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Abstract

Neuroscience experiments often capture brain signals from heterogeneous indi-
viduals, each with unique neural dynamics, even in response to the exact same
stimuli. This subject-to-subject variability makes it challenging to aggregate data
and extract common neural patterns. To address this, we propose Multi-Graph
Meta-Transformer (MGMT), a unified framework that learns from a set of graphs
sharing a single prediction target, while respecting their individual structures.
MGMT captures graph-specific patterns, aligns their structural representations
in a shared latent space, and integrates them to learn a robust and generalizable
structure. Conceptually, MGMT reframes graph fusion as functional alignment,
borrowing statistical power by linking regions that exhibit similar patterns across
graphs. We apply MGMT to analyze hippocampal local field potentials (LFPs)
from five rats performing an odor—sequence task, where the neural activity of each
rat is represented by a distinct graph. MGMT uses Graph Transformer encoders to
identify supernodes and then builds a meta-graph by forming superedges across
graphs based on similarities of latent node representation. This restricts message
passing to only functionally aligned pairs, reducing cross-graph noise and yield-
ing more accurate, interpretable graph-level predictions. In our neural decoding
experiment, MGMT outperforms existing fusion strategies. Notably, it uncovers
distal CA1 selectivity for non-spatial information and demonstrates that its learned
inter-graph connections capture meaningful brain dynamics.

1 Introduction

Graphs are fundamental data structures in many domains including neuroscience [1]], social net-
works [2, 3] and molecular biology [4! 5. 16]. While powerful models like Graph Neural Networks
(GNNs) [7, 18 19] and the more recent Graph Transformers (GTs) [110, [11} [12} [13]] excel at learning
from single graphs, many real-world problems require integrating information across multiple het-
erogeneous graphs. For instance, neuroscience experiments studying brain dynamics often generate
graphs from multiple subjects, each with distinct connectivities and node sets [1]. Enhancing predic-
tion performance or extracting common neural patterns in such settings requires a framework that can
effectively integrate these disparate graphs. However, how to best adapt powerful architectures like
the GT for this multi-graph integration challenge remains underexplored. Existing fusion paradigms
fall short as they either assume a single, unified graph with aligned nodes [[14}[15], or they collapse
each graph’s topology into a single vectorized embedding before fusion [16} [17]. Consequently,
valuable structural information both within and between the graphs is lost.

To address this gap, we propose Multi-Graph Meta-Transformer (MGMT), a novel framework
designed to fuse information from collections of heterogeneous graphs. Our unified framework,

Submitted to the Al for Science workshop (NeurIPS 2025). Do not distribute.



36
37
38
39
40
41
42
43
44
45
46
47

48

49
50
51

52
53
54

55
56

57
58
59
60

61

62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87

which we group under the umbrella term “multi-graph,” is broadly applicable and handles several
common scenarios including: multi-modal (graphs from different measurement channels, e.g., MRI
vs. clinical UDS), multi-view (different structural views of the same data, e.g., different feature
subsets or data measured under different conditions), and multi-subject (graphs from different
subjects in the same experiment). Our approach involves independently processing each graph
(modality/view/subject) using dedicated GT encoders, resulting in intra-graph representations that
are mapped into a shared latent space. It then integrates these representations by constructing a
meta-graph. This is achieved by identifying the most informative supernodes within each graph
through attention mechanism and connecting them with superedges based on similarity in their
learned latent embeddings. By applying additional GT layers to this meta-graph, MGMT facilitates
selective information sharing between functionally aligned nodes across the collection, enabling the
joint learning of both local and global patterns.

Key Contributions

We introduce MGMT, a novel framework for multi-graph fusion. It learns robust graph-specific
representations through dynamic aggregation of GT layers at varying depths. It further constructs a
meta-graph to enable selective, structured information sharing across graphs in the latent space.

The framework provides inherent interpretability through its meta-graph construction. The identified
supernodes highlight influential, task-relevant subgraph structures, while the learned superedges pin-
point functional alignments between graphs, offering a clear explanation of cross-graph interactions.

We also provide a comprehensive theoretical study that analyzes both intra-graph and inter-graph
properties of MGMT, offering rigorous analysis on its representational capabilities.

Finally, we demonstrate MGMT’s effectiveness on challenging neuroscience datasets, where it
successfully extracts meaningful neuronal activity patterns shared across subjects. These findings
are validated by existing interdisciplinary research, showcasing the model’s potential for real-world
scientific discovery.

Related Work

Graph Representation Learning Graph Neural Network (GNN) is the cornerstone of modern
graph machine learning. It learns node representations by iteratively aggregating features from
local neighbors through message-passing [[7, |8, [18]]. To better capture long-range dependencies and
enhance expressive power, Graph Transformers (GTs) have emerged as a powerful alternative. These
models adapt the global self-attention mechanism, originally from natural language processing [[19]],
for graph-structured data, typically by injecting structural information through positional encodings or
by combining attention with message-passing components [20} [11} 21} [12]. While both architectures
are highly effective for single-graph tasks, they are not inherently designed to fuse information from
a collection of multiple, potentially heterogeneous graphs.

Multimodal and Heterogeneous Graph Learning A distinct line of research that may appear
similar is multimodal or heterogeneous graph learning. However, its problem setting is fundamentally
different from our multi-graph fusion task. These methods operate on a single, unified graph that
integrates various data types. For example, frameworks like UniGraph?2 [14] and HetGNN [[15]
assume a single graph where node possess multiple features types from different modalities, such as
text or images. This assumption collapses multiple data sources into one large graph. Other works,
such as MMGL [22]], construct a single population-level graph where nodes represent subjects, and
features from all modalities are concatenated before graph construction. While effective for their
intended purpose, these methods are not applicable to the more general and challenging problem of
fusing a collection of graphs with distinct, unaligned node sets, which is the focus of our work.

General-Purpose Multimodal Fusion General-purpose frameworks including MultiMoDN [23],
FlexCare [17], MedFuse [[16], and Meta-Transformer (MT) [24] considers integration of multiple
modalities, including graphs or images. One could technically apply these frameworks to a multi-
graph fusion problem by treating each graph as a separate modality. These frameworks, such as
MedFuse [16]] typically use modality-specific encoders to first transform each input into a single latent
vector. For a graph, this means collapsing its entire topological structure into one embedding. These
vectors are then fused with operations such as concatenation for the down stream tasks. This process
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not only discards the rich structural information within each graph but also offers no mechanism for
modeling the fine-grained, structural relationships between graphs, highlighting the need for a truly
graph-native fusion methodology.

2 Methodology

In this section, we present MGMT, detailing its prediction pipeline based on GTs and meta-graph
construction, followed by describing how to interpret MGMT by identifying significant nodes and
edges in Section[2.2] An overview of the entire framework is provided in Figure[T]

2.1 Multi-Graph Meta-Transformer (MGMT)

MGMT fuses multi-graph data using hierarchical meta-graph modeling through the following steps:

2.1.1 Graph-Specific Transformer Encoders

For each instance, we observe a collection of n graphs. For ¢ = 1,...,n, we denote the graph as
G; = (Vi, &;) with node set V; of size N; = |V;|, and edge set &;. Each graph G; is characterized
by a node feature matrix X; € R":*4 and an adjacency matrix A; € {0, 1}":*Ni, Graphs per
each instance may differ in size and structure (for presentation purpose only, we assume feature size
is d across all graphs), yet the collection {G1, ..., G, } share a common label Y € ). The task is
graph-level classification of the shared label Y using evidence aggregated across graphs. Throughout
this paper, we use bold uppercase letters (e.g., X) for matrices and and bold lowercase letter (e.g., )
for vectors, and [n] denoting the set {1,...,n}.

We formalize the core graph-specific Transformer mechanics used in MGMT, building upon the
localized graph-aware attention principles detailed in Appendix For each i € [n], the graph G;
with node features X; € R":*? undergoes L GT layers with multi-head self-attention. Starting with

H Z.(O) = X, as initial features, we define the extended neighborhood N (u) = A (u) U {u} to ensure
nodes attend to themselves during message passing.

