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ABSTRACT

Recent advances in deep learning rely heavily on massive datasets, leading to
substantial storage and training costs. Dataset pruning aims to alleviate this de-
mand by discarding redundant examples. However, many existing methods re-
quire training a model with a full dataset over a large number of epochs before
being able to prune the dataset, which ironically makes the pruning process more
expensive than just training the model on the entire dataset. To overcome this lim-
itation, we introduce a Difficulty and Uncertainty-Aware Lightweight (DUAL)
score, which aims to identify important samples from the early training stage by
considering both example difficulty and prediction uncertainty. To address a catas-
trophic accuracy drop at extreme pruning, we further propose a ratio-adaptive
sampling using Beta distribution. Experiments on various datasets and learning
scenarios such as image classification with label noise, image corruption, and
model architecture generalization demonstrate the superiority of our method over
previous state-of-the-art (SOTA) approaches. Specifically, on ImageNet-1k, our
method reduces the time cost for pruning to 66% compared to previous methods
while achieving a SOTA, specifically 60% test accuracy at a 90% pruning ratio.
On CIFAR datasets, the time cost is reduced to just 15% while maintaining SOTA
performance.

1 INTRODUCTION

Advancements in deep learning have been significantly driven by large-scale datasets. However,
recent studies have revealed a power-law relationship between the generalization capacity of deep
neural networks and the size of their training data (Hestness et al., 2017; Rosenfeld et al., 2019;
Gordon et al., 2021), meaning that the improvement of model performance becomes increasingly
cost-inefficient as we scale up the dataset size.

Fortunately, Sorscher et al. (2022) demonstrate that the power-law scaling of error can be reduced to
exponential scaling with Pareto optimal data pruning. The main goal of dataset pruning is to identify
and retain the most informative samples while discarding redundant data points for training neural
networks. This approach can alleviate storage and computational costs as well as training efficiency.

However, many existing pruning methods require training a model with a full dataset over a number
of epochs to measure the importance of each sample, which ironically makes the pruning process
more expensive than just training the model once on the original large dataset. For instance, several
score-based methods (Toneva et al., 2018; Pleiss et al., 2020; Paul et al., 2021; He et al., 2024; Zhang
et al., 2024) require training as they utilize the dynamics from the whole training process. Some
geometry-based methods, (Xia et al., 2022; Yang et al., 2024) leverage features from the penultimate
layer of the trained model, therefore training a model is also required. Hybrid methods (Zheng et al.,
2022; Maharana et al., 2023; Tan et al., 2025), which address the difficulty and diversity of samples
simultaneously, still hold the same limitation as they use existing score metrics. Having to compute
the dot product of learned features to get the neighborhood information makes them even more
expensive to utilize.

∗Authors contributed equally to this paper.
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Figure 1: Test accuracy comparison on CIFAR datasets (Left: Results for CIFAR-10, Right: Results
for CIFAR-100). The color represents the total computation time, including the time spent training
the original dataset for score calculation, for each pruning method. Blue indicates lower computation
time, while red indicates higher computation time. Our method demonstrates its ability to minimize
computation time while maintaining SOTA performance.

To address this issue, we introduce Difficulty and Uncertainty-Aware Lightweight (DUAL) score,
a metric that measures the importance of samples in the early stage of training by considering both
prediction uncertainty and the example difficulty. Additionally, at the high pruning ratio—when the
selected subset is scarce—we propose pruning-ratio-adaptive Beta sampling, which intentionally
includes easier samples with lower scores to achieve a better representation of the data distribu-
tion (Sorscher et al., 2022; Zheng et al., 2022; Acharya et al., 2024).

Experiments conducted on CIFAR and ImageNet datasets under various learning scenarios verify
the superiority of our method over previous SOTA methods. Specifically, on ImageNet-1k, our
method reduces the time cost to 66% compared to previous methods while achieving a SOTA 60%
test accuracy at the pruning ratio of 90%. On the CIFAR datasets, as illustrated in Figure 1, our
method reduces the time cost to just 15% while maintaining SOTA performance. Especially, our
method shows a notable performance when artificial noise is added.

2 RELATED WORKS

Data pruning aims to remove redundant examples, keeping the most informative subset of samples,
namely the coreset. Research in this area can be broadly categorized into two groups: score-based
and geometry-based methods. Score-based methods define metrics representing the difficulty or
importance of data points to prioritize samples with high scores. Geometry-based methods, whereas,
focus more on keeping a good representation of the true data distribution. Recent studies proposed
hybrid methods that incorporate the example difficulty score with the diversity of coreset.

