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ABSTRACT

Quality Diversity (QD) has emerged as a powerful alternative optimization
paradigm that aims at generating large and diverse collections of solutions, notably
with its flagship algorithm MAP-ELITES (ME) which evolves solutions through
mutations and crossovers. While very effective for some unstructured problems,
early ME implementations relied exclusively on random search to evolve the
population of solutions, rendering them notoriously sample-inefficient for high-
dimensional problems, such as when evolving neural networks. Follow-up works
considered exploiting gradient information to guide the search in order to address
these shortcomings through techniques borrowed from either Black-Box Opti-
mization (BBO) or Reinforcement Learning (RL). While mixing RL techniques
with ME unlocked state-of-the-art performance for robotics control problems that
require a good amount of exploration, it also plagued these ME variants with limi-
tations common among RL algorithms that ME was free of, such as hyperparame-
ter sensitivity, high stochasticity as well as training instability, including when the
population size increases as some components are shared across the population in
recent approaches. Furthermore, existing approaches mixing ME with RL tend to
be tied to a specific RL algorithm, which effectively prevents their use on prob-
lems where the corresponding RL algorithm fails. To address these shortcomings,
we introduce a flexible framework that allows the use of any RL algorithm and al-
leviates the aforementioned limitations by evolving populations of agents (whose
definition include hyperparameters and all learnable parameters) instead of just
policies. We demonstrate the benefits brought about by our framework through
extensive numerical experiments on a number of robotics control problems, some
of which with deceptive rewards, taken from the QD-RL literature. We open source
an efficient JAX-based implementation of our algorithm in the QDax library 1.

1 INTRODUCTION

Drawing inspiration from natural evolution’s ability to produce living organisms that are both di-
verse and high-performing through competition in different niches, Quality Diversity (QD) methods
evolve populations of diverse solutions to solve an optimization problem. In contrast to traditional
Optimization Theory, where the goal is to find one solution maximizing a given scoring function,
QD methods explicitly use a mapping from solutions to a vector space, referred to as a behavior
descriptor space, to characterize solutions and maintain a data structure, referred to as a repertoire,
filled with high-performing solutions that cover this space as much as possible, in a process com-
monly referred to as illumination. This new paradigm has led to breakthroughs over the past decade
in many domains ranging from robotics control to engineering design and games generation (Gaier
et al., 2018; Sarkar & Cooper, 2021; Gravina et al., 2019; Cully & Demiris, 2018). There are a num-
ber of advantages to QD methods over standard optimization ones. Actively seeking and maintaining
diversity in a population of solutions has proved to be an effective exploration strategy, by reaching
high-performing regions through a series of stepping stones, when the fitness function has no partic-
ular structure (Gaier et al., 2019). Additionally, having at disposal a diverse set of high-performing
solutions can be greatly beneficial to a decision maker (Lehman et al., 2020), for instance because
the scoring function may fail to model accurately the reality (Cully et al., 2015).

1https://github.com/adaptive-intelligent-robotics/QDax
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MAP-ELITES (Mouret & Clune, 2015) has emerged as one of the most widely used algorithm in the
QD community for its simplicity and efficacy. It divides the behavior descriptor space into a discrete
mesh of cells and strives to populate them all with solutions with matching behavior descriptors that
maximize the fitness function as much as possible. This algorithm has been used in many applica-
tions with great success, such as developing controllers for hexapod robots that can adapt to damage
in real time (Cully et al., 2015). However, just like many evolutionary algorithms, it struggles on
problems with high-dimensional search spaces, such as when evolving controllers parametrized by
neural networks, as it uses random mutations and crossovers to evolve the population.

The breakthroughs of Deep Reinforcement Learning in sequential decision making problems
prompted a new line of work in the QD field to make the algorithms capable of dealing with deep
neural network parametrizations. These new methods borrow techniques from either Black-Box Op-
timization (BBO) or Reinforcement Learning (RL) in order to exploit gradient information to guide
the search. Methods based on BBO techniques (Colas et al., 2020; Conti et al., 2018) follow the ap-
proaches from earlier works on scaling evolutionary algorithms to neuro-evolution, such as Salimans
et al. (2017); Stanley & Miikkulainen (2002), and empirically evaluate gradients w.r.t. the parame-
ters by stochastically perturbing them by small values a number of times. Methods borrowing tools
from RL, such as Nilsson & Cully (2021); Pierrot et al. (2022), exploit the Markov-Decision-Process
structure of the problem and adapt off-policy RL algorithms, such as TD3 (Fujimoto et al., 2018),
to evolve the population. This often entails adding additional components to the evolutionary al-
gorithm (e.g. a replay buffer, critic networks, hyperparameters of the RL agent, ...) and methods
differ along the way these components are managed. RL-based MAP-ELITES approaches have out-
performed other MAP-ELITES variants, and even state-of-the art RL methods, on a variety of robotics
control problems that require a substantial amount of exploration due to deceptive or sparse rewards.
However, the introduction of RL components in MAP-ELITES has come with a number of downsides:
(i) high sensibility to hyperparameters (Khadka et al., 2019; Zhang et al., 2021), (ii) training instabil-
ity, (iii) high variability in performance, and perhaps most importantly (iv) limited parallelizability
of the methods due to the fact that many components are shared in these methods for improved
sample-efficiency. Furthermore, existing RL-based MAP-ELITES approaches are inflexibly tied to a
specific RL algorithm, which effectively prevents their use on problems where the latter fails.

These newly-introduced downsides are particularly problematic as they are some of the main advan-
tages offered by evolutionary methods that are responsible for their widespread use. These methods
are notoriously trivial to parallelize and there is almost a linear scaling between the convergence
speed and the amount of computational power available, as shown in Lim et al. (2022) for MAP-
ELITES. This is all the more relevant with the advent of modern libraries, such as JAX (Bradbury
et al., 2018), that seamlessly enable not only to distribute the computations, including computations
taking place in the physics engine with BRAX (Freeman et al., 2021), over multiple accelerators
but also to fully leverage their parallelization capabilities through automated vectorization primi-
tives, see Lim et al. (2022); Flajolet et al. (2022); Tang et al. (2022). Evolutionary methods are also
notoriously robust to the exact choice of hyperparameters, see Khadka et al. (2019), which makes
them suited to tackle new problems. This is in stark contrast with RL algorithms that tend to require
problem-specific hyperparameter tuning to perform well (Khadka et al., 2019; Zhang et al., 2021).