For layer ¢ € [L], attention head m € [M], and edge (u, v) € & U {(u, u)}, we compute:
m m _ m ,m)T g-(€,m)
Q'E,{l ) = Wéﬁ )Hz(fu, Y + bg:z )7 ¢,m) oxp (Qz,u Ki,v /\/67>
m 7 — m huv T £,m)T £m ’
K™ = wEmHD 4pm), S vent e (QUM KL NT) 1)
,m l,m -1 £,m £,m l,m ,m
VI S WEHED S 2 S v,

7,U 7, UV [

where H Z-(EJI) € R is the feature of node u at layer £ — 1, d’ = d/M denotes the per-head dimension.
Projection matrices W({’im), Wl(é ’im), W‘(/f,im) € R? %4 and biases bg:;"), b%’;n), b%m ) e R are
learnable parameters. The query vector QE{;’”) represents information node u seeks from neighbors,
key vector K i(i;m) encodes neighbor v’s relevance, and value vector Viff’m) contains content to be

aggregated. Attention score a%:?) determines how much node u attends to node v.

The outputs of all heads are concatenated (|| denotes the concatenation) and transformed via:

i, = Hme[M] |:Zz(,£zil)’ RN Zz(,{lhl)} Wéz,)z + bg,)w

where Wg)i € Rxd, b(Oé’)i € R?. Stacking these vectors across all nodes yields ZZ-(e) € RNixd,

This attention-based aggregation Zi(é) then passes through feedforward network with activation,
residual connection, and layer normalization to produce the final output H i(é). Specifically:

HZ.(Z) = LayerNorm(Zi(e) + U(FFN(ZEZ)))) @)
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After L layers, we obtain final output and attentions by dynamically aggregating across all depths:

H, = ZZG[L]F H;" e RN*d

1
o = i, uv — F(Z) < (l,m)) } )
{a ’ ZZG[L] M ZmG[M] az,u’u (u,v)e&U{(u,u)}

where {F(Z)}?: , are confidence scores measuring the quality of each Transformer layer (see Ap-
pendix [A2] for computation details).

3

2.1.2 Super-node Extraction

To identify the most informative nodes in each [ FinalTi Using Shared Layers
graph 7, we extract super-nodes based on the
learned attention scores c; in (3). Given a
predefined threshold 7, we form the set of
super-nodes as

S; = {u eV | Z( Je&s (7R > T}.
4
Intuitively, Z(u vyee; Yiuw quantifies the to-

tal attention distributed by node w to its neigh-
bors.

We then induce a subgraph over these nodes:

g; = (827 g;)) g’L/ = {(u’ 'U) = gl | u,v = S’L} ( Graph-specific Depth Aggregation |
5) ab 1 ab u®

(ot o Tt oy ) 2 Grgh Tansomr Laer ) (.t craph st Layr )

Additionally, we conduct a sensitivity study
in Appendix [AT0]to examine how choices of
threshold 7 influence model performance. Our
analysis reveals that 7 controls a trade-off: a

higher 7 creates a sparser meta-graph, which  Ejgyre 1: Architecture of the Multi-Graph Meta-
risks information loss, while a lower 7 retains  Transformer (MGMT). Depth-Aware GT layers pro-
more nodes, risking overfitting to noise. In  cegs individual graphs, extracting super-nodes to

practice, by guiding the selection of 7 via g 5 meta-graph. Additional GT layers model
cross-validation, we identified a robust range both intra- and inter-graph interactions.

of values that yields stable performance.

2.1.3 Meta-Graph Construction

To model both intra- and cross-graph interactions, we construct an instance-level meta-graph Gy =
(Sm.Enm), where Sy = i, S; contains all graph-specific super-nodes. Each node u € S; is
associated with a latent embedding H; ,, € R? as defined in (3).

The edge set £); of the meta-graph includes two components. First, we retain all intra-graph edges
from the pruned graphs G, = (S;, £/), preserving graph-specific relationships. Second, we introduce
inter-graph edges between cross-graph super-nodes based on their feature similarity. For any node
pair (u,v) withu € S;, v € S, and @ # j, we compute the cosine similarity:

H'H,
Cup = T (6)
(L || Ho |
If the similarity score e,,,, exceeds a predefined threshold ~, the edge (u, v) is added to £py.

The resulting adjacency matrix Ay, € RISMIXISmI encodes both intra- and inter-graph relationships
among super-nodes. A widely adopted assumption for graph signals is that values change smoothly
across adjacent nodes [25]. MGMT applies this at the meta-graph level: superedges connect only
supernodes with similar embeddings, promoting aligned message passing.
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As shown in Appendix [AT0] accuracy is typically non-monotone in -, reflecting the trade-off between
dense connectivity (risking overfitting/noisy exchanges) and sparsity (losing cross-graph interactions),
In practice, +y is selected on a validation split.

Finally, in Appendix[ATI] we compared cosine similarity with Pearson correlation, Euclidean distance,
and dot product for defining inter-graph edges. The results show that performance remains broadly
robust across metrics, suggesting that our framework is not sensitive to the choice of similarity metric.

2.1.4 Feature Learning and Prediction

After constructing meta-graph G, we apply additional GT layers to the stacked super-node embed-
dings H ](3) € RISmIxd_ Muylti-head self-attention and feedforward updates are applied to capture
global contextual dependencies, resulting in updated super-node embeddings H; € RISmIxd,

For classification, we apply permutation-invariant pooling followed by a fully connected network:

g = f(Pool(Hy)), @)
where Pool(-) can be a mean, concatenation, or attention-based function, and f(-) maps the pooled
representation to class probabilities 7 € Rl

This final step enables MGMT to make robust predictions by integrating both modality-specific
structures and cross-modal interactions in a unified graph representation.

2.2 Interpretation of MGMT

The identified meta-graph Gy, is analyzed via (1) Node-level analysis, highlighting influential nodes
and their contributions, and (2) Edge-level analysis, uncovering critical relationships among these
nodes. This framework enhances transparency, provides actionable insights for domain experts, and
is further evaluated in our neuroscience application results.

3 Theoretical Properties

In Appendix [A3] we establish the theoretical foundations of MGMT through two analyses. First,
our intra-graph analysis demonstrates the superior representational power of our approach within
each graph. Specifically, we prove that MGMT’s depth-aware Graph Transformers (see (I)—(3)) can
capture complex L-hop feature mixing, which measures expressive capability, while standard Graph
Transformers cannot. Second, our inter-graph analysis shows that the explicit meta-graph construction
leads to enhanced predictive power compared to standard late-fusion alternatives. Complete proofs
are provided in Appendix [A4] with additional theoretical results in Appendix [A3]

4 Numerical Experiments

We evaluate the effectiveness of MGMT on four datasets in the main paper (three synthetic + LFP)
and an additional Alzheimer’s case study in Appendix[A8] Among these, the three synthetic datasets
and Alzheimer’s dataset are multi-modal (multiple modalities per sample), while the LFP dataset is
multi-subject (graphs from different animals treated as distinct modalities). Our analysis is structured
into two parts: (1) comparisons with a broad set of baseline models, and (2) ablation studies to assess
the contribution of each component within MGMT. Performance results are summarized in Figures
[A5] and[A4] with detailed accuracy values and standard errors reported in Tables[AZ]and [A3]

4.1 Baseline Comparisons

We compare MGMT against the following three categories of baselines:

(i) Single-Source Models: These models are trained on each data source independently and include
Deep Neural Networks (DNNs) [26], Graph Neural Networks (GNNs), Differentiable Pooling
(DiffPool) [27], standard Transformers, and Graph Transformers.

(ii) Early Fusion Models (Feature Concatenation): For each data source, features are extracted
using source-specific architectures (e.g., DNN, GNN, DiffPool). These features are concatenated and
input to a shared classifier, typically a DNN [28] 29} 30].
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Figure 2: Average test accuracy and standard error bars across synthetic and LFP datasets. (a)
Experiment 1 (Setting 1) uses a sample size of 100, with 5 nodes that are all informative. Experiments
2 and 3 (Setting 2) both involve structured noise; Experiment 2 uses 100 samples, and Experiment
3 uses 2,000 samples. All three experiments involve 50 nodes, of which 40 are informative. (b)
Odor-sequence LFP decoding across five animals plus fused models. Each bar represents the average
test accuracy across 5 folds, along with the corresponding standard error. Across all configurations,
the proposed MGMT model achieves the best performance.

(iii) Benchmark Fusion Models: We evaluate MGMT against recent fusion frameworks;
MMGL [22], MultiMoDN [23]], FlexCare [17], MedFuse [16]], and Meta-Transformer (MT) [24],
each designed to integrate information from multiple input sources or feature streams.

