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ABSTRACT

We design a new provably efficient algorithm for episodic reinforcement learning
with generalized linear function approximation. We analyze the algorithm under
a new expressivity assumption that we call “optimistic closure,” which is strictly
weaker than assumptions from prior analyses for the linear setting. With opti-
mistic closure, we prove that our algorithm enjoys a regret bound of Õ

(
H
√
d3T

)
whereH is the horizon, d is the dimensionality of the state-action features and T is
the number of episodes. This is the first statistically and computationally efficient
algorithm for reinforcement learning with generalized linear functions.

1 INTRODUCTION

We study episodic reinforcement learning problems with infinitely large state spaces, where the
agent must use function approximation to generalize across states while simultaneously engaging in
strategic exploration. Such problems form the core of modern empirical/deep-RL, but relatively little
work focuses on exploration, and even fewer algorithms enjoy strong sample efficiency guarantees.

On the theoretical side, classical sample efficiency results from the early 00s focus on “tabular”
environments with small finite state spaces (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002;
Strehl et al., 2006), but as these methods scale with the number of states, they do not address prob-
lems with infinite or large state spaces. While this classical work has inspired practically effective
approaches for large state spaces (Bellemare et al., 2016; Osband et al., 2016; Tang et al., 2017),
these methods do not enjoy sample efficiency guarantees. More recent theoretical progress has
produced provably sample efficient algorithms for complex environments where function approxi-
mation is required, but these algorithms are relatively impractical (Krishnamurthy et al., 2016; Jiang
et al., 2017). In particular, these methods are computationally inefficient or rely crucially on strong
dynamics assumptions (Du et al., 2019b).

In this paper, with an eye toward practicality, we study a simple variation of Q-learning, where we
approximate the optimal Q-function with a generalized linear model. The algorithm is appealingly
simple: collect a trajectory by following the greedy policy corresponding to the current model,
perform a dynamic programming back-up to update the model, and repeat. The key difference over
traditional Q-learning-like algorithms is in the dynamic programming step. Here we ensure that the
updated model is optimistic in the sense that it always overestimates the optimal Q-function. This
optimism is essential for our guarantees.

Optimism in the face of uncertainty is a well-understood and powerful algorithmic principle in short-
horizon (e.g,. bandit) problems, as well as in tabular reinforcement learning (Azar et al., 2017; Dann
et al., 2017; Jin et al., 2018). With linear function approximation, Yang & Wang (2019) and Jin
et al. (2019) show that the optimism principle can also yield provably sample-efficient algorithms,
when the environment dynamics satisfy certain linearity properties. Their assumptions are always
satisfied in tabular problems, but are somewhat unnatural in settings where function approximation
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is required. Moreover as these assumptions are directly on the dynamics, it is unclear how their anal-
ysis can accommodate other forms of function approximation, including generalized linear models.

In the present paper, we replace explicit dynamics assumptions with expressivity assumptions on
the function approximator, and, by analyzing a similar algorithm to Jin et al. (2019), we show that
the optimism principle succeeds under these strictly weaker assumptions.1 More importantly, the re-
laxed assumption facilitates moving beyond linear models, and we demonstrate this by providing the
first practical and provably efficient RL algorithm with generalized linear function approximation.

The paper is organized as follows: In Section 2 we formalize our setting, introduce the optimistic
closure assumption, and discuss related assumptions in the literature. In Section 3 we study opti-
mistic closure in detail and verify that it is strictly weaker than the recently proposed Linear MDP
assumption. Our main algorithm and results are presented in Section 4, with the main proof in Sec-
tion A. We close with some final remarks and future directions in Section 5.

2 PRELIMINARIES

We consider episodic reinforcement learning in a finite-horizon markov decision process (MDP)
with possibly infinitely large state space S, finite action space A, initial distribution µ ∈ ∆(S),
transition operator P : S × A → ∆(S), reward function R : S × A → ∆([0, 1]) and
horizon H . The agent interacts with the MDP in episodes and, in each episode, a trajectory
(s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH) is generated where s1 ∼ µ, for h > 1 we have sh ∼ P (· |
sh−1, ah−1), rh ∼ R(sh, ah), and actions a1:H are chosen by the agent. For normalization, we
assume that

∑H
h=1 rh ∈ [0, 1] almost surely.

A (deterministic, nonstationary) policy π = (π1, · · · , πH) consists of H mappings πh : S → A,
where πh(sh) denotes the action to be taken at time point h if at state sh ∈ S The value function
for a policy π is a collection of functions (V π1 , . . . , V

π
H) where V πh : S → R is the expected future

reward the policy collects if it starts in a particular state at time point h. Formally,

V πh (s) , E

[
H∑

h′=h

rh′ | sh = s, ah:H ∼ π

]
.

The value for a policy π is simply V π , Es1∼µ [V π1 (s1)], and the optimal value is V ? , maxπ V
π ,

where the maximization is over all nonstationary policies. The typical goal is to find an approxi-
mately optimal policy, and in this paper, we measure performance by the regret accumulated over T
episodes,

Reg(T ) , TV ? − E

[
T∑
t=1

H∑
h=1

rh,t

]
.

Here rh,t is the reward collected by the agent at time point h in the tth episode. We seek algorithms
with regret that is sublinear in T , which demonstrates the agent’s ability to act near-optimally over
the long run.

2.1 Q-VALUES AND FUNCTION APPROXIMATION

For any policy π, the state-action value function, or the Q-function is a sequence of mappings
Qπ = (Qπ1 , . . . , Q

π
H) where Qπh : S ×A → R is defined as

Qπh(s, a) , E

[
H∑

h′=h

rh′ | sh = s, ah = a, ah+1:H ∼ π

]
.

The optimal Q-function is Q?h , Qπ
?

h where π? , argmaxπ V
π is the optimal policy.

In the value-based function approximation setting, we use a function class G to model Q?. In this
paper, we always take G to be a class of generalized linear models (GLMs), defined as follows: Let
d ∈ N be a dimensionality parameter and let Bd ,

{
x ∈ Rd : ‖x‖2 ≤ 1

}
be the `2 ball in Rd.

1This is also mentioned as a remark in Jin et al. (2019).
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Definition 1. For a known feature map φ : S × A → Bd and a known link function f : [−1, 1] 7→
[−1, 1] the class of generalized linear models is G , {(s, a) 7→ f(〈φ(s, a), θ〉) : θ ∈ Bd}.

As is standard in the literature (Filippi et al., 2010; Li et al., 2017), we assume the link function
satisfies certain regularity conditions.
Assumption 1. f(·) is either monotonically increasing or decreasing. Furthermore, there exist
absolute constants 0 < κ < K <∞ and M <∞ such that κ ≤ |f ′(z)| ≤ K and |f ′′(z)| ≤M for
all |z| ≤ 1.

For intuition, two example link functions are the identity map f(z) = z and the logistic map f(z) =
1/(1 + e−z) with bounded z. It is easy to verify that both of these maps satisfy Assumption 1.

2.2 EXPRESSIVITY ASSUMPTIONS: REALIZABILITY AND OPTIMISTIC CLOSURE

To obtain sample complexity guarantees that scale polynomially with problem parameters in the
function approximation setting, it is necessary to posit expressivity assumptions on the function
class G (Krishnamurthy et al., 2016; Du et al., 2019a). The weakest such condition is realizability,
which posits that the optimal Q function is in G, or at least well-approximated by G. Realizability
alone suffices for provably efficient algorithms in the “contextual bandits” setting where H = 1 (Li
et al., 2017; Filippi et al., 2010; Abbasi-Yadkori et al., 2011), but it does not seem to be sufficient
whenH > 1. Indeed in these settings it is common to make stronger expressivity assumptions (Chen
& Jiang, 2019; Yang & Wang, 2019; Jin et al., 2019).