In order to overcome the aforementioned limitations of RL-based MAP-ELITES approaches, we de-
velop a new MAP-ELITES framework that 1. can be generically and seamlessly compounded with
any RL agent, 2. is robust to the exact choice of hyperparameters by embedding a meta-learning loop
within MAP-ELITES, 3. is trivial to scale to large population sizes, which helps alleviating stochas-
ticity and training stability issues, without entering offline RL regimes a priori by independently
evolving populations of entire agents (including all of their components, such as replay buffers) in-
stead of evolving policies only and sharing the other components across the population. Our method,
dubbed PBT-MAP-ELITES, builds on MAP-ELITES and combines standard isoline operators with pol-
icy gradient updates to get the best of both worlds. We evaluate PBT-MAP-ELITES when used with
the SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) agents on a set of five standard
robotics control problems taken from the QD literature and show that it either yields performance
on par with or outperforms state-of-the-art MAP-ELITES approaches, in some cases by a strong mar-
gin, while not being provided with hyperparameters tuned beforehand for these problems. Finally,
we open source an efficient JAX-based implementation of our algorithm that combines the efficient
implementation of PBT from Flajolet et al. (2022) with that of MAP-ELITES from Lim et al. (2022).
We refer to these two prior works for speed-up data points compared to alternative implementations.
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2 BACKGROUND

Problem Definition. We consider the problem of generating a repertoire of neural policies that are
all high-performing for a given task while maximizing the diversity of policies stored in the reper-
toire. More formally, we consider a finite-horizon Markov Decision Process (MDP) (S,A,R, T ),
where A is the action space, S is the state space, R : S×A → R is the reward signal, T : S×A → S
is the transition function, and T is the episode length. A neural policy corresponds to a neural net-
work πθ : S → D(A) where θ ∈ Θ denotes the weights of the neural network and D(A) is the space
of distributions over the action space. At each time step, we feed the current environment state to
the neural network and we sample an action from the returned distribution, which we subsequently
take. Once the action is carried out in the environment, we receive a reward and the environment
transitions to a new state. The fitness F (πθ) of a policy πθ is defined as the expected value of the
sum of rewards thus collected during an episode. We denote the space of trajectories thus followed
in the environment by τ ∈ Ω. In the QD literature, diversity is not directly measured in the parameter
space Θ, but rather in another space D, referred to as the behavior descriptor space or sometimes
simply descriptor space, which is defined indirectly through a pre-specified and problem-dependent
mapping Φ : Ω → D. A policy πθ is thus characterized by rolling it out in the environment and feed-
ing the trajectory to Φ. With a slight abuse of notation, we denote by Φ(πθ) the behavior descriptor
of the policy πθ. Diversity of a repertoire of policies is measured differently across QD approaches.

MAP-Elites. MAP-ELITES uses a tesselation technique to divide the descriptor space into a finite
number of cells, which collectively define a discrete repertoire. In this work, we use the Centroidal
Voronoi Tessellation (CVT) technique (Vassiliades et al., 2017) for all considered methods as it has
been shown to be general and easy to use in practice (Vassiliades et al., 2017; Pierrot et al., 2022).
MAP-ELITES starts by randomly initializing a set of M policies. Each of these policies is then
independently evaluated in the environment and they are sequentially inserted into the repertoire
according to the following rule. If the cell corresponding to the descriptor of the policy at hand is
empty, the policy is copied into this cell. In the opposite situation, the policy replaces the current
incumbent only if it has a greater fitness and is dropped otherwise. During each subsequent iteration,
policies are randomly sampled from the repertoire, copied, and perturbed to obtain a new set of M
policies which are then tentatively inserted into the repertoire following the aforementioned rule.
Implementations of MAP-ELITES often differ along the exact recipe used to perturb the policies.
The original MAP-ELITES algorithm (Mouret & Clune, 2015) relies on random perturbations. In
this work, we use the isoline variation operator (Vassiliades & Mouret, 2018) that, given two parent
policies, say policies θ1 and θ2, adds Gaussian noise N (0, σ1) to θ1 and offsets the results along the
line θ2−θ1 by a magnitude randomly sampled from a zero-mean Gaussian distribution with variance
N (0, σ2). This strategy has proved to be particularly effective to evolve neural networks (Rakicevic
et al., 2021). Pseudocode for MAP-ELITES is provided in the Appendix.

BBO-based QD. To improve sample efficiency and asymptotic performance, methods such as ME-
ES (Colas et al., 2020) use first-order updates to perturb the policies with the objective of both
increasing the fitness of the policies in the repertoire and improving the coverage of the repertoire
(i.e. the number of non-empty cells). To generate the updates, ME-ES use the Evolution Strategy
from Salimans et al. (2017). Specifically, after selecting a policy from the repertoire, its neural
network parameters are perturbed stochastically with a small amount of Gaussian noise a number
of times and the resulting policies are rolled out in the environment for a full episode. All of the
collected samples are then used to empirically estimate gradients for a smoothed version around the
starting policy of either (1) the fitness function, (2) a novelty function which is defined as the average
Euclidean distance between the starting policy’s behavior descriptor and its k nearest neighbors
among all previously computed behavior descriptors, or (3) alternatively the fitness function and the
novelty function to increase both quality and diversity, which is the version we use in this work (see
the Appendix for the pseudocode). Note that similar strategies using the NS-ES family of algorithms
exist, such as Conti et al. (2018), but these methods are outperformed by ME-ES (Colas et al., 2020).