4.2 Ablation Study

To quantify each component’s impact, we evaluate five ablations: (1) removing adaptive depth
selection (use final Transformer layer), (2) removing supernode selection (include all nodes in
the meta-graph), (3) removing inter-modality edges, (4) removing intra-modality edges, and (5)
disabling both the meta-graph and adaptive depth mechanisms, using simple late fusion of fixed-depth
Transformer outputs. results can be found in Table[A3]and Figure[A3]

Appendix [A6|provides detailed descriptions of all baseline models, multimodal fusion benchmarks,
and MGMT ablation variants, along with a structured categorization of these models based on their
fusion strategy, use of graph-structured modeling, attention mechanisms, and architectural novelty.

4.3 Experimental Setup

In MGMT framework, for all the datasets we use TransformerConv layers with global max or mean
pooling to generate graph-level embeddings. Our models are trained on 80% of the data, with
10% reserved for validation and 10% for testing, using the Adam optimizer and early stopping
based on validation loss. For real datasets, all models are trained using 5-fold cross-validation.
Hyperparametersincluding the number of layers, dropout rate, learning rate, training epochs, and node
importance thresholds, are optimized using Optuna with 100 trials. The best hyperparameters are
selected based on validation performance. For simulation studies, models are trained and evaluated
over 50 independent runs. We report the mean test accuracy and standard error across these runs.

Runtime and Scalability.Appendix [A9| presents a comprehensive analysis of MGMT’s efficiency
using three complementary metrics: (i) theoretical time complexity of each architectural component,
(i1) empirical runtime profiling across datasets including average per-epoch runtimes and stage-wise
breakdowns of MGMT(e.g., encoding, supernode construction, meta-graph reasoning), and (iii)
controlled scalability experiments varying graph size, modality count, sample size, and feature
dimensionality. Together, these analyses confirm that MGMT achieves practical runtime efficiency
and scales predictably in line with standard Transformer-based graph architectures.

4.4 Synthetic Experiments

In this section, we present a comprehensive evaluation of MGMT using synthetic datasets. We
simulate graphs under varying conditions, altering the feature generation mechanisms, the number of
nodes N, the sample size n and noise level. Each node is associated with a p-dimensional feature
vector, and a subset of nodes is designated as informative, meaning their features influence the
graph-level binary target. The remaining non-informative nodes serve as noise. For each sample,
we generate five parallel graphs—one for each data modality—with different noise structures. Each
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modality yields a binary graph-level label, and a shared target is defined by aggregating these
modality-specific labels to enable multimodal classification.

We conduct three experiments. In Experiment 1, the features of informative nodes are drawn from a
modality-specific multivariate Gaussian distribution with correlated entries, and labels are assigned
using a linear thresholding rule (see Serting 1 in Appendix [A7]for more details). Graphs contain 5
nodes (all informative), and the sample size is 100. In Experiment 2, the features for informative
nodes are generated using a Gaussian Process to induce temporal structure across features. Labels
are computed using a nonlinear function involving sinusoidal and quadratic terms (see Setting 2 in
Appendix [A7]for more details). Graphs again contain 5 informative nodes, and the sample size is 100.
Experiment 3 follows the same setting as Experiment 2 but increases the graph size and sample size.
Each graph has 50 nodes, with 40 designated as informative. The sample size is increased to 2,000,
allowing us to assess MGMT’s performance at scale under complex, multimodal conditions.

According to Figure[2] across all experiments, MGMT consistently outperforms feature concatenation
and multimodal fusion baselines, with the most notable gains observed in the large-scale setting. Ta-
blgA3|shows accuracy degrades when adaptive depth, supernode filtering, or inter-modality edges are
removed, and degrades most when both the meta-graph and adaptive depth are disabled; confirming
the importance of hierarchical graph reasoning and dynamic layer aggregation.

4.5 Neuroscience Applications
4.5.1 Local field potential (LFP) activity dataset

We apply our method to a challenging neuroscience problem: predicting the stimulus presented on a
given trial using only LFP activity from the hippocampus. In this experiment [31, 1], subjects (rats)
received repeated presentations of a sequence of stimuli (odors ABCDE) at a single odor port and
were required to accurately identify each stimulus as being presented in the correct (e.g., ABC...)
or incorrect sequence position (e.g., ABD...) to receive a reward. Neural activity, including both
spiking and LFP activity, was recorded from the dorsal CA1 subregion of the hippocampus as they
performed the task. Here we focus on the LFP activity data from the 5 subjects (SuperChris, Barat,
Stella, Mitt, and Buchanan), collected from 20 to 22 electrodes (which varied between subjects), and
sampled at 1,000 Hz. We treated each rat as a distinct “modality" and applied our proposed MGMT
framework to borrow power across subjects in order to improve the overall decoding of LFP signals.

Each trial is associated with one shared stimulus label (A,B,C,D or E), and we construct a separate
graph for each rat per trial using its own electrode-level LFP signals. Nodes represent electrodes
(which vary in number and identity across subjects), and edges capture intra-subject correlations.
We then build a meta-graph by linking “supernodes” across rats when their latent embeddings are
similar under MGMT’s localized attention as an operation justified by the common graph-signal
smoothness prior (i.e., nearby nodes in the latent space tend to express similar activity patterns).
Crucially, Superedges are aligning comparable brain dynamics across animals, effectively “borrowing
statistical strength” across rats to reduce noise, and stabilize the trial-level representation used for
decoding. This is not meant to just simply connect various brain regions across rats, rather alignment
of their brain dynamics to strengthen the overall signals by properly borrowing power across rats.

As shown in Table[A2] MGMT achieves the highest accuracy (42.1% =+ 0.0252) predicting which
odor (A-E) was presented on each trial using the LFP dataset, outperforming all baseline and
fusion models, including the second-best model MT (39.2%) and other strong multimodal baselines
such as MMGL (39.28%), MultiMoDN (37.8%), and FlexCare (36.4%). Traditional concatenation-
based approaches like DNN and GNN yield substantially lower performance (30.6% and 27.8%,
respectively), highlighting the difficulty of this cross-rat decoding task. For context, the theoretical
chance level for this five-class problem is 20%, so MGMT exceeds chance by roughly 2.1 x. To our
knowledge, these results provide the first direct evidence that the stimulus presented on a given trial
can be accurately predicted based on hippocampal LFP activity alone, which highlights the potential
of graph data integration approaches in general and the potential of the MGMT model specifically.

Ablation results (Table[A3)) confirm that each architectural component contributes meaningfully to
MGMT’s performance, with the full model achieving the highest accuracy across all datasets.

Results of interpretation component. From a neuroscience perspective, the main results of the
interpretation model based on MGMT’s interpretation performance on LFP dataset (Fig. [3)) are as
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Figure 3: Cross-animal supernode and edge frequency map generated by the MGMT model. Each
dashed box corresponds to one rat (Superchris, Stella, Barat, Mitt, Buchanan), with node size and
color indicating the frequency of supernode selection across trials. Solid lines within each box
represent within-rat edges, while dashed lines across boxes denote cross-rat superedges; line color
and width reflect edge occurrence frequency. High-frequency supernodes and edges are concentrated
in distal CA1 regions (right side), with cross-rat superedges predominantly linking distal regions
across animals, while Mitt shows weaker connectivity patterns.

.

follows. First, we found that informative electrodes clustered on the right side of the electrode array.
More specifically, we found that the highest-frequency supernodes and the strongest within-subject
connections were consistently concentrated on that side, and that the pattern was consistent across
subjects. This specific clustering makes sense given that the two electrode arrays targeted different
segments of the CA1 region: electrodes on the right targeted the distal segment, electrodes on the
left the proximal region. The distal segment, where most informative electrodes are located, is
more strongly associated with non-spatial inputs (e.g., odors, objects) and the proximal segment
with visuospatial inputs. Such clustering of informative electrodes in distal CA1 is also consistent
with previous work focusing on a different type of non-spatial trial classification (in sequence vs
out of sequence [32]). Second, there were interesting variations in the pattern of informative edges
across subjects. Although they showed a similar pattern of informative nodes, some subjects showed
weaker relationships in edges. For example, one subject (Mitt) showed fewer strong within-subject
edges and lower-frequency superedges. We also found that the pattern of superedges detected strong
relationships between pairs of subjects (Stella-SuperChris, SuperChris-Buchanan, Buchanan-Barat),
which did not extend to all subjects involved (e.g., weak Stella-Barat relationship). It remains unclear
what aspect of the signal produced such edge variation, but possible interpretations include variability
in electrode locations (e.g., depth relative to the cell layer), noise levels, or subjects’ task performance.
In sum, the interpretation model provided the necessary neuroscience framework to identify the
key aspects of the LFP signal that supported classification accuracy and offered novel insights into
potential mechanisms to examine in future work.