Following these works, our main assumption is a closure property of the Bellman update operator
Th. This operator has type Th : (S ×A → R)→ (S ×A → R) and is defined for all s ∈ S, a ∈ A
as

Th(Q)(s, a) , E [rh + VQ(sh+1) | sh = s, ah = a] ,

VQ(s) , max
a∈A

Q(s, a).

The Bellman update operator for time point H is simply TH(Q)(s, a) , E [rH | sH = s, aH = a],
which is degenerate. To state the assumption, we must first define the enlarged function class Gup.
For a d × d matrix A, A � 0 denotes that A is positive semi-definite. For a positive semi-definite
matrix A, ‖A‖op is the matrix operator norm, which is just the largest eigenvalue, and ‖x‖A ,√
x>Ax is the matrix Mahalanobis seminorm. For a fixed constant Γ ∈ R+ that we will set to be

polynomial in d and log(T ), define

Gup ,

{
(s, a) 7→ 1 ∧ f(〈φ(s, a), θ〉) + γ ‖φ(s, a)‖A : θ ∈ Bd, A � 0, ‖A‖op ≤ 1

}
,

Here we use a∧b , min{a, b}. The class Gup contains G in addition to all possible upper confidence
bounds that arise from solving least squares regression problems using the class G. We now state
our main expressivity assumption, which we call optimistic closure.
Assumption 2 (Optimistic closure). For any 1 ≤ h < H and g ∈ Gup, we have Th(g) ∈ G.

In words, when we perform a Bellman backup on any upper confidence bound function for time
point h + 1, we obtain a generalized linear function at time h. While this property seems quite
strong, we note that a similar notion is mentioned informally in Jin et al. (2019) and that related
closure-type assumptions are common in the literature (see Section 2.3 for detailed discussion).
More importantly, we will prove in Section 3 that optimistic closure is actually strictly weaker than
previous assumptions used in our RL setting where exploration is required. Before turning to these
discussions, we mention two basic properties of optimistic closure.
Fact 1 (Optimistic closure and realizability). Optimistic closure implies that Q? ∈ G (realizability).

Proof. We will solve for Q? via dynamic programming, starting from time point H . In this case,
the Bellman update operator is degenerate, and we start by observing that TH(g) ≡ Q?H for all g.
Consequently we have Q?H ∈ G. Next, inductively we assume that we have Q?h+1 ∈ G, which
implies that Q?h+1 ∈ Gup as we may take the same parameter θ and set A ≡ 0. Then, by the standard
Bellman fixed-point characterization, we know that Q?h = Th(Q?h+1), at which point Assumption 2
yields that Q?h ∈ G.
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Fact 2 (Optimistic closure in tabular settings). If S is finite and φ(s, a) = es,a is the standard-basis
feature map, then under Assumption 1 we have optimistic closure.

Proof. We simply verify that G contains all mappings from (s, a) 7→ [0, 1], at which point the
result is immediate. To see why, observe that via Assumption 1 we know that f is invertible (it is
monotonic with derivative bounded from above and below). Then, note that any function (s, a) 7→
[0, 1] can be written as a vector v ∈ [0, 1]|S|×|A|. For such a vector v, if we define θs,a , f−1(vs,a)
we have that f(〈es,a, θ〉) = vs,a. Hence G contains all functions, so we trivially have optimistic
closure.

2.3 RELATED WORK

The majority of the theoretical results for reinforcement learning focus on the tabular setting where
the state space is finite and sample complexities scaling polynomially with |S| are tolerable (Kearns
& Singh, 2002; Brafman & Tennenholtz, 2002; Strehl et al., 2006). Indeed, by now there are a num-
ber of algorithms that achieve strong guarantees in this setting (Dann et al., 2017; Azar et al., 2017;
Jin et al., 2018; Simchowitz & Jamieson, 2019). Via Fact 2, our results apply to this setting, and in-
deed our algorithm can be viewed as a generalization of the canonical tabular algorithm (Azar et al.,
2017; Dann et al., 2017; Simchowitz & Jamieson, 2019) to the function approximation setting.2

Turning to the function approximation setting, several other results concern function approximation
in settings where exploration is not an issue, including the infinite-data regime (Munos, 2003; Farah-
mand et al., 2010) and the “batch RL” setting where the agent does not control the data-collection
process (Munos & Szepesvári, 2008; Antos et al., 2008; Chen & Jiang, 2019). While the details
differ, all of these results require that the function class satisfy some form of (approximate) closure
with respect to the Bellman operator. As an example, one assumption is that T (g) ∈ G for all g ∈ G,
with an appropriately defined approximate variant (Chen & Jiang, 2019). These results therefore
provide motivation for our optimistic closure assumption. While optimistic closure is stronger than
the assumptions in these works, we emphasize that we are also addressing exploration, so our setting
is also significantly more challenging.

A recent line of work studies function approximation in settings where the agent must explore the
environment (Krishnamurthy et al., 2016; Jiang et al., 2017; Du et al., 2019b). The algorithms
developed here can accommodate function classes beyond generalized linear models, but they are
still relatively impractical and the more practical ones require strong dynamics assumptions (Du
et al., 2019b). In contrast, our algorithm is straightforward to implement and does not require any
explicit dynamics assumption. As such, we view these results as complementary to our own.

Most closely related to our work are the recent results of Yang & Wang (2019) and Jin et al. (2019).
Both papers study MDPs with certain linear dynamics assumptions (what they call the Linear MDP
assumption) and use linear function approximation to obtain provably efficient algorithms. Jin et al.
(2019) hint at optimistic closure as a weakening of their Linear MDP assumption and remark that
their guarantees continues to hold under this weaker assumption. One of our contributions is to
formalize this remark. Indeed, our algorithm is almost identical to theirs. However we empha-
size that optimistic closure is strictly weaker than their Linear MDP assumption, which in turn is
strictly weaker than the assumption of Yang & Wang (2019). Further, and perhaps more impor-
tantly, by avoiding explicit dynamics assumptions, we enable approximation with GLMs, which are
incompatible with the Linear MDP structure. Hence, the present paper can be seen as a significant
generalization of these recent results.

Since the initial version of this paper appeared, several other works have studied linear function
approximation in reinforcement learning. A number of papers (Cai et al., 2019; Ayoub et al., 2020;
Modi et al., 2020; Zhou et al., 2020) study an incomparable class of dynamics models that permit
linear function approximation. Others study weakenings of the Linear MDP assumptions. In partic-
ular, Agarwal et al. (2020) only require small transfer error for linear regression, which formalizes
out-of-distribution generalization and is always zero in Linear MDPs. Zanette et al. (2020a) only
require that the Bellman operator is closed with respect to linear functions, which is considerably

2The description of the algorithm looks quite different from that of Azar et al. (2017), but via an equivalence
between model-free methods with experience replay and model-based methods (Fujimoto et al., 2018), they are
indeed quite similar.
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weaker than our optimistic closure assumption. However, their algorithm is not computationally
efficient. Computational efficiency is addressed in Zanette et al. (2020b) in the reward-free setting
with reachability assumptions. As we do not require reachability assumptions, this latter result is
incomparable to ours. None of these results considers generalized linear models.

