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Abstract

Neuroscience experiments often capture brain signals from heterogeneous indi-1

viduals, each with unique neural dynamics, even in response to the exact same2

stimuli. This subject-to-subject variability makes it challenging to aggregate data3

and extract common neural patterns. To address this, we propose Multi-Graph4

Meta-Transformer (MGMT), a unified framework that learns from a set of graphs5

sharing a single prediction target, while respecting their individual structures.6

MGMT captures graph-specific patterns, aligns their structural representations7

in a shared latent space, and integrates them to learn a robust and generalizable8

structure. Conceptually, MGMT reframes graph fusion as functional alignment,9

borrowing statistical power by linking regions that exhibit similar patterns across10

graphs. We apply MGMT to analyze hippocampal local field potentials (LFPs)11

from five rats performing an odor–sequence task, where the neural activity of each12

rat is represented by a distinct graph. MGMT uses Graph Transformer encoders to13

identify supernodes and then builds a meta-graph by forming superedges across14

graphs based on similarities of latent node representation. This restricts message15

passing to only functionally aligned pairs, reducing cross-graph noise and yield-16

ing more accurate, interpretable graph-level predictions. In our neural decoding17

experiment, MGMT outperforms existing fusion strategies. Notably, it uncovers18

distal CA1 selectivity for non-spatial information and demonstrates that its learned19

inter-graph connections capture meaningful brain dynamics.20

1 Introduction21

Graphs are fundamental data structures in many domains including neuroscience [1], social net-22

works [2, 3] and molecular biology [4, 5, 6]. While powerful models like Graph Neural Networks23

(GNNs) [7, 8, 9] and the more recent Graph Transformers (GTs) [10, 11, 12, 13] excel at learning24

from single graphs, many real-world problems require integrating information across multiple het-25

erogeneous graphs. For instance, neuroscience experiments studying brain dynamics often generate26

graphs from multiple subjects, each with distinct connectivities and node sets [1]. Enhancing predic-27

tion performance or extracting common neural patterns in such settings requires a framework that can28

effectively integrate these disparate graphs. However, how to best adapt powerful architectures like29

the GT for this multi-graph integration challenge remains underexplored. Existing fusion paradigms30

fall short as they either assume a single, unified graph with aligned nodes [14, 15], or they collapse31

each graph’s topology into a single vectorized embedding before fusion [16, 17]. Consequently,32

valuable structural information both within and between the graphs is lost.33

To address this gap, we propose Multi-Graph Meta-Transformer (MGMT), a novel framework34

designed to fuse information from collections of heterogeneous graphs. Our unified framework,35
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which we group under the umbrella term “multi-graph,” is broadly applicable and handles several36

common scenarios including: multi-modal (graphs from different measurement channels, e.g., MRI37

vs. clinical UDS), multi-view (different structural views of the same data, e.g., different feature38

subsets or data measured under different conditions), and multi-subject (graphs from different39

subjects in the same experiment). Our approach involves independently processing each graph40

(modality/view/subject) using dedicated GT encoders, resulting in intra-graph representations that41

are mapped into a shared latent space. It then integrates these representations by constructing a42

meta-graph. This is achieved by identifying the most informative supernodes within each graph43

through attention mechanism and connecting them with superedges based on similarity in their44

learned latent embeddings. By applying additional GT layers to this meta-graph, MGMT facilitates45

selective information sharing between functionally aligned nodes across the collection, enabling the46

joint learning of both local and global patterns.47

Key Contributions48

We introduce MGMT, a novel framework for multi-graph fusion. It learns robust graph-specific49

representations through dynamic aggregation of GT layers at varying depths. It further constructs a50

meta-graph to enable selective, structured information sharing across graphs in the latent space.51

The framework provides inherent interpretability through its meta-graph construction. The identified52

supernodes highlight influential, task-relevant subgraph structures, while the learned superedges pin-53

point functional alignments between graphs, offering a clear explanation of cross-graph interactions.54

We also provide a comprehensive theoretical study that analyzes both intra-graph and inter-graph55

properties of MGMT, offering rigorous analysis on its representational capabilities.56

Finally, we demonstrate MGMT’s effectiveness on challenging neuroscience datasets, where it57

successfully extracts meaningful neuronal activity patterns shared across subjects. These findings58

are validated by existing interdisciplinary research, showcasing the model’s potential for real-world59

scientific discovery.60

Related Work61

Graph Representation Learning Graph Neural Network (GNN) is the cornerstone of modern62

graph machine learning. It learns node representations by iteratively aggregating features from63

local neighbors through message-passing [7, 8, 18]. To better capture long-range dependencies and64

enhance expressive power, Graph Transformers (GTs) have emerged as a powerful alternative. These65

models adapt the global self-attention mechanism, originally from natural language processing [19],66

for graph-structured data, typically by injecting structural information through positional encodings or67

by combining attention with message-passing components [20, 11, 21, 12]. While both architectures68

are highly effective for single-graph tasks, they are not inherently designed to fuse information from69

a collection of multiple, potentially heterogeneous graphs.70

Multimodal and Heterogeneous Graph Learning A distinct line of research that may appear71

similar is multimodal or heterogeneous graph learning. However, its problem setting is fundamentally72

different from our multi-graph fusion task. These methods operate on a single, unified graph that73

integrates various data types. For example, frameworks like UniGraph2 [14] and HetGNN [15]74

assume a single graph where node possess multiple features types from different modalities, such as75

text or images. This assumption collapses multiple data sources into one large graph. Other works,76

such as MMGL [22], construct a single population-level graph where nodes represent subjects, and77

features from all modalities are concatenated before graph construction. While effective for their78

intended purpose, these methods are not applicable to the more general and challenging problem of79

fusing a collection of graphs with distinct, unaligned node sets, which is the focus of our work.80

General-Purpose Multimodal Fusion General-purpose frameworks including MultiMoDN [23],81

FlexCare [17], MedFuse [16], and Meta-Transformer (MT) [24] considers integration of multiple82

modalities, including graphs or images. One could technically apply these frameworks to a multi-83

graph fusion problem by treating each graph as a separate modality. These frameworks, such as84

MedFuse [16] typically use modality-specific encoders to first transform each input into a single latent85

vector. For a graph, this means collapsing its entire topological structure into one embedding. These86

vectors are then fused with operations such as concatenation for the down stream tasks. This process87
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not only discards the rich structural information within each graph but also offers no mechanism for88

modeling the fine-grained, structural relationships between graphs, highlighting the need for a truly89

graph-native fusion methodology.90

2 Methodology91

In this section, we present MGMT, detailing its prediction pipeline based on GTs and meta-graph92

construction, followed by describing how to interpret MGMT by identifying significant nodes and93

edges in Section 2.2. An overview of the entire framework is provided in Figure 1.94

2.1 Multi-Graph Meta-Transformer (MGMT)95

MGMT fuses multi-graph data using hierarchical meta-graph modeling through the following steps:96

2.1.1 Graph-Specific Transformer Encoders97

For each instance, we observe a collection of n graphs. For i = 1, . . . , n, we denote the graph as98

Gi = (Vi, Ei) with node set Vi of size Ni = |Vi|, and edge set Ei. Each graph Gi is characterized99

by a node feature matrix Xi ∈ RNi×d and an adjacency matrix Ai ∈ {0, 1}Ni×Ni . Graphs per100

each instance may differ in size and structure (for presentation purpose only, we assume feature size101

is d across all graphs), yet the collection {G1, . . . ,Gn} share a common label Y ∈ Y . The task is102

graph-level classification of the shared label Y using evidence aggregated across graphs. Throughout103

this paper, we use bold uppercase letters (e.g., X) for matrices and and bold lowercase letter (e.g., x)104

for vectors, and [n] denoting the set {1, . . . , n}.105

We formalize the core graph-specific Transformer mechanics used in MGMT, building upon the106

localized graph-aware attention principles detailed in Appendix A1. For each i ∈ [n], the graph Gi107

with node features Xi ∈ RNi×d undergoes L GT layers with multi-head self-attention. Starting with108

H
(0)
i = Xi as initial features, we define the extended neighborhood N̄ (u) = N (u) ∪ {u} to ensure109

nodes attend to themselves during message passing.110

For layer ℓ ∈ [L], attention head m ∈ [M ], and edge (u, v) ∈ Ei ∪ {(u, u)}, we compute:111

Q
(ℓ,m)
i,u = W
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(1)

where H(ℓ−1)
i,u ∈ Rd is the feature of node u at layer ℓ−1, d′ = d/M denotes the per-head dimension.112

Projection matrices W (ℓ,m)
Q,i ,W

(ℓ,m)
K,i ,W

(ℓ,m)
V,i ∈ Rd′×d and biases b(ℓ,m)

Q,i , b
(ℓ,m)
K,i , b

(ℓ,m)
V,i ∈ Rd′

are113

learnable parameters. The query vector Q(ℓ,m)
i,u represents information node u seeks from neighbors,114

key vector K(ℓ,m)
i,v encodes neighbor v’s relevance, and value vector V (ℓ,m)

i,v contains content to be115

aggregated. Attention score α
(ℓ,m)
i,uv determines how much node u attends to node v.116