5 Conclusion, Limitations, and Future Work

We introduced the Multi-Graph Meta-Transformer (MGMT), a unified framework for structured
multi-graph learning that combines graph-specific Graph Transformer encoders with a meta-graph
over learned supernodes and superedges, plus an adaptive depth-aware fusion to aggregate hierarchical
representations. Across synthetic and neuroscience datasets, MGMT improves both accuracy and
interpretability over standard fusion baselines.

Limitations include (i) reliance on thresholded similarity for meta-graph edges, (ii) rising compute
with more modalities and larger graphs due to attention layers, and (iii) attention-based importance
scores that may not capture causal structure in noisy, high-dimensional settings.

Future work will explore learnable edge weighting in place of thresholding, sparse/low-rank attention
for scalability, causal attribution and counterfactual analyses for deeper interpretability, extensions to
dynamic/temporal graphs, and pretraining to improve generalization.
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Al Graph Transformer with Localized Graph-Aware Attention

The standard Transformer architecture employs a global self-attention mechanism in which every
token attends to all others. This is computationally inefficient and often inappropriate in the context
of graph-structured data, where meaningful interactions are localized to a node’s immediate neighbor-
hood. To bridge this gap, we adopt the localized graph-aware attention formulation proposed by Shi
et al. [33]], which restricts attention to a node’s 1-hop neighbors.

To preserve self-information, we extend the neighborhood to include the node itself. Specifically, we
define N'(u) = N (u) U {u}, ensuring each node can incorporate its own features during attention-
based message passing.

Let H!-YD = {H 1(1_1), o H I(é_l)} denote the set of node features from the previous layer. Each
node v aggregates information from its extended neighborhood v € N (u) using the following
multi-head self-attention mechanism.

For each attention head m = 1,..., M and layer ¢ = 1,..., L:

1. Linear Projections (queries, keys, values):

Qg’m) _ W((gl}m)hq(il_l) + bg’m), (A8)
Kq(]l,m) _ W}g»m)hq()lfl) + bgé’m), (A9)
vtm) — ) p(=1) 4 ), (A10)

The learnable matrices Wg’m), WI({l’m), and W‘(,l m) are referred to as the Query, Key, and Value

projection matrices, respectively. These matrices project each node’s feature vector into three distinct
spaces:

* The Query vector Qg ™) represents the type of information that node w seeks from its neighbors.

* The Key vector K 1(,l’m) encodes what information neighbor node v can provide.

* The Value vector %(l’m) contains the actual content to be aggregated.

This separation allows the model to compute a relevance score between nodes before deciding how
much information to share.

2. Attention Score Calculation: The attention coefficient from node u to neighbor v € A (u) is
computed as:

exp (LT AT
Qm) _ vin (A11)
uv Q/(ul,m)TKrS-l’m) )
ZT‘EN(?L) exp ( d )
where dj, is the dimensionality of each head.
3. Neighborhood Aggregation:
Zl(thm) — Z ag{)m)vv(l:m). (A12)

veEN (u)

4. Multi-Head Output and Update: The outputs from all heads are concatenated and linearly
transformed:

HY =W [Z0D) - 20D ] + b)), (A13)

where || denotes concatenation across heads, and Wg ) € Raxd bg) € R are learnable projections.

This formulation allows each node to dynamically attend to its extended local neighborhood, learning
rich contextual representations while respecting the sparse structure of the input graph. The learned
attention scores can also be used for interpretability and identifying important nodes and edges, as
discussed in the main text.
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A2 Depth-Aware Aggregation in MGMT

To enhance the robustness of graph-specific representation learning and mitigate sensitivity to the
choice of Transformer depth, we introduce an adaptive depth-aware fusion strategy inspired by recent
developments in graph learning [32]]. Rather than relying on a fixed-depth stack, we aggregate
node embeddings across multiple Transformer layers, weighted by their contribution to graph-level
prediction performance.

Let H i(]f) € RY:*d denote the node embeddings of graph i in instance k after the /-th Graph
Transformer layer, for { = 1,...,L,i=1,...,nand k = 1,..., K. Here, K is the total number
of samples (instances), and n is the number of graphs per instance. To evaluate the representational
quality of each layer, we compute a graph-level representation by applying mean pooling over the
node embeddings:

go_ L

O - Ligmy cres @A)
1

Each pooled graph embedding H f,f) is passed through a lightweight classifier to obtain predictions,

and its predictive quality is evaluated using the graph-level label. Let Y, € {1,..., ||} be the true
label for instance k. The classification error for graph 7 at depth ¢ is computed as:

0 Zszl Bi(,?H‘ {Yk # arg max, softmax (Hf,?) }

€ N0 (A15)
S B
where Bgﬁ) is the weight assigned to graph ¢ in instance k at depth /.
The confidence score for the /-th layer of graph i is defined as:
(0
0 _1 1—¢
r,” = 2log ( N0 ) . (A16)
To emphasize misclassified instances, sample weights are updated between depths using:
Bi(,iH) x B%) exp (H‘ {Yk #+ arg max softmax (ﬂ;,?)} . FED) . (A17)

The confidence scores FZ(-e) are used to weight both the depth-wise fused node embeddings and the

attention scores across Transformer layers, ensuring that layers contributing most to prediction are
emphasized during super-node extraction and representation learning.

A3 Theoretical Properties

In this section, we establish MGMT’s theoretical foundations through: (1) intra-graph analysis,
demonstrating superior feature representation within individual graphs; and (2) inter-graph analysis,
showing enhanced predictive power through meta-graph construction. Complete proofs appear in
Appendix with additional theoretical results in Appendix

A3.1 Intra-graph analysis
We analyze the depth-aware mixing strategy in (3) which enables MGMT to aggregate information
across different depths of message passing. First, we establish some formal definitions.

Let M(A) € RV*N be a message passing operator on an adjacency matrix A € RV*N e g, the
augmented adjacency matrix, M(A) = A + I. Given M(A) and an activation function o, denote
the 1-hop feature aggregation as

UX; M(A),0) = o(M(A)X),
and the /-hop aggregation is the ¢-fold composition of &/, namely,
U (X M(A),0) = o(M(A) -0 (M(A) X)).

£ times
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Building on these definitions, we introduce L-hop mixing, which characterizes a model’s ability to
represent multi-depth information. While originally studied for Graph Convolutional Networks with
graph Laplacians [34}32], we extend this concept to general message passing operators.

Definition A1 (L-hop mixing with general message passing). Given M(-), a model is capable of
representing L-hop mixing if for any 01, ...,nr € R, there exists a setting of its parameter and an
injective (one-to-one) mapping f(-), such that the output of the model is equivalent as

L
f(Z e -U‘<X;M<A),a>>, (A18)

{=1
for any adjacency matrix A, activation function o, and node features X.
Remark A2. If M(A) = D 2(A + I'D~2, where D is the diagonal degree matrix with
Dii = Y10, Aij + 1, Definition
GCN literature [34, 132]].

recovers the L-hop mixing with Graph Laplacian in the

Our first theoretical result demonstrates that depth-aware Graph Transformers in MGMT can represent
L-hop mixing for each graph.

Theorem A3. With message passing operator M(A) = softmax(A + I), where softmax is applied
row-wise. MGMT’s depth-aware Graph Transformers in (1)) can represent L-hop mixing.

The proof appears in Appendix Notably, we also demonstrate in Appendix that vanilla
Graph Transformers cannot learn L-hop neighborhood mixing.

A3.2 Inter-graph analysis

This section analyzes how MGMT’s meta-graph construction boosts prediction power compared to
late fusion approaches [33]].

Recall from Section the meta-graph Gy; = (Spr, Ear) combines super-nodes Sy = U?Il S;.

Its initial embedding H 1\2 € RISmIXd gtacks super-node embeddings where Vu € S;, H 1(\2)u =H,,.
MGMT applies additional Lgt Graph Transformer layers followed by a global pooling to obtain the
final graph-level embedding. Lastly, we apply Lyrp MLP layers for class probabilities. Assume

without of loss of generality that Lgr = 1 and Ly p = 2, the function class of MGMT given H J(V(;)
can be expressed as
Far = { FoRISuIxd LRIV £ = Wl\(,IQL)Pa(Wl\(,llL)PPool(GT(H](S)))) } (A19)

where GT(-) : RISuIxd y RISMI*d js the Graph Transformer, Pool(-) : RISmI*d s R is a graph

pooling, and Wi, € RF *1" W), € RIVI¥h" are MLP weight matrices, with i/, b’ € N*. All
subsequent analysis could be easily extended to any number of Lygp and Lgr.