RL-based QD. Using evolution strategies to guide the search with first-order updates improves upon
random search but remains doomed to a low sample-efficiency due to the need of rolling out a signif-
icant number of policies over entire trajectories to get reasonably accurate gradient estimates. More
recent techniques, such as QD-PG (Pierrot et al., 2022) and PGA-MAP-ELITES (Nilsson & Cully,
2021), exploit the MDP structure of the problem and leverage policy-gradient techniques from RL
as well as off-policy extensions for improved sample efficiency and better asymptotic convergence.
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Both QD-PG and PGA-MAP-ELITES build on the TD3 agent (Fujimoto et al., 2018). PGA-MAP-
ELITES combines random mutations derived through the isoline variation operator with mutations
obtained through policy gradient computations. QD-PG introduces the notion of a diversity reward,
a signal defined at the timestep-level to drive policies towards unexplored regions of the behavior
descriptor space, which makes it possible to leverage the RL machinery to compute policy gradients
to increase the diversity of the population, referred to as diversity policy gradients, in addition to the
standard policy gradients to increase the fitness of the policies, referred to as quality policy gradi-
ents. At each MAP-ELITES iteration, half of the selected policies are updated using quality policy
gradients and the other half are updated using diversity policy gradients. In contrast to PGA-MAP-
ELITES, QD-PG does not relies on random search updates. Both QD-PG and PGA-MAP-ELITES use a
single shared replay buffer where all the transitions collected when evaluating the agents are stored
and from which batches are sampled to compute policy gradients.

Critic networks are managed differently by each algorithm. QD-PG uses two different sets of critic
parameters, one for quality rewards and one for diversity rewards, that are shared across the popu-
lation and both are updated any time a policy gradient is computed. PGA-MAP-ELITES maintains a
greedy policy and its associated critic which are updated independently of the rest of the repertoire.
The greedy policy is regularly inserted in the repertoire and the critic is used to compute policy
gradients updates for all other policies but is only updated using the greedy policy.

These precise design choices not only make PGA-MAP-ELITES and QD-PG difficult to distribute
efficiently but they also harm the flexibility of these methods. For instance, if one would like to
replace TD3 by another popular off-policy algorithm such as SAC, which is known to perform better
for some environments, numerous new design choices arise. For instance for SAC, one would have
to decide how to handle the temperature parameter and the entropy target within the population.
Furthermore, while sharing critic parameters and using a single replay buffer was motivated by a
desire for greater sample efficiency, this introduces new issues when scaling these methods. For
instance, as the number of policies updated concurrently at each iteration increases we get closer
to an offline RL setting, which is known to harm performance, since all policies share the same
replay buffer. Conversely, as the size of the repertoire increases, any single policy stored in the
repertoire is updated all the less frequently than the critic which may cause them to significantly lag
behind over time. Finally, both QD-PG and PGA-MAP-ELITES assume that good hyperparameters
are provided for TD3 while it is known that tuning these values for the problem at hand is necessary
to get good performance. This effectively puts the burden on the user to tune hyperparameters for
TD3 as a preliminary step, which limits the usability of such methods in new settings. Pseudocodes
for QD-PG and PGA-MAP-ELITES are provided in the Appendix.

3 METHOD

In order to overcome the limitations of RL-based QD methods identified in the last section, we revisit
the neuro-evolution problem defined in Section 2 and introduce a new algorithm, dubbed PBT-MAP-
ELITES, that evolves populations of agents as opposed to populations of policies. An agent is defined
by a tuple (θ, ϕ,h) where θ denotes the policy parameters, ϕ denotes all other learnable parameters
of the agent (e.g. critic parameters and target critic parameters), and h denotes its hyperparameters
(e.g. learning rates and magnitude of the exploration noise). As in the original formulation, we
assume that the fitness and behavior descriptor functions depend only on the policy, i.e. on θ. The
learnable parameters and the hyperparameters are only used when agents are updated. PBT-MAP-
ELITES internally uses a policy-search-based RL algorithm which can be selected freely by the user.
In particular, it may be on-policy or off-policy.

PBT-MAP-ELITES maintains a MAP-ELITES repertoire as well as a population of P agents. The
population is randomly initialized (including the hyperparameters), evaluated, copied and inserted
into the repertoire. We also initialize P replay buffers if the underlying RL algorithm makes use
of them. Additionally, a batch of agents is sampled from the repertoire and a variation operator
is applied to obtain M offspring that are also evaluated and inserted into the repertoire as part of
the initialization phase. Then, the algorithm proceeds in iterations, each of which consists of two
consecutive steps: 1. population update and 2. MAP-ELITES repertoire update.

Population Update. To update the population of agents, we use the following strategy inspired from
Jaderberg et al. (2017). We first rank all agents in the population by fitness based on the evaluation
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Figure 1: Left Panel. The set of QD-RL environments used to evaluate all methods. All en-
vironments are implemented using the BRAX simulator and are available in the QDAX suite. In
WALKER2D-UNI, ANT-UNI, and HALFCHEETAH-UNI, the goal is to learn to control the correspond-
ing robot to run as fast as possible with gaits that are as diverse as possible. In ANT-TRAP and
HUMANOID-TRAP, the robot should travel as far as possible along the x-axis direction, which en-
tails sidestepping the trap to get the highest possible return thus putting the exploration capabilities
of considered methods to test. Right panel. Illustration of the PBT-MAP-ELITES algorithm. PBT-
MAP-ELITES maintains a population of agents (policy parameters, other learnable parameters as
well as hyperparameters) and a MAP-ELITES repertoire of agents. The repertoire update, generating
more diversity, and the population update, improving the fitness of the policies, are intertwined.

that took place at the end of the last iteration. Agents that are in the bottom p% of the population are
replaced by agents sampled uniformly from the top n% of the population, with 0 < p < 1− n < 1.
We also randomly select k% of the agents in the population among the ones that are neither in the
top n% nor in the bottom p% and we replace them by agents randomly sampled from the current
MAP-ELITES repertoire. All other agents remain unchanged. This mechanism allows potentially
lower-performing, but more diverse, individuals from the repertoire to enter the population while
maintaining high-performing agents alive. When agents are replaced, new hyperparameter values
are sampled uniformly from pre-specified ranges. The agents’ policy parameters as well as all other
learnable parameters are subsequently trained for S steps, using the user-selected RL algorithm.
If needed, the collected experience is stored inside the replay buffers. In contrast to PGA-MAP-
ELITES and QD-PG, we closely follow the general recipe followed by most RL algorithms and only
add the experience collected during training, in exploration mode, to the replay buffers while the
experience collected during evaluation, in exploitation mode, is discarded. Additionnaly, note that
the agents are trained independently from one another, which makes it trivial to parallelize the most
computationally intensive part of this step. This is in stark contrast with other MAP-ELITES-RL
methods that share some parameters across the population, e.g. the critic parameters for QD-PG and
PGA-MAP-ELITES, which are typically updated concurrently by all agents.