The outputs of all heads are concatenated (∥ denotes the concatenation) and transformed via:117

Z
(ℓ)
i,u =

∥∥
m∈[M ]

[
Z

(ℓ,1)
i,u , . . . ,Z

(ℓ,M)
i,u

]
W

(ℓ)
O,i + b

(ℓ)
O,i,

where W
(ℓ)
O,i ∈ Rd×d, b(ℓ)O,i ∈ Rd. Stacking these vectors across all nodes yields Z(ℓ)

i ∈ RNi×d.118

This attention-based aggregation Z
(ℓ)
i then passes through feedforward network with activation,119

residual connection, and layer normalization to produce the final output H(ℓ)
i . Specifically:120

H
(ℓ)
i = LayerNorm(Z

(ℓ)
i + σ(FFN(Z

(ℓ)
i ))) (2)

3



After L layers, we obtain final output and attentions by dynamically aggregating across all depths:121

Hi =
∑

ℓ∈[L]
Γ(ℓ) H

(ℓ)
i ∈ RNi×d,

αi =

{
αi,uv =

∑
ℓ∈[L]

Γ(ℓ)

(
1

M

∑
m∈[M ]

α
(l,m)
i,uv

)}
(u,v)∈Ei∪{(u,u)}

,
(3)

where {Γ(ℓ)}nl=1 are confidence scores measuring the quality of each Transformer layer (see Ap-122

pendix A2 for computation details).123

2.1.2 Super-node Extraction124

Figure 1: Architecture of the Multi-Graph Meta-
Transformer (MGMT). Depth-Aware GT layers pro-
cess individual graphs, extracting super-nodes to
form a meta-graph. Additional GT layers model
both intra- and inter-graph interactions.

To identify the most informative nodes in each125

graph i, we extract super-nodes based on the126

learned attention scores αi in (3). Given a127

predefined threshold τ , we form the set of128

super-nodes as129

Si =

{
u ∈ Vi

∣∣∑
(u,v)∈Ei

αi,uv ≥ τ

}
.

(4)

Intuitively,
∑

(u,v)∈Ei
αi,uv quantifies the to-130

tal attention distributed by node u to its neigh-131

bors.132

We then induce a subgraph over these nodes:133

G′
i = (Si, E ′

i), E ′
i = {(u, v) ∈ Ei | u, v ∈ Si}

(5)

Additionally, we conduct a sensitivity study134

in Appendix A10 to examine how choices of135

threshold τ influence model performance. Our136

analysis reveals that τ controls a trade-off: a137

higher τ creates a sparser meta-graph, which138

risks information loss, while a lower τ retains139

more nodes, risking overfitting to noise. In140

practice, by guiding the selection of τ via141

cross-validation, we identified a robust range142

of values that yields stable performance.143

2.1.3 Meta-Graph Construction144

To model both intra- and cross-graph interactions, we construct an instance-level meta-graph GM =145

(SM , EM ), where SM =
⋃n

i=1 Si contains all graph-specific super-nodes. Each node u ∈ Si is146

associated with a latent embedding Hi,u ∈ Rd as defined in (3).147

The edge set EM of the meta-graph includes two components. First, we retain all intra-graph edges148

from the pruned graphs G′
i = (Si, E ′

i), preserving graph-specific relationships. Second, we introduce149

inter-graph edges between cross-graph super-nodes based on their feature similarity. For any node150

pair (u, v) with u ∈ Si, v ∈ Sj , and i ̸= j, we compute the cosine similarity:151

euv =
H⊤

u Hv

∥Hu∥∥Hv∥
(6)

If the similarity score euv exceeds a predefined threshold γ, the edge (u, v) is added to EM .152

The resulting adjacency matrix AM ∈ R|SM |×|SM |, encodes both intra- and inter-graph relationships153

among super-nodes. A widely adopted assumption for graph signals is that values change smoothly154

across adjacent nodes [25]. MGMT applies this at the meta-graph level: superedges connect only155

supernodes with similar embeddings, promoting aligned message passing.156

4



As shown in Appendix A10, accuracy is typically non-monotone in γ, reflecting the trade-off between157

dense connectivity (risking overfitting/noisy exchanges) and sparsity (losing cross-graph interactions),158

In practice, γ is selected on a validation split.159

Finally, in Appendix A11, we compared cosine similarity with Pearson correlation, Euclidean distance,160

and dot product for defining inter-graph edges. The results show that performance remains broadly161

robust across metrics, suggesting that our framework is not sensitive to the choice of similarity metric.162

2.1.4 Feature Learning and Prediction163

After constructing meta-graph GM , we apply additional GT layers to the stacked super-node embed-164

dings H(0)
M ∈ R|SM |×d. Multi-head self-attention and feedforward updates are applied to capture165

global contextual dependencies, resulting in updated super-node embeddings HM ∈ R|SM |×d.166

For classification, we apply permutation-invariant pooling followed by a fully connected network:167

ŷ = f(Pool(HM )), (7)
where Pool(·) can be a mean, concatenation, or attention-based function, and f(·) maps the pooled168

representation to class probabilities ŷ ∈ R|Y|.169

This final step enables MGMT to make robust predictions by integrating both modality-specific170

structures and cross-modal interactions in a unified graph representation.171

2.2 Interpretation of MGMT172

The identified meta-graph GM is analyzed via (1) Node-level analysis, highlighting influential nodes173

and their contributions, and (2) Edge-level analysis, uncovering critical relationships among these174

nodes. This framework enhances transparency, provides actionable insights for domain experts, and175

is further evaluated in our neuroscience application results.176

3 Theoretical Properties177

In Appendix A3, we establish the theoretical foundations of MGMT through two analyses. First,178

our intra-graph analysis demonstrates the superior representational power of our approach within179

each graph. Specifically, we prove that MGMT’s depth-aware Graph Transformers (see (1)–(3)) can180

capture complex L-hop feature mixing, which measures expressive capability, while standard Graph181

Transformers cannot. Second, our inter-graph analysis shows that the explicit meta-graph construction182

leads to enhanced predictive power compared to standard late-fusion alternatives. Complete proofs183

are provided in Appendix A4, with additional theoretical results in Appendix A5.184

4 Numerical Experiments185

We evaluate the effectiveness of MGMT on four datasets in the main paper (three synthetic + LFP)186

and an additional Alzheimer’s case study in Appendix A8. Among these, the three synthetic datasets187

and Alzheimer’s dataset are multi-modal (multiple modalities per sample), while the LFP dataset is188

multi-subject (graphs from different animals treated as distinct modalities). Our analysis is structured189

into two parts: (1) comparisons with a broad set of baseline models, and (2) ablation studies to assess190

the contribution of each component within MGMT. Performance results are summarized in Figures 2,191

A5, and A4, with detailed accuracy values and standard errors reported in Tables A2 and A3.192

4.1 Baseline Comparisons193

We compare MGMT against the following three categories of baselines:194

(i) Single-Source Models: These models are trained on each data source independently and include195

Deep Neural Networks (DNNs) [26], Graph Neural Networks (GNNs), Differentiable Pooling196

(DiffPool) [27], standard Transformers, and Graph Transformers.197

(ii) Early Fusion Models (Feature Concatenation): For each data source, features are extracted198

using source-specific architectures (e.g., DNN, GNN, DiffPool). These features are concatenated and199

input to a shared classifier, typically a DNN [28, 29, 30].200
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Figure 2: Average test accuracy and standard error bars across synthetic and LFP datasets. (a)
Experiment 1 (Setting 1) uses a sample size of 100, with 5 nodes that are all informative. Experiments
2 and 3 (Setting 2) both involve structured noise; Experiment 2 uses 100 samples, and Experiment
3 uses 2,000 samples. All three experiments involve 50 nodes, of which 40 are informative. (b)
Odor–sequence LFP decoding across five animals plus fused models. Each bar represents the average
test accuracy across 5 folds, along with the corresponding standard error. Across all configurations,
the proposed MGMT model achieves the best performance.

