanity results by Adebayo et al. (2018). Low sanity methods highlight features in the input that may
also be randomly extracted but do not necessarily predict classes.

Faithfulness. The scores differ widely across datasets. While Gradient, Integrated Gradients, LRP
and Guided Backprop have an above-average faithfulness, Guided Gradcam and GradCAM are un-
able to identify critical features for a prediction. Especially scores for FordA, FordB and NATOPS
are generally very low across all visualization methods. Perturbating connected sub-sequences in-
stead of random samples may be less suitable for these datasets.

Sensitivity. GradCAM shows the highest sensitivity for classes - the saliency maps for the most
and least likely classes differ largely. On the other hand, Integrated Gradient and Guided Back-
propagation produce similar saliency maps, independent of a sample’s class. This holds across all
datasets.

Robustness. As found by Smilkov et al. (2017) and us, Gradient is less robust to (adversarial)
noisy. LIME and, interestingly, SmoothGrads also have a low average robustness. The additive
noise of SmoothGrads may compound and lead to diverging saliency maps. The metric’s weakness
is computational cost – {TCN,ElectricDevices} timed out after 12 days.

Intra-class Stability. This metric is highly dependent on the dataset, e.g., centered samples as in
GunPointAgeSpan. However, when accounting for variance introduced by the dataset (see Fig. 7b in
Appendix C.2), SmoothGrads, LIME, and Kernel-SHAP show unstable saliency maps for the same
classes. Guided GradCAM is able to produce highly stable saliency maps across all datasets.

Dataset Influence. First, datasets heavily impact scores, see the outliers in Fig. 4a. Plotting the
categories over each dataset for all {model architectures, methods} (Fig. 4b) emphasizes this finding.
The choice of visual interpretation method depends, for the most part, on the task. Still, after
normalizing for dataset bias, the relative scores do not diverge significantly but confirm the initial
scores. We report the relative scores in Fig. 7b in Appendix C.2. Second, the model architecture
(FCN or TCN) matters little to the scores, see Fig. 7c in Appendix C.2. The scores for FCN and
TCN diverge slightly more for faithfulness. This may be due to the higher capacity of the TCN,
which learns more features of lower relevance, so that accuracy is not as affected by perturbations
as for the smaller FCN. A larger perturbation percentage may resolve this issue.
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Figure 4: (a): shows aggregated results for TCN and FCN over all classification datasets without
normalization ( as we found that model architectures generally lead to similar scores); (b): shows the
influence of datasets on the scores, when we aggregate for each dataset over {model architectures,
methods}. Similarity metrics for saliency maps yield different results in different domains.
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5 RECOMMENDATIONS

The quality of visualizations differs wildly between methods. No method passes the tests for all
categories on all six datasets. This emphasizes the need to evaluate all metrics for every visual inter-
pretation. We recommend to use a summary as in Fig. 5 to judge visualizations on every category,
and propose the following guidelines for relative ranking. The absolute scores may be understood
in comparison with a random baseline, similar to shuffled AUC (Borji et al., 2013).
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Figure 5: Scores as a heatmap for TCN
on FordB. Columns with high relative scores
(bright squares) indicate good visualizations.
Dark squares show the shortcomings.

First: Ensure Faithfulness and Sanity. The gen-
eral purpose of interpretability methods is to pro-
vide insights into model behavior. We propose to
use the Faithfulness and Sanity scores to ascertain
that a saliency map represents the model behavior.
Faithfulness ensures that the saliency matches the
model’s predictive features. Sanity checks confirm
that saliency maps are sensitive to model parameters.
This is important to avoid finding highly salient fea-
tures, like edges in images (Adebayo et al., 2018),
while being insensitive to model parameters. We
avoid saliency maps with low scores in either metric.
See Fig. 5 for an example: Gradient, IG and LIME
achieve the three highest scores. Random saliency
maps are dissimilar, hence the high Sanity score.
However, its Faithfulness hints at low reliability of the other methods. Guided Backprop, Guided
GradCAM and LRP fail the Sanity Check, while Kernel-SHAP performs poorly in Faithfulness.

Second: Check Sensitivity and Robustness. Once Faithfulness and Sanity are established, we
propose to look at Sensitivity and Robustness of the generated saliency maps. A low Inter-Class
Sensitivity can indicate that the saliency maps only focus on the predicted class and underestimate
the importance of features that do not belong to this class. A low Robustness score suggests that
the visualization method is susceptible to adversarial examples and small perturbations in the input.
Given that the model predictions are robust (Zhang et al., 2019), and the saliency is faithful, a low
Robustness implies that the saliency method cannot be trusted, and may even be manipulated (Dom-
browski et al., 2019). For non-robust models we recommend Faithfulness. According to Fig. 5, we
keep Gradient and LIME, but disregard IG, due to its lower Sensitivity.

