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Abstract001

This paper investigates the code-switching002
problem between English and Thai languages003
in large language models (LLMs), especially004
those encountered the continual pre-training005
process (CPT) and those initially trained with006
multilingual data, called multilingual LLMs007
(MLLMs). We change the language in several008
parts of the prompt, namely task instruction,009
context, and output language to examine the010
effects of the language variation settings on the011
code-switched language in the responses for012
different model types. Our findings show that013
mismatches between context and output lan-014
guage result in significant performance degra-015
dation in all the model types and the models016
achieve similar performance for monolingual017
settings, while MLLMs show stronger robust-018
ness on the cross-lingual settings. It suggests019
that given high cost of multilingual training020
from scratch, we might still need MLLMs for021
downstream tasks in languages other that En-022
glish due to their multilingual capability which023
is better than CPT models and those trained024
without any multilingual interventions.025

1 Introduction026

A code-switched language has been a topic dis-027

cussed and studied in natural language generation028

for decades. It is a situation when a sentence in029

a model’s response contains multiple languages030

(Poplack, 1980; Khanuja et al., 2020) or language031

models are so confused that they fail to gener-032

ate a consistent response in a particular language033

(Marchisio et al., 2024). This phenomenon has be-034

come ubiquitous since the rise of LLMs (Brown035

et al., 2020) because most of them are still predom-036

inantly English-centric with limited capabilities037

when it comes to other languages (Asai et al., 2024;038

Bang et al., 2023), while a significant number of039

people across the world use languages that LLMs040

have difficulty understanding or processing.041

Figure 1: Example of language variation settings. The
languages in task instruction (pink), context (blue), and
output (gray) can be varied from English to Thai, and
the whole prompt is fed to an LLM for N times to mea-
sure multilingual performance in terms of ROUGE-1
for long-form generation task, and accuracy for short-
form generation task, as well as uncertainty, instruction-
following hallucination rate (IFHR), and word-level en-
tropy (WLE).

Several techniques have been proposed to local- 042

ize those English-centric LLMs to work better in 043

target languages including parameter-tuning align- 044

ment and parameter-frozen alignment (Qin et al., 045

2024). However, all adaptation strategies still give 046

rise to the code-switching issue as some researchers 047

investigate the code-switched language or language 048

confusion over 15 languages with monolingual 049

and cross-lingual generation and measure model’s 050

responses in word-level and line-level confusion. 051

They find that LLMs are susceptible to language 052

confusion when the number of tokens in the sam- 053
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pling nucleus is high, while the distribution is flat054