(iii) Benchmark Fusion Models: We evaluate MGMT against recent fusion frameworks;201

MMGL [22], MultiMoDN [23], FlexCare [17], MedFuse [16], and Meta-Transformer (MT) [24],202

each designed to integrate information from multiple input sources or feature streams.203

4.2 Ablation Study204

To quantify each component’s impact, we evaluate five ablations: (1) removing adaptive depth205

selection (use final Transformer layer), (2) removing supernode selection (include all nodes in206

the meta-graph), (3) removing inter-modality edges, (4) removing intra-modality edges, and (5)207

disabling both the meta-graph and adaptive depth mechanisms, using simple late fusion of fixed-depth208

Transformer outputs. results can be found in Table A3 and Figure A5.209

Appendix A6 provides detailed descriptions of all baseline models, multimodal fusion benchmarks,210

and MGMT ablation variants, along with a structured categorization of these models based on their211

fusion strategy, use of graph-structured modeling, attention mechanisms, and architectural novelty.212

4.3 Experimental Setup213

In MGMT framework, for all the datasets we use TransformerConv layers with global max or mean214

pooling to generate graph-level embeddings. Our models are trained on 80% of the data, with215

10% reserved for validation and 10% for testing, using the Adam optimizer and early stopping216

based on validation loss. For real datasets, all models are trained using 5-fold cross-validation.217

Hyperparametersincluding the number of layers, dropout rate, learning rate, training epochs, and node218

importance thresholds, are optimized using Optuna with 100 trials. The best hyperparameters are219

selected based on validation performance. For simulation studies, models are trained and evaluated220

over 50 independent runs. We report the mean test accuracy and standard error across these runs.221

Runtime and Scalability.Appendix A9 presents a comprehensive analysis of MGMT’s efficiency222

using three complementary metrics: (i) theoretical time complexity of each architectural component,223

(ii) empirical runtime profiling across datasets including average per-epoch runtimes and stage-wise224

breakdowns of MGMT(e.g., encoding, supernode construction, meta-graph reasoning), and (iii)225

controlled scalability experiments varying graph size, modality count, sample size, and feature226

dimensionality. Together, these analyses confirm that MGMT achieves practical runtime efficiency227

and scales predictably in line with standard Transformer-based graph architectures.228

4.4 Synthetic Experiments229

In this section, we present a comprehensive evaluation of MGMT using synthetic datasets. We230

simulate graphs under varying conditions, altering the feature generation mechanisms, the number of231

nodes N , the sample size n and noise level. Each node is associated with a p-dimensional feature232

vector, and a subset of nodes is designated as informative, meaning their features influence the233

graph-level binary target. The remaining non-informative nodes serve as noise. For each sample,234

we generate five parallel graphs—one for each data modality—with different noise structures. Each235
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modality yields a binary graph-level label, and a shared target is defined by aggregating these236

modality-specific labels to enable multimodal classification.237

We conduct three experiments. In Experiment 1, the features of informative nodes are drawn from a238

modality-specific multivariate Gaussian distribution with correlated entries, and labels are assigned239

using a linear thresholding rule (see Setting 1 in Appendix A7 for more details). Graphs contain 5240

nodes (all informative), and the sample size is 100. In Experiment 2, the features for informative241

nodes are generated using a Gaussian Process to induce temporal structure across features. Labels242

are computed using a nonlinear function involving sinusoidal and quadratic terms (see Setting 2 in243

Appendix A7 for more details). Graphs again contain 5 informative nodes, and the sample size is 100.244

Experiment 3 follows the same setting as Experiment 2 but increases the graph size and sample size.245

Each graph has 50 nodes, with 40 designated as informative. The sample size is increased to 2,000,246

allowing us to assess MGMT’s performance at scale under complex, multimodal conditions.247

According to Figure 2, across all experiments, MGMT consistently outperforms feature concatenation248

and multimodal fusion baselines, with the most notable gains observed in the large-scale setting. Ta-249

bleA3 shows accuracy degrades when adaptive depth, supernode filtering, or inter-modality edges are250

removed, and degrades most when both the meta-graph and adaptive depth are disabled; confirming251

the importance of hierarchical graph reasoning and dynamic layer aggregation.252

4.5 Neuroscience Applications253

4.5.1 Local field potential (LFP) activity dataset254

We apply our method to a challenging neuroscience problem: predicting the stimulus presented on a255

given trial using only LFP activity from the hippocampus. In this experiment [31, 1], subjects (rats)256

received repeated presentations of a sequence of stimuli (odors ABCDE) at a single odor port and257

were required to accurately identify each stimulus as being presented in the correct (e.g., ABC. . . )258

or incorrect sequence position (e.g., ABD. . . ) to receive a reward. Neural activity, including both259

spiking and LFP activity, was recorded from the dorsal CA1 subregion of the hippocampus as they260

performed the task. Here we focus on the LFP activity data from the 5 subjects (SuperChris, Barat,261

Stella, Mitt, and Buchanan), collected from 20 to 22 electrodes (which varied between subjects), and262

sampled at 1,000 Hz. We treated each rat as a distinct “modality" and applied our proposed MGMT263

framework to borrow power across subjects in order to improve the overall decoding of LFP signals.264

Each trial is associated with one shared stimulus label (A,B,C,D or E), and we construct a separate265

graph for each rat per trial using its own electrode-level LFP signals. Nodes represent electrodes266

(which vary in number and identity across subjects), and edges capture intra-subject correlations.267

We then build a meta-graph by linking “supernodes” across rats when their latent embeddings are268

similar under MGMT’s localized attention as an operation justified by the common graph-signal269

smoothness prior (i.e., nearby nodes in the latent space tend to express similar activity patterns).270

Crucially, Superedges are aligning comparable brain dynamics across animals, effectively “borrowing271

statistical strength” across rats to reduce noise, and stabilize the trial-level representation used for272

decoding. This is not meant to just simply connect various brain regions across rats, rather alignment273

of their brain dynamics to strengthen the overall signals by properly borrowing power across rats.274

As shown in Table A2, MGMT achieves the highest accuracy (42.1% ± 0.0252) predicting which275

odor (A–E) was presented on each trial using the LFP dataset, outperforming all baseline and276

fusion models, including the second-best model MT (39.2%) and other strong multimodal baselines277

such as MMGL (39.28%), MultiMoDN (37.8%), and FlexCare (36.4%). Traditional concatenation-278

based approaches like DNN and GNN yield substantially lower performance (30.6% and 27.8%,279

respectively), highlighting the difficulty of this cross-rat decoding task. For context, the theoretical280

chance level for this five-class problem is 20%, so MGMT exceeds chance by roughly 2.1×. To our281

knowledge, these results provide the first direct evidence that the stimulus presented on a given trial282

can be accurately predicted based on hippocampal LFP activity alone, which highlights the potential283

of graph data integration approaches in general and the potential of the MGMT model specifically.284

Ablation results (Table A3) confirm that each architectural component contributes meaningfully to285

MGMT’s performance, with the full model achieving the highest accuracy across all datasets.286

Results of interpretation component. From a neuroscience perspective, the main results of the287

interpretation model based on MGMT’s interpretation performance on LFP dataset (Fig. 3) are as288
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Figure 3: Cross-animal supernode and edge frequency map generated by the MGMT model. Each
dashed box corresponds to one rat (Superchris, Stella, Barat, Mitt, Buchanan), with node size and
color indicating the frequency of supernode selection across trials. Solid lines within each box
represent within-rat edges, while dashed lines across boxes denote cross-rat superedges; line color
and width reflect edge occurrence frequency. High-frequency supernodes and edges are concentrated
in distal CA1 regions (right side), with cross-rat superedges predominantly linking distal regions
across animals, while Mitt shows weaker connectivity patterns.

follows. First, we found that informative electrodes clustered on the right side of the electrode array.289

More specifically, we found that the highest-frequency supernodes and the strongest within-subject290

connections were consistently concentrated on that side, and that the pattern was consistent across291

subjects. This specific clustering makes sense given that the two electrode arrays targeted different292

segments of the CA1 region: electrodes on the right targeted the distal segment, electrodes on the293

left the proximal region. The distal segment, where most informative electrodes are located, is294

more strongly associated with non-spatial inputs (e.g., odors, objects) and the proximal segment295

with visuospatial inputs. Such clustering of informative electrodes in distal CA1 is also consistent296

with previous work focusing on a different type of non-spatial trial classification (in sequence vs297

out of sequence [32]). Second, there were interesting variations in the pattern of informative edges298

across subjects. Although they showed a similar pattern of informative nodes, some subjects showed299

weaker relationships in edges. For example, one subject (Mitt) showed fewer strong within-subject300

edges and lower-frequency superedges. We also found that the pattern of superedges detected strong301

relationships between pairs of subjects (Stella-SuperChris, SuperChris-Buchanan, Buchanan-Barat),302

which did not extend to all subjects involved (e.g., weak Stella-Barat relationship). It remains unclear303

what aspect of the signal produced such edge variation, but possible interpretations include variability304

in electrode locations (e.g., depth relative to the cell layer), noise levels, or subjects’ task performance.305

In sum, the interpretation model provided the necessary neuroscience framework to identify the306

key aspects of the LFP signal that supported classification accuracy and offered novel insights into307

potential mechanisms to examine in future work.308

5 Conclusion, Limitations, and Future Work309

We introduced the Multi-Graph Meta-Transformer (MGMT), a unified framework for structured310

multi-graph learning that combines graph-specific Graph Transformer encoders with a meta-graph311

over learned supernodes and superedges, plus an adaptive depth-aware fusion to aggregate hierarchical312

representations. Across synthetic and neuroscience datasets, MGMT improves both accuracy and313

interpretability over standard fusion baselines.314

Limitations include (i) reliance on thresholded similarity for meta-graph edges, (ii) rising compute315

with more modalities and larger graphs due to attention layers, and (iii) attention-based importance316

scores that may not capture causal structure in noisy, high-dimensional settings.317

Future work will explore learnable edge weighting in place of thresholding, sparse/low-rank attention318

for scalability, causal attribution and counterfactual analyses for deeper interpretability, extensions to319

dynamic/temporal graphs, and pretraining to improve generalization.320
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A1 Graph Transformer with Localized Graph-Aware Attention433