3 ON OPTIMISTIC CLOSURE

For a more detailed comparison to the recent work of Yang & Wang (2019) and Jin et al. (2019), we
define the linear MDP model studied in the latter work.
Definition 2. An MDP is said to be a linear MDP if there exist known feature map ψ : S×A → Rd,
unknown signed measures µ : S → Rd, and an unknown vector η ∈ Rd such that (1) P (s′|s, a) =
〈ψ(s, a), µ(s′)〉 holds for all states s, s′ and actions a, and (2) E[r | s, a] = 〈ψ(s, a), η〉.

Linear MDPs are studied by Jin et al. (2019), who establish a
√
T -type regret bound for an optimistic

algorithm. This assumption already subsumes that of Yang & Wang (2019), and related assumptions
also appear elsewhere in the literature (Bradtke & Barto, 1996; Melo & Ribeiro, 2007; Zanette
et al., 2019). In this section, we show that optimistic closure (Assumption 2) is strictly weaker than
assuming the environment is a linear MDP.
Proposition 1. If an MDP is linear then Assumption 2 holds with G = {(s, a) 7→ 〈w,ψ(s, a)〉 :
w ∈ Bd} .

Proof. The result is implicit in Jin et al. (2019), and we include the proof for completeness. For any
function g, observe that owing to the linear MDP property

Th(g)(s, a) = E
[
r + max

a′
g(s′, a′) | s, a

]
= 〈ψ(s, a), η〉+

∫
〈ψ(s, a), µ(s′)〉max

a′
g(s′, a′)ds′,

which is clearly a linear function in ψ(s, a). Hence for any function g, which trivially includes the
optimistic functions, we have Th(g) ∈ G.

Thus the linear MDP assumption is stronger than Assumption 2. Next, we show that it is strictly
stronger.
Proposition 2. There exists an MDP with H = 2, d = 2, |A| = 2 and |S| =∞ such that Assump-
tion 2 is satisfied, but the MDP is not a linear MDP.

Thus we have that optimistic closure is strictly weaker than the linear MDP assumption from Jin
et al. (2019). Thus, our results strictly generalize theirs.

Proof. Fix the link function to be f(z) = z. We first construct the MDP. Set the action space
A = {a1, a2}. We use ei to denote the ith standard basis element, and let x = (0.1/Γ, 0.1/Γ) be
a fixed vector where Γ appears in the construction of Gup. Recall that s1 is the first state in each
trajectory. In our example, for all a ∈ A, φ(s1, a) is sampled uniformly at random from the set
{αe1 + (1− α)e2 : α ∈ [0, 1]}. The transition rule is deterministic and given by:

∀a ∈ A : φ(s2, a) = αx if φ(s1, a) = αe1 + (1− α)e2.

Moreover, for the reward function, R(s1, a) = 0 and R(s2, a) = 0.1α/Γ.

We first show that the Linear MDP property does not hold for the constructed MDP and the given
feature map φ. Let s(1)

1 be the state with φ(s
(1)
1 , a) = e2 and s(2)

1 be the state with φ(s
(2)
1 , a) = e1.

Notice that we deterministically transition from s
(1)
1 to a state s(1)

2 with φ(s
(1)
2 , a) = 0, and we de-

terministically transition from s
(2)
1 to a state s(2)

2 with φ(s
(2)
2 , a) = x, which already fixes the whole

transition operator under the linear MDP assumption. Thus, under the linear MDP assumption, we
must therefore have a randomized transition for any state s1 with φ(s1, a) = αe1 + (1 − α)e2

where α ∈ (0, 1). This contradicts the fact that our constructed MDP has deterministic transitions
everywhere, so the linear MDP cannot hold.

We next show that Assumption 2 holds. Consider an arbitrary optimistic Q estimate of the form
g(z) = min{1, z>θ + γ

√
z>Az} ∈ Gup. Notice that for x = (0.1/Γ, 0.1/Γ), we always have that
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Algorithm 1 The LSVI-UCB algorithm with generalized linear function approximation.
1: Initialize estimates Q̄h,0 ≡ 1 for all h ≤ H and Q̄H+1,t ≡ 0 for all 1 ≤ t ≤ T ;
2: Set γ = CKκ−1

√
1 +M +K + d2 ln((1 +K + Γ)TH) for a universal constant C;

3: for t = 1, 2, · · · , T do
4: Commit to policy π̂h,t(s) , argmaxa∈A Q̄h,t−1(s, a);
5: Use policy π̂·,t to collect one trajectory {(sh,t, ah,t, rh,t)}Hh=1;
6: for h = H,H − 1, · · · , 1 do
7: Compute xh,τ , φ(sh,τ , ah,τ ) and yh,τ , rh,τ + maxa′∈A Q̄h+1,t(sh+1,τ , a

′) for all
τ ≤ t;

8: Compute ridge estimate

θ̂h,t , argmin
‖θ‖2≤1

∑
τ≤t

(yh,τ − f(〈xh,τ , θ〉))2; (1)

9: Compute Λh,t ,
∑
τ≤t xh,τx

>
h,τ + I;

10: Construct Q̄h,t(s, a) , min
{

1, f(φ(s, a)>θ̂h,t) + γ ‖φ(s, a)‖Λ−1
h,t

}
;

11: end for
12: end for

x>θ + γ
√
x>Ax ≤ 1 for any θ ∈ Bd and A with ‖A‖op ≤ 1. Moreover, for all s2, i.e., the second

state in the trajectory, we always have φ(s2, a) = αx for some α ∈ [0, 1]. Hence we can ignore the
first term in the minimum, and, by direct calculation, we have that when φ(s, a) = αe1 + (1−α)e2:

T1(g)(s, a) = αx>θ + γ
√
α2x>Ax

= α(x>θ + γ
√
x>Ax) = αc0.

Hence we can write T1(g) = 〈φ(s, a), (c0, 0)〉, which verifies Assumption 2.

4 ALGORITHM AND MAIN RESULT

We now turn to presenting our algorithm and main results. We study a least-squares dynamic pro-
gramming style algorithm that we call LSVI-UCB, with pseudocode presented in Algorithm 1. The
algorithm is nearly identical to the algorithm proposed by Jin et al. (2019) with the same name.
A similar algorithmic template has also been extensively studied in the tabular setting Azar et al.
(2017); Dann et al. (2017); Simchowitz & Jamieson (2019), albeit with slightly different confidence
bounds. As our algorithm applies to all of these settings, it should be considered as a generalization.

The algorithm uses dynamic programming to maintain optimistic Q function estimates
{Q̄h,t}h≤H,t≤T for each time point h and each episode t. In the tth episode, we use the previ-
ously computed estimates to define the greedy policy π̂h,t(·) , argmaxa∈A Q̄h,t−1(·, a), which we
use to take actions for the episode. Then, with all of the trajectories collected so far, we perform a
dynamic programming update, where the main per-step optimization problem is (1). Starting from
time point H , we update our Q function estimates by solving constrained least squares problems
using our class of GLMs. At time point H , the covariates are {φ(sH,τ , aH,τ )}τ≤t, and the regres-
sion targets are simply the immediate rewards {rH,τ}τ≤t. For time points h < H , the covariates are
defined similarly as {φ(sh,τ , ah,τ )}τ≤t but the regression targets are defined by inflating the learned
Q function for time point h+ 1 by an optimism bonus.

