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Abstract

This paper investigates the code-switching
problem between English and Thai languages
in large language models (LLMs), especially
those encountered the continual pre-training
process (CPT) and those initially trained with
multilingual data, called multilingual LLMs
(MLLMs). We change the language in several
parts of the prompt, namely rask instruction,
context, and output language to examine the
effects of the language variation settings on the
code-switched language in the responses for
different model types. Our findings show that
mismatches between context and output lan-
guage result in significant performance degra-
dation in all the model types and the models
achieve similar performance for monolingual
settings, while MLLMs show stronger robust-
ness on the cross-lingual settings. It suggests
that given high cost of multilingual training
from scratch, we might still need MLLMs for
downstream tasks in languages other that En-
glish due to their multilingual capability which
is better than CPT models and those trained
without any multilingual interventions.

1 Introduction

A code-switched language has been a topic dis-
cussed and studied in natural language generation
for decades. It is a situation when a sentence in
a model’s response contains multiple languages
(Poplack, 1980; Khanuja et al., 2020) or language
models are so confused that they fail to gener-
ate a consistent response in a particular language
(Marchisio et al., 2024). This phenomenon has be-
come ubiquitous since the rise of LLMs (Brown
et al., 2020) because most of them are still predom-
inantly English-centric with limited capabilities
when it comes to other languages (Asai et al., 2024;
Bang et al., 2023), while a significant number of
people across the world use languages that LLMs
have difficulty understanding or processing.
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Figure 1: Example of language variation settings. The
languages in task instruction (pink), context (blue), and
output (gray) can be varied from English to Thai, and
the whole prompt is fed to an LLM for N times to mea-
sure multilingual performance in terms of ROUGE-1
for long-form generation task, and accuracy for short-
form generation task, as well as uncertainty, instruction-
following hallucination rate (IFHR), and word-level en-
tropy (WLE).

Several techniques have been proposed to local-
ize those English-centric LLMs to work better in
target languages including parameter-tuning align-
ment and parameter-frozen alignment (Qin et al.,
2024). However, all adaptation strategies still give
rise to the code-switching issue as some researchers
investigate the code-switched language or language
confusion over 15 languages with monolingual
and cross-lingual generation and measure model’s
responses in word-level and line-level confusion.
They find that LLMs are susceptible to language
confusion when the number of tokens in the sam-



pling nucleus is high, while the distribution is flat
(Marchisio et al., 2024).

In this study, we follow a similar study of the
language confusion by pushing further to vary the
language in different parts of the prompt, namely
task instruction, context, and output language, as
visualized in Fig 1, with an extensive focus on Thai
language as a case study to investigate the general-
ization of LLMs beyond English through different
pre-training strategies. It is noted that Thai lan-
guage is selected because it is considered one of
the low-resource languages with complex orthogra-
phy (Pipatanakul et al., 2023). We also explore and
compare the language confusion with regard to dif-
ferent confusion aspects, such as uncertainty (Far-
quhar et al., 2024), instruction-following halluci-
nation (IFHR), and word-level entropy (WLE). Be-
sides, we measure the response quality through per-
formance metrics, such as accuracy and ROUGE-1
across different tasks, including both short-form
and long-form generation tasks.

2 Background and Problem Setting

Our work relates to code-switching or language
confusion, specifically for Thai and English, in
different types of LLMs. We describe the relevant
background and present our research question on
the language confusion in LLMs.

Multilinguality adaptation strategy There are
two main approaches to enhance capability in the
target languages which are parameter-tuning align-
ment and parameter-frozen alignment (Qin et al.,
2024). For the parameter-tuning alignment, it refers
to fine-tuning process with target language data dur-
ing from-scratch pre-training (Brown et al., 2020),
continual pre-training (CPT) (Luukkonen et al.,
2023), supervised fine-tuning (SFT) (Chung et al.,
2022), reinforcement learning with human feed-
back (RLHF) (Lai et al., 2023), and downstream
fine-tuning (Lepikhin et al., 2020) with additional
language-specific data to the original LLMs, while
the parameter-frozen alignment requires prompt en-
gineering without updating model parameters to ac-
quire multilingual performance (Yang et al., 2023).
In this study, we focus on the first approach. How-
ever, due to the expensive resources required for the
fine-tuning process, the practical approach for Thai
adaptation is limited to the CPT approach, such
as Typhoonl.5 (Pipatanakul et al., 2023), Sailor
(Dou et al., 2024) and OpenThaiGPT1.5 (Yueny-
ong et al., 2024).