The standard Transformer architecture employs a global self-attention mechanism in which every434

token attends to all others. This is computationally inefficient and often inappropriate in the context435

of graph-structured data, where meaningful interactions are localized to a node’s immediate neighbor-436

hood. To bridge this gap, we adopt the localized graph-aware attention formulation proposed by Shi437

et al. [33], which restricts attention to a node’s 1-hop neighbors.438

To preserve self-information, we extend the neighborhood to include the node itself. Specifically, we439

define N̄ (u) = N (u) ∪ {u}, ensuring each node can incorporate its own features during attention-440

based message passing.441

Let H(l−1) = {H(l−1)
1 , . . . ,H

(l−1)
N } denote the set of node features from the previous layer. Each442

node u aggregates information from its extended neighborhood v ∈ N̄ (u) using the following443

multi-head self-attention mechanism.444

For each attention head m = 1, . . . ,M and layer ℓ = 1, . . . , L:445

1. Linear Projections (queries, keys, values):446

Q(l,m)
u = W

(l,m)
Q h(l−1)

u + b
(l,m)
Q , (A8)

K(l,m)
v = W

(l,m)
K h(l−1)

v + b
(l,m)
K , (A9)

V (l,m)
v = W

(l,m)
V h(l−1)

v + b
(l,m)
V . (A10)

The learnable matrices W (l,m)
Q , W (l,m)

K , and W
(l,m)
V are referred to as the Query, Key, and Value447

projection matrices, respectively. These matrices project each node’s feature vector into three distinct448

spaces:449

• The Query vector Q(l,m)
u represents the type of information that node u seeks from its neighbors.450

• The Key vector K(l,m)
v encodes what information neighbor node v can provide.451

• The Value vector V (l,m)
v contains the actual content to be aggregated.452

This separation allows the model to compute a relevance score between nodes before deciding how453

much information to share.454

2. Attention Score Calculation: The attention coefficient from node u to neighbor v ∈ N̄ (u) is455

computed as:456

α(l,m)
uv =

exp
(

Q(l,m)⊤
u K(l,m)

v√
dh

)
∑

r∈N̄ (u) exp
(

Q
(l,m)⊤
u K

(l,m)
r√

dh

) , (A11)

where dh is the dimensionality of each head.457

3. Neighborhood Aggregation:458

Z(l,m)
u =

∑
v∈N̄ (u)

α(l,m)
uv V (l,m)

v . (A12)

4. Multi-Head Output and Update: The outputs from all heads are concatenated and linearly459

transformed:460

Ĥ(l)
u = W

(l)
O

[
Z(l,1)

u ∥ · · · ∥Z(l,M)
u

]
+ b

(l)
O , (A13)

where ∥ denotes concatenation across heads, and W
(l)
O ∈ Rd×d, b(l)O ∈ Rd are learnable projections.461

This formulation allows each node to dynamically attend to its extended local neighborhood, learning462

rich contextual representations while respecting the sparse structure of the input graph. The learned463

attention scores can also be used for interpretability and identifying important nodes and edges, as464

discussed in the main text.465
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A2 Depth-Aware Aggregation in MGMT466

To enhance the robustness of graph-specific representation learning and mitigate sensitivity to the467

choice of Transformer depth, we introduce an adaptive depth-aware fusion strategy inspired by recent468

developments in graph learning [32]. Rather than relying on a fixed-depth stack, we aggregate469

node embeddings across multiple Transformer layers, weighted by their contribution to graph-level470

prediction performance.471

Let H(ℓ)
ik ∈ RNi×d denote the node embeddings of graph i in instance k after the ℓ-th Graph472

Transformer layer, for ℓ = 1, . . . , L, i = 1, . . . , n and k = 1, . . . ,K. Here, K is the total number473

of samples (instances), and n is the number of graphs per instance. To evaluate the representational474

quality of each layer, we compute a graph-level representation by applying mean pooling over the475

node embeddings:476

H̄
(ℓ)
ik =

1

Ni
1⊤
Ni

H
(ℓ)
ik ∈ R1×d. (A14)

Each pooled graph embedding H̄
(ℓ)
ik is passed through a lightweight classifier to obtain predictions,477

and its predictive quality is evaluated using the graph-level label. Let Yk ∈ {1, . . . , |Y|} be the true478

label for instance k. The classification error for graph i at depth ℓ is computed as:479

ϵ
(ℓ)
i =

∑K
k=1 β

(ℓ)
ik ⊮

{
Yk ̸= argmaxy softmax

(
H̄

(ℓ)
ik

)}
∑K

k=1 β
(ℓ)
ik

(A15)

where β
(ℓ)
ik is the weight assigned to graph i in instance k at depth ℓ.480

The confidence score for the ℓ-th layer of graph i is defined as:481

Γ
(ℓ)
i =

1

2
log

(
1− ϵ

(ℓ)
i

ϵ
(ℓ)
i

)
. (A16)

To emphasize misclassified instances, sample weights are updated between depths using:482

β
(ℓ+1)
ik ∝ β

(ℓ)
ik exp

(
⊮
{
Yk ̸= argmax

Y
softmax

(
H̄

(ℓ)
ik

)}
· Γ(ℓ)

i

)
. (A17)

The confidence scores Γ(ℓ)
i are used to weight both the depth-wise fused node embeddings and the483

attention scores across Transformer layers, ensuring that layers contributing most to prediction are484

emphasized during super-node extraction and representation learning.485

A3 Theoretical Properties486

In this section, we establish MGMT’s theoretical foundations through: (1) intra-graph analysis,487

demonstrating superior feature representation within individual graphs; and (2) inter-graph analysis,488

showing enhanced predictive power through meta-graph construction. Complete proofs appear in489

Appendix A4, with additional theoretical results in Appendix A5.490

A3.1 Intra-graph analysis491

We analyze the depth-aware mixing strategy in (3) which enables MGMT to aggregate information492

across different depths of message passing. First, we establish some formal definitions.493

Let M(A) ∈ RN×N be a message passing operator on an adjacency matrix A ∈ RN×N , e.g., the494

augmented adjacency matrix, M(A) = A+ I . Given M(A) and an activation function σ, denote495

the 1-hop feature aggregation as496

U(X;M(A), σ) := σ(M(A)X),

and the ℓ-hop aggregation is the ℓ-fold composition of U , namely,497

Uℓ(X;M(A), σ) := σ(M(A) · · ·σ(M(A)︸ ︷︷ ︸
ℓ times

X)).
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Building on these definitions, we introduce L-hop mixing, which characterizes a model’s ability to498

represent multi-depth information. While originally studied for Graph Convolutional Networks with499

graph Laplacians [34, 32], we extend this concept to general message passing operators.500

Definition A1 (L-hop mixing with general message passing). Given M(·), a model is capable of501

representing L-hop mixing if for any η1, . . . , ηL ∈ R, there exists a setting of its parameter and an502

injective (one-to-one) mapping f(·), such that the output of the model is equivalent as503

f

(
L∑

ℓ=1

ηℓ · Uℓ(X;M(A), σ)

)
, (A18)

for any adjacency matrix A, activation function σ, and node features X .504

Remark A2. If M(A) = D− 1
2 (A + I)D− 1

2 , where D is the diagonal degree matrix with505

Dii =
∑N

j=1 Aij + 1, Definition A1 recovers the L-hop mixing with Graph Laplacian in the506

GCN literature [34, 32].507

Our first theoretical result demonstrates that depth-aware Graph Transformers in MGMT can represent508

L-hop mixing for each graph.509

Theorem A3. With message passing operator M(A) = softmax(A+ I), where softmax is applied510

row-wise. MGMT’s depth-aware Graph Transformers in (1)–(3) can represent L-hop mixing.511

The proof appears in Appendix A4. Notably, we also demonstrate in Appendix A5.1 that vanilla512

Graph Transformers cannot learn L-hop neighborhood mixing.513

A3.2 Inter-graph analysis514

This section analyzes how MGMT’s meta-graph construction boosts prediction power compared to515

late fusion approaches [35].516

Recall from Section 2.1.3, the meta-graph GM = (SM , EM ) combines super-nodes SM =
⋃n

i=1 Si.517

Its initial embedding H
(0)
M ∈ R|SM |×d stacks super-node embeddings where ∀u ∈ Si, H

(0)
M,u = Hi,u.518

MGMT applies additional LGT Graph Transformer layers followed by a global pooling to obtain the519

final graph-level embedding. Lastly, we apply LMLP MLP layers for class probabilities. Assume520

without of loss of generality that LGT = 1 and LMLP = 2, the function class of MGMT given H
(0)
M521

can be expressed as522

FM =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(GT(H(0)

M ))
)}

, (A19)

where GT(·) : R|SM |×d 7→ R|SM |×d is the Graph Transformer, Pool(·) : R|SM |×d 7→ Rh′
is a graph523

pooling, and W
(1)
MLP ∈ Rh′×h′′

, W (2)
MLP ∈ R|Y|×h′′

are MLP weight matrices, with h′, h′′ ∈ N+. All524

subsequent analysis could be easily extended to any number of LMLP and LGT.525

We consider the late fusion strategy that employs weighted averaging of class probabilities from526

graph-specific models. Formally, the late fusion classification function can be represented as527

Flate =

{
f : R|SM |×d 7→ R|Y|

∣∣∣ f =

n∑
i=1

wi ·W (2)
MLP,iσ

(
W

(1)
MLP,iPoolSi

(H
(0)
M )
)}

,

where {W (l)
MLP,i}l∈[2],i∈[n] is the set of graph-specific MLP parameter, and the set of late fusion528

weights is {wi ∈ R}i∈[n] such that
∑n

i=1 wi = 1.529

Given the joint distribution of a feature-label pair (X, Y ) ∼ P and a loss function L, denote the530

generalization error of a function f as531

R(f ;P,L) := E(X,Y )∼P [L(f(X), Y )]

Following [36], we define the approximation error of a function class F as the minimum general-532

ization error achievable by a function in F , namely,533

ϵ(F ;P,L) := inf
f∈F

R(f ;P,L). (A20)
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Assume latent representations of the meta graph follow (H
(0)
M , Y ) ∼ PM . The next theorem shows534

MGMT is a more powerful graph fusion framework compared to late fusion in the sense that it535

achieves smaller approximation error.536

Theorem A4. Denote approximation error of MGMT on the meta-graph as ϵ(FM ;PM ,L), and the537

approximation error of late fusion of graph-specific classifiers ϵ(Flate;PM ,L), then538

ϵ(FM ;PM ,L) ≤ ϵ(Flate;PM ,L).