(Marchisio et al., 2024).055

In this study, we follow a similar study of the056

language confusion by pushing further to vary the057

language in different parts of the prompt, namely058

task instruction, context, and output language, as059

visualized in Fig 1, with an extensive focus on Thai060

language as a case study to investigate the general-061

ization of LLMs beyond English through different062

pre-training strategies. It is noted that Thai lan-063

guage is selected because it is considered one of064

the low-resource languages with complex orthogra-065

phy (Pipatanakul et al., 2023). We also explore and066

compare the language confusion with regard to dif-067

ferent confusion aspects, such as uncertainty (Far-068

quhar et al., 2024), instruction-following halluci-069

nation (IFHR), and word-level entropy (WLE). Be-070

sides, we measure the response quality through per-071

formance metrics, such as accuracy and ROUGE-1072

across different tasks, including both short-form073

and long-form generation tasks.074

2 Background and Problem Setting075

Our work relates to code-switching or language076

confusion, specifically for Thai and English, in077

different types of LLMs. We describe the relevant078

background and present our research question on079

the language confusion in LLMs.080

Multilinguality adaptation strategy There are081

two main approaches to enhance capability in the082

target languages which are parameter-tuning align-083

ment and parameter-frozen alignment (Qin et al.,084

2024). For the parameter-tuning alignment, it refers085

to fine-tuning process with target language data dur-086

ing from-scratch pre-training (Brown et al., 2020),087

continual pre-training (CPT) (Luukkonen et al.,088

2023), supervised fine-tuning (SFT) (Chung et al.,089

2022), reinforcement learning with human feed-090

back (RLHF) (Lai et al., 2023), and downstream091

fine-tuning (Lepikhin et al., 2020) with additional092

language-specific data to the original LLMs, while093

the parameter-frozen alignment requires prompt en-094

gineering without updating model parameters to ac-095

quire multilingual performance (Yang et al., 2023).096

In this study, we focus on the first approach. How-097

ever, due to the expensive resources required for the098

fine-tuning process, the practical approach for Thai099

adaptation is limited to the CPT approach, such100

as Typhoon1.5 (Pipatanakul et al., 2023), Sailor101

(Dou et al., 2024) and OpenThaiGPT1.5 (Yueny-102

ong et al., 2024).103

Language confusion We define language confu- 104

sion as a situation in which a model experiences dif- 105

ficulty processing the information from the prompt, 106

resulting in the generation of a response that in- 107

corporates unintended languages (Khanuja et al., 108

2020; Marchisio et al., 2024) or does not follow 109

the provided instruction. This occurs because the 110

prompt language itself varies between Thai and 111

English as displayed in Fig 2. 112

Figure 2: Prompt examples for a summarization task.

Problem statement We frame the problem as 113

a research question: how does changing the lan- 114

guage in the prompt, which we separate into task 115

instruction, context, and output language, affect 116

the model’s performance? The study investigates 117

the phenomenon of language confusion in LLMs 118

that underwent CPT with Thai language data, com- 119

paring their results to the base models as well as to 120

MLLMs. 121

3 Language Confusion Experiments 122

We examine the language confusion in LLMs 123

through two main tasks: short-form (multiple- 124

choice) and long-form generation (long-context 125

question answering and summarization) tasks. 126

Models Regarding the compute constraints, the 127

scope of the models studied here includes 7B- 128

9B models, namely 8B-Llama3 (Grattafiori et al., 129

2024) and its CPT with Thai data, 8B-Typhoon1.5 130

(Pipatanakul et al., 2023), 7B-Qwen1.5 (Bai et al., 131

2023) with its CPT, 7B-Sailor1 (Dou et al., 2024), 132

and 7B-Qwen2.5 (Yang et al., 2025) with its CPT, 133

7B-OpenThaiGPT1.5 (Yuenyong et al., 2024). We 134

also include 9B-Gemma2 (Riviere et al., 2024) and 135

8B-Llama3.1 (Grattafiori et al., 2024) for compari- 136

son to MLLMs. 137
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Benchmarks We use a high-quality dataset138