Detailed Analysis: Analyze Intra-class Stability and Localization. Intra-class stability measures
how much saliency maps for one class agree between different samples. The localization metric,
like other Pointing Game-like metrics, measures semantic precision based on human annotations.
These human-grounded metrics allow an expert to filter visualizations that are more intuitive and
understandable. Note that it is crucial to ensure the Faithfulness of a method before relying on this
metric. If the method is not faithful, stable and localized visualizations are visually pleasing, but do
not reflect model behavior. This can hide issues like spurious correlations (Arjovsky et al., 2019) or
the shortcut learning problem (Geirhos et al., 2020) behind a good score.

6 CONCLUSION

This paper proposes a framework of six orthogonal metrics for the objective evaluation of visual
interpretation methods for time series classification or segmentation. All these metrics should be
evaluated for every visual interpretation to prevent a reliance on interesting, but spurious results.
We also show that each perspective emphasizes different strengths and weaknesses of visualization
methods. We show empirically for six datasets and different model architectures that none of nine
state-of-the-art visual interpretability methods passes all tests. We propose to use our framework to
guide the selection of visual interpretations and to understand their weaknesses. Further, we found
that datasets highly influence the quality of visualizations. Our extended and novel metrics provide
important information, like the localization metric for time series. Interestingly, on the segmentation
task only one visual interpretation method passes our novel evaluation metric. None of the saliency
maps for LSTMs produce satisfactory scores. Future work combines range-based and functional
metrics, or optimizes models specifically to achieve higher interpretability scores.
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REPRODUCIBILITY

This paper includes supplemental materials to improve reproducibility. Most importantly, we pub-
lish the code for model training and dataset loaders, for generating visual interpretations and of all
evaluation metrics. Furthermore, all datasets are publicly available.
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A LOCALIZATION METRIC POSITIONAL BIASES

This section explains the ”existence” and ”overlap” terms of our localization metric. Note again the
recall score as

Srecall(Ysub, Y
′) = α · existence(Ysub, Y

′) + (1− α) · overlap(Ysub, Y
′), (9)

The ”existence” and ”overlap” terms are defined by Tatbul et al. (2018) as follows. First, existence is
defined as a correct prediction of one sample point at index j of the correct class within the labeled
region:

existence(Ysub, Y
′) =

{
1, if

∑|Y ′|
j=1 |Ysub ∩ Y ′j | ≥ 1

0, otherwise
(10)

The overlap determines the finer properties cardinality γ(), size ω() and position δ().

overlap(Ysub, Y
′) = cardinality(Ysub, Y

′) ·
T∑
j=1

ω(Ysub, Ysub ∩ Y ′j , δ) (11)

cardinality(Ysub, Y
′) =

{
1, if Ysub overlaps with at most one Y ′j ∈ Y ′
γ(Ysub, Y

′), otherwise
(12)

The term α (0 ≤ α ≤ 1) weights existence and the following qualitative measures of overlap.
The three user-defined functions return values of 0 ≤ γ() ≤ 1, 0 ≤ ω() ≤ 1 and δ() ≥ 1. The
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cardinality γ() function weighs the prediction of a continuous range Y ′ covering the whole labeled
range Ysub versus interrupted ranges in a fragment manner. The overall size ω() of the agreement
of predicted and label ranges depends on the positional bias δ() and can favor ”front”, ”middle”, or
”back”. Practically, for some applications an early detection is preferable to a late detection. For the
four functions, we selected α is equal to 0, γ is equal to 1. ω depends on the position bias δ and for
δ we have three variants, ”front”, ”middle” or ”back”, proposed by Tatbul et al. (2018).

B EXPERIMENTAL SETUP

We describe each visual interpretation method shortly in Sec. B.1, then the hyper parameters for
each visual interpretation method in Sec. B.2 and for the optimizer and networks in Sec. B.3.

B.1 CATEGORIZATION OF METHODS

This Section provides a short introduction to the methods that we use in our experiments.

Gradient-based methods. Gradient (Simonyan et al., 2014) computes class c’s saliency map
M c using the derivative of the class score P c of model with respect to the input sample x, as
M c(x) = ∂P c

∂x . However, Gradient suffers from the saturation problem (a feature may have global
importance, but its local derivative is small (Smilkov et al., 2017)), local sensitivity, and noisy
saliency maps (due to (sharp) local variations in the gradients (Smilkov et al., 2017)). Follow-up
work smooths the gradients to reduce noise (Smilkov et al., 2017), applies special propagation rules
instead of propagating a gradient (Arras et al., 2017), or propagates only up to a specific intermediate
layer (Selvaraju et al., 2017).