The proof appears in Appendix A5. We also demonstrate MGMT outperforms another popular graph539

fusion alternative — late fusion, in Appendix A5.2.540

A4 Mathematical Proofs541

Proof of Theorem A3. For simplicity, we omit graph-specific subscripts throughout the proof (e.g.542

X instead of Xi) as the arguments apply universally for all graphs. Consider the Graph Transformer543

(GT) structure with a single head m = 1. For each layer ℓ = 1, . . . , L, let W (ℓ)
Q = W

(ℓ)
K = 0,544

W
(ℓ)
V = I , and b

(ℓ)
V = 0 in (1). Here I is the identity matrix and 0 denotes matrix/vector of all zeros.545

For the feedforward layer in (2), set weights as I , bias as 0, and remove the residual connection546

and normalization layer. Then for each edge (u, v) ∈ E ∪ {(u, u)}, the updating rules in (1) and (2)547

simplifies to548

Q(ℓ)
u = b

(ℓ)
Q ,

K(ℓ)
v = b

(ℓ)
K ,

V (ℓ)
v = H(ℓ−1)

v ,

α(ℓ)
uv =

exp
(

Q(ℓ)⊤
u K(ℓ)

v√
d

)
∑

v′∈N̄ (u) exp

(
Q

(ℓ)⊤
u K

(ℓ)

v′√
d

) ,

H(ℓ)
u = σ

 ∑
v∈N̄ (u)

α(ℓ)
uv V

(ℓ)
v

.

It is clear that the attention matrix α(ℓ) reduces to M(A) = softmax(A+ I). Recall that the initial549

embedding H(0) = X , we can explicitly expand the recursive updating rule above, and write the550

embeddings for each layer ℓ in the following compact form:551

H(ℓ) = Uℓ(X;M(A), σ).

Let Γ(ℓ) = ηℓ, for ℓ = 1, . . . , L in (3), the graph-specific fused embeddings can be represented as552

L∑
ℓ=1

ηℓ · Uℓ(X;M(A), σ),

which satisfies Definition A1 with identity mapping f(·).553

Remark A1. While the depth-aware fusion step in (3) is highly flexible and can accommodate any554

set of weights {Γℓ}Lℓ=1, we employ the confidence score weights defined in equation Appendix A2 to555

adaptively aggregate the latent representations that yield the highest classification accuracy.556

Proof of Theorem A4. Similar to the proof of Theorem A2, we will show Flate ⊆ FM and the desired557

results follows directly from the definition of approximation error in (A20).558

Consider a class of pooling function that concatenates the graph-specific pooled embeddings, formally,559

ConcatPool(H(0)
M ) =

∥∥∥n
i=1

PoolSi
(H

(0)
M ), (A21)
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where ∥ denotes the concatenation operation, PoolSi(·) : R|SM |×d 7→ Rh′
, as defined in (A25), is the560

global pooling function restricted to Si. Hence ConcatPool(H(0)
M ) : R|SM |×d 7→ Rnh′

represents the561

concatenation of graph-specific embeddings.562

Further, let D({W (1)
MLP,i}ni=1) be the diagonal block matrix with diagonal elements {W (1)

MLP,i}ni=1,563

then one can easily check that (A21) can be rewritten as564

Flate =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(GT(H(0)

M ))
)
,

γ > 1,WV = I, bV = 0,

Pool(·) = ConcatPool(·),

W
(1)
MLP = D({W (1)

MLP,i}
n
i=1),

W
(2)
MLP = w1W

(2)
MLP,1∥ · · · ∥wnW

(2)
MLP,n

}
,

(A22)

where γ,WV , bV are parameters of the Graph Transformer layer as defined in (A26). Finally, from565

(A19) and (A22), it is clear that Flate ⊆ FM , which concludes the proof.566

A5 Additional Theoretical Results567

A5.1 Additional Intra-graph Results568

Theorem A1. Let M(A) = softmax(A+ I) as in Theorem A3, the vanilla Graph Transformer is569

not capable of representing L-hop neighborhood mixing.570

Proof. Following a similar strategy in Abu-El-Haija et al. [34], it suffices to shows that the vanilla571

Graph Transformer (GT) fails to represent 2-hop mixing, which in turn implies the inability to572

represent the general L-hop mixing. Consider the particular case, where m = 1, σ(x) = x. As573

reviewed in Appendix A1, the final graph embedding of a vanilla GT with depth L can be represented574

as575

H(L) =

[
L∏

ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)]
X

L∏
ℓ=1

W
(ℓ)
V ,

for attention matrices {α(ℓ)}Lℓ=1 and weights {W (ℓ)
V }Lℓ=1. Here ⊙ denote the Hadamard product. Let576

W ∗ =
∏L

ℓ=1 W
(ℓ)
V , and consider the case where η1 = 1 and η2 = −1. If the vanilla GT is able to577

represent 2-hop mixing, there exist an injective mapping f and a configuration of the parameters such578

that579 [
L∏

ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)]
XW ∗ = f(M(A)X −M2(A)X) (A23)

holds for any adjacency matrices A and node features X .580

Consider a fully disconnected graph with A = 0 and X , then M(A) = softmax(I) = I , and581

softmax
(
(A+ I)⊙α(ℓ)

)
= I for ℓ = 1, . . . , L, which implies W ∗ = f(0). On the other hand,582

consider a graph with a single edge between node 1 and 2, namely, A12 = A21 = 1 and 0 otherwise.583

Then584

M(A) =


0.5 0.5 0 · · · 0
0.5 0.5 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


︸ ︷︷ ︸

:=A∗

Let X = A∗, then f(M(A)X −M2(A)X) = f(0). Furthermore, it is easy to check that585

L∏
ℓ=1

softmax
(
(A+ I)⊙α(ℓ)

)
= A∗,
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since features of node 1 and 2 are identical. It follows that A∗W ∗ = f(0).586

Combining the two scenarios, we must have (I − A∗)W ∗ = 0, which implies that W ∗
1 = W ∗

2 ,587

where W ∗
i is the i-th row of W ∗. Since the choice of node 1 and 2 was arbitrary, all rows of W ∗588

should be identical, hence rank(W ∗) ≤ 1 and rank([
∏L

ℓ=1 softmax
(
(A+ I)⊙α(ℓ)

)
]XW ∗) ≤ 1,589

which means the output of f should be at most rank 1 matrices by the equivalence assumption in590

(A23). Hence, f cannot be injective which concludes the proof by contradiction.591

A5.2 Additional Inter-graph Results592

Let HSi
= {Hi,u}u∈Si

be the embeddings for super-nodes in Si. Single-graph classifiers that593

operates on HSi
can be expressed as594

Fi =
{
f : R|Si|×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPool(HSi

)
)}

. (A24)

Assume latent representations of the meta graph follow (H
(0)
M , Y ) ∼ PM , and (HSi

, Y ) ∼ Pi where595

Pi is the marginal distribution of PM restricted to Si. The next result shows MGMT achieves smaller596

approximation error by leveraging information across all graphs.597

Proposition A2. Denote approximation error of MGMT on the meta-graph as ϵ(FM ;PM ,L), and598

the approximation error of graph-specific classifiers on the sub-graph as ϵ(Fi;Pi,L), then599

ϵ(FM ;PM ,L) ≤ ϵ(Fi;Pi,L).

Proof of Proposition A2. Without loss of generality, we focus on the cases where both MGMT and600

graph-specific classifiers has LMLP = 2 layers of MLP and MGMT has LGT = 1 layer of Graph601

Transformer as specified in (A19) and (A24). The same argument below applies to any number of602

LMLP and LGT.603

First, consider the function class that operates on the meta-graph but only utilizes the nodes from604

graph i, namely,605

F̄i =
{
f : R|SM |×d 7→ R|Y|

∣∣∣ f = W
(2)
MLPσ

(
W

(1)
MLPPoolSi

(H
(0)
M )
)}

, (A25)

where PoolSi
denote the global pooling operation that restricts on the nodes in Si. Since606

PoolSi
(H

(0)
M ) = Pool(HSi

),

we have that607

R
(
W

(2)
MLPσ

(
W

(1)
MLPPoolSi(H

(0)
M )
)
;PM ,L

)
= R

(
W

(2)
MLPσ

(
W

(1)
MLPPool(HSi)

)
;Pi,L

)
.