Language confusion We define language confu-
sion as a situation in which a model experiences dif-
ficulty processing the information from the prompt,
resulting in the generation of a response that in-
corporates unintended languages (Khanuja et al.,
2020; Marchisio et al., 2024) or does not follow
the provided instruction. This occurs because the
prompt language itself varies between Thai and
English as displayed in Fig 2.
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Figure 2: Prompt examples for a summarization task.

Problem statement We frame the problem as
a research question: how does changing the lan-
guage in the prompt, which we separate into task
instruction, context, and output language, affect
the model’s performance? The study investigates
the phenomenon of language confusion in LLMs
that underwent CPT with Thai language data, com-
paring their results to the base models as well as to
MLLMs.

3 Language Confusion Experiments

We examine the language confusion in LLMs
through two main tasks: short-form (multiple-
choice) and long-form generation (long-context
question answering and summarization) tasks.

Models Regarding the compute constraints, the
scope of the models studied here includes 7B-
9B models, namely 8B-Llama3 (Grattafiori et al.,
2024) and its CPT with Thai data, 8B-Typhoon1.5
(Pipatanakul et al., 2023), 7B-Qwen1.5 (Bai et al.,
2023) with its CPT, 7B-Sailor1 (Dou et al., 2024),
and 7B-Qwen2.5 (Yang et al., 2025) with its CPT,
7B-OpenThaiGPT1.5 (Yuenyong et al., 2024). We
also include 9B-Gemma2 (Riviere et al., 2024) and
8B-Llama3.1 (Grattafiori et al., 2024) for compari-
son to MLLMs.



Benchmarks We use a high-quality dataset
curated for instruction-following fine-tuning,
WangchanThailnstruct (Vistec, 2024). We select
three relevant tasks from this dataset for multiple-
choice task, as well as closed QA and summariza-
tion for long-form generation tasks.

Furthermore, we incorporate a popular bench-
mark within Thai LLMs community, ThaiExam
(Pipatanakul et al., 2023), and include a universal
benchmark, MMLU (Hendrycks et al., 2021), to serve
as a baseline for benchmarking model performance
for shot-form generation tasks.

For WangchanThaiInstruct and ThaiExam,
they are originally in Thai and are translated into
English, while MMLU is in English initially and is
translataed into Thai. The translations are car-
ried out using GPT-4 (Achiam et al., 2024), and
some are sampled to manually check and revise, if
needed, by authors.

Experiment settings For each prompt, we vary
the language of the task instruction and context
parts by default and the output language can
be additionally varied for long-form generation
tasks, which is labeled in the following format:
{task_instruction}_{context}_{output} as
shown in Fig 2. However, for short-form generation
task, the format of each experiment will exclude
the output part because it will be limited to one
of the options from A to E. We generate N = 10
responses per prompt to reduce the influence of
randomness in the text generation process.

Evaluation metrics We measure language con-
fusion from three perspectives: (i) Uncertainty —
to assess the consistency of the N responses quan-
tified using the spectral clustering technique (Far-
quhar et al., 2024), (ii) Instruction-following hal-
lucination rate (IFHR) — to evaluate how well the
model understands the task instruction. For short-
form generation tasks, this focuses on whether the
response matches one of the options in the multiple-
choice set. For long-form generation tasks, the fo-
cus is on whether the response is in the specified
language. The language identification in this exper-
iment will use the FastText (Grave et al., 2018),
a language identification model, to determine the
language of the generated response, and (iii) Word-
level entropy (WLE) - to determine the uncertainty
at the word level of each response by using the
PyThai tokenizer (Phatthiyaphaibun et al., 2024)
to tokenize a response into words and input them to
the same language identification model to identify

their language. The resulting values are used to
compute entropy, and it should be noted that this
metric is only available for long-form generation
tasks.

In addition to the three language confusion met-
rics, we also measure performance to evaluate
model proficiency in each task. Accuracy is used
for short-form generation tasks, while ROUGE-1
(Lin, 2004) is used for long-form generation tasks.