Perturbation-based methods. Local Interpretable Model-Agnostic Explanations
(LIME) (Ribeiro et al., 2016) fits a local surrogate model (e.g., a linear regression) as an ex-
planation and uses this surrogate to calculate relevance. Kernel SHAP (Lundberg & Lee, 2017)
builds on LIME, but calculates Shapley values that measure the contribution of individual features
to the input more accurately.

B.2 VISUALIZATION METHODS HYPER PARAMETERS

We set the hyper parameters for each visual interpretation method according to their recommen-
dations from literature. We provide the reasoning behind the selected parameters in the following
paragraphs.

Gradient computes the derivative of the target class score with respect to the input sample and returns
the saliency map of the input sample at the end. Integrated Gradient uses the linear path method to
compute gradient along the path from a baseline x′. We use a zero vector for the baseline. As
suggested by Smilkov et al. (2017), the number of steps for the path should be selected between 20
and 300. Hence, we use stepsN = 60, meaning that it takes 60 steps from baseline x′ to the original
input sample x, according to x = x′ + (x−x′)

N · n, n is the current step.

SmoothGrad also computes the derivative of the target class score with respect to the input sample.
However, it adds Gaussian noise N (0, σ2) to the input sample multiple times and computes the
gradients from the perturbed samples (x + N (0, σ2)). The number of iteration of adding noise is
chosen N = 60 and the standard deviation of Gaussian noise is chosen σ = 0.2.

For LRP, we select the ε-propagation rule for every DL model with ε = 1e− 9. Due to the residual
block in TCN model the propagated relevances should therefore be added together (R = R1 +R2).

GradCAM and Guided-GradCAM are designed for models with convolutional layers, i.e. FCN,
TCN and U-time. GradCAM focuses on the last convolutional layer, which produces feature maps,
whose shapes usually are smaller than the shape of input samples. Therefore, we use interpolation
to up-sample the saliency maps from the last convolution layer to match their shape to the shape of
the input samples, which allows us to visualize them in the input space. Because of ReLU functions,
GradCAM returns only positive relevances.
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For LIME, we use the cosine distance function as the kernel function with width w = 5.0 to weight
the perturbed samples, and perform 1000 iterations. For the perturbation, we consider that neighbors
along time dimension should have similar relevance to reduce the computational time, so we set the
number of features along time dimension 50 for GunPointAgeSpan. This means that saliency maps
for samples with length 150 in GunPointAgeSpan have same relevance for every 3 neighbors and
saliency maps for dense labeling samples in tool tracking have same relevance for every 4 neighbors.

For Kernel SHAP, we use 1000 iterations and set the number of features along time dimension to
50. Furthermore, the sampling of feature perturbation in Kernel SHAP is based on the distribution
p(f) = (F−1)

(f ·(F−f)) , where f is the number of selected features and F is the total number of features
in interpretation space.

B.3 NETWORK ARCHITECTURES

We use the Adam optimizer with a learning rate of 0.002. We train every dataset for 600 epochs
(with early stopping after 80 epochs). We use a Cross Entropy loss for time series classification and
a Generalized Dice loss with Cross Entropy function for time series segmentation.

For the time series segmentation task on the tool tracking dataset, we report an accuracy of 83% for
U-time and 85% for the bi-LSTM. Table 1 shows the classification results for FCN and TCN with
all classification datasets.

model architectures

datasets FCN TCN

GunPointAgeSpan 98.73 97.15
FordA 89.77 91.67
FordB 79.01 80.37

MelbournePedestrian 90.13 95.17
NATOPS 97.22 95.56

ElectricDevices 69.51 69.47

Table 1: The test accuracy in % of the classification task.

B.3.1 FULLY CONVOLUTION NETWORK

We use a slightly modified FCN, similar to Wang et al. (2017). Ours contains four convolution blocks
with a convolutional layer, a batch normalization layer (Ioffe & Szegedy, 2015) and a ReLU layer
in each block. The kernel shapes and numbers of filter for convolution layers are {7, 5, 3, 3} and
{16, 32, 32, 16}. Therefore, there are four convolutional layers. Each convolutional layer has unit
stride and no padding, which means the time sequence will be reduced continuously by the blocks.
The final convolution block, which is behind the four convolution blocks, does not have a ReLU
layer and contains a 1x1 convolutional layer. The 1x1 convolutional layer serves as a projection
layer. It can not only reduce the channel size of feature maps but also keep their salient features.
Finally, we apply Global Max Pooling on the features maps, before the softmax operation.