It follows that608

ϵ(F̄i;PM ,L) = ϵ(Fi;Pi,L).

We claim that F̄i ⊆ FM , and by definition of approximation error in (A20),609

ϵ(FM ;PM ,L) ≤ ϵ(F̄i;PM ,L) = ϵ(Fi;Pi,L).

It remains to show the function class inclusion. Note that we can rewrite F̄i as610

F̄i =
{
f : R|SM |×d 7→ R|Y|

∣∣∣f = W
(2)
MLPσ

(
W

(1)
MLPPoolSi

(GT(H(0)
M ))

)
,

γ > 1,WV = I, bV = 0
}
,

(A26)

where γ is the threshold defined in Section 2.1.3 that determines the connectivity between nodes in the611

meta-graph, WV , bV are parameters for values in the Graph Transformer layer. Setting γ > 1 results612

in a fully disconnected meta-graph and together with WV = I, bV = 0, the Graph Transformer layer613

GT(·) reduces to an identity mapping, which establishes the equivalence in (A26).614

Finally, from (A19) and (A26), it is clear that F̄i ⊆ FM , which concludes the proof.615
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Table A1: Model Category Summary with Fusion Strategy, Graph Modeling, and Attention Usage

Category Model Type Fusion Method Novel Model Graph Structured Modeling Attention-Based

Single-Source (No Fusion) Simple DNN × × × ×
Simple GNN × ×

√
×

Simple DiffPool × ×
√

×
Simple Transformer × × ×

√

Simple Graph Transformer × ×
√ √

Concatenation Fusion Concatenated Features (DNN)
√

× × ×
Concatenated Features (GNN)

√
×

√
×

Concatenated Features (DiffPool)
√

×
√

×

Multimodal Fusion Baselines MMGL [22]
√

×
√ √

MultiMoDN [23]
√

× × ×
MedFuse [16]

√
× × ×

FlexCare [17]
√

× ×
√

Meta-Transformer (MT) [24]
√

× ×
√

MGMT Ablation Variants MGMT w/o Adaptive Depth Selection
√ √ √ √

MGMT w/o Supernode Selection
√ √ √ √

MGMT w/o Inter-graph Edges
√ √ √ √

MGMT w/o Intra-graph Edges
√ √ √ √

MGMT w/o Meta-Graph and Adaptive Depth
√ √ √ √

Proposed Model MGMT
√ √ √ √

A6 Detailed Descriptions of Baseline Models616

This appendix details the baselines used to evaluate our method. Table A1 provides a summary617

comparison of the baseline models.618

A6.1 Single-Source Models (No Fusion)619

We assess per-source predictive signal with five baselines: (i) DNN on flattened node features620

(edges ignored); (ii) GNN (GCN) with message passing over the given topology; (iii) DiffPool for621

hierarchical pooling into coarser clusters [27]; (iv) Transformer over node-feature sequences (no622

structural encoding); and (v) Graph Transformer that attends over 1-hop neighborhoods to incorporate623

local structure.624

A6.2 Feature-Concatenation Fusion Models625

These models use early fusion: each source is encoded by a source-specific extractor, the resulting626

embeddings are concatenated, and a shared DNN classifier is applied. Concretely, we consider (i)627

DNN-fusion with per-source DNN encoders; (ii) GNN-fusion with per-source GCN layers and graph-628

level pooling prior to concatenation; and (iii) DiffPool-fusion using per-source DiffPool encoders to629

produce graph-level embeddings that are concatenated and classified by a DNN.630

A6.3 Benchmark Fusion Models631

We benchmark against recent multimodal frameworks with distinct fusion strategies: (i) MMGL [22],632

which learns shared/specific embeddings via modality-aware representation learning and models633

subject-level similarity with a GNN; (ii) MultiMoDN [23], a modular design with independent634

encoders and late fusion, without structural reasoning; (iii) MedFuse [16], which aligns modalities in635

a shared latent space using contrastive/reconstruction losses, without explicit intra- or inter-modality636

structure; (iv) FlexCare [17], which uses modality-specific encoders and a Transformer fusion layer637

for heterogeneous clinical data, but no graph-based reasoning; and (v) Meta-Transformer (MT) [24],638

which uses modality prompts with a shared Transformer over unstructured inputs, without topological639

modeling. MGMT differs by jointly capturing both intra- and inter-graph relations through an640

attention-based meta-graph.641

Most of these benchmark models were not originally designed for graph-structured inputs (they642

expect tabular, imaging, or clinical features). To compare fairly, we first converted each graph into a643

fixed-length vector by running the same graph-specific encoder used in MGMT (TransformerConv644

with global pooling and adaptive-depth aggregation) and using the resulting graph-level embedding645

as a “tabular” feature vector. For methods with multi-stream inputs (e.g., MultiMoDN, FlexCare,646

MedFuse), we fed one embedding per graph; for single-stream methods (e.g., Meta-Transformer),647

we concatenated the graph embeddings. All baselines used identical train/val/test splits, per-graph648
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Table A2: Accuracy (± standard error) for different models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

Concatenated Features (DNN) 62.1 ± 0.0091 30.6 ± 0.0228 61.87 ± 0.0227 56.10 ± 0.0113 63.74 ± 0.0056
Concatenated Features (GNN) 70.1 ± 0.0093 27.8 ± 0.0234 55.64 ± 0.0236 64.20 ± 0.0120 67.17 ± 0.0060
Concatenated Features (DiffPool) 69.4 ± 0.0070 31.5 ± 0.0176 53.78 ± 0.0175 65.80 ± 0.0089 71.81 ± 0.0044
MMGL 79.38 ± 0.0052 39.28± 0.0193 59.20 ± 0.0104 62.80 ± 0.0084 68.75 ± 0.0012
MultiMoDN 76.4 ± 0.0075 37.8 ± 0.0182 60.40 ± 0.0167 61.50 ± 0.0101 65.10 ± 0.0050
MedFuse 75.2 ± 0.0084 35.1 ± 0.0171 59.70 ± 0.0152 64.35 ± 0.0096 63.84 ± 0.0053
FlexCare 76.14 ± 0.0079 36.4 ± 0.0188 61.10 ± 0.0139 69.82 ± 0.0091 64.03 ± 0.0056
MT 81.29 ±0.0092 39.20 ± 0.0296 62.31 ± 0.0124 66.30 ± 0.0112 69.24 ± 0.0034
MGMT 83.1 ± 0.0084 42.1 ± 0.0252 65.47 ± 0.0239 69.90 ± 0.0119 73.21 ± 0.0059

standardization, a learned linear projection to align embedding dimensions when required, and the649

same Optuna budget for hyperparameter tuning.650

A6.4 Ablation Study651

We assess the contribution of MGMT components by altering one module at a time while keeping the652

rest fixed: (i) w/o Adaptive Depth Selection: replace confidence-weighted layer aggregation with653

final-layer only, disabling depth-wise ensembling; (ii) w/o Supernode Selection: bypass attention-654

based node filtering so all nodes enter the meta-graph, increasing size and noise; (iii) w/o Inter-graph655

Edges: keep only within-graph edges to remove cross-graph interactions; (iv) w/o Intra-graph Edges:656

keep only cross-graph edges, removing within-graph structure; (v) w/o Meta-Graph and Adaptive657

Depth: omit the meta-graph, fix encoder depth, and perform late fusion via concatenated pooled658

graph outputs.659

A7 Details on Simulation Settings660

This section provides detailed descriptions of the synthetic data generation processes used in our661

simulation studies. We consider two controlled settings designed to evaluate the performance of662

MGMT under varying conditions of noise, feature dependency, and label complexity. Below, we663

describe the procedures for Setting 1, which uses modality-specific noise and a linear classification664

rule, and Setting 2, which introduces temporal dependencies and nonlinear label generation.665

Setting 1: Feature Generation with Modality-Specific Noise and Linear Classification Rule666

Let each graph consist of N nodes and d features per node. Define a subset of informative nodes667

V0 ⊂ {1, . . . , N} with |V0| = N0 < N , and let V1 = {1, . . . , N} \ V0 denote the non-informative668

nodes.669

For each modality i = 1, . . . , n, with modality-specific noise level σi, and for each graph sample670

k = 1, . . . ,K, node features are generated as follows:671

• informative nodes j ∈ V0 have features x(k,i)
j ∼ N (0,Σi), where Σi ∈ Rd×d has ones on the672

diagonal and off-diagonal entries sampled uniformly from [−σi, σi].673

• Non-informative nodes j ∈ V1 have features x(k,i)
j ∼ Unif(0, 0.5)d.674

The modality-specific graph-level binary label y(k)i ∈ {0, 1} is determined by the features of informa-675

tive nodes:676

y
(k)
i = I

 1

|V0|
∑
j∈V0

d∑
r=1

x
(k,i)
j,r + ε(k) > 0

 , ε(k) ∼ N (0, 0.1).