In detail, the least squares problem for time point h + 1 yields a parameter θ̂h+1,t and
we also form the second moment matrix Λh+1,t of all the covariates at time h + 1 that
we have seen so far. Using these, we define the optimistic Q function Q̄h+1,t(s, a) ,

min
{

1, f(〈φ(s, a), θ̂h+1,t〉) + γ ‖φ(s, a)‖Λ−1
h+1,t

}
. In our analysis, we verify that Q̄h+1,t is op-

timistic in the sense that it over-estimates Q? for every (s, a). Then, the regression targets for the
least squares problem at time point h are rh,τ + maxa′∈A Q̄h+1,t(sh+1,τ , a

′), which is a natural
stochastic approximation to the Bellman backup of Q̄h+1,t. Applying this update backward from
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time point H to 1, we obtain the Q-function estimates that we use to define the policy for the next
episode.

The main conceptual difference between Algorithm 1 and the algorithm of Jin et al. (2019) is that
we allow non-linear function approximation with GLMs, while they consider only linear models.
On a more technical level, we use constrained least squares for our dynamic programming backup
which we find easier to analyze, while they use the ridge regularized version.

On the computational side, the algorithm is straightforward to implement, and, depending on the link
function f , it can be easily shown to run in polynomial time. For example, if f is the identity map,
then (1) is equivalent to standard least square ridge regression, which can be solved in closed form.
Moreover, we can use the Sherman-Morrison formula to amortize matrix inversions, and, by doing
so, we obtain a running time of O

(
d2|A|HT 2

)
. The dominant cost in this calculation is evaluating

the optimism bonus when computing the regression targets. In practice, using an epoch schedule or
incremental optimization algorithms for updating Q̄would yield an even faster algorithm. Of course,
with modern machine learning libraries, it is also straightforward to implement the algorithm with a
non-trivial link function f , even though (1) may be non-convex.

4.1 MAIN RESULT

Our main result is a regret bound for LSVI-UCB when the link function satisfies Assumption 1 and
the function class satisfies Assumption 2.

Theorem 1. For any episodic MDP, with Assumption 1 and Assumption 2, and for any T , the
cumulative regret of Algorithm 1 is3

O
(
HKκ−1

√
(M +K + d2 ln(KTH)) · Td ln(T/d)

)
= Õ

(
H
√
d3T

)
,

with probability 1− 1/(TH).

The result states that LSVI-UCB enjoys
√
T -regret for any episodic MDP problem and any GLM,

provided that the regularity conditions are satisfied and that optimistic closure holds. As we have
mentioned, these assumptions are relatively mild, encompassing the tabular setting and prior work
on linear function approximation. Importantly, no explicit dynamics assumptions are required.
Thus, Theorem 1 is one of the most general results we are aware of for provably efficient explo-
ration with function approximation.

Nevertheless, to develop further intuition for our bound, it is worth comparing to prior results. First,
in the linear MDP setting of Jin et al. (2019), we use the identity link function so thatK = κ = 1 and
M = 1, and we also are guaranteed to satisfy Assumption 2. In this case, our bound differs from that
of Jin et al. (2019) only in the dependence on H , which arises due to a difference in normalization.
Our bound is essentially equivalent to theirs and can therefore be seen as a strict generalization.

To capture the tabular setting, we use the standard basis featurization as in Fact 2 and the identity
link function, which gives d = |S||A|, K = κ = 1, and M = 1. Thus, we obtain the following
corollary:

Corollary 2. For MDPs with finite state and action spaces, using feature map φ(s, a) , es,a ∈
R|S|×|A|, for any T , the cumulative regret of Algorithm 1 is Õ

(
H
√
|S|3|A|3T

)
, with probability

1− 1/(TH).

Note that this bound is polynomially worse than the near-optimal Õ(H
√
SAT + H2S2A log(T ))

bound of Azar et al. (2017). However, a refined analysis specialized to the tabular setting can
be shown to obtain a better regret bound of Õ

(
H
√
|S|2|A|2T

)
. Of course, our algorithm and

analysis address problems with infinitely large state spaces and other settings that are significantly
more complex than tabular MDPs, which we believe is more important than recovering the optimal
guarantee for tabular MDPs.

3We use Õ (·) to suppress factors of M,K, κ,Γ and any logarithmic dependencies on the arguments.
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5 DISCUSSION

This paper presents a provably efficient reinforcement learning algorithm that approximates the Q?

function with a generalized linear model. We prove that the algorithm obtains Õ(H
√
d3T ) regret

under mild regularity conditions and a new expressivity condition that we call optimistic closure.
These assumptions generalize both the tabular setting, which is classical, and the linear MDP setting
studied in recent work. Further they represent the first statistically and computationally efficient al-
gorithms for reinforcement learning with generalized linear function approximation, without explicit
dynamics assumptions.

We close with some open problems. First, using the fact that Corollary 3 applies beyond GLMs, can
we develop algorithms that can employ general function classes? While such algorithms do exist for
the contextual bandit setting (Foster et al., 2018), it seems quite difficult to generalize this analysis to
multi-step reinforcement learning. More importantly, while optimistic closure is weaker than some
prior assumptions (and incomparable to others), it is still quite strong, and stronger than what is
required for the batch RL setting. An important direction is to investigate weaker assumptions that
enable provably efficient reinforcement learning with function approximation. We look forward to
studying these questions in future work.
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A PROOF OF THEOREM 1

We now provide the proof of Theorem 1, deferring some technical details to later sections in this
appendix. The proof has three main components: a regret decomposition for optimistic Q learning,
a deviation analysis for least squares with GLMs to ensure optimism, and a potential argument to
obtain the final regret bound.

Regret decomposition. The first step of the proof is a regret decomposition that applies generi-
cally to optimistic algorithms.4 The lemma demonstrates concisely the value of optimism in rein-
forcement learning, and is the primary technical motivation for our interest in optimistic algorithms.

We state the lemma more generally, which requires some additional notation. Fix round t and
let {Q̄h,t−1}h≤H denote the current estimated Q functions. The precondition is that Q̄h,t−1 is
optimistic and has controlled overestimation. Precisely, we assume that there exists a function
cnfh,t−1 : S ×A → R+ such that

Q?h(s, a) ≤ Q̄h,t−1(s, a) (2)

Q̄h,t−1(s, a) ≤ Th(Q̄h+1,t−1)(s, a) + cnfh,t−1(s, a) (3)

We will verify that our estimates Q̄h,· satisfy these properties subsequently. Before doing so, we
state the regret decomposition lemma and an immediate corollary.
Lemma 1. Fix episode t and let Ft−1 be the filtration of {(sh,τ , ah,τ , rh,τ )}τ<t. Assume that
Q̄h,t−1 satisfies (3) for some function cnfh,t−1. Then, if πt = argmaxa∈A Q̄h,t−1(·, a) is deployed
we have

V ? − E

[
H∑
h=1

rh,t | Ft−1

]
≤ ζt +

H∑
h=1

cnfh,t−1(sh,t, ah,t),

where E [ζt | Ft−1] = 0 and |ζt| ≤ 2H almost surely.
Corollary 3. Assume that for all t, Q̄h,t−1 satisfies (3) and that πt is the greedy policy with respect
to Q̄h,t−1. Then with probability at least 1− δ, we have

Reg(T ) ≤
T∑
t=1

H∑
h=1

cnfh,t−1(sh,t, ah,t) + O(H
√
T log(1/δ)).