Score-based. EL2N (Paul et al., 2021) calculates L2 norms of the error vector as an approximation
of the gradient norm. Entropy (Coleman et al., 2020) quantifies the information contained in the
predicted probabilities at the end of training. However, the outcomes of such “snapshot” methods
differ significantly from run to run, making it difficult to obtain a reliable score in a single run, as
can be seen in Figure 7, Appendix B.

Methods using training dynamics offer more reliability as they incorporate information through-
out an entire run of training. Forgetting (Toneva et al., 2018) score counts the number of forget-
ting events, a correct prediction on a data point is flipped to a wrong prediction during training.
AUM (Pleiss et al., 2020) accumulates the gap between the target probability and the second-highest
prediction probability. Dyn-Unc (He et al., 2024), which strongly inspired our approach, prioritizes
the uncertain samples rather than typical easy samples or hard ones during model training. The
prediction uncertainty is measured by the variation of predictions in a sliding window, and the score
averages the variation throughout the whole training process. TDDS (Zhang et al., 2024) averages
differences of Kullback-Leibler divergence loss of non-target probabilities for T training epochs,
where T is highly dependent on the pruning ratio. Taking the training dynamics into account proves
useful for pruning because it allows one to differentiate informative but hard samples from ones with
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label noise (He et al., 2024). However, despite the stability and effectiveness of these methods, they
fail to provide cost-effectiveness as it requires training the model on the entire dataset.

Geometry-based. Geometry-based methods focus on reducing redundancy among selected sam-
ples to provide better representation. SSP (Sorscher et al., 2022) selects the samples most distant
from k-means cluster centers, while Moderate (Xia et al., 2022) focuses on samples with scores
near the median. However, these methods often compromise generalization performance, as they
underestimate the effectiveness of difficult examples.

Recently, hybrid approaches have emerged that harmonize both difficulty and diversity. CCS Zheng
et al. (2022) partitions difficulty scores into bins and selects an equal number of samples from each
bin to ensure a balanced representation. D2 Maharana et al. (2023) employs a message-passing
mechanism with a graph structure where nodes represent difficulty scores and edges encode neigh-
boring representations, facilitating effective sample selection. BOSS Acharya et al. (2024) intro-
duces a Beta function for sampling based on difficulty scores, which resembles our pruning ratio-
adaptive sampling; we discuss the key difference in Section 3.3. Our DUAL pruning is a score-based
approach as it considers difficulty and uncertainty by the score metric. Additionally, diversity is in-
troduced through our proposed Beta sampling, making it a hybrid approach.

3 PROPOSED METHODS

3.1 PRELIMINARIES

Let D := {(x1, y1) , · · · , (xn, yn)} be a labeled dataset of n training samples, where x ∈ X ⊂ Rd

and y ∈ Y := {1, · · · , C} are the data point and the label, respectively. C is a positive integer and
indicates the number of classes. For each labeled data point (x, y) ∈ D, denote Pk(y | x) as the
prediction probability of y given x, for the model trained with k epochs. Let S ⊂ D be the subset
retained after pruning. Pruning ratio r is the ratio of the size of D \ S to D, or r = 1− |S|

|D| .

The Dynamic Uncertainty (Dyn-Unc) score (He et al., 2024) prefers the most uncertain samples
rather than easy-to-learn or hard-to-learn samples during model training. The uncertainty score is
defined as the average of prediction variance throughout training. They first define the uncertainty
in a sliding window of length J :

Uk(x, y) :=

√∑J−1
j=0

[
Pk+j(y | x)− P̄k

]2
J − 1

(1)

where P̄k :=
∑J−1

j=0 Pk+j(y|x)
J is the average prediction of the model over the window [k, k+ J − 1].