To enable multimodal fusion, a shared target variable is defined by aggregating modality-specific677

labels:678

y
(k)
shared = I

(
n∑

i=1

wiy
(k)
i ≥ τ

)
,

where wi ∈ [0, 1] are modality weights summing to one, and τ ∈ [0, 1] is a threshold parameter.679
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Table A3: Accuracy (± standard error) for different ablation models across datasets.

Model Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

MGMT w/o Adaptive Depth Selection 81.2 ± 0.0085 40.6 ± 0.0223 64.20 ± 0.0240 68.80 ± 0.0117 71.45 ± 0.0057
MGMT w/o Supernode Selection 78.2 ± 0.0087 41.0 ± 0.0219 62.11 ± 0.0216 67.3 ± 0.0107 69.31 ± 0.0053
MGMT w/o Inter-graph Edges 76.5 ± 0.0088 38.9 ± 0.0214 61.72 ± 0.0225 66.90 ± 0.0121 68.35 ± 0.0051
MGMT w/o Intra-graph Edges 32.4 ± 0.0243 39.0 ± 0.0097 63.09 ± 0.0242 66.6 ± 0.0123 66.75 ± 0.0062
MGMT w/o Meta-Graph and Adaptive Depth 70.1 ± 0.0093 27.8 ± 0.0234 55.64 ± 0.0236 64.20 ± 0.0120 67.17 ± 0.0060
MGMT 83.1 ± 0.0084 42.1 ± 0.0252 65.47 ± 0.0239 69.90 ± 0.0119 73.21 ± 0.0059

Setting 2: Temporal Feature Dependency via Gaussian Process680

In this setting, features of informative nodes are generated using a Gaussian Process (GP) to introduce681

temporal dependency across the d features. For t = 1, . . . , d, let xt ∼ Unif(0, 1), and define the GP682

with zero mean and a squared exponential kernel:683

k(xt, xt′) = σ2 exp

(
− (xt − xt′)

2

l2

)
,

with length-scale l = 1 and variance σ2 = 1.684

For non-informative nodes, features are also sampled from a GP with the same mean function, but685

with increased kernel variance σ2 = 2.5, thereby injecting greater noise and reducing relevance for686

the target prediction.687

The binary target label is defined using a nonlinear and complex function of the averaged features688

across informative nodes. Let689

x =
1

|V0|
∑
j∈V0

xj ∈ Rd,

and define three projection vectors e1, e2, e3 ∈ Rd, each selecting a distinct third of the features:690

e1 = [1, . . . , 1︸ ︷︷ ︸
d/3

, 0, . . . , 0︸ ︷︷ ︸
2d/3

],

e2 = [0, . . . , 0︸ ︷︷ ︸
d/3

, 1, . . . , 1︸ ︷︷ ︸
d/3

, 0, . . . , 0︸ ︷︷ ︸
d/3

],

e3 = [0, . . . , 0︸ ︷︷ ︸
2d/3

, 1, . . . , 1︸ ︷︷ ︸
d/3

].

The graph-level label is then computed as:691

y = I
(
sin(x⊤e1) · cos(x⊤e2) + (x◦2)⊤e3 + ε > 0

)
, ε ∼ N (0, 0.1),

where x◦2 denotes the element-wise square of x, i.e., the Hadamard power.692

Software implementing the algorithms and data experiments are available online at :693

https://anonymous.4open.science/r/new_submission-33A6694

A8 Alzheimer Dataset695

To demonstrate MGMT’s generalizability beyond LFP data analysis, we have also applied it to an696

Alzheimer’s disease (AD) detection problem as an example of broader biomedical applications. More697

specifically, we apply our method to the data obtained from the National Alzheimer’s Coordinating698

Center (NACC), which standardizes data collected across 46 Alzheimer’s Disease Research Centers699

(ADRCs) in the United States [37, 38]. The cohort comprises 1,237 subjects (61.5% HC and 38.5%700

MCI/AD) with both clinical assessments from the Uniform Data Set (UDS) and structural MRI701

available. Our goal is to separate subjects with mild cognitive impairment (MCI) or dementia due to702

Alzheimer’s disease from healthy controls (HC).703

Following our terminology, a setting is multi-modal when each subject is measured via distinct704

data sources (e.g., MRI vs. clinical assessments) that inhabit different feature spaces and sensing705
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Figure A4: Test accuracies of single-source and fusion models Alzheimer’s disease data. Each bar
represents the average test accuracy across 5 folds, along with the corresponding standard error.
MGMT consistently outperforms all other models, demonstrating the advantage of modeling intra-
and inter-graph interactions.

processes. As shown in Figure A4, the MGMT model consistently outperformed both single-source706

and baseline fusion models. This highlights the importance of structure-aware joint fusion in707

multimodal biomedical prediction tasks. Moveover, ablations in figure A5 show that intra-graph708

structure and the meta-graph are critical: removing intra-graph edges collapses performance (32.4%709

vs. 83.1%), removing the meta-graph lowers accuracy to 70.1%, while dropping inter-graph edges710

(76.5%), supernode selection (78.2%), or adaptive depth (81.2%) yields progressively smaller but711

consistent declines.712

A9 Experimental Setting and Efficiency Analysis713

We evaluate the computational complexity and efficiency of MGMT through both theoretical and714

empirical analysis. This section is structured as follows: Section A9.1 presents a theoretical runtime715

complexity analysis of MGMT’s core components; Section A9.2 provides empirical scalability results716

across four key input dimensions; Section A9.3 offers runtime profiling and efficiency comparisons,717

including infrastructure details and training costs.718

A9.1 Theoretical Complexity Analysis.719

The total computational complexity of MGMT is governed by three main components: (1) graph-720

specific Graph Transformer encoders, (2) meta-graph construction, and (3) the final meta-graph721

Transformer.722

Graph-specific Transformer encoders For a graph Gi with Ni nodes and d-dimensional fea-723

tures, a TransformerConv layer with dense attention costs O(N2
i d). Across n graphs, the total is724 ∑n

i=1 O(N2
i d), or O(nN2d) for similar sizes. Standard sparse/linear attention variants can reduce725

this if needed.726

Meta-graph construction Two steps: (a) super-node extraction by scoring and thresholding nodes727

is O(Ni) per graph, totaling O(nN); (b) super-edge creation computes pairwise similarities among728

selected super-nodes. Let Si be super-nodes in graph i and Stotal =
∑

i Si. This step costs O(S2
totald),729

i.e., O(n2S2d) for roughly S per graph, with Si ≪ Ni.730

Meta-graph Transformer Applied over Stotal super-nodes, yielding O(S2
totald) (approximately731

O(n2S2d)).732

The dominant term is the per-graph encoder,
∑

i O(N2
i d). Meta-graph construction and inference733

operate on a much smaller set of super-nodes (Stotal ≪
∑

i Ni) and thus are comparatively lightweight.734

Quadratic factors at the meta-graph level are in Stotal (and n), which remains moderate by design.735
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Figure A5: Ablation study results across five datasets evaluating the contribution of each architectural
component in the MGMT framework. Each bar shows mean accuracy with standard error (computed
over 50 or 100 repetitions depending on the dataset). Removing the adaptive depth selection,
supernode selection, or inter-graph edge modeling consistently reduces performance across datasets,
underscoring their importance for hierarchical representation learning and cross-graph interaction.
Notably, removing intra-graph edges while retaining inter-graph structure leads to a sharp performance
drop on the Alzheimer dataset, highlighting the necessity of preserving local structural information.
MGMT consistently achieves the highest accuracy, confirming the complementary contribution of all
its components.

A9.2 Scalability Analysis736

To validate the theoretical complexity discussed in Section A9.1, we empirically evaluated the runtime737

behavior of MGMT with respect to four key input parameters: number of nodes per graph (N ),738

number of graphs per sample (instance) (n), number of samples, and node feature dimensionality (d).739

In each experiment, we fixed the model architecture, training epochs (100), and batch size to enable740

consistent runtime comparisons, and reported runtimes averaged over 10 independent runs. Results741

in Figure A6 align with theory and show efficient scaling.742

Runtime vs. Nodes per Graph (N ). As predicted by the O(N2 · d) complexity of Transformer-743

based attention, the observed runtime increases superlinearly with N . The curve aligns closely with a744

quadratic fit (R2 = 0.999), reflecting the cost of dense all-pairs attention in graph-specific encoders.745

Runtime vs. Number of graphs per sample (instance) (n). The runtime grows approximately746

linearly with n, validating the modular structure of MGMT where graph-specific encoders operate747

in parallel and the size of the meta-graph remains bounded. This confirms that MGMT scales well748

with respect to the number of graphs in practical regimes and supports our theoretical analysis in749

Section A9.1.750

Runtime vs. Number of Samples. We observe a near-quadratic growth in runtime (on a log scale)751

as the number of samples increases, consistent with expectations. This is attributed to repeated752

forward passes and meta-graph construction across samples, particularly in mini-batch training753

settings.754

Runtime vs. Feature Dimensionality (d). Despite the theoretical linear dependence on d in755

attention layers, the empirical curve remains nearly flat. This is due to early feature compression in756