4 Results

We evaluate the responses of each experiment and
model individually and aggregate them based on
their model type, which is either base, CPT, or
MLLM, and experiment type, which is either pure
English (all components in the prompt are in En-
glish), pure Thai (all in Thai), or mixed, as shown
in Fig 3. Please refer to Appendix A-B for addi-
tional experiment results.

Short-form generation tasks Fig 3(a) shows
that all performances, ranging from uncertainty,
IFHR, and accuracy, of each model type remain
similar when we vary the language in the task in-
struction and context of the prompt. This is because
the expected response is just one single character
between A to E, so the language variations may not
have much influence on the short-form generation
tasks.

However, we observe that the base and CPT mod-
els behave similarly in terms of uncertainty and
IFHR, while MLLMs provide unique pattern in
the language variation settings. The base and CPT
models provide inconsistent responses, as their un-
certainty is very high (see Fig 3(a)-left) and they
do not follow the instruction well although there is
a slight decrease of IFHR for the base models in
Pure English setting (see Fig 3(a)-mid). Unlikely
to MLLMs, they can better generate consistent re-
sposne as well as understand the instruction to gen-
erate valid responses due to almost zero IFHR.

For the accuracy as plotted in Fig 3(a)-right, We
notice a greater distinction between the base and
CPT models due to the higher accuracy contributed
by the CPT models. However, their performance is
still lower than that of MLLMs, which achieve the
best performance in terms of the highest accuracy
across all experiment types.

Long-form generation tasks The impact of lan-
guage confusion becomes more prominent when
the models generate responses more than a single
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Figure 3: Performance of base, CPT, and MLLM models for (a) short-form and (b) long-form generation tasks

breakdown by experiment types.
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Figure 4: Word-level entropy (WLE) for long-form
generation tasks of different model types.

character. All model types provide their best per-
formance at Pure English as expected, followed
by Pure Thai, and their performance deteriorates
when the prompt contains mixed languages as il-
lustrated in Fig 3(b).

Surprisingly, the base models show language
confusion even in Pure English experiment, and
they do not generate a response in the target lan-
guage once we introduce Thai language in the
prompt, while the CPT and MLLMs are more likely
to handle Thai language better. However, IFHR
skyrockets when there are language mismatches
between the context and output as presented in Fig
3(b)-mid and 4. Since the models do not often
follow instructions, they generate inconsistent re-

sponses, leading to an increase in uncertainty as
shown in Fig 3.(b)-left.

Moreover, WLE of all model types increases sig-
nificantly, but the base’s WLE rises the most, while
MLLM:s are able to maintain the best WLE as visu-
alized in Fig 4. However, once the prompt language
is mixed, the WLE of CPT is at the same level as
MLLMs. This pattern also persists from the perfor-
mance perspective in Fig 3(b)-right, where the base
models are good only at English language and their
ROUGE-1 decreases for Pure Thai and Mixed set-
tings. On the other hand, CPT and MLLMs can
maintain their ROUGE-1 as we vary the prompt
languages. However, MLLM achieve the best per-
formance according to the highest ROUGE-1 for
each experiment settings.

5 Conclusion

Models with continual pre-training strategy show
improvements for both language confusion and
performance metrics in a target language or cross-
lingual settings when compared to their base mod-
els. However, their performance is still inferior to
MLLMs because they do not fully acquire multilin-
gual capabilities and struggle for the mismatched
language settings. It is essential to incorporate mul-
tilingual training strategy to derive more robust
multilingual skills and to enhance model general-
ization in cross-lingual downstream tasks.



Limitations

This study focuses on the Thai language as a case
study to explore the generalization of large lan-
guage models (LLMs) to languages beyond En-
glish. Due to computational constraints and the
limited availability of multilingual performance
benchmarks, the analysis incorporates a small sam-
ple of model pairs with model size around 7B pa-
rameters, which may affect the completeness of the
comparison.
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en_th 1.63/0.65/-/0.22 1.53/0.66/-/0.35 0.49/0.00/-/0.48
th_en 1.66/0.66/-/0.24 1.64/0.66/-/0.34 0.46/0.01/-/0.48
th_th 1.62/0.65/-/0.22 1.60/0.66/-/0.34 0.51/0.01/-/0.47
Long-form generation tasks