Then taking the average of the uncertainty throughout the whole training process leads to the Dyn-
Unc score:

U(x, y) =

∑T−J+1
k=1 Uk(x, y)

T − J + 1
. (2)

3.2 DIFFICULTY & UNCERTAINTY-AWARE LIGHTWEIGHT SCORE

Following the approach of Swayamdipta et al. (2020) and He et al. (2024), we analyze data points
from ImageNet-1k based on the mean and standard deviation of predictions during training, as
shown in Figure 2. We observe data points typically “flow” along the “moon” from bottom to
top direction. Data points starting from the bottom-left region with a low prediction mean and low
standard deviation move to the middle region with increased mean and standard deviation, and those
starting in the middle region drift toward the upper-left region with a high prediction mean and
smaller standard deviation. This phenomenon is closely aligned with existing observations that neu-
ral networks typically learn easy samples first, then treat harder samples later (Bengio et al., 2009;
Arpit et al., 2017; Jiang et al., 2020; Shen et al., 2022). In other words, we see that the uncertainty
of easy samples rises first, and then more difficult samples start to move and show an increased
uncertainty score.

Figure 2 further gives a justification for this intuition. In Figure 2a, samples with the highest Dyn-
Unc scores calculated at epoch 60 move upward by the end of training at epoch 90. It means that if
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(a) Dyn-Unc score calculated at epoch T = 60. (b) Dyn-Unc score calculated at epoch T = 90.

Figure 2: The left column visualizes the prediction mean and standard deviation for each data point
collected up to epoch 60, while the right column stands for epoch 90. Samples are colored by
normalized Dyn-Unc score for each row. The expected cases of the original Dyn-Unc, where the
score computation time step is the same as the final epoch of training, are marked with bold outlines.

we measure the Dyn-Unc score at the early stage of training, it gives the highest scores to relatively
easy samples rather than the most informative samples. It seems undesirable that it results in poor
test accuracy on its coreset as shown in Figure 8 of Appendix B.

To capture the most useful samples that are likely to contribute significantly to dynamic uncertainty
during the whole training process (of 90 epochs) at the earlier training stage (e.g. epoch of 60), we
need to target the samples located near the bottom-right region of the moon-shaped distribution, as
Figure 2b illustrates. Inspired by this observation, we propose a scoring metric that identifies such
samples by taking the uncertainty of the predictions and the prediction probability into considera-
tion.

Here, we propose the Difficulty and Uncertainty-Aware Lightweight (DUAL) score, a measure
that unites example difficulty and prediction uncertainty. We define the DUAL score of a data point
(x, y) at k ∈ [T − J + 1] as

DUALk(x, y) :=
(
1− P̄k

)︸ ︷︷ ︸
(a)

√∑J−1
j=0

[
Pk+j(y | x)− P̄k

]2
J − 1︸ ︷︷ ︸
(b)

(3)

where P̄k :=
∑J−1

j=0 Pk+j(y|x)
J is the average prediction of the model over the window [k, k+ J − 1].

Note that DUALk is the product of two terms: (a) 1− P̄k quantifies the example difficulty averaged
over the window; (b) is the standard deviation of the prediction probability over the same window,
estimating the prediction uncertainty.

Finally, the DUAL score of (x, y) is defined as the mean of DUALk scores over all windows:

DUAL(x, y) =

∑T−J+1
k=1 DUALk(x, y)

T − J + 1
. (4)

The DUAL score reflects training dynamics by leveraging prediction probability across several
epochs It provides a reliable estimation to identify the most uncertain examples.

A theoretical analysis of a toy example further verifies the intuition above. Consider a linearly
separable binary classification task {(xi ∈ Rn, yi ∈ {±1})}Ni=1, where N = 2 with ∥x1∥ ≪
⟨x1,x2⟩ < ∥x2∥. Without loss of generality, we set y1 = y2 = +1. A linear classifier,
f(x;w) = w⊤x, is employed as the model in our analysis. The parameter w is initialized at
zero and updated by gradient descent. Soudry et al. (2018) prove that the parameter of linear clas-
sifiers diverges to infinity, but directionally converges to the L2 maximum margin separator. This
separator is determined by the support vectors closest to the decision boundary. If a valid pruning
method encounters this task, then it should retain the point closer to the decision boundary, which is
x1 in our case, and prune x2.

Due to its large norm, x2 exhibits higher score values in the early training stage for both uncertainty
and DUAL scores. It takes some time for the model to predict x1 with high confidence, which
increases its uncertainty level and prediction mean, as well as for scores of x1 to become larger than
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x2 as training proceeds. In Theorem 3.1, we show through a rigorous analysis that the moment of
such a flip in order happens strictly earlier for DUAL than dynamic uncertainty.