Repertoire Update. Once the agents in the population have been trained, they are evaluated and
inserted into the repertoire. Then, just like during the initialization phase, a batch of agents is
randomly sampled from the repertoire and undergoes a variation operator to obtain M offspring
which are evaluated and inserted into the grid. As in PGA-MAP-ELITES, the variation operator is
meant to increase the descriptor space coverage but we have also observed that this process stabilizes
the algorithm as a whole. In order to define a variation operator that can be used with agents, as
opposed to policies, we deal with variations over the policy and learnable parameters separately
from variations over the hyperparameters. Specifically, an isoline operator is applied to policy and
other learnable parameters while the offspring simply inherit the hyperparameters of one of their
parents. While more sophisticated strategies could be investigated, we have observed that this simple
mechanism works well in practice in our experiments.

Observe that optimization of the quality as well as the diversity of the policies happens at two dif-
ferent levels in PBT-MAP-ELITES. Quality is encouraged through both the elitist population update
and the repertoire insertion mechanism. Diversity is induced through both the addition of agents
from the repertoire to the population and the use of random variation operators at each iteration.
The pseudocode of the algorithm is provided in the Appendix.
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4 LITERATURE REVIEW

Quality Diversity. QD methods aim to simultaneously maximize diversity and performance. Among
existing options, MAP-ELITES and Novelty Search with Local Competition (NSLC) are two of the
most popular QD algorithms. NSLC builds on the Novelty Search algorithm (Lehman & Stanley,
2011) and maintains an unstructured archive of solutions selected for their high performance rela-
tive to other solutions in their neighborhoods while MAP-ELITES relies on a tesselation technique to
discretize the descriptor space into cells. Both algorithms rely extensively on Genetic Algorithms
(GA) to evolve solutions. As a result, they struggle when the dimension of the search space in-
creases, which limits their applicability. These approaches have since been extended using tools
from Evolution Strategies (ES) to improve sample efficiency and asymptotic performance over the
original implementations based on GA (Salimans et al., 2017). CMA-MAP-ELITES (Fontaine et al.,
2020) relies on Covariance Matrix Adaptation (CMA) to speed up the illumination of the descriptor
space. NSRA-ES and NSR-ES (Conti et al., 2018) build on recent ES tools to improve QD meth-
ods’ exploration capabilities on deep RL problems with deceptive or sparse rewards. ME-ES (Colas
et al., 2020) introduces alternate ES updates for quality and diversity in order to solve deep RL
problems with continuous action spaces that require a good amount of exploration. While ES-based
approaches improve over GA-based ones, they are still relatively sample-inefficient due to the fact
that they need to roll out a large of number of policies over entire trajectories to empirically estimate
gradients with reasonable accuracy. Several recent methods propose to exploit analytical gradients
when this is possible instead of estimating them empirically. DQD (Fontaine & Nikolaidis, 2021)
builds a mutation operator that first computes gradients of the fitness and behavior descriptor func-
tions at the current solution and carry out a first-order step by summing the gradients with random
coefficients. Tjanaka et al. (2022) applies the same technique to deep RL problems with continuous
action spaces. PGA-MAP-ELITES (Nilsson & Cully, 2021) and QD-PG (Pierrot et al., 2022) exploit
the MDP structure of the problems to compute policy gradients using the TD3 algorithm, outper-
forming all QD competitors for deep RL problems with continuous actions. However, both methods
are tied a single RL algorithm and are highly sensitive to the choice of TD3 hyperparameters.

Population Based Reinforcement Learning. Our work has different motivations than classical RL
algorithms as we do not aim to find a policy than achieves the best possible return but rather to illu-
minate a target descriptor space. However, we share common techniques with Population-Based RL
(PBRL) algorithms. In this field, the closest method to ours is the Population-Based-Training (PBT)
algorithm (Jaderberg et al., 2017) which uses a genetic algorithm to learn the hyperparameters of a
population of RL agents concurrently to training them. While PBT-MAP-ELITES and PBT use sim-
ilar strategies to update the population of agents, PBT only seeks the highest-performing agent by
extracting the best one from the final population while PBT-MAP-ELITES aims to find a diverse col-
lection of high-performing agents. Several methods such as CERL, ERL, and CEM-RL (Pourchot
& Sigaud, 2019; Khadka & Tumer, 2018; Khadka et al., 2019) combine ES algorithms with PBRL
methods to improve the asymptotic performance and sample efficiency of standard RL methods.
Other methods, such as DvD (Parker-Holder et al., 2020) and P3S-TD3 (Jung et al., 2020), train pop-
ulations of agents and add terms in their loss functions to encourage the agents to explore different
regions of the state-action space but always with the end goal of maximizing the performance of the
best agent in the population. Flajolet et al. (2022) show how to vectorize computations across the
population to run PBRL algorithms as efficiently as possible on accelerators through the use of the
JAX library. Lim et al. (2022) introduced similar techniques to accelerate MAP-ELITES through the
evaluation of thousands of solutions in parallel with JAX. In this study, we build on both of these
works and implement PBT-MAP-ELITES in the JAX framework to make it fast and scalable.

5 EXPERIMENTS

Environments. We use five robotics environments that fall into two categories:

1. HALFCHEETAH-UNI, WALKER2D-UNI and ANT-UNI are environments widely used in the QD
community to evaluate an algorithm’s ability to illuminate a complex descriptor space, see for in-
stance Cully et al. (2015); Nilsson & Cully (2021); Tjanaka et al. (2022). In these environments, the
goal is to make a legged robot run as fast as possible along the forward direction while optimizing for
diversity w.r.t. the robot’s gaits, indirectly characterized as the mean frequencies of contacts between
the robots’ legs and the ground. This last quantity defines the behavior descriptor for these environ-
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Figure 2: Performance comparison of PBT-MAP-ELITES with baselines on the basis of standard
metrics from the QD literature for five environments from the QDAX suite (which is based on the
BRAX engine). We benchmark two variants of PBT-MAP-ELITES, one where it is composed with SAC
and one where it is composed with TD3. All methods are trained with a total budget of N = 1.5e8
environment timesteps. Experiments are repeated over 5 runs with different random seeds and the
medians (resp. first and third quartile intervals) are depicted with full lines (resp. shaded areas).

ments while the reward at each timestep is the velocity of the robot’s center of gravity projected onto
the forward direction.