en_en_en 3.95/0.03/0.11/0.31 3.32/0.01/0.09/0.29  2.59/0.00/0.07/0.34
en_en_th 5.80/0.64/0.43/0.07 3.85/0.54/0.36/0.15 5.42/0.25/0.65/0.17
en_th_en 6.45/0.48/0.36/0.17 5.40/0.57/0.34/0.18  4.99/0.59/0.21/0.15
en_th_th 5.66/0.39/0.46/0.18  3.74/0.10/0.30/0.30  3.11/0.05/0.22/0.35
th_en_en 5.63/0.30/0.40/0.25 3.58/0.11/0.28/0.30  3.02/0.07/0.16/0.33
th_en_th 6.03/0.43/0.61/0.11 4.33/0.25/0.36/0.21 4.93/0.21/0.54/0.18
th_th_en 6.68/0.48/0.46/0.17 4.97/0.45/0.32/0.22  4.65/0.55/0.20/0.17
th_th_th 5.60/0.30/0.52/0.22  3.66/0.07/0.28/0.32  2.84/0.03/0.19/0.35

Table 1: Experiment-level results with the following format: uncertainty/IFHR/WLE/performance, noting that
the performance refers to accuracy or ROUGE-1 for the short-form, or long-form generation tasks, respectively, and
WLE for the short-form generation tasks is not available and is reported as "-".

Model MMLU ThaiExam WTI-MC
Base models (Base)

8B-Llama3 0.30/0.00/-/0.65 0.54/0.00/-/0.42  0.40/0.00/-/0.47
7B-Qwenl.5 1.56/0.79/-/0.22  2.21/1.00/-/0.13  2.22/1.00/-/0.13
7B-Qwen2.5 1.38/0.43/-/0.39  2.20/0.89/-/0.20 2.17/0.95/-/0.14
Continual pre-trained models (CPT)

8B-Typhoon1.5 0.50/0.01/-/0.61 0.84/0.01/-/0.39  0.68/0.00/-/0.46
7B-Sailorl 1.16/0.27/-/0.41 2.02/0.98/-/0.25 1.84/0.98/-/0.33

7B-OpenThaiGPT1.5 0.52/0.13/-/0.63
Multilingual pre-trained models (MLLM)
9B-Gemma2 0.22/0.28/-/0.55
8B-Llama3.1 0.48/0.00/-/0.62

2.04/1.00/-/0.41 1.98/1.00/-/0.29

0.21/0.00/-/0.54
0.82/0.00/-/0.38

0.18/0.01/-/0.54
0.65/0.01/-/0.45

Table 2: Short-form generation results at model level. It is noted that WTTI refers to WangchanThailInstruct dataset
(Vistec, 2024) and MC means a multiple-choice task. Also, the information is written in the following format:

n_n

uncertainty/IFHR/WLE/performance, where WLE is reported as "-".

Model WTI-CQA WTI-SUM
Base models (Base)

8B-Llama3 3.06/0.16/0.28/0.29  3.62/0.17/0.28/0.30
7B-Qwenl.5 6.99/0.56/0.61/0.11  7.57/0.58/0.58/0.10
7B-Qwen2.5 6.20/0.39/0.34/0.16  6.91/0.42/0.43/0.16

Continual pre-trained models (CPT)

8B-Typhoonl.5 2.77/0.36/0.06/0.21  2.89/0.04/0.07/0.37
7B-Sailorl 4.54/0.23/0.09/0.20  5.67/0.34/0.09/0.17
7B-OpenThaiGPT1.5 4.12/0.27/0.67/0.28 4.64/0.32/0.77/0.25

Multilingual pre-trained models (MLLM)
9B-Gemma2 2.85/0.17/0.14/0.29
8B-Llama3.1 4.05/0.31/0.32/0.22

3.13/0.07/0.14/0.31
5.75/0.33/0.53/0.21

Table 3: Long-form generation results at model level. It is noted that CQA and SUM refer to closed
question answering and summarization tasks, respectively, and the information is of the following format:
uncertainty/IFHR/WLE/performance.



	Introduction
	Background and Problem Setting
	Language Confusion Experiments
	Results
	Conclusion
	Experiment-level Results
	Model-level Results