We consider the late fusion strategy that employs weighted averaging of class probabilities from
graph-specific models. Formally, the late fusion classification function can be represented as

i=1

n
Flae = {f : RISM'XCZ = R‘yl ‘ f = Zw’ ’ WI\(/IzL)P,iU(WI\(/IlL)P,iPOOlSi (H](\/OI))) }’

where {Wl\(,llﬁp,i}le[g],ie[n] is the set of graph-specific MLP parameter, and the set of late fusion
weights is {w; € R};c,) such that 37" w; = 1.

Given the joint distribution of a feature-label pair (X,Y) ~ P and a loss function £, denote the
generalization error of a function f as

R(f;P,L) =Ex yypr[L(f(X),Y)]

Following [36]], we define the approximation error of a function class F as the minimum general-
ization error achievable by a function in F, namely,

e(F;P, L) = }gg:R(f;P,ﬁ). (A20)
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Assume latent representations of the meta graph follow (H ](\9[), Y) ~ Pas. The next theorem shows

MGMT is a more powerful graph fusion framework compared to late fusion in the sense that it
achieves smaller approximation error.

Theorem A4. Denote approximation error of MGMT on the meta-graph as €(Fpr; Par, L), and the
approximation error of late fusion of graph-specific classifiers €(Fiue; P, L), then

e(Far; Par, £) < €(Frae; Par, £).

The proof appears in Appendix We also demonstrate MGMT outperforms another popular graph
fusion alternative — late fusion, in Appendix[A5.2]

A4 Mathematical Proofs

Proof of Theorem[A3] For simplicity, we omit graph-specific subscripts throughout the proof (e.g.
X instead of X;) as the arguments apply universally for all graphs. Consider the Graph Transformer

(GT) structure with a single head m = 1. For each layer ¢ = 1,..., L, let Wg) = Wi(f) =0,
W‘(,e) = I, and bg) = 0in (T). Here I is the identity matrix and O denotes matrix/vector of all zeros.
For the feedforward layer in @]) set weights as I, bias as 0, and remove the residual connection

and normalization layer. Then for each edge (u,v) € £ U {(u, u)}, the updating rules in (I)) and @)
simplifies to

© _ p0)

Qu - bQ )
4

KO =b,

Vi = =Y,

QVTK® )
exp <7\/3
QVTEDY’
ZUIEN(’M) exp < Vd

olf) =

HO =0 T ol v

uv v

vEN (u)

It is clear that the attention matrix c'*) reduces to M(A) = softmax(A + I). Recall that the initial

embedding H(®) = X, we can explicitly expand the recursive updating rule above, and write the
embeddings for each layer ¢ in the following compact form:

HY =u*(X; M(A),0).
LetT) =, for{=1,...,Lin (3), the graph-specific fused embeddings can be represented as

L
> ne-UH(X; M(A), 0),

=1
which satisfies Definition [AT] with identity mapping f(-). O

Remark Al. While the depth-aware fusion step in () is highly flexible and can accommodate any
set of weights {I‘z}le, we employ the confidence score weights defined in equation Appendixto
adaptively aggregate the latent representations that yield the highest classification accuracy.

Proof of Theorem Similar to the proof of Theorem[AZ] we will show Fiye € Fas and the desired
results follows directly from the definition of approximation error in (AZ0).

Consider a class of pooling function that concatenates the graph-specific pooled embeddings, formally,

ConcatPool(H'V) = Hn Pools, (H'?), (A21)
=1
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where || denotes the concatenation operation, Poolg, (-) : RISMIXd — RM as defined in (AZ3)), is the
global pooling function restricted to S;. Hence ConcatPool (H ](\2)) - RISmlxd _y goh/ represents the
concatenation of graph-specific embeddings.

Further, let D({WMLP ;}7_1) be the diagonal block matrix with diagonal elements {WMLP O,
then one can easily check that (AZT)) can be rewritten as
Fuae = { s RIS RV f = WDho (WiPool GT(HLY)) ),
v>1, Wy =1,by =0,
Pool(-) = ConcatPool(-), (A22)
1 1 n
Wl\(/lL)P = D({Wl\(/IL)P,i =1),
2 2 2
WI\(/IL)P = leI\(/H}PJ” T HwnWI\SIL)P,n}’
where v, Wy, by are parameters of the Graph Transformer layer as defined in (A26)). Finally, from
and (A22), it is clear that Fi. € Fas, which concludes the proof. O

A5 Additional Theoretical Results

AS5.1 Additional Intra-graph Results

Theorem Al. Let M(A) = softmax(A + I) as in Theorem[A3] the vanilla Graph Transformer is
not capable of representing L-hop neighborhood mixing.

Proof. Following a similar strategy in Abu-El-Haija et al. [34], it suffices to shows that the vanilla
Graph Transformer (GT) fails to represent 2-hop mixing, which in turn implies the inability to
represent the general L-hop mixing. Consider the particular case, where m = 1, o(z) = z. As
reviewed in Appendix [AT] the final graph embedding of a vanilla GT with depth L can be represented
as

XHW‘(/Z,

HD = lH softmax((A+I) @a(/))
=1

l=1

for attention matrices {()}}_| and weights {Wv )} 71 Here © denote the Hadamard product. Let

W* = Hle W‘(/Z), and consider the case where 77; = 1 and 72 = —1. If the vanilla GT is able to
represent 2-hop mixing, there exist an injective mapping f and a configuration of the parameters such
that

L
[H softmax((A +1 o a“’))] XW* = f(M(A)X — M?(A)X) (A23)
(=1

holds for any adjacency matrices A and node features X.

Consider a fully disconnected graph with A = 0 and X, then M(A) = softmax(I) = I, and
softmax((A +I) ® a¥) = I for ¢ = 1,..., L, which implies W* = f(0). On the other hand,
consider a graph with a single edge between node 1 and 2, namely, A1 = A2; = 1 and 0 otherwise.
Then

05 05 0 0
05 05 0 0
M= |0 0 1 0
0 0 0 1

=A*

Let X = A*, then f(M(A)X — M?(A)X) = f(0). Furthermore, it is easy to check that

Hsoftmax((AJrI)@af)) A,
=1

16



586

587
588

589
590
591

592

593
594

595
596
597

598
599

600
601
602
603

605

606

607

608

609

610

611
612
613
614

615

since features of node 1 and 2 are identical. It follows that A*W™* = f(0).

Combining the two scenarios, we must have (I — A*)W™* = 0, which implies that W7 = W,
where W is the ¢-th row of W*. Since the choice of node 1 and 2 was arbitrary, all rows of W*

should be identical, hence rank(W*) < 1 and rank([HL,L:1 softmax((A + I) ©® a9)| XW*) < 1,
which means the output of f should be at most rank 1 matrices by the equivalence assumption in
(A23). Hence, f cannot be injective which concludes the proof by contradiction. O

AS.2 Additional Inter-graph Results

Let Hs, = {H, y,}ues, be the embeddings for super-nodes in S;. Single-graph classifiers that
operates on Hs, can be expressed as

Fo={f RIS RV f = Wilko (Wi pPool(Hs,) ) |- (A24)

Assume latent representations of the meta graph follow (H J(\B), Y) ~ P, and (Hs,,Y) ~ P; where

‘P; is the marginal distribution of Py, restricted to S;. The next result shows MGMT achieves smaller
approximation error by leveraging information across all graphs.

Proposition A2. Denote approximation error of MGMT on the meta-graph as €(Fpr; Par, L), and
the approximation error of graph-specific classifiers on the sub-graph as e(F;; P;, L), then

€(Fm; P, L) < e(Fi; P, £).
Proof of Proposition|AZ] Without loss of generality, we focus on the cases where both MGMT and
graph-specific classifiers has Ly p = 2 layers of MLP and MGMT has Lgr = 1 layer of Graph

Transformer as specified in (A19) and (A24)). The same argument below applies to any number of
LMLP and LGT-

First, consider the function class that operates on the meta-graph but only utilizes the nodes from
graph 7, namely,

Fo= {7 RIS RV f = Wio (WipPools, (HY) ) b, (A25)
where Pools, denote the global pooling operation that restricts on the nodes in S;. Since
Poolg, (H](\f)[)) = Pool(Hsg,),
we have that
R(Wiiteo (WiipPools, (HLP) ): Par, £) = R(Waiho (WiiPool(Hs,) ) P, £).
It follows that
e(Fi; Py L) = €(Fi; Py, L).
We claim that F; C Fyy, and by definition of approximation error in (A20),
€(Far; P, £) < €(Fis Por, £) = e(Fis Pi, ).
It remains to show the function class inclusion. Note that we can rewrite F; as

Fo= { £ RSV R — Wi (Wil hPools, (GT(HLY)) ),
(A26)
N> 1, Wy =1, by :o},

where 7 is the threshold defined in Section [2.1.3]that determines the connectivity between nodes in the
meta-graph, Wy, by are parameters for values in the Graph Transformer layer. Setting v > 1 results
in a fully disconnected meta-graph and together with Wy, = I, by = 0, the Graph Transformer layer
GT(-) reduces to an identity mapping, which establishes the equivalence in (A26).