2. ANT-TRAP and HUMANOID-TRAP are environments with deceptive reward signals used in the
QD-RL literature to evaluate an algorithm’s ability to solve complex continuous control problems
that require a good amount of exploration, see Colas et al. (2020); Conti et al. (2018); Pierrot et al.
(2022). In these environments, the goal is also to make the legged robot run as fast as possible in the
forward direction, though with the additional difficulty that the robot is initially facing a trap. As a
result, following the reward signal in a greedy fashion leads the robot into the trap. The robot must
explore the environment and learn to go around the trap, even though this is temporarily suboptimal,
in order to obtain higher returns. In these environments, the behavior descriptor is defined as the
position of the robot’s center of gravity at the end of an episode. All of these environments are based
on the BRAX simulator (Freeman et al., 2021) and are available in the QDAX suite (Lim et al., 2022).

Setup. We compare PBT-MAP-ELITES to state-of-the-art MAP-ELITES-based methods, namely
MAP-ELITES, ME-ES, PGA-MAP-ELITES as well as QD-PG. For these experiments, we benchmark
two variants of PBT-MAP-ELITES: one where it is composed with SAC and one where it is composed
with TD3. For the sake of fairness, we use the same values for parameters that are used by multi-
ple methods. In particular, all MAP-ELITES-based methods maintain a repertoire of 1024 cells and
use CVT with the same parametrization to discretize the behavior descriptor space into 1024 cells.
Similarly, when a variation operator is needed, we always use the isoline operator with the same pa-
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Figure 3: Visualizations of the performance and hyperparameters of the agents stored in the MAP-
ELITES repertoire of PBT-MAP-ELITES (TD3) at different time points during training on the ANT-
TRAP environment. The first row corresponds to the fitnesses of the agents. The second row corre-
sponds to the exploration noise added by the agents to the actions returned by their policies when
collecting experience in exploration mode. The third row corresponds to the discount factor γ used
by the agents. Snapshots of the repertoire are taken at uniformly-spaced intervals during training.

rameters σ1 = 0.005 and σ2 = 0.05. All policy and critic networks are implemented by two MLPs
layers with 256 hidden neurons per layer. For methods relying on the TD3 agent, the hyperparam-
eters used are the ones introduced in the original paper for MUJOCO environments. Pseudocodes
and parameter values for all algorithms under study are provided in the Appendix.

Additionally, we compare PBT-MAP-ELITES to the PBT algorithm (Jaderberg et al., 2017) (pseu-
docode provided in the Appendix) when it is used to optimize populations of SAC agents. Both
PBT-MAP-ELITES and PBT evolve populations of 80 agents and use the same ranges for the hyper-
parameters. All policy and critic networks are implemented by two-layer MLPs with 256 hidden
neurons per layer, just like for TD3 for PGA-MAP-ELITES and QD-PG. Furthermore, the parameters
of all agents in the population are identically initialized. For PBT-MAP-ELITES (resp. PBT), agents
in the bottom p = 0.2 (resp. p = 0.4) fraction of the population (in terms of fitness) are replaced by
agents sampled from the top n = 0.1 fraction of the population. For PBT-MAP-ELITES, a fraction
k = 0.4 of the agents that are neither in the bottom 20% nor in the top 10% of the population are
replaced by agents randomly sampled from the MAP-ELITES repertoire. All other parameters and
design choices are identical for these two methods.

Metrics and fair comparisons. Following standard practice in the QD literature, we monitor three
metrics used to evaluate the performance of a collection of policies during training. 1. We measure
the maximum fitness, defined as the maximum expected return across policies in the collection. 2.
We measure the coverage over the descriptor space, computed as the number of cells that have been
filled. 3. We measure the QD-score, computed as the sum of fitnesses attained by the policies stored
in the repertoire. For this last metric to be meaningful, we assume that fitnesses are all non-negative.
If not, a positive value is added to all fitnesses to enforce it. In any case, this value is the same
for all methods for fairness. Since some of the metrics require a repertoire to be properly defined,
we introduce a passive repertoire for PBT to be able to evaluate it on the same basis as the other
methods. Specifically, at the end of each PBT iteration, the population of agents generated by PBT is
evaluated and inserted into a repertoire. For each method, we report the evolution of these metrics
w.r.t. the total number of interactions with the environment. Note that while the evaluation of an
agent contributes to the total number of interactions for MAP-ELITES-based methods, this is not the
case for PBT as the evaluations are only used to estimate the metrics for this method.

6 RESULTS AND DISCUSSION

Statistics on QD metrics are reported for all environments and methods on Figure 2.
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Performance comparison to other MAP-ELITES-based methods. We observe that PBT-MAP-
ELITES (SAC) is the only method able to solve HUMANOID-TRAP within the allocated timestep
budget, outperforming all the other methods by a significant margin. HUMANOID-TRAP is a chal-
lenging environment as obtaining high returns requires not only to get the humanoid robot to run,
which is a challenging continuous problem in itself, but also to learn to sidestep the trap in spite of
a deceptive reward signal. This environment, introduced in Colas et al. (2018), has remained out of
reach for MAP-ELITES-based methods, setting aside ME-ES which solves it with a timestep budget
two orders of magnitude higher. Interestingly, the maximum fitness remains below 2000 for TD3-
based methods, which means they were not able to get the humanoid robot to run at all. This is a
testament to the difficulty of the problem. Recall that TD3 was not able to solve the MUJOCO-based
version of the Humanoid environment in the original paper that introduced this algorithm (Fuji-
moto et al., 2018). A careful tuning of the algorithm design choices and hyperparameters, carried
out in a later study, was required to get TD3 to perform well on this environment. Setting aside
the WALKER2D-UNI environment, note that PBT-MAP-ELITES (SAC) either outperforms, often by
a significant margin for the maximum fitness metric, or performs on par with MAP-ELITES-based
methods. Interestingly, the SAC variant of PBT-MAP-ELITES often performs better than the TD3
variant, but not always. On a side note, we also observe that ME-ES surprisingly gets outperformed
by all MAP-ELITES competitors, including the original MAP-ELITES algorithm, in all environments.
This can be explained by the fact that ME-ES uses 1000 evaluations (i.e. 1e6 timesteps) to update
a single policy. As a result, for a repertoire consisted of 1024 cells and with a budget of 1.5e8
timesteps, the maximum coverage that can be reached by ME-ES is 15% only. In the original study,
ME-ES manages to outperform other MAP-ELITES-based methods with a budget of 1e10 timesteps.