Theorem 3.1 (Informal). Define σ(z) := (1 + e−z)−1. Let V (i)
t;J be the variance and µ

(i)
t;J be the

mean of σ(f(xi;wt)) within a window from time t to t + J . Denote Tv and Tvm as the first time
step when V

(1)
t;J > V

(2)
t;J and V

(1)
t;J (1 − µ

(i)
t;J) > V

(2)
t;J (1 − µ

(2)
t;J) occur, respectively. If the learning

rate is small enough, then Tvm < Tv .

Technical details about Theorem 3.1 are provided in Appendix D, together with an empirical verifi-
cation of the time-efficiency of DUAL pruning over Dyn-Unc.

Figure 3: DUAL score also targets uncertain samples
during the early epoch. In the end, selected samples
are finally located in the most uncertain region.

Empirically, as shown in Figure 3, the
DUAL score targets data points in the
bottom-right region during the early train-
ing phase, which eventually evolve to the
middle-rightmost part by the end of training.
This verifies that DUAL pruning identifies
the most uncertain region faster than Dyn-
Unc both in theory and practice. The dis-
tinction arises from the additional consider-
ation of an example difficulty in our method.
We believe that this adjustment leads to
improved generalization performance com-
pared to Dyn-Unc, as verified through vari-
ous experiments in later sections.

However, score-based methods, including our method, suffer from limitations due to biased repre-
sentations, leading to poor coreset test accuracy at high pruning ratios. To address this, we propose
an additional strategy to adaptively select samples according to a ratio for pruning.

3.3 PRUNING RATIO-ADAPTIVE SAMPLING

Since the distribution of difficulty scores is dense in high-score samples, selecting only the highest-
score samples may result in a biased model (Zhou et al., 2023; Maharana et al., 2023; Choi et al.,
2024). To address this, we design a sampling method to determine the subset S ⊂ D, rather than
simply pruning the samples with the lowest score. We introduce a Beta distribution that varies
with the pruning ratio. The primary objective of this method is to ensure that the selected subsets
gradually include more easy samples into the coreset as the pruning ratio increases.

However, the concepts of “easy” and “hard” cannot be distinguished solely based on uncertainty,
or DUAL score. To address this, we use the prediction mean again for sampling. We utilize the
Beta probability density function (PDF) to define the selection probability of each sample. First, we
assign each data point a corresponding PDF value based on its prediction mean and weight this prob-
ability using the DUAL score. The weighted probability with the DUAL score is then normalized so
that the sum equals 1, and then used as the sampling probability. To be clear, sampling probability
is for selecting samples, not for pruning. Therefore, for each pruning ratio r, we randomly select
(1 − r) · n samples without replacement, where sampling probabilities are given according to the
prediction mean and DUAL score as described. The detailed algorithm for our proposed pruning
method with Beta sampling is provided in Algorithm 1, Appendix C.

We design the Beta PDF to assign a sampling probability concerning a prediction mean as follows:

βr = C · (1− µD) (1− rcD )

αr = C − βr,
(5)

where C > 0 is a fixed constant, and the µD stands for the prediction mean of the highest score
sample. Recalling that the mean of Beta distribution is αr

αr+βr
, the above choice makes the mean of

Beta distribution move progressively with r, starting from µD (r ≃ 0, small pruning ratio) to one.
In other words, with growing r, this Beta distribution becomes skewed towards the easier region
(r → 1, large pruning ratio), which in turn gives more weight to easy samples. The tendency of
evolution should be different with datasets, thus a hyperparameter cD ≥ 1 is used to control the rate
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Table 1: Comparison of test accuracy between the DUAL score method and existing coreset selec-
tion techniques using ResNet-18 on CIFAR-10 and CIFAR-100 datasets. Training the model on the
full dataset achieves an average test accuracy of 95.30% on CIFAR-10 and 78.91% on CIFAR-100.
The best result in each pruning ratio is highlighted in bold.

Dataset (→) CIFAR-10 CIFAR-100
Pruning Rate (→) 30% 50% 70% 80% 90% 30% 50% 70% 80% 90%
Random 94.39±0.23 93.20±0.12 90.47±0.17 88.28±0.17 83.74±0.21 75.15±0.28 71.68±0.31 64.86±0.39 59.23±0.62 45.09±1.26

Entropy 93.48±0.06 92.47±0.17 89.54±0.18 88.53±0.19 82.57±0.36 75.20±0.25 70.90±0.35 61.70±0.47 56.24±0.51 42.25±0.39