B.3.2 TEMPORAL CONVOLUTION NETWORK

For the TCN, that was first proposed by (Bai et al., 2018), we use a global pooling layer for the
prediction. In our architecture, TCN has the convolution filters {16, 32, 32, 32} and kernel shapes
for convolution layers {7, 5, 5, 5} in four residual blocks. Therefore, the total number of layers is 8.

B.3.3 BIDIRECTIONAL LONG SHORT-TERM MEMORY

We use a standard, single-layer bi-LSTM to predict dense labels for the segmentation task, as imple-
mented in PyTorch, with 512 hidden units. There is a dense layer behind the LSTM model to fit the
hidden units 512 to the number of classes. Also, the dropout rate is set to 0.2 to prevent overfitting.
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B.3.4 U-TIME

We use the U-time (Perslev et al., 2019) architecture with the following configuration. In each
convolution block, there are two dilated convolution layers with dilation 3, followed by a ReLU
layer, a batch normalization layer, and a Max-Pooling layer at the end. The number of filters for
convolution layers in four convolution blocks are {16, 32, 64, 128} and the pooling window sizes
are all 2. Two additional convolutions with filter numbers {256, 256} follow after four convolution
blocks. In each transposed convolution block, a nearest-neighbor up-sampling (Odena et al., 2016)
of its input is implemented, followed by a dilated convolution layer with dilation 3, a ReLU layer
and a batch normalization layer. The number of filters for convolution layers in four transposed
convolution blocks are in the reverse order of the encoder {128, 64, 32, 16}. The kernel size of
convolution layers in both encoder and decoder is 7.

C ADDITIONAL RESULTS

We report additional results to supplement our discussion for a bi-LSTM architecture on the seg-
mentation task in Sec. C.1, and for the classification task in Sec. C.2.

C.1 EVALUATION ON SEGMENTATION TASK: BI-LSTM
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Figure 6: We show the localization metric results for all methods on the tool tracking dataset and
with the bi-LSTM model. (a) shows the results for the localization metric. (b) shows exemplary
saliency maps.

The results for bi-LSTM on the segmentation task for tool tracking in Fig. 6 show that none of the
visual interpretation methods, that are compatible with the model’s architecture, produce satisfactory
saliency maps.

C.2 CLASSIFICATION TASK

We show the variability of each visualization method with respect to each dataset and metric cat-
egory for the TCN in Fig. 7a. It is noteworthy that some datasets are more problematic for the
methods, especially for faithfulness and intra-class stability, than others. We also show that the
model has only a small influence. For this result, we aggregate all datasets and visualization meth-
ods separately for FCN and TCN in Fig. 7c.

In order to compare methods independent of datasets, we control for their bias by normalizing the
scores of all methods for each {category, dataset} so that their mean is 0 and variance is 1. With
this, we can correctly assess the ”relative” performance of the visual interpretation methods across
different datasets. The plot in Fig. 7b shows these relative (or marginal) scores that a method can
achieve, compared to other methods on the same datasets.

We prove the orthogonality of metrics in Figure 8. No combination of our metric scores shows a
high correlation. This shows that each metric measures a quality independent of all other metrics.
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We show examples for saliency of the TCN architecture on the FordB dataset for the visual interpre-
tation methods for class 0 in Figure 9 and class 1 in Figure 10. We argue that the choice of a suitable
method to generate saliency maps should be guided by our framework.
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(c) Results for different model architectures, aggregated across datasets and visual interpretability methods.
Model architecture has a comparatively small influence on the performance, which speaks to their generaliza-
tion capabilities.

Figure 7: (a) shows scores separately over all {model, method } combinations. (b) removes the
datasets’ bias in order to assess the performance of individual visual interpretability metrics inde-
pendent from datasets. (c) shows results for different model architectures, aggregated across datasets
and visual interpretability methods. Model architecture has a comparatively small influence on the
performance, which speaks to their generalization capabilities.
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Figure 8: Pairplots of the correlations of metric scores with each other. No combination of metrics
has a meaningful correlation with each other, proving that they provide independently useful signals.
This analysis is based on scores that were normalized for dataset bias, but the results also hold when
this normalization is not done.
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Figure 9: Examples of saliency maps for the TCN architecture on the FordB dataset for class 0.
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Figure 10: Examples of saliency maps for the TCN architecture on the FordB dataset for class 1.
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