Performance comparison to PBT. We observe that PBT outperforms the SAC variant of PBT-MAP-
ELITES in terms of maximum fitness on HALFCHEETAH-UNI and ANT-UNI. This is expected as: (1)
these environments do not require a significant amount of exploration, (2) PBT only aims to maxi-
mize the maximum fitness, and (3) PBT-MAP-ELITES aims to maximize both the maximum fitness
and the policies’ diversity. However, we observe the opposite trend on ANT-TRAP and HUMANOID-
TRAP where significant exploration is required to achieve high returns given the deceptive nature
of the reward signal. We conclude that optimizing for diversity turns out to play a crucial role for
these two environments. As expected, PBT-MAP-ELITES outperforms PBT in terms of coverage and
QD-score in all environments, setting aside HUMANOID-TRAP. The seemingly unexpected results
observed on HUMANOID-TRAP stem from the fact that covering the behavior descriptor directly
correlates with exploration of the (x, y) space, which is required to achieve high returns in this
environment due to the presence of the trap.

Repertoire interpretation. By visualizing the evolution of the fitnesses and hyperparameters of the
agents stored in PBT-MAP-ELITES’s repertoire at different time points during training, see Figure 3,
we observe that PBT-MAP-ELITES evolves locally-coherent (w.r.t. the descriptor space) maps of
hyperparameters that change significantly during training. In particular, we remark that PBT-MAP-
ELITES dynamically increases the amount of exploration noise of the TD3 agents to boost exploration
when needed to go around the trap and decreases this parameter once the trap has been sidestepped
to focus on getting high returns. This mechanism gives a significant advantage to PBT-MAP-ELITES
over QD-PG and PGA-MAP-ELITES, for which this parameter is set to a constant value.

7 CONCLUSION

In this work, we revisit the standard formulation of the QD neuro-evolution problem by evolving
repertoires of full agents (including hyperparameters among other things) as opposed to only poli-
cies. This extension brings flexibility compared to existing frameworks as it allows us to combine
any RL algorithm with MAP-ELITES in a generic and scalalable fashion. This formulation also al-
lows us to dynamically learn the hyperparameters of the underlying RL agent as part of the regular
training process, which removes a significant burden from the user. Surprisingly, we observe that
learning the hyperparameters improves both the asymptotic performance and the sample efficiency
in practice for most of the environments considered in this work. Our method is the first to solve the
HUMANOID-TRAP environment with less than one billion interactions with the simulator, to be com-
pared with tens of billions of interactions for state-of-the-art QD methods. We hope that this work
constitutes one more step towards bridging the gap between Neuro-Evolution and Reinforcement
Learning, combining the best of both worlds in a simple framework.
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A PSEUDOCODES FOR ALL ALGORITHMS

Algorithm 1: PBT-MAP-ELITES

Given:
• M: MAP-ELITES repertoire

• N ∈ N∗: maximum number of environment steps

• M ∈ N∗: number of isoline-variation offsprings per iteration

• P ∈ N∗: size of the population of RL agents

• S ∈ N∗: number of training steps per iteration per agent

• p, k, n ∈ ]0, 1[: PBT proportions

• an RL agent template

• F (·): fitness function

• Φ(·): behavior descriptor function

// Initialization
Randomly initialize P +M agents following the chosen RL template ((πθi , ϕi,hi))1≤i≤P+M .
Run one episode in the environment using each of (πθi)1≤i≤P+M to evaluate (F (πθi))1≤i≤P+M and
(Φ(πθi))1≤i≤P+M .

Insert ((πθi , ϕi,hi))1≤i≤P+M in M based on (F (πθi))1≤i≤P+M and (Φ(πθi))1≤i≤P+M .
Initialize P replay buffers (Bi)1≤i≤P using the data collected respectively by each agent during the initial

evaluations (if replay buffers are used by the RL agent).

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
while nsteps ≤ N do

// Population Update
Re-order the agents i = 1, · · · , P in increasing order of their fitnesses (F (πθi))1≤i≤P .
Update agents i = 1, · · · , pP by copying randomly-sampled agents from i = (1− n)P, · · · , P and

copy the replay buffers accordingly (if replay buffers are used by the RL agent).
Sample new hyperparameters for agents i = 1, · · · , pP .
Sample kP indices (ij)1≤j≤kP uniformly without replacement from {pP + 1, · · · , (1− n)P − 1}.
Replace agents i = ij , 1 ≤ j ≤ kP by agents randomly(-uniformly) sampled from M.
Train agents i = 1, · · · , P independently for S steps using the RL agent template, sampling data

from the replay buffers if they are used by the RL agent.

// Repertoire Update
Run one episode in the environment using each of (πθi)1≤i≤P to evaluate (F (πθi))1≤i≤P and
(Φ(πθi))1≤i≤P .

Insert ((πθi , ϕi,hi))1≤i≤P in M based on (F (πθi))1≤i≤P and (Φ(πθi))1≤i≤P .
Sample uniformly 2M agents from M.
Copy them and apply isoline variation to obtain M offsprings ((πθi , ϕi,hi))P<i≤P+M .
Run one episode in the environment using each of (πθi)P<i≤P+M to evaluate (F (πθi))P<i≤P+M

and (Φ(πθi))P<i≤P+M .
Insert ((πθi , ϕi,hi))P<i≤P+M in M based on (F (πθi))P<i≤P+M and (Φ(πθi))P<i≤P+M .
Update nsteps.

end
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Algorithm 2: MAP-ELITES

Given:
• M: MAP-ELITES repertoire

• N ∈ N∗: maximum number of environment steps

• M ∈ N∗: number of offsprings per iteration

• F (·): fitness function

• Φ(·): behavior descriptor function

// Initialization
Randomly initialize M policies (πθi)1≤i≤M .
Run one episode in the environment using each of (πθi)1≤i≤M to evaluate (F (πθi))1≤i≤M and
(Φ(πθi))1≤i≤M .