Finally, from and (A26), it is clear that F; C F)y, which concludes the proof. O
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Table Al: Model Category Summary with Fusion Strategy, Graph Modeling, and Attention Usage

Category Model Type Fusion Method Novel Model Graph Structured Modeling Attention-Based

Single-Source (No Fusion) Simple DNN
Simple GNN
Simple DiffPool
Simple Transformer
Simple Graph Transformer

X X X X X

Concatenation Fusion Concatenated Features (DNN)
Concatenated Features (GNN)
Concatenated Features (DiffPool)

X X X

Multimodal Fusion Baselines MMGL [22]
MultiMoDN [23]
MedFuse [16
FlexCare [17]
Meta-Transformer (MT) [24]

MGMT Ablation Variants MGMT w/o Adaptive Depth Selection
MGMT w/o Supernode Selection
MGMT w/o Inter-graph Edges
MGMT w/o Intra-graph Edges
MGMT w/o Meta-Graph and Adaptive Depth

L R [ [ e x
LR XXX XX [
LR R X X XXX X XX

AR S S RS

Proposed Model MGMT

A6 Detailed Descriptions of Baseline Models

This appendix details the baselines used to evaluate our method. Table provides a summary
comparison of the baseline models.

A6.1 Single-Source Models (No Fusion)

We assess per-source predictive signal with five baselines: (i) DNN on flattened node features
(edges ignored); (ii)) GNN (GCN) with message passing over the given topology; (iii) DiffPool for
hierarchical pooling into coarser clusters [27]]; (iv) Transformer over node-feature sequences (no
structural encoding); and (v) Graph Transformer that attends over 1-hop neighborhoods to incorporate
local structure.

A6.2 Feature-Concatenation Fusion Models

These models use early fusion: each source is encoded by a source-specific extractor, the resulting
embeddings are concatenated, and a shared DNN classifier is applied. Concretely, we consider (i)
DNN-fusion with per-source DNN encoders; (ii) GNN-fusion with per-source GCN layers and graph-
level pooling prior to concatenation; and (iii) DiffPool-fusion using per-source DiffPool encoders to
produce graph-level embeddings that are concatenated and classified by a DNN.

A6.3 Benchmark Fusion Models

We benchmark against recent multimodal frameworks with distinct fusion strategies: (i) MMGL [22],
which learns shared/specific embeddings via modality-aware representation learning and models
subject-level similarity with a GNN; (ii) MultiMoDN [23]], a modular design with independent
encoders and late fusion, without structural reasoning; (iii) MedFuse [[16]], which aligns modalities in
a shared latent space using contrastive/reconstruction losses, without explicit intra- or inter-modality
structure; (iv) FlexCare [17], which uses modality-specific encoders and a Transformer fusion layer
for heterogeneous clinical data, but no graph-based reasoning; and (v) Meta-Transformer (MT) [24],
which uses modality prompts with a shared Transformer over unstructured inputs, without topological
modeling. MGMT differs by jointly capturing both intra- and inter-graph relations through an
attention-based meta-graph.

Most of these benchmark models were not originally designed for graph-structured inputs (they
expect tabular, imaging, or clinical features). To compare fairly, we first converted each graph into a
fixed-length vector by running the same graph-specific encoder used in MGMT (TransformerConv
with global pooling and adaptive-depth aggregation) and using the resulting graph-level embedding
as a “tabular” feature vector. For methods with multi-stream inputs (e.g., MultiMoDN, FlexCare,
MedFuse), we fed one embedding per graph; for single-stream methods (e.g., Meta-Transformer),
we concatenated the graph embeddings. All baselines used identical train/val/test splits, per-graph
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Table A2: Accuracy (+ standard error) for different models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

Concatenated Features (DNN) 62.1 +0.0091 30.6 +0.0228 61.87 £0.0227  56.10+0.0113  63.74 + 0.0056
Concatenated Features (GNN) 70.1 £ 0.0093 27.8 £0.0234 55.64 £0.0236 6420+ 0.0120  67.17 £ 0.0060
Concatenated Features (DiffPool) 69.4 +0.0070 31.5+0.0176 5378 £0.0175  65.80£0.0089  71.81 +£0.0044
MMGL 79.38 £ 0.0052 39.28+0.0193 59.20+£0.0104  62.80 £0.0084  68.75 +0.0012
MultiMoDN 76.4 +0.0075 37.8+0.0182 60.40 +0.0167  61.50 £0.0101 65.10 + 0.0050
MedFuse 75.2 +0.0084 35.1+0.0171 59.70 £0.0152  64.35+0.0096  63.84 +0.0053
FlexCare 76.14 £ 0.0079 36.4+0.0188 61.10+£0.0139  69.82 £0.0091 64.03 = 0.0056
MT 81.29 +£0.0092 39.20£0.0296  62.31+£0.0124 6630 +0.0112  69.24 + 0.0034
MGMT 83.1 +£0.0084 42.1 £0.0252 65.47+£0.0239  69.90£0.0119  73.21 £0.0059

standardization, a learned linear projection to align embedding dimensions when required, and the
same Optuna budget for hyperparameter tuning.

A6.4 Ablation Study

We assess the contribution of MGMT components by altering one module at a time while keeping the
rest fixed: (i) w/o Adaptive Depth Selection: replace confidence-weighted layer aggregation with
final-layer only, disabling depth-wise ensembling; (ii) w/o Supernode Selection: bypass attention-
based node filtering so all nodes enter the meta-graph, increasing size and noise; (iii) w/o Inter-graph
Edges: keep only within-graph edges to remove cross-graph interactions; (iv) w/o Intra-graph Edges:
keep only cross-graph edges, removing within-graph structure; (v) w/o Meta-Graph and Adaptive
Depth: omit the meta-graph, fix encoder depth, and perform late fusion via concatenated pooled
graph outputs.

A7 Details on Simulation Settings

This section provides detailed descriptions of the synthetic data generation processes used in our
simulation studies. We consider two controlled settings designed to evaluate the performance of
MGMT under varying conditions of noise, feature dependency, and label complexity. Below, we
describe the procedures for Setting 1, which uses modality-specific noise and a linear classification
rule, and Setting 2, which introduces temporal dependencies and nonlinear label generation.

Setting 1: Feature Generation with Modality-Specific Noise and Linear Classification Rule

Let each graph consist of NV nodes and d features per node. Define a subset of informative nodes
Vo € {1,...,N} with [V5| = Ny < N,and let V; = {1,..., N} \ V, denote the non-informative
nodes.

For each modality ¢« = 1,...,n, with modality-specific noise level o;, and for each graph sample
k=1,..., K, node features are generated as follows:

« informative nodes j € Vj, have features 3351“) ~ N(0,%;), where ; € R?*9 has ones on the
diagonal and off-diagonal entries sampled uniformly from [—o;, 0;].

* Non-informative nodes j € V; have features w§-k’i) ~ Unif(0, 0.5)%.