Proof of Lemma 1. Observe that
V ? = E [Q?(s1, π

?(s1))] ≤ E
[
Q̄1,t−1(s1, π

?(s1))
]

≤ E
[
Q̄1,t−1(s1, πt(s1))

]
≤ E [cnf1,t−1(s1, πt(s1))] + E

[
T1(Q̄2,t−1)(s1, πt(s1))

]
= E [cnf1,t−1(s1, πt(s1))] + E [r1 | s1, a1 = πt(s1)]

+ Es2∼πt
[
Q̄2,t−1(s2, πt(s2))

]
4Related results appear elsewhere in the literature focusing on the tabular setting, see e.g., Simchowitz &

Jamieson (2019).
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Throughout this calculation, s1 ∼ µ. The first step here is by definition, the second uses the opti-
mism property for Q̄1,t−1. The third uses that πt is the greedy policy with respect to Q̄1,t−1 while
the fourth uses the upper bound on Q̄1,t−1. Finally we use the definition of the Bellman operator
and the fact that πt is the greedy policy yet again. Comparing this upper bound with the expected
reward collected by πt we observe that r1 cancels, and we get

V ?−E

[
H∑
h=1

rh,t | Ft−1

]
≤ Eπt [cnf1,t−1(s1, πt(s1))] + Eπt

[
Q̄2,t−1(s2, πt(s2))−

H∑
h=2

rh,t | Ft−1

]
.

At this point, notice that Q̄2,t−1(s2, πt(s2)) is precisely what we alreacy upper bounded at time
point h = 1 and we are always considering the state-action distribution induced by πt. Hence,
repeating the argument for all h, we obtain

V ?−E

[
H∑
h=1

rh,t | Ft−1

]
≤

H∑
h=1

Eπt [cnfh,t−1(sh, ah)] =

H∑
h=1

cnfh,t−1(sh,t, ah,t) + ζt,

where ζt ,
∑H
h=1 ζh,t and

ζh,t , Eπt [cnfh,t−1(sh, πt(sh))]− cnfh,t−1(sh,t, ah,t),

which is easily seen to have the required properties.

The lemma states that if Q̄h,t−1 is optimistic and we deploy the greedy policy πt, then the per-
episode regret is controlled by the overestimation error of Q̄h,t−1, up to a stochastic term that enjoys
favorable concentration properties. Crucially, the errors are accumulated on the observed trajectory,
or, stated another way, the cnfh,t−1 is evaluated on the states and actions visited during the episode.
As these states and actions will be used to update Q̄, we can expect that the cnf function will
decrease on these arguments. This can yield one of two outcomes: either we will incur lower regret
in the next episode, or we will explore the environment by visiting new states and actions. In this
sense, the lemma demonstrates how optimism navigates the exploration-exploitation tradeoff in the
multi-step RL setting, analogously to the bandit setting.

Note that Lemma 1 does not assume any form for Q̄h,t−1 and does not require Assumption 2.
In particular, they are not specialized to GLMs. In our proof, we use the GLM representation
and Assumption 2 to ensure that (3) holds and to bound the confidence sum in Corollary 3. We
believe these technical results will be useful in designing RL algorithms for general function classes,
which is a natural direction for future work.

Deviation analysis. The next step of the proof is to design the cnf function and ensure that (3)
holds, with high probability. This is the contents of the next lemma.
Lemma 2. Under Assumption 1 and Assumption 2, with probability 1 − 1/(TH), we have that
∀t, h, s, a: ∣∣∣f(〈φ(s, a), θ̂h,t〉)− Th(Q̄h+1,t)(s, a)

∣∣∣ ≤ γ ‖φ(s, a)‖Λ−1
h,t

where γ,Λh,t are defined in Algorithm 1.

A simple induction argument then verifies that (3) holds, which we summarize in the next corollary.
Corollary 4. Under Assumption 1 and Assumption 2, with probability 1−1/(TH), we have that (3)
holds for all t, h with cnfh,t−1(s, a) = min{2, 2γ ‖φ(s, a)‖Λ−1

h,t−1
}.

As the proof of Lemma 2 is rather long and technical, we defer the details to the appendix and instead
explain the high-level argument here. The proof requires an intricate deviation analysis to account
for the dependency structure in the data sequence. The intuition is that, thanks to Assumption 2 and
the fact that Q̄h+1,t ∈ Gup, we know that there exists a parameter θ̄h,t such that f(〈φ(s, a), θ̄h,t〉) =
Th(Q̄h+1,t)(s, a). It is easy to verify that θ̄h,t is the Bayes optimal predictor for the square loss
problem in (1), and so with a uniform convergence argument we can expect that θ̂h,t is close to θ̄h,t,
which is our desired conclusion.
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There are two subtleties with this argument. First, we want to show that θ̄h,t and θ̂h,t are close in a
data-dependent sense, to obtain the dependence on the Λ−1

h,t-Mahalanobis norm in the bound. This
can be done using vector-valued self-normalized martingale inequalities (Peña et al., 2008), as in
prior work on linear stochastic bandits (Abbasi-Yadkori et al., 2012; Filippi et al., 2010; Abbasi-
Yadkori et al., 2011).

However, the process we are considering is not a martingale, since Q̄h+1,t, which determines the
regression targets yh,τ , depends on all data collected so far. Hence yh,τ is not measurable with
respect to the filtration Fτ , which prevents us from directly applying a self-normalized martingale
concentration inequality. To circumvent this issue, we use a uniform convergence argument and
introduce a deterministic covering of Gup. Each element of the cover induces a different sequence of
regression targets yh,τ , but as the covering is deterministic, we do obtain martingale structure. Then,
we show that the error term for the random Q̄h+1,t that we need to bound is close to a corresponding
term for one of the covering elements, and we finish the proof with a uniform convergence argument
over all covering elements.

The corollary is then obtained by a straightforward inductive argument. Assuming Q̄h+1,t dominates
Q?, it is easy to show that Q̄h,t also dominates Q?, and the upper bound is immediate. Combin-
ing Corollary 4 with Corollary 3, all that remains is to upper bound the confidence sum.

Potential argument. To bound the confidence sum, we use a standard potential argument that
appears in a number of works on stochastic linear bandits. We summarize the conclusion with the
following lemma, which follows directly from Lemma 11 of Abbasi-Yadkori et al. (2012).
Lemma 3. For any h ≤ H we have that

T∑
t=1

‖φ(sh,t, ah,t)‖2Λ−1
h,t−1

≤ 2d ln(1 + T/d).

Wrapping up. Equipped with the above results, we are now prepared to prove Theorem 1.

Proof of Theorem 1. Assume that Corollary 4 holds for all 1 ≤ h ≤ H and 1 ≤ t ≤ T . Apply-
ing Lemma 1 and the definition of cnfh,t−1 implied by Corollary 4, the cumulative expected regret
is at most

TV ? − E

[
T∑
t=1

H∑
h=1

rh,t

]

≤
T∑
t=1

ζt +

T∑
t=1

H∑
h=1

min
{

2, γ ‖φ(sh,t, ah,t)‖Λ−1
h,t−1

}

≤
T∑
t=1

ζt +

H∑
h=1

√
Tγ2 ·

√√√√ T∑
t=1

‖φ(sh,t, ah,t)‖2Λ−1
h,t−1

≤
T∑
t=1

ζt +

H∑
h=1

√
Tγ2 ·

√
2d ln(1 + T/d).

Here, the second step follows from the Cauchy-Schwarz inequality, and the last step is an application
of Lemma 3. The first term forms a martingale, and we know that |ζt| ≤ 2H . Therefore, by Azuma’s
inequality, we have that with probability at least 1− 1/TH

T∑
t=1

ζt ≤
√

8TH2 ln(TH).