Insert (πθi)1≤i≤M in M based on (F (πθi))1≤i≤M and (Φ(πθi))1≤i≤M .

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
while nsteps ≤ N do

Randomly sample 2M policies from M.
Copy them and apply isoline variations to obtain M new policies (πθi)1≤i≤M .
Run one episode in the environment using each of (πθi)1≤i≤M to evaluate (F (πθi))1≤i≤M and
(Φ(πθi))1≤i≤M .

Insert (πθi)1≤i≤M in M based on (F (πθi))1≤i≤M and (Φ(πθi))1≤i≤M .
Update nsteps.

end
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Algorithm 3: PGA-MAP-ELITES

Given:
• M: MAP-ELITES repertoire

• N ∈ N∗: maximum number of environment steps

• M ∈ N∗: number of offsprings per iteration

• Sc ∈ N∗: number of TD3 training steps used to update the shared critic per iteration

• Sp ∈ N∗: number of TD3 policy update steps per iteration per policy

• TD3 hyperparameters

• F (·): fitness function

• Φ(·): behavior descriptor function

// Initialization
Initialize a replay buffer B.
Randomly initialize M policies (πθi)1≤i≤M .
Run one episode in the environment using each of (πθi)1≤i≤M to evaluate (F (πθi))1≤i≤M and
(Φ(πθi))1≤i≤M .

Insert (πθi)1≤i≤M in M based on (F (πθi))1≤i≤M and (Φ(πθi))1≤i≤M .
Update B with transition data collected during the initial evaluations.
Initialize the critic Qϕ, the target critic Qϕ′ , the greedy policy πθ , and the target greedy policy πθ′ .

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
while nsteps ≤ N do

// Update the shared critic alongside the greedy policy
Carry out Sc TD3 training steps to update Qϕ, Qϕ′ , πθ and πθ′ (sampling batches of data from B).

// Generate new offsprings using the isoline variation operator
Randomly sample M policies from M.
Copy them and apply isoline variations to obtain M/2 new policies (πθi)1≤i≤M/2.

// Generate new offsprings using TD3 policy-gradient updates
Randomly sample M/2− 1 policies from M (πθi)M/2<i≤M−1.
Carry out Sp TD3 policy gradient steps for each of them independently (sampling batches of data

from B).

// Update the repertoire
Assign πθM = πθ .
Run one episode in the environment using each of (πθi)1≤i≤M to evaluate (F (πθi))1≤i≤M and
(Φ(πθi))1≤i≤M .

Insert (πθi)1≤i≤M in M based on (F (πθi))1≤i≤M and (Φ(πθi))1≤i≤M .
Update B with transition data collected during the evaluations of all M new policies.
Update nsteps.

end
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Algorithm 4: ME-ES

Given:
• M: MAP-ELITES repertoire

• N ∈ N∗: maximum number of environment steps

• S ∈ N∗: number of consecutive gradient steps for a given policy

• Ngrad ∈ N∗: number of evaluations for gradient approximations

• Ninit ∈ N∗: number of randomly-initialized policies used to initialize M
• σ > 0: standard deviation of the normal distribution used to perturb parameters for gradient

approximations

• η > 0: learning rate

• A: archive of behavior descriptors

• N(·, ·): novelty function that takes as an input a behavior descriptor as first argument and A as a
second argument

• F (·): fitness function

• Φ(·): behavior descriptor function

// Initialization
Randomly initialize Ninit policies (πθi)1≤i≤Ninit .
Run one episode in the environment using each of (πθi)1≤i≤Ninit to evaluate (F (πθi))1≤i≤Ninit and
(Φ(πθi))1≤i≤Ninit .

Insert (πθi)1≤i≤Ninit in M based on (F (πθi))1≤i≤Ninit and (Φ(πθi))1≤i≤Ninit .
Add (Φ(πθi))1≤i≤Ninit to A.

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
Initialize ngrads, the total number of gradient steps carried out so far, to 0.
use novelty = true
while nsteps ≤ N do

if ngrads ≡ 0 mod S then
// Decide if we should optimize for novelty or fitness.
Set use novelty to true with probability 0.5 and to false otherwise.

// Sample a high-performing policy from M
if use novelty then

Sample a policy πθ ∈ M uniformly from the set of five policies with the highest novelty
N(B(πθ),A).

else
Sample, with probability 0.5, a policy πθ ∈ M from the set of two policies with the highest

fitness F (πθ) or from the last five updated policies.
end

end

// Update the current policy using a gradient approximation
Sample (θi)1≤i≤Ngrad ∼ N (θ, σ2I) small perturbations of the current policy’s parameters.
Run one episode in the environment using each of the corresponding policies (πθi)1≤i≤Ngrad to

evaluate (F (πθi))1≤i≤Ngrad and (Φ(πθi))1≤i≤Ngrad .
if use novelty then

Compute the gradient approximation ∇θ = 1
Ngradσ

∑Ngrad
i=1 N(Φ(πθi),A)

θi−θ
σ

.
else

Compute the gradient approximation ∇θ = 1
Ngradσ

∑Ngrad
i=1 F (πθi)

θi−θ
σ

.
end
Update θ = θ + η · ∇θ.
Run one episode in the environment using πθ to compute Φ(πθ) and F (πθ).
Insert πθ in M based on Φ(πθ) and F (πθ).
Add Φ(πθ) to A.
Update nsteps.
ngrads = ngrads + 1

end
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Algorithm 5: QD-PG

Given:
• M: MAP-ELITES repertoire

• N ∈ N∗: maximum number of environment steps

• P ∈ N∗: size of the population of RL agents

• S ∈ N∗: number of TD3 training steps per iteration per agent

• TD3 hyperparameters

• N(·): novelty reward function

• F (·): fitness function

• Φ(·): behavior descriptor function

// Initialization
Initialize a replay buffer B.
Randomly initialize P policies (πθi)1≤i≤P .
Run one episode in the environment using each of (πθi)1≤i≤P to evaluate (F (πθi))1≤i≤P and
(Φ(πθi))1≤i≤P .

Insert (πθi)1≤i≤P in M based on (F (πθi))1≤i≤P and (Φ(πθi))1≤i≤P .
Update B with transition data collected during the initial evaluations.
Initialize the quality (resp. diversity) critic QQ

ϕ (resp. QD
ϕ ) and the corresponding target QQ

ϕ′ (resp. QD
ϕ′ ).