Forgetting 95.48±0.14 94.94±0.21 89.55±0.65 75.47±1.27 46.64±1.90 77.52±0.26 70.93±0.37 49.66±0.20 39.09±0.41 26.87±0.73

EL2N 95.44±0.06 95.19±0.11 91.62±0.14 74.70±0.45 38.74±0.75 77.13±0.23 68.98±0.35 34.59±0.48 19.52±0.79 8.89 ±0.28

AUM 90.62±0.09 87.26±0.11 81.28±0.26 76.58±0.35 67.88±0.53 74.34±0.14 69.57±0.21 61.12±0.20 55.80±0.33 45.00±0.37

Moderate 94.26±0.09 92.79±0.09 90.45±0.21 88.90±0.17 85.52±0.29 75.20±0.25 70.90±0.35 61.70±0.47 56.24±0.51 42.25±0.39

Dyn-Unc 95.49±0.21 95.35±0.12 91.78±0.65 83.32±0.94 59.67±1.79 77.67±0.14 74.23±0.22 64.30±0.13 55.01±0.55 34.57±0.69

TDDS 94.42±0.13 93.11±0.14 91.02±0.19 88.25±0.24 82.49±0.28 75.02±0.37 71.80±0.33 64.61±0.24 59.88±0.21 47.93±0.21

CCS 95.31±0.22 95.06±0.15 92.68±0.17 91.25±0.21 85.92±0.39 77.15±0.28 73.83±0.21 68.65±0.31 64.06±0.21 54.23±0.48

D2 94.13±0.20 93.26±0.16 92.34±0.18 90.38±0.34 86.11±0.21 76.47±0.29 73.88±0.28 62.99±0.28 61.48±0.34 50.14±0.90

DUAL 95.25±0.17 94.95±0.22 91.75±0.98 82.02±1.85 54.95±0.42 77.43±0.18 74.62±0.47 66.41±0.52 56.57±0.57 34.38±1.39

DUAL+β sampling 95.51±0.06 95.23±0.08 93.04±0.43 91.42±0.35 87.09±0.36 77.86±0.12 74.66±0.12 69.25±0.22 64.76±0.23 54.54±0.09

of evolution of the Beta distribution. Specifically, the choice of cD depends on the complexity of the
initial dataset. For smaller and more complex datasets, setting cD to a smaller value retains more
easy samples. For larger and simpler datasets, setting cD to a larger value allows more uncertain
samples to be selected. (For your intuitive understanding, please refer to Figure 15 and Figure 16
in the Appendix C.) This is also aligned with the previous findings from Sorscher et al. (2022); if
the initial dataset is small, the coreset is more effective when it contains easier samples, while for a
relatively large initial dataset, including harder samples can improve generalization performance.
Remark. BOSS (Acharya et al., 2024) also uses the Beta distribution to sample easier data points
during pruning, similar to our approach. However, a key distinction lies in how we define the Beta
distribution’s parameters, αr and βr. While BOSS adjusts these parameters to make the mode of the
Beta distribution’s PDF scale linearly with the pruning ratio r, we employ a non-linear combination.
This non-linear approach has the crucial advantage of maintaining an almost stationary PDF at low
pruning ratios. This stability is especially beneficial when the dataset becomes easier, where there
is no need to focus on easy examples. Furthermore, unlike previous methods, we define PDF values
based on the prediction mean, rather than any difficulty score, which is another significant difference.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We assessed the performance of our proposed method in three key scenarios: image classifica-
tion, image classification with noisy labels and corrupted images. In addition, we validate cross-
architecture generalization on three-layer CNN, VGG-16 (Simonyan & Zisserman, 2015), ResNet-
18 and ResNet-50 (He et al., 2015).

Hyperparameters. For training CIFAR-10 and CIFAR-100, we train ResNet-18 for 200 epochs
with a batch size of 128. SGD optimizer with momentum of 0.9 and weight decay of 0.0005 is used.
The learning rate is initialized as 0.1 and decays with the cosine annealing scheduler. As Zhang et al.
(2024) show that smaller batch size boosts performance at high pruning rates, we also halved the
batch size for 80% pruning, and for 90% we reduced it to one-fourth. For ImageNet-1k, ResNet-34
is trained for 90 epochs with a batch size of 256 across all pruning ratios. An SGD optimizer with
a momentum of 0.9, a weight decay of 0.0001, and an initial learning rate of 0.1 is used, combined
with a cosine annealing scheduler.

Baselines. The baselines considered