curated for instruction-following fine-tuning,139

WangchanThaiInstruct (Vistec, 2024). We select140

three relevant tasks from this dataset for multiple-141

choice task, as well as closed QA and summariza-142

tion for long-form generation tasks.143

Furthermore, we incorporate a popular bench-144

mark within Thai LLMs community, ThaiExam145

(Pipatanakul et al., 2023), and include a universal146

benchmark, MMLU (Hendrycks et al., 2021), to serve147

as a baseline for benchmarking model performance148

for shot-form generation tasks.149

For WangchanThaiInstruct and ThaiExam,150

they are originally in Thai and are translated into151

English, while MMLU is in English initially and is152

translataed into Thai. The translations are car-153

ried out using GPT-4 (Achiam et al., 2024), and154

some are sampled to manually check and revise, if155

needed, by authors.156

Experiment settings For each prompt, we vary157

the language of the task instruction and context158

parts by default and the output language can159

be additionally varied for long-form generation160

tasks, which is labeled in the following format:161

{task_instruction}_{context}_{output} as162

shown in Fig 2. However, for short-form generation163

task, the format of each experiment will exclude164

the output part because it will be limited to one165

of the options from A to E. We generate N = 10166

responses per prompt to reduce the influence of167

randomness in the text generation process.168

Evaluation metrics We measure language con-169

fusion from three perspectives: (i) Uncertainty –170

to assess the consistency of the N responses quan-171

tified using the spectral clustering technique (Far-172

quhar et al., 2024), (ii) Instruction-following hal-173

lucination rate (IFHR) – to evaluate how well the174

model understands the task instruction. For short-175

form generation tasks, this focuses on whether the176

response matches one of the options in the multiple-177

choice set. For long-form generation tasks, the fo-178

cus is on whether the response is in the specified179

language. The language identification in this exper-180

iment will use the FastText (Grave et al., 2018),181

a language identification model, to determine the182

language of the generated response, and (iii) Word-183

level entropy (WLE) - to determine the uncertainty184

at the word level of each response by using the185

PyThai tokenizer (Phatthiyaphaibun et al., 2024)186

to tokenize a response into words and input them to187

the same language identification model to identify188

their language. The resulting values are used to 189

compute entropy, and it should be noted that this 190

metric is only available for long-form generation 191

tasks. 192

In addition to the three language confusion met- 193

rics, we also measure performance to evaluate 194

model proficiency in each task. Accuracy is used 195

for short-form generation tasks, while ROUGE-1 196

(Lin, 2004) is used for long-form generation tasks. 197

4 Results 198

We evaluate the responses of each experiment and 199

model individually and aggregate them based on 200

their model type, which is either base, CPT, or 201

MLLM, and experiment type, which is either pure 202

English (all components in the prompt are in En- 203

glish), pure Thai (all in Thai), or mixed, as shown 204

in Fig 3. Please refer to Appendix A-B for addi- 205

tional experiment results. 206

Short-form generation tasks Fig 3(a) shows 207

that all performances, ranging from uncertainty, 208

IFHR, and accuracy, of each model type remain 209

similar when we vary the language in the task in- 210

struction and context of the prompt. This is because 211

the expected response is just one single character 212

between A to E, so the language variations may not 213

have much influence on the short-form generation 214

tasks. 215

However, we observe that the base and CPT mod- 216

els behave similarly in terms of uncertainty and 217

IFHR, while MLLMs provide unique pattern in 218

the language variation settings. The base and CPT 219

models provide inconsistent responses, as their un- 220

certainty is very high (see Fig 3(a)-left) and they 221

do not follow the instruction well although there is 222

a slight decrease of IFHR for the base models in 223

Pure English setting (see Fig 3(a)-mid). Unlikely 224

to MLLMs, they can better generate consistent re- 225

sposne as well as understand the instruction to gen- 226

erate valid responses due to almost zero IFHR. 227

For the accuracy as plotted in Fig 3(a)-right, We 228

notice a greater distinction between the base and 229

CPT models due to the higher accuracy contributed 230

by the CPT models. However, their performance is 231

still lower than that of MLLMs, which achieve the 232

best performance in terms of the highest accuracy 233

across all experiment types. 234

Long-form generation tasks The impact of lan- 235

guage confusion becomes more prominent when 236

the models generate responses more than a single 237
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(a) Short-form generation.

(b) Long-form generation.

Figure 3: Performance of base, CPT, and MLLM models for (a) short-form and (b) long-form generation tasks
breakdown by experiment types.

Figure 4: Word-level entropy (WLE) for long-form
generation tasks of different model types.

character. All model types provide their best per-238

formance at Pure English as expected, followed239

by Pure Thai, and their performance deteriorates240

when the prompt contains mixed languages as il-241

lustrated in Fig 3(b).242

Surprisingly, the base models show language243

confusion even in Pure English experiment, and244

they do not generate a response in the target lan-245

guage once we introduce Thai language in the246

prompt, while the CPT and MLLMs are more likely247

to handle Thai language better. However, IFHR248

skyrockets when there are language mismatches249

between the context and output as presented in Fig250

3(b)-mid and 4. Since the models do not often251

follow instructions, they generate inconsistent re-252

sponses, leading to an increase in uncertainty as 253

shown in Fig 3.(b)-left. 254

Moreover, WLE of all model types increases sig- 255

nificantly, but the base’s WLE rises the most, while 256

MLLMs are able to maintain the best WLE as visu- 257

alized in Fig 4. However, once the prompt language 258

is mixed, the WLE of CPT is at the same level as 259

MLLMs. This pattern also persists from the perfor- 260

mance perspective in Fig 3(b)-right, where the base 261

models are good only at English language and their 262

ROUGE-1 decreases for Pure Thai and Mixed set- 263

tings. On the other hand, CPT and MLLMs can 264

maintain their ROUGE-1 as we vary the prompt 265

languages. However, MLLM achieve the best per- 266

formance according to the highest ROUGE-1 for 267

each experiment settings. 268

5 Conclusion 269

Models with continual pre-training strategy show 270

improvements for both language confusion and 271

performance metrics in a target language or cross- 272

lingual settings when compared to their base mod- 273

els. However, their performance is still inferior to 274

MLLMs because they do not fully acquire multilin- 275

gual capabilities and struggle for the mismatched 276

language settings. It is essential to incorporate mul- 277

tilingual training strategy to derive more robust 278

multilingual skills and to enhance model general- 279

ization in cross-lingual downstream tasks. 280
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Limitations281