Finally, using the definition of γ, the final regret is upper bounded by

Reg(T ) ≤ O
(
H
√
T ln(TH) +HKκ−1 ×

√
(M +K + d2 ln((K + Γ)TH)) · Td ln(1 + T/d)

)
≤ Õ

(
H
√
d3T

)
,

which proves the result.
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B PROOF OF LEMMA 2 AND COROLLARY 4

To facilitate our analysis we define the following important intermediate quantity:

θ̄h,t ∈ Bd : f(〈φ(s, a), θ̄h,t〉) , E
[
rh + max

a′∈A
Q̄h+1,t(s

′, a′) | s, a
]
.

In words, θ̄h,t is the Bayes optimal predictor for the squared loss problem at time point h in the tth

episode. Since by inspection Q̄h+1,t ∈ Gup, by Assumption 2 we know that θ̄h,t exists for all h and
t.
Lemma 4. For any θ, θ′, x ∈ Rd satisfying ‖θ‖2, ‖θ′‖2, ‖x‖2 ≤ 1,

κ2 |〈x, θ′ − θ〉|2 ≤ |f(〈x, θ′〉)− f(〈x, θ〉)|2 ≤ K2 ‖θ′ − θ‖22 .

Proof. By the mean-value theorem, there exists θ̃ = θ + λ(θ′ − θ) for some λ ∈ (0, 1) such that
f(〈x, θ′〉)− f(〈x, θ〉) =

〈
∇θf(〈x, θ̃〉), θ′ − θ

〉
. On the other hand, by the chain rule and Assump-

tion 1, ∇θf(〈x, θ̃〉) = f ′(〈x, θ̃〉) · x. Hence,

|〈∇θf(x>θ̃), θ′ − θ〉|2 ≤ f ′(〈x, θ̃〉)2 · |〈x, θ′ − θ〉|2 ≤ K2 ‖x‖22 ‖θ
′ − θ‖22 ≤ K

2 ‖θ′ − θ‖22 ;

|〈∇θf(x>θ̃), θ′ − θ〉|2 ≥ κ2 |〈x, θ′ − θ〉|2 ,

which are to be demonstrated.

Lemma 5. For any 0 < ε ≤ 1, there exists a finite subset Vε ⊂ Gup with ln |Vε| ≤ 6d2 ln(2(1 +
K + Γ)/ε), such that

sup
g∈Gup

min
v∈Vε

sup
s,a
|g(φ(s, a))− v(φ(s, a))| ≤ ε. (4)

Proof. Recall that for every g ∈ Gup, there exists θ ∈ Bd, 0 ≤ γ ≤ Γ and ‖A‖op ≤ 1 such that
g(x) = min{1, f(〈x, θ〉) + γ ‖x‖A}. Let Θε ⊆ Bd, Γε ⊆ [0,Γ] andMε ⊆ {M ∈ S+

d : ‖M‖op ≤
1} be finite subsets such that for any θ, γ, A, there exist θ′ ∈ Θε, γ′ ∈ Γε, A′ ∈Mε such that

max
{
‖θ − θ′‖2 , |γ − γ

′| , ‖A−A′‖op

}
≤ ε′,

where ε′ ∈ (0, 1) will be specified later in the proof. For the function g ∈ Gup corresponding to the
parameters θ, γ, A the function g′ corresponding to parameters θ′, γ′, A′ satisfies

sup
s,a
|g(φ(s, a))− g′(φ(s, a))| ≤ sup

x∈Bd
|g(x)− g′(x)|

≤ sup
x∈Bd

|f(〈x, θ〉)− f(〈x, θ′〉) + γ ‖x‖A − γ
′ ‖x‖A′ |

≤ K ‖θ − θ′‖2 + |γ − γ′|+ Γ |‖x‖A − ‖x‖A′ |

≤ K ‖θ − θ′‖2 + |γ − γ′|+ Γ
√
|x>(A−A′)x|

≤ Kε′ + ε′ + Γ
√
ε′ ≤ (1 +K + Γ)

√
ε′.

In the last step we use ε′ ≤ 1. Therefore, if we define the class Vε , {(s, a) 7→
min{1, f(〈φ(s, a), θ′〉) + γ′ ‖φ(s, a)‖A′ : θ′ ∈ Θε, γ ∈ Γε, A ∈ Mε}, we know that the cov-
ering property is satisfied with parameter (1 +K + Γ)

√
ε′. Setting ε′ = ε2/(1 +K + Γ)2 we have

the desired covering property.

Finally, we upper bound ln |Vε|. By definition, we have that ln |Vε| ≤ ln |Θε| + ln |Γε| + ln |Mε|.
Furthermore, standard covering number bounds reveals that ln |Θε| ≤ d ln(2/ε′), ln |Γε| ≤ ln(1/ε′)
and ln |Mε| ≤ d2 ln(2/ε′). Plugging in the definition of ε′ yields the result.

For the next lemma, let Ft−1 , σ({(sh,τ , ah,τ , rh,τ )}τ<t) be the filtration induced by all observed
trajectories up to but not including time t. Observe that Q̄·,t−1 and our policy π̂h,t are Ft−1 mea-
surable.
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Lemma 6 (Restatement of Lemma 2). Fix any 1 ≤ t ≤ T and 1 ≤ h ≤ H . Then as long as πt is
Ft−1 measurable, with probability 1− 1/(TH)2 it holds that∣∣∣f(〈φ(s, a), θ̂h,t〉)− f(〈φ(s, a), θ̄h,t〉)

∣∣∣ ≤ min
{

2, γ ‖φ(s, a)‖Λ−1
h,t

}
, ∀s, a.

for γ ≥ CKκ−1
√

1 +M +K + d2 ln((1 +K + Γ)TH) and 0 < C <∞ is a universal constant.

Note that this is precisely Lemma 2, as θ̄h,t is defined as f(〈φ(s, a), θ̄h,t) = Th(Q̄h+1,t)(s, a).

Proof. The upper bound of 2 is obvious, since both terms are upper bounded by 1 in absolute
value. Therefore we focus on the second term in the minimum. To simplify notation we omit the
dependence on h in the subscripts and write xτ , yτ for xh,τ and yh,τ . We also abbreviate θ̂ , θ̂h,t
and θ̄ , θ̄h,t.

Since
∥∥θ̄∥∥

2
≤ 1, the optimality of θ̂ for (1) implies that∑

τ≤t

(
f(〈xτ , θ̂〉)− yτ

)2

≤
∑
τ≤t

(
f(〈xτ , θ̄〉)− yτ

)2
.

Decomposing the squares and re-organizing the terms, we have that

∑
τ≤t

(
f(〈xτ , θ̂〉)− f(〈xτ , θ̄〉)

)2

≤ 2

∣∣∣∣∣∣
∑
τ≤t

ξτ (f(〈xτ , θ̂〉)− f(〈xτ , θ̄〉))

∣∣∣∣∣∣ , (5)

where ξτ , yτ − f(〈xτ , θ̄〉). By the fundamental theorem of calculus, we have

f(〈xτ , θ̂〉)− f(〈xτ , θ̄〉) =

∫ 〈xτ ,θ̂〉
〈xτ ,θ̄〉

f ′(s)ds = 〈xτ , θ̂ − θ̄〉
∫ 1

0

f ′(〈xτ , sθ̂ + (1− s)θ̄〉)ds︸ ︷︷ ︸
,Dτ

.