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
while nsteps ≤ N do

Sample uniformly P policies (πθi)1≤i≤P from M.

// Update the quality critic alongside the first half of the
policies

for s = 1 to S do
Sample P/2 batches of transitions from B.
Carry out, using one batch of transition per agent, one TD3 training step for each of the agents
((πθi , Q

Q
ϕ , Q

Q
ϕ′))1≤i≤P/2 in parallel, averaging gradients over the agents for the shared critic

parameters.
end

// Update the diversity critic alongside the second half of the
policies

for s = 1 to S do
Sample P/2 batches of transitions from B.
Overwrite the rewards using the novelty reward function N(·).
Carry out, using one batch of transition per agent, one TD3 training step for each of the agents
((πθi , Q

D
ϕ , QD

ϕ′))P/2<i≤P in parallel, averaging gradients over the agents for the shared critic
parameters.

end

// Update the repertoire
Run one episode in the environment using each of (πθi)1≤i≤P to evaluate (F (πθi))1≤i≤P and
(Φ(πθi))1≤i≤P .

Insert (πθi)1≤i≤P in M based on (F (πθi))1≤i≤P and (Φ(πθi))1≤i≤P .
Update B with transition data collected during the evaluations of all P new policies.
Update nsteps.

end
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Algorithm 6: PBT

Given:
• N ∈ N∗: maximum number of environment steps

• P ∈ N∗: size of the population of RL agents

• S ∈ N∗: number of training steps per iteration per agent

• p, n ∈ ]0, 1[: PBT proportions

• an RL agent template

• F (·): fitness function

// Initialization
Randomly initialize P agents following the chosen RL template ((πθi , ϕi,hi))1≤i≤P .
Initialize P replay buffers (Bi)1≤i≤P (only if replay buffers are used by the RL agent).

// Main loop
Initialize nsteps, the total number of environment interactions carried out so far, to 0.
while nsteps ≤ N do

Train agents i = 1, · · · , P independently for S steps using the RL agent template and the replay
buffers (only if replay buffers are used by the RL agent), interacting with the environment as many
times as dictated by the RL agent.

Run one episode in the environment using each of (πθi)1≤i≤P to evaluate (F (πθi))1≤i≤P .
Re-order the agents i = 1, · · · , P in increasing order of their fitnesses (F (πθi))1≤i≤P .
Update agents i = 1, · · · , pP by copying randomly-sampled agents from i = (1− n)P, · · · , P and

copy the replay buffers accordingly (only if replay buffers are used by the RL agent).
Sample new hyperparameters for agents i = 1, · · · , pP .
Update nsteps.

end

B EXPERIMENTAL DETAILS

In this section, we detail the parameters used for all algorithms. In particular, we stress that we use
the same values used in the original studies for all MAP-ELITES-based algorithms other than the one
introduced in this paper, namely MAP-ELITES, PGA-MAP-ELITES, QD-PG, and ME-ES. Additionally,
we run the implementations of these algorithms provided in the QDAX library Lim et al. (2022) for
our experiments. All MAP-ELITES-based algorithms use a grid with 1024 cells initialized using CVT
with 50,000 initial random points.

Table 1: PBT parameters

Parameter Value

Population size P 80
Proportion of worst agents p 0.4
Proportion of best agents n 0.1
Number of training steps per iteration per agent S 5000
Replay buffer size 100000
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Table 2: PBT-MAP-ELITES parameters

Parameter Value

Number of isoline-variation offsprings per iteration M 240
Size of the population of RL agents P 80
Proportion of worst agents p 0.2
Proportion of agents to sample from the repertoire k 0.4
Proportion of best agents n 0.1
Number of training steps per iteration per agent S 5000
Replay buffers size 100000
Isoline σ1 0.005
Isoline σ2 0.05

Table 3: MAP-ELITES parameters.

Parameter Value

Number of offsprings per iteration M 1000
Isoline σ1 0.005
Isoline σ2 0.05

Table 4: ME-ES parameters.

Parameter Value

Number of consecutive gradient steps for a given policy S 10
Number of evaluations for gradient approximations Ngrad 1000
Number of randomly-initialized policies used to initialize the repertoire Ninit 1
Std of the normal distribution to perturb parameters for gradient approximations σ 0.2
Learning rate η 0.01

Table 5: PGA-MAP-ELITES parameters.

Parameter Value

Number of offsprings per iteration M 100
Number of TD3 training steps used to update the shared critic per iteration Sc 300
Number of TD3 policy update steps per iteration per policy Sp 100
Discount factor γ 0.99
Policy learning rate 3e-4
Critic learning rate 3e-4
Noise clipping 0.5
Policy noise 0.2
Exploration noise 0.0
Soft update tau 0.005
Batch size 256
Replay buffer size 100000
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Table 6: QD-PG parameters.

Parameter Value

Size of the population of RL agents P 100
Number of TD3 training steps per iteration per agent S 100
Discount factor γ 0.99
Policy learning rate 3e-4
Critic learning rate 3e-4
Noise clipping 0.5
Policy noise 0.2
Exploration noise 0.0
Soft update tau 0.005
Batch size 256
Replay buffer size 100000

Table 7: SAC hyperparameters’ ranges (or values if the hyperparameter does not change during
training) that PBT and PBT-MAP-ELITES sample from.

Parameter Range / Value

Discount factor γ [0.9, 1.0]
Policy learning rate [3e-5, 3e-3]
Critic learning rate [3e-5, 3e-3]
Alpha learning rate [3e-5, 3e-3]
Reward scaling factor [0.1, 10]
Soft update tau 0.005
Alpha initial value 1.0
Batch size 256

Table 8: TD3 hyperparameters’ ranges (or values if the hyperparameter does not change during
training) that PBT and PBT-MAP-ELITES sample from.

Parameter Range / Value

Discount factor γ [0.9, 1.0]
Policy learning rate [3e-5, 3e-3]
Critic learning rate [3e-5, 3e-3]
Noise clipping [0.0, 1.0]
Policy noise [0.0, 1.0]
Exploration noise [0.0, 0.2]
Soft update tau 0.005
Batch size 256
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