The modality-specific graph-level binary label yz(k) € {0, 1} is determined by the features of informa-
tive nodes:

d
W _p L 250 L0 S o 2B 0 N(0.0.1),
=T\l 2 2 , 0.0

jEVo r=1

To enable multimodal fusion, a shared target variable is defined by aggregating modality-specific

labels:
k k
ys(ha)red =1 Z wiy§ >
i=1

where w; € [0, 1] are modality weights summing to one, and 7 € [0, 1] is a threshold parameter.
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Table A3: Accuracy (+ standard error) for different ablation models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

MGMT w/o Adaptive Depth Selection 81.2+0.0085  40.6+0.0223  64.20+0.0240  68.80+0.0117  71.45 £0.0057
MGMT w/o Supernode Selection 782+0.0087 41.0£0.0219  62.11 £0.0216 67.3 £0.0107 69.31 +0.0053
MGMT w/o Inter-graph Edges 76.5+0.0088  38.9+0.0214 61.72+0.0225  66.90 +£0.0121 68.35 + 0.0051
MGMT w/o Intra-graph Edges 324+0.0243  39.0+0.0097  63.09 +£0.0242 66.6 +0.0123 66.75 + 0.0062
MGMT w/o Meta-Graph and Adaptive Depth ~ 70.1 £0.0093 ~ 27.8+0.0234  55.64 £0.0236  64.20+0.0120  67.17 + 0.0060
MGMT 83.1£0.0084  42.1+0.0252 6547 +0.0239  69.90+0.0119  73.21 +0.0059

Setting 2: Temporal Feature Dependency via Gaussian Process

In this setting, features of informative nodes are generated using a Gaussian Process (GP) to introduce
temporal dependency across the d features. Fort = 1,...,d, let z; ~ Unif(0, 1), and define the GP
with zero mean and a squared exponential kernel:

Tt — Ty 2
k(xhxt,) = 0.2 exp <_(tl2t)> ,
with length-scale [ = 1 and variance 0% = 1.

For non-informative nodes, features are also sampled from a GP with the same mean function, but
with increased kernel variance 02 = 2.5, thereby injecting greater noise and reducing relevance for
the target prediction.

The binary target label is defined using a nonlinear and complex function of the averaged features
across informative nodes. Let )
T == x; € R
Vol Z J ’

€V

and define three projection vectors ey, es, €3 € R?, each selecting a distinct third of the features:

er=1[1,...,1,0,...,0],
—— ——
d/3 2d/3
es=10,...,0,1,...,1,0,...,0],
—— —— ——
d/3 d/3 d/3
es=1[0,...,0,1,...,1].
—— ——
2d/3 d/3

The graph-level label is then computed as:
y=1I(sin(ze1) - cos(z'es) + (z°*) Tez +£>0), e~N(0,0.1),
where 2°2 denotes the element-wise square of x, i.e., the Hadamard power.

Software implementing the algorithms and data experiments are available online at :
https://anonymous.4open.science/r/new_submission-33A6

A8 Alzheimer Dataset

To demonstrate MGMT’s generalizability beyond LFP data analysis, we have also applied it to an
Alzheimer’s disease (AD) detection problem as an example of broader biomedical applications. More
specifically, we apply our method to the data obtained from the National Alzheimer’s Coordinating
Center (NACC), which standardizes data collected across 46 Alzheimer’s Disease Research Centers
(ADRGC:S) in the United States [37,138]]. The cohort comprises 1,237 subjects (61.5% HC and 38.5%
MCI/AD) with both clinical assessments from the Uniform Data Set (UDS) and structural MRI
available. Our goal is to separate subjects with mild cognitive impairment (MCI) or dementia due to
Alzheimer’s disease from healthy controls (HC).

Following our terminology, a setting is multi-modal when each subject is measured via distinct
data sources (e.g., MRI vs. clinical assessments) that inhabit different feature spaces and sensing
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Figure A4: Test accuracies of single-source and fusion models Alzheimer’s disease data. Each bar
represents the average test accuracy across 5 folds, along with the corresponding standard error.
MGMT consistently outperforms all other models, demonstrating the advantage of modeling intra-
and inter-graph interactions.

processes. As shown in Figure[A4] the MGMT model consistently outperformed both single-source
and baseline fusion models. This highlights the importance of structure-aware joint fusion in
multimodal biomedical prediction tasks. Moveover, ablations in figure [A3] show that intra-graph
structure and the meta-graph are critical: removing intra-graph edges collapses performance (32.4%
vs. 83.1%), removing the meta-graph lowers accuracy to 70.1%, while dropping inter-graph edges
(76.5%), supernode selection (78.2%), or adaptive depth (81.2%) yields progressively smaller but
consistent declines.

A9 Experimental Setting and Efficiency Analysis

We evaluate the computational complexity and efficiency of MGMT through both theoretical and
empirical analysis. This section is structured as follows: Section[A9.1]presents a theoretical runtime
complexity analysis of MGMT’s core components; Section[A9.2]provides empirical scalability results
across four key input dimensions; Section[A9.3] offers runtime profiling and efficiency comparisons,
including infrastructure details and training costs.

A9.1 Theoretical Complexity Analysis.

The total computational complexity of MGMT is governed by three main components: (1) graph-
specific Graph Transformer encoders, (2) meta-graph construction, and (3) the final meta-graph
Transformer.

Graph-specific Transformer encoders For a graph G; with V; nodes and d-dimensional fea-
tures, a TransformerConv layer with dense attention costs O(N?2d). Across n graphs, the total is
S O(NZd), or O(nN?d) for similar sizes. Standard sparse/linear attention variants can reduce
this if needed.

Meta-graph construction Two steps: (a) super-node extraction by scoring and thresholding nodes
is O(N;) per graph, totaling O(nN); (b) super-edge creation computes pairwise similarities among
selected super-nodes. Let .S; be super-nodes in graph ¢ and Sy, = >, S;. This step costs O(St%lald),
i.e., O(n?S%d) for roughly S per graph, with S; < N;.

Meta-graph Transformer Applied over Sy super-nodes, yielding O(S2,,d) (approximately
O(n?5%d)).

The dominant term is the per-graph encoder, Y, O(NZd). Meta-graph construction and inference
operate on a much smaller set of super-nodes (Siora; < Zl N;) and thus are comparatively lightweight.
Quadratic factors at the meta-graph level are in Sy, (and 1), which remains moderate by design.
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Figure AS: Ablation study results across five datasets evaluating the contribution of each architectural
component in the MGMT framework. Each bar shows mean accuracy with standard error (computed
over 50 or 100 repetitions depending on the dataset). Removing the adaptive depth selection,
supernode selection, or inter-graph edge modeling consistently reduces performance across datasets,
underscoring their importance for hierarchical representation learning and cross-graph interaction.
Notably, removing intra-graph edges while retaining inter-graph structure leads to a sharp performance
drop on the Alzheimer dataset, highlighting the necessity of preserving local structural information.
MGMT consistently achieves the highest accuracy, confirming the complementary contribution of all
its components.

A9.2 Scalability Analysis

To validate the theoretical complexity discussed in Section[A9.1] we empirically evaluated the runtime
behavior of MGMT with respect to four key input parameters: number of nodes per graph (NV),
number of graphs per sample (instance) (n), number of samples, and node feature dimensionality (d).
In each experiment, we fixed the model architecture, training epochs (100), and batch size to enable
consistent runtime comparisons, and reported runtimes averaged over 10 independent runs. Results
in Figure[A6]align with theory and show efficient scaling.

Runtime vs. Nodes per Graph (N). As predicted by the O(N? - d) complexity of Transformer-
based attention, the observed runtime increases superlinearly with /NV. The curve aligns closely with a
quadratic fit (R? = 0.999), reflecting the cost of dense all-pairs attention in graph-specific encoders.

Runtime vs. Number of graphs per sample (instance) (n). The runtime grows approximately
linearly with n, validating the modular structure of MGMT where graph-specific encoders operate
in parallel and the size of the meta-graph remains bounded. This confirms that MGMT scales well
with respect to the number of graphs in practical regimes and supports our theoretical analysis in
Section

Runtime vs. Number of Samples. We observe a near-quadratic growth in runtime (on a log scale)
as the number of samples increases, consistent with expectations. This is attributed to repeated
forward passes and meta-graph construction across samples, particularly in mini-batch training
settings.

Runtime vs. Feature Dimensionality (d). Despite the theoretical linear dependence on d in
attention layers, the empirical curve remains nearly flat. This is due to early feature compression in
MGMT’s architecture, which transforms high-dimensional node features into a lower-dimensional
latent space prior to attention and reasoning steps.

A9.3 Runtime Profiling and Model Efficiency
Building on the complexity analysis and scalability trends in Section [A9.2] we profile per-epoch

runtime to isolate the cost of each architectural component. Table [Ad]reports average epoch times for
MGMT and graph-attention baselines (those that perform graph reasoning and/or meta-graph fusion).