Using this identity on both sides of (5), we have that

∑
τ≤t

D2
τ

(
〈xτ , θ̂ − θ̄〉

)2

≤ 2

∣∣∣∣∣∣
∑
τ≤t

ξτDτ 〈xτ , θ̂ − θ̄〉

∣∣∣∣∣∣ . (6)

Note also that, by Assumption 1, Dτ satisfies κ2 ≤ D2
τ ≤ K2 almost surely for all τ .

The difficulty in controlling (6) is that θ̄ itself is a random variable that depends on {(xτ , yτ )}τ≤t. In
particular, we want that E[ξτ | Dτ 〈xτ , φ〉 ,Fτ−1] = 0 for any fixed φ, but this is not immediate as
θ̄ depends on xτ . To proceed, we eliminate this dependence with a uniform convergence argument.
Let ε ∈ (0, 1) be a covering accuracy parameter to be determined later in this proof. Let Vε be
the pointwise covering for Gup that is implied by Lemma 5. Let gε ∈ Vε be the approximation for
Q̄h+1,t that satisfies (4). By Assumption 2, there exists some θ] ∈ Bd such that

∀s, a : f(〈φ(s, a), θ]〉) = E
[
r + max

a′∈A
gε(s

′, a′) | s, a
]
.

Now, define y]τ and ξ]τ as

y]τ , rh,τ + max
a′∈A

gε(sh+1,τ , a
′), ξ]τ , y]τ − f(〈xh,τ , θ]〉).

The right-hand side of (6) can then be upper bounded as

2

∣∣∣∣∣∣
∑
τ≤t

ξτDτ 〈xτ , θ̂ − θ̄〉

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∑
τ≤t

ξ]τDτ 〈xτ , θ̂ − θ̄〉

∣∣∣∣∣∣+ ∆, (7)

where |∆| ≤ Kt×maxτ≤t |ξ]τ − ξτ | almost surely.
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Upper bounding ∆ in (7). Fix τ ≤ t. By definition, we have that∣∣ξ]τ − ξτ ∣∣ ≤ ∣∣y]τ − yτ ∣∣+
∣∣f(〈xτ , θ̄〉)− f(〈xτ , θ]〉)

∣∣
≤ max

a∈A

∣∣gε(sh+1,τ , a)− Q̄h+1,t(sh+1,τ , a)
∣∣+K

∥∥θ̄ − θ]∥∥
2

(8)

≤ ε+Kε ≤ (K + 1)ε, (9)

where (8) holds by Lemma 4 and (9) follows from Lemma 5. In particular, the bound on
∥∥θ̄ − θ]∥∥

2

can be verified by expanding the definitions and noting that gε is pointwise close to Q̄h+1,t. There-
fore, we have

|∆| ≤ (K + 1)2tε. (10)

Upper bounding (7). Note that Dτ is a function of xτ , θ̂, and θ̄. For clarity, we define
Dτ (θ, θ′) :=

∫ 1

0
f ′(〈xτ , sθ + (1 − s)θ′)〉)ds. As |f ′′(z)| ≤ M for all |z| ≤ 1 and ‖xτ‖2 ≤ 1,

we have that for every θ, θ′, θ̃, θ̃′ ∈ Bd∣∣∣Dτ (θ, θ′)−Dτ (θ̃, θ̃′)
∣∣∣ ≤ ∫ 1

0

∣∣∣f ′(〈xτ , sθ + (1− s)θ′〉)− f ′(〈xτ , sθ̃ + (1− s)θ̃′〉)
∣∣∣ds

≤M(‖θ − θ̃‖2 + ‖θ′ − θ̃′‖2).

Hence, for any (θ, θ′) and (θ̃, θ̃′) pairs, we have for every τ that∣∣∣ξ]τ 〈xτ , Dτ (θ, θ′)(θ − θ′)−Dτ (θ̃, θ̃′)(θ̃ − θ̃′)
〉∣∣∣

≤
∣∣Dτ (θ, θ′)−Dτ (θ̃, θ̃′)

∣∣× ‖θ − θ′‖2 +
∣∣Dτ (θ̃, θ̃′)

∣∣× (‖θ − θ̃‖2 + ‖θ′ − θ̃′‖2)

≤M(‖θ − θ̃‖2 + ‖θ′ − θ̃′‖2)× 2 +K(‖θ − θ̃‖2 + ‖θ′ − θ̃′‖2)

≤ (2M +K)(‖θ − θ̃‖2 + ‖θ′ − θ̃′‖2).

Here we are using that |ξτ | ≤ 1.

We are now in a position to invoke Lemma 8. Consider a fixed function gε, which defines a fixed
θ]. We will bound

∣∣∣∑τ≤t ξ
]
τ 〈xτ , Dτ (θ, θ′)(θ − θ′)〉

∣∣∣ uniformly over all pairs (θ, θ′). With gε, θ]

fixed and since πt is Ft−1 measurable, we have that {xτ , ξ]τ}τ≤t are random variables satisfying
E[ξ]τ | x1:τ , ξ

]
1:τ−1] = 0. For φ = (θ, θ′) we define the function q(xτ , φ) = 〈x,Dτ (φ)(θ − θ′)〉,

which as we have just calculated satisfies |q(xτ , φ)− q(xτ , φ′)| ≤ (2M + K) ‖φ− φ′‖2. For
δ′ ∈ (0, 1/2) with probability 1− δ′ we have ∀φ = (θ, θ′) ∈ B2

d:∣∣∣∣∣∣
∑
τ≤t

ξ]τ 〈xτ , Dτ (φ)(θ − θ′)〉

∣∣∣∣∣∣ ≤ (2M +K) + 2
(

1 +
√
V (φ)

)√
2d ln(4T ) + ln(1/δ′)

≤ 4 max
{
M +K +

√
2d ln(4T ) + ln(1/δ′),

√
V (φ)

√
2d ln(4T ) + ln(1/δ′)

}
, (11)

where V (φ) ,
∑
τ≤t〈xτ , Dτ (φ)(θ− θ′)〉2. The last inequality holds because a+ b ≤ 2 max{a, b}.

Next, take a union bound over all gε ∈ Vε so (11) holds for any gε and any subsequently induced
choice of ξ]τ with probability at least 1 − |Vε|δ′. In particular, this union bound implies that (11)
holds for the choice of gε that approximates Q̄h+1,t. Therefore, combining (6), (7), (10) with (11)
for this choice of gε, we have that with probability at least 1− |Vε|δ′

∑
τ≤t

D2
τ 〈xτ , θ̂ − θ̄〉2 ≤ 2∆ + 2

∣∣∣∣∣∣
∑
τ≤t

ξ]τ 〈xτ , Dτ (θ̂ − θ̄)〉

∣∣∣∣∣∣
≤ 2(K + 1)2tε+ 8 max

{
M +K +

√
2d ln(4T ) + ln(|Vε|/δ′),

√
V (θ̂, θ̄) ·

√
2d ln(4T ) + ln(|Vε|/δ′)

}
.
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Observe that the left hand side is precisely V (θ̂, θ̄). Now, set ε = 1/(2(K + 1)2T ) and δ′ =
1/(|Vε|T 2H2) and use the bound on ln |Vε| from Lemma 5 to get√

2d ln(4T ) + ln(|Vε|/δ′) ≤
√

2d ln(4T ) + 12d2 ln(2(1 +K + Γ)/ε) + 2 ln(TH)

≤
√

4d ln(2TH) + 24d2 ln(2(1 +K + Γ)T ) ≤
√

28d2 ln(2(1 +K + Γ)TH)

Therefore, we obtain

V (θ̂, θ̄) ≤ 1 + 8 max

{
M +K +

√
28d2 ln(2(1 +K + Γ)TH),

√
V (θ̂, θ̄) ·

√
28d2 ln(2(1 +K + Γ)TH)

}
≤ 16 max

{
1 +M +K +

√
28d2 ln(2(1 +K + Γ)TH),

√
V (θ̂, θ̄) ·

√
28d2 ln(2(1 +K + Γ)TH)

}
.