This study focuses on the Thai language as a case282

study to explore the generalization of large lan-283

guage models (LLMs) to languages beyond En-284

glish. Due to computational constraints and the285

limited availability of multilingual performance286

benchmarks, the analysis incorporates a small sam-287

ple of model pairs with model size around 7B pa-288

rameters, which may affect the completeness of the289

comparison.290
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Experiment Base CPT MLLM
Short-form generation tasks
en_en 1.58/0.60/-/0.32 1.50/0.67/-/0.38 0.40/0.00/-/0.49
en_th 1.63/0.65/-/0.22 1.53/0.66/-/0.35 0.49/0.00/-/0.48
th_en 1.66/0.66/-/0.24 1.64/0.66/-/0.34 0.46/0.01/-/0.48
th_th 1.62/0.65/-/0.22 1.60/0.66/-/0.34 0.51/0.01/-/0.47
Long-form generation tasks
en_en_en 3.95/0.03/0.11/0.31 3.32/0.01/0.09/0.29 2.59/0.00/0.07/0.34
en_en_th 5.80/0.64/0.43/0.07 3.85/0.54/0.36/0.15 5.42/0.25/0.65/0.17
en_th_en 6.45/0.48/0.36/0.17 5.40/0.57/0.34/0.18 4.99/0.59/0.21/0.15
en_th_th 5.66/0.39/0.46/0.18 3.74/0.10/0.30/0.30 3.11/0.05/0.22/0.35
th_en_en 5.63/0.30/0.40/0.25 3.58/0.11/0.28/0.30 3.02/0.07/0.16/0.33
th_en_th 6.03/0.43/0.61/0.11 4.33/0.25/0.36/0.21 4.93/0.21/0.54/0.18
th_th_en 6.68/0.48/0.46/0.17 4.97/0.45/0.32/0.22 4.65/0.55/0.20/0.17
th_th_th 5.60/0.30/0.52/0.22 3.66/0.07/0.28/0.32 2.84/0.03/0.19/0.35

Table 1: Experiment-level results with the following format: uncertainty/IFHR/WLE/performance, noting that
the performance refers to accuracy or ROUGE-1 for the short-form, or long-form generation tasks, respectively, and
WLE for the short-form generation tasks is not available and is reported as "-".

Model MMLU ThaiExam WTI-MC
Base models (Base)
8B-Llama3 0.30/0.00/-/0.65 0.54/0.00/-/0.42 0.40/0.00/-/0.47
7B-Qwen1.5 1.56/0.79/-/0.22 2.21/1.00/-/0.13 2.22/1.00/-/0.13
7B-Qwen2.5 1.38/0.43/-/0.39 2.20/0.89/-/0.20 2.17/0.95/-/0.14
Continual pre-trained models (CPT)
8B-Typhoon1.5 0.50/0.01/-/0.61 0.84/0.01/-/0.39 0.68/0.00/-/0.46
7B-Sailor1 1.16/0.27/-/0.41 2.02/0.98/-/0.25 1.84/0.98/-/0.33
7B-OpenThaiGPT1.5 0.52/0.13/-/0.63 2.04/1.00/-/0.41 1.98/1.00/-/0.29
Multilingual pre-trained models (MLLM)
9B-Gemma2 0.22/0.28/-/0.55 0.21/0.00/-/0.54 0.18/0.01/-/0.54
8B-Llama3.1 0.48/0.00/-/0.62 0.82/0.00/-/0.38 0.65/0.01/-/0.45

Table 2: Short-form generation results at model level. It is noted that WTI refers to WangchanThaiInstruct dataset
(Vistec, 2024) and MC means a multiple-choice task. Also, the information is written in the following format:
uncertainty/IFHR/WLE/performance, where WLE is reported as "-".

Model WTI-CQA WTI-SUM
Base models (Base)
8B-Llama3 3.06/0.16/0.28/0.29 3.62/0.17/0.28/0.30
7B-Qwen1.5 6.99/0.56/0.61/0.11 7.57/0.58/0.58/0.10
7B-Qwen2.5 6.20/0.39/0.34/0.16 6.91/0.42/0.43/0.16
Continual pre-trained models (CPT)
8B-Typhoon1.5 2.77/0.36/0.06/0.21 2.89/0.04/0.07/0.37
7B-Sailor1 4.54/0.23/0.09/0.20 5.67/0.34/0.09/0.17
7B-OpenThaiGPT1.5 4.12/0.27/0.67/0.28 4.64/0.32/0.77/0.25
Multilingual pre-trained models (MLLM)
9B-Gemma2 2.85/0.17/0.14/0.29 3.13/0.07/0.14/0.31
8B-Llama3.1 4.05/0.31/0.32/0.22 5.75/0.33/0.53/0.21

Table 3: Long-form generation results at model level. It is noted that CQA and SUM refer to closed
question answering and summarization tasks, respectively, and the information is of the following format:
uncertainty/IFHR/WLE/performance.
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