Baselines MGMT’s meta-graph reasoning adds minimal overhead: it is faster than MMGL on
all datasets except LFP, despite including supernode detection and adaptive depth. Ablations that
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Figure A6: Scalability analysis of MGMT with respect to key input parameters. We evaluate the
empirical runtime of MGMT under controlled variations of (a) number of nodes per graph (NV), (b)
number of graphs per sample (n), (c) number of samples (log scale), and (d) feature dimensionality
(d).Runtime scales quadratically with N due to the dense self-attention in the graph-specific Graph
Transformers (O(N? - d)), and linearly with n, confirming the modular and scalable design of MGMT.
Sample size and feature dimension contribute to runtime growth in accordance with expectations, with
minor deviations at small scales. Linear and quadratic regression fits are shown for interpretability,

along with corresponding R? values.

remove intra-graph edges or the meta-graph yield small speedups but reduce accuracy (see Table[AZ)),
illustrating a speed—accuracy trade-off.

MultiMoDN, MedFuse, and FlexCare are omitted from Table [A4] because they do not use graph
representations or attention; direct runtime comparison to graph-based models would be misleading.
These methods operate on tabular inputs with shallow fusion, yielding lower computational cost by
design but consistently lower accuracy than MGMT (Table[A2).

Table [A5] decomposes MGMT’s epoch time into data preparation, graph encoders, supern-
ode/superedge construction, meta-graph formation, and the final classifier. The dominant cost
is the graph Transformer encoder, consistent with the O(N?2d) complexity; meta-graph construction
and reasoning are comparatively lightweight due to the compact meta-graph.

Overall, MGMT balances expressivity and efficiency: it achieves higher accuracy than non-graph and
shallow fusion baselines while maintaining practical per-epoch runtimes.

Compute Infrastructure and Training Cost. All experiments were conducted on a shared CPU-
based server provided by our lab. Each training job utilized 4 parallel CPU workers and approximately
4 GB of RAM. No GPU resources were used.

For baseline experiments, we trained a total of 250 models. Each model took on average 5.5 hours to
train, amounting to approximately 1,375 CPU hours.

For MGMT model training and hyperparameter tuning, the total compute time was as follows:
* LFP dataset: 100 Optuna trials, each taking 71 minutes on average, resulting in approximately
118.3 CPU hours

* Alzheimer dataset: 100 Optuna trials, each taking 5 hours and 18 minutes on average, resulting in
approximately 530 CPU hours

 Simulation Setting 1: 50 iterations, each taking 29 minutes on average, resulting in approximately
24.2 CPU hours

* Simulation Setting 2: 50 iterations, each taking 31 minutes on average, resulting in approximately
25.8 CPU hours

* Simulation Setting 3: 50 iterations, each taking 49 minutes on average, resulting in approximately
40.8 CPU hours

In total, MGMT-related training required approximately 739 CPU hours. Additional compute time
spent on development, debugging, and model refinement was not recorded.

A10 Sensitivity Analysis of Hyperparameters

The MGMT framework includes several hyperparameters that influence model performance and
computational efficiency. In this section, we investigate the sensitivity of two key hyperparameters:
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Table A4: Comparison of average epoch runtime (in seconds) between various meta-graph configura-
tions and baseline models across each dataset.

Model Variant Alzheimer  LFP Data  Experiment 1 Experiment 2 Experiment 3
MMGL 174.23 63.12 21.85 29.0 33.98
MGMT w/o Meta-Graph and Adaptive Depth 174.10 64.33 15.10 17.20 32.60
MGMT w/o Intra-graph Edges 156.77 63.69 15.72 18.83 32.71
MGMT w/o Supernode Selection 215.46 59.61 19.91 19.31 35.61
MGMT 162.93 67.33 16.67 17.59 33.01

Table A5: Detailed epoch running time (in seconds) for the MGMT model across different datasets.

Dataset Total DataPrep  Graph-specific encoding ~ Super-Edge & Node Extraction ~ Meta-Graph ~ Final Model
Alzheimer 162.93 1.81 119.24 28.64 1.56 13.18
LFP Data 64.06 0.88 59.74 1.38 1.19 1.25
Experiment 1 16.67 0.23 16.26 0.07 0.06 0.05
Experiment 2 17.59 0.44 16.40 0.26 0.25 0.24
Experiment 3 33.01 0.51 32.25 0.09 0.08 0.08

the attention score threshold (7) used for supernode selection, and the cosine similarity threshold (v)
used in inter-graph edge construction.

A10.1 Attention Score Threshold (Supernode Selection)

To assess the impact of 7, we conducted a controlled experiment on synthetic data generated under
Setting 1 (see Appendix[A7). We have a total of 100 samples and 5 graphs per each sample where
each graph consisted of 10 nodes, with 30 features per node. We trained all models for 100 epochs
and averaged accuracy and runtime over 10 repetitions.

Intuitively, decreasing 7 results in more nodes being selected as supernodes, increasing computational
cost and potentially introducing noisy or redundant information. In contrast, higher thresholds
select fewer supernodes, reducing runtime but possibly discarding useful information. As shown
in Figure the runtime decreases steadily as 7 increases, which aligns with the reduced number
of supernodes and associated computations. However, model accuracy shows a non-monotonic
trend: it peaks at 7 = 0.3 (64.5%) and declines on either side. This behavior illustrates a tradeoff
between overfitting (when too many nodes are included) and information loss (when too few nodes
are retained).

A10.2 Cosine Similarity Threshold (Inter-graph Edge Construction)

Moreover, to assess the effect of the cosine similarity threshold v used for inter-graph edge construc-
tion, we performed a controlled sensitivity analysis using synthetic data generated under Setting 1
(see Appendix [A7). We have a total of 100 samples and 5 graphs per each sample where each graph
consisted of 100 nodes, with 30 features per node. All models were trained for 100 epochs, and both
accuracy and runtime were averaged over 10 repetitions.

As shown in Figure [A7] runtime remains largely stable across different -y values, indicating that inter-
graph edge density has minimal impact on computational overhead since meta-graph construction
occurs post graph-specific encoding and operates over a reduced number of supernodes.

Accuracy, however, demonstrates a non-monotonic trend. When + is very small, the meta-graph
becomes fully connected, enabling the model to consider all potential inter-graph interactions.
Although this theoretically maximizes expressiveness (since attention-based transformers can learn
to prioritize relevant connections), it increases the risk of overfitting due to the inclusion of noisy
or spurious edges. On the other hand, when - is close to 1, the meta-graph becomes sparse or even
disconnected, leading to an underutilization of cross-graph dependencies.

The highest accuracy occurs at intermediate values (e.g., 7 = 0.4), suggesting that retaining only
the most semantically meaningful inter-graph links allows the model to balance expressiveness with
robustness. These findings reinforce the results from our ablation studies (Figure ??), which demon-
strate that incorporating carefully selected inter-graph edges substantially improves downstream
performance.
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Figure A7: Sensitivity analysis of two key hyperparameters in the MGMT framework. (Left two
plots) The attention score threshold 7 controls supernode selection. Lower thresholds include more
nodes, increasing runtime and potentially introducing noise, while higher thresholds risk discarding
informative nodes. Accuracy peaks at 7 = 0.3, suggesting a balance between expressiveness and
overfitting. (Right two plots) The cosine similarity threshold v governs inter-graph edge construction
in the meta-graph. Accuracy peaks at moderate values of -, reflecting a trade-off between dense
connectivity (risking overfitting) and sparsity (losing cross-graph interactions). Runtime remains
largely stable across vy, as meta-graph construction operates over a small number of supernodes.

A1l Impact of Similarity Metrics in Meta-Graph Construction

The construction of inter-graph edges in the meta-graph relies on computing pairwise similarities
between node embeddings extracted from different graphs. While cosine similarity is commonly
adopted due to its scale-invariant properties, other alternativessuch as Pearson correlation, Euclidean
distance, and dot product, may also be used to define similarity across nodes. This section evaluates
the extent to which the choice of similarity metric affects downstream performance.

To investigate this, we conducted a controlled experiment on a synthetic dataset generated under
Setting 1 (see Appendix [A7). For each similarity function, we compute full cross-graph similarity
matrices between node embeddings and apply a fixed top-k rule with £ = 10 to select inter-graph
edges, ensuring identical sparsity across metrics. Each configuration is run 50 times; we report mean
accuracy.

We compare cosine similarity, Pearson correlation, negative Euclidean distance converted to similarity
via 1/(1 + d;;), and dot product. Results show modest but consistent differences: dot product attains
the highest accuracy (0.661), followed by Pearson (0.654), Euclidean (0.648), and cosine (0.642).
The spread is small (1.9 percentage points), indicating limited sensitivity to the similarity choice
under this setup.
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