Subsequently,

V (θ̂, θ̄) =
∑
τ≤t

D2
τ 〈xτ , θ̂ − θ̄〉2

≤ 16 max
{

1 +M +K +
√

28d2 ln(2(1 +K + Γ)TH), 448d2 ln(2(1 +K + Γ)TH)
}

≤ C2
V (1 +M +K + d2 ln((1 +K + Γ)TH)),

where 0 < CV <∞ is a universal constant.

Next, note that D2
τ ≥ κ2, thanks to Assumption 1. We then have√

(θ̂ − θ̄)>Λh,t(θ̂ − θ̄) ≤ κ−1

√
V (θ̂, θ̄) ≤ CV κ−1

√
1 +M +K + d2 ln((1 +K + Γ)TH),

where Λh,t =
∑
τ<t xτ , x

>
τ . Finally, for any (s, a) pair, invoking Lemma 4 and the Cauchy-Schwarz

inequality we have∣∣∣f(〈φ(s, a), θ̂〉)− f(〈φ(s, a), θ̄〉)
∣∣∣ ≤ K ∣∣∣〈φ(s, a), θ̂ − θ̄〉

∣∣∣
≤ K

√
(θ̂ − θ̄)>Λh,t(θ̂ − θ̄)×

√
φ(s, a)>Λ−1

h,tφ(s, a)

≤ CVKκ−1
√

1 +M +K + d2 ln((1 +K + Γ)TH)× ‖φ(s, a)‖Λ−1
h,t

which is to be demonstrated.

Corollary 5 (Restatement of Corollary 4). With probability 1 − 1/(TH), Q̄h,t(s, a) ≥ Q?h(s, a)
holds for all h, t, s, a.

Proof. Fix 1 ≤ t ≤ T . We use induction on h to prove this corollary. For h = H+1, Q̄H+1,t(·, ·) ≥
Q?H+1(·, ·) clearly holds because Q̄H+1,t ≡ Q?H+1 ≡ 0. Now assume that Q̄h+1,t ≥ Q?h+1, and let
us prove that this is also true for time step h.

Since Q̄h+1,t(s
′, a′) ≥ Q?h+1(s′, a′) for all s′, a′, we have that f(〈φ(s, a), θ̄h,t〉) ≥ f(〈φ(s, a), θ?h〉)

for all (s, a) pairs. Then, by the definition of Q̄h,t and Lemma 6, with probability 1 − 1/(TH)2

it holds uniformly for all (s, a) pairs that Q̄h,t(s, a) ≥ f(〈φ(s, a), θ̄h,t〉). Hence, with the same
probability, we have Q̄h,t(s, a) ≥ Q?h(s, a) for all (s, a) pairs. A union bound over all t ≤ T and
h ≤ H completes the proof.

C TAIL INEQUALITIES

Lemma 7 (Azuma’s inequality). Suppose X0, X1, X2, · · · , XN form a martingale (i.e.,
E[Xk+1|X1, · · · , Xk] = Xk) and satisfy |Xk −Xk−1| ≤ ck almost surely. Then for any ε > 0,

Pr
[∣∣Xn −X0

∣∣ ≥ ε] ≤ 2 exp

{
− ε2

2
∑N
k=1 c

2
k

}
.
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Lemma 8. Fix t,D ∈ N. Let {ξτ , uτ}τ≤t be random variables such that
E[ξτ |u1, ξ1, · · · , uτ−1, ξτ−1, uτ ] = 0 and |ξτ | ≤ 1 almost surely. Let q : (u, φ) 7→ R be
an arbitrary deterministic function satisfying |q(u, φ)− q(u, φ′)| ≤ C‖φ− φ′‖2 for all u, φ and φ′,
where φ, φ′ ∈ RD. Then for any δ ∈ (0, 1) and R > 0,

Pr

[
∀φ ∈ BD(R) :

∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ)

∣∣∣∣∣ ≤ C + 2

(
1 +

√
Vq(φ)

)√
D ln(2tR) + ln(1/δ)

]
≥ 1− δ,

where BD(R) , {x ∈ RD : ‖x‖2 ≤ R} and Vq(φ) ,
∑
τ≤t q

2(uτ , φ).

Proof. Let ε > 0 be a small precision parameter to be specified later. LetH ⊆ BD(R) be a finite ε-
covering of BD(R) such that supx∈BD(R) minz∈H ‖x− z‖2 ≤ ε. Using standard covering number
arguments, such a covering exists with ln |H| ≤ D ln(2R/ε).

For any φ ∈ BD(R) let φ′ , argminz∈H ‖φ− z‖2. By definition, ‖φ− φ′‖2 ≤ ε. This implies∣∣∣∑t
τ=1 ξτ [q(uτ , φ)− q(uτ , φ′)]

∣∣∣ ≤ Ctε because |ξτ | ≤ 1 almost surely. Subsequently, for any
∆ > 0,

Pr

[
∃φ ∈ BD(R) :

∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ)

∣∣∣∣∣ > Ctε+ ∆

]
≤ Pr

[
∃φ′ ∈ H :

∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ
′)

∣∣∣∣∣ > ∆

]

≤
∑
φ′∈H

Pr

[∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ
′)

∣∣∣∣∣ > ∆

]
,

where the last inequality holds by the union bound.

For any fixed φ′ ∈ H, h(uτ , φ
′) only depends on uτ , and therefore E[ξτ | q(uτ , φ′)] = 0 for all τ .

Invoking Lemma 7 with Xτ ,
∑
τ ′≤τ ξτ ′q(uτ ′ , φ

′) and cτ ′ = |q(uτ ′ , φ′)|, we have

Pr

[∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ
′)

∣∣∣∣∣ > ∆

]
≤ 2 exp

{
−∆2

2
∑
τ≤t q

2(uτ , φ′)

}
= 2 exp

{
−∆2

2Vq(φ′)

}
Equating the right-hand side of the above inequality with δ′ and combining with the union bound
application, we have

Pr

[
∃φ ∈ Bd(R) :

∣∣∣∣∣
t∑

τ=1

ξτh(uτ , φ)

∣∣∣∣∣ > Ctε+
√

2Vq(φ′) ln(2/δ′)

]
≤ δ′|H|. (12)

Further equating δ′ = δ/|H| and using the fact that ln |H| ≤ D ln(2R/ε), we have

Pr

[
∃φ ∈ Bd(R) :

∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ)

∣∣∣∣∣ > Ctε+
√

2DVq(φ′) ln(2R/ε) + 2Vq(φ′) ln(1/δ)

]
≤ δ.

Finally, as |q(uτ , φ′)− q(uτ , φ)| ≤ ε, we have Vq(φ′) ≤ 2Vq(φ) + 2tε2 and so

Pr

[
∃φ ∈ BD(R) :

∣∣∣∣∣
t∑

τ=1

ξτq(uτ , φ)

∣∣∣∣∣ > Ctε+ 2ε
√
Dt ln(2R/εδ) + 2

√
Vq(φ)(D ln(2R/ε) + ln(1/δ)

]
≤ δ.

Setting ε = 1/t in the above inequality completes the proof.
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