MGMT’s architecture, which transforms high-dimensional node features into a lower-dimensional757

latent space prior to attention and reasoning steps.758

A9.3 Runtime Profiling and Model Efficiency759

Building on the complexity analysis and scalability trends in Section A9.2, we profile per-epoch760

runtime to isolate the cost of each architectural component. Table A4 reports average epoch times for761

MGMT and graph-attention baselines (those that perform graph reasoning and/or meta-graph fusion).762

Baselines MGMT’s meta-graph reasoning adds minimal overhead: it is faster than MMGL on763

all datasets except LFP, despite including supernode detection and adaptive depth. Ablations that764
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Figure A6: Scalability analysis of MGMT with respect to key input parameters. We evaluate the
empirical runtime of MGMT under controlled variations of (a) number of nodes per graph (N ), (b)
number of graphs per sample (n), (c) number of samples (log scale), and (d) feature dimensionality
(d).Runtime scales quadratically with N due to the dense self-attention in the graph-specific Graph
Transformers (O(N2 ·d)), and linearly with n, confirming the modular and scalable design of MGMT.
Sample size and feature dimension contribute to runtime growth in accordance with expectations, with
minor deviations at small scales. Linear and quadratic regression fits are shown for interpretability,
along with corresponding R2 values.

remove intra-graph edges or the meta-graph yield small speedups but reduce accuracy (see Table A2),765

illustrating a speed–accuracy trade-off.766

MultiMoDN, MedFuse, and FlexCare are omitted from Table A4 because they do not use graph767

representations or attention; direct runtime comparison to graph-based models would be misleading.768

These methods operate on tabular inputs with shallow fusion, yielding lower computational cost by769

design but consistently lower accuracy than MGMT (Table A2).770

Table A5 decomposes MGMT’s epoch time into data preparation, graph encoders, supern-771

ode/superedge construction, meta-graph formation, and the final classifier. The dominant cost772

is the graph Transformer encoder, consistent with the O(N2d) complexity; meta-graph construction773

and reasoning are comparatively lightweight due to the compact meta-graph.774

Overall, MGMT balances expressivity and efficiency: it achieves higher accuracy than non-graph and775

shallow fusion baselines while maintaining practical per-epoch runtimes.776

Compute Infrastructure and Training Cost. All experiments were conducted on a shared CPU-777

based server provided by our lab. Each training job utilized 4 parallel CPU workers and approximately778

4 GB of RAM. No GPU resources were used.779

For baseline experiments, we trained a total of 250 models. Each model took on average 5.5 hours to780

train, amounting to approximately 1,375 CPU hours.781

For MGMT model training and hyperparameter tuning, the total compute time was as follows:782

• LFP dataset: 100 Optuna trials, each taking 71 minutes on average, resulting in approximately783

118.3 CPU hours784

• Alzheimer dataset: 100 Optuna trials, each taking 5 hours and 18 minutes on average, resulting in785

approximately 530 CPU hours786

• Simulation Setting 1: 50 iterations, each taking 29 minutes on average, resulting in approximately787

24.2 CPU hours788

• Simulation Setting 2: 50 iterations, each taking 31 minutes on average, resulting in approximately789

25.8 CPU hours790

• Simulation Setting 3: 50 iterations, each taking 49 minutes on average, resulting in approximately791

40.8 CPU hours792

In total, MGMT-related training required approximately 739 CPU hours. Additional compute time793

spent on development, debugging, and model refinement was not recorded.794

A10 Sensitivity Analysis of Hyperparameters795

The MGMT framework includes several hyperparameters that influence model performance and796

computational efficiency. In this section, we investigate the sensitivity of two key hyperparameters:797
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Table A4: Comparison of average epoch runtime (in seconds) between various meta-graph configura-
tions and baseline models across each dataset.

Model Variant Alzheimer LFP Data Experiment 1 Experiment 2 Experiment 3

MMGL 174.23 63.12 21.85 29.0 33.98
MGMT w/o Meta-Graph and Adaptive Depth 174.10 64.33 15.10 17.20 32.60
MGMT w/o Intra-graph Edges 156.77 63.69 15.72 18.83 32.71
MGMT w/o Supernode Selection 215.46 59.61 19.91 19.31 35.61
MGMT 162.93 67.33 16.67 17.59 33.01

Table A5: Detailed epoch running time (in seconds) for the MGMT model across different datasets.

Dataset Total Data Prep Graph-specific encoding Super-Edge & Node Extraction Meta-Graph Final Model

Alzheimer 162.93 1.81 119.24 28.64 1.56 13.18
LFP Data 64.06 0.88 59.74 1.38 1.19 1.25
Experiment 1 16.67 0.23 16.26 0.07 0.06 0.05
Experiment 2 17.59 0.44 16.40 0.26 0.25 0.24
Experiment 3 33.01 0.51 32.25 0.09 0.08 0.08

the attention score threshold (τ ) used for supernode selection, and the cosine similarity threshold (γ)798

used in inter-graph edge construction.799

A10.1 Attention Score Threshold (Supernode Selection)800

To assess the impact of τ , we conducted a controlled experiment on synthetic data generated under801

Setting 1 (see Appendix A7). We have a total of 100 samples and 5 graphs per each sample where802

each graph consisted of 10 nodes, with 30 features per node. We trained all models for 100 epochs803

and averaged accuracy and runtime over 10 repetitions.804

Intuitively, decreasing τ results in more nodes being selected as supernodes, increasing computational805

cost and potentially introducing noisy or redundant information. In contrast, higher thresholds806

select fewer supernodes, reducing runtime but possibly discarding useful information. As shown807

in Figure A7, the runtime decreases steadily as τ increases, which aligns with the reduced number808

of supernodes and associated computations. However, model accuracy shows a non-monotonic809

trend: it peaks at τ = 0.3 (64.5%) and declines on either side. This behavior illustrates a tradeoff810

between overfitting (when too many nodes are included) and information loss (when too few nodes811

are retained).812

A10.2 Cosine Similarity Threshold (Inter-graph Edge Construction)813

Moreover, to assess the effect of the cosine similarity threshold γ used for inter-graph edge construc-814

tion, we performed a controlled sensitivity analysis using synthetic data generated under Setting 1815

(see Appendix A7). We have a total of 100 samples and 5 graphs per each sample where each graph816

consisted of 100 nodes, with 30 features per node. All models were trained for 100 epochs, and both817

accuracy and runtime were averaged over 10 repetitions.818

As shown in Figure A7, runtime remains largely stable across different γ values, indicating that inter-819

graph edge density has minimal impact on computational overhead since meta-graph construction820

occurs post graph-specific encoding and operates over a reduced number of supernodes.821

Accuracy, however, demonstrates a non-monotonic trend. When γ is very small, the meta-graph822

becomes fully connected, enabling the model to consider all potential inter-graph interactions.823

Although this theoretically maximizes expressiveness (since attention-based transformers can learn824

to prioritize relevant connections), it increases the risk of overfitting due to the inclusion of noisy825

or spurious edges. On the other hand, when γ is close to 1, the meta-graph becomes sparse or even826

disconnected, leading to an underutilization of cross-graph dependencies.827

The highest accuracy occurs at intermediate values (e.g., γ = 0.4), suggesting that retaining only828

the most semantically meaningful inter-graph links allows the model to balance expressiveness with829

robustness. These findings reinforce the results from our ablation studies (Figure ??), which demon-830

strate that incorporating carefully selected inter-graph edges substantially improves downstream831

performance.832
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Figure A7: Sensitivity analysis of two key hyperparameters in the MGMT framework. (Left two
plots) The attention score threshold τ controls supernode selection. Lower thresholds include more
nodes, increasing runtime and potentially introducing noise, while higher thresholds risk discarding
informative nodes. Accuracy peaks at τ = 0.3, suggesting a balance between expressiveness and
overfitting. (Right two plots) The cosine similarity threshold γ governs inter-graph edge construction
in the meta-graph. Accuracy peaks at moderate values of γ, reflecting a trade-off between dense
connectivity (risking overfitting) and sparsity (losing cross-graph interactions). Runtime remains
largely stable across γ, as meta-graph construction operates over a small number of supernodes.

A11 Impact of Similarity Metrics in Meta-Graph Construction833

The construction of inter-graph edges in the meta-graph relies on computing pairwise similarities834

between node embeddings extracted from different graphs. While cosine similarity is commonly835

adopted due to its scale-invariant properties, other alternativessuch as Pearson correlation, Euclidean836

distance, and dot product, may also be used to define similarity across nodes. This section evaluates837

the extent to which the choice of similarity metric affects downstream performance.838

To investigate this, we conducted a controlled experiment on a synthetic dataset generated under839

Setting 1 (see Appendix A7). For each similarity function, we compute full cross-graph similarity840

matrices between node embeddings and apply a fixed top-k rule with k = 10 to select inter-graph841

edges, ensuring identical sparsity across metrics. Each configuration is run 50 times; we report mean842

accuracy.843

We compare cosine similarity, Pearson correlation, negative Euclidean distance converted to similarity844

via 1/(1 + dij), and dot product. Results show modest but consistent differences: dot product attains845

the highest accuracy (0.661), followed by Pearson (0.654), Euclidean (0.648), and cosine (0.642).846

The spread is small (1.9 percentage points), indicating limited sensitivity to the similarity choice847

under this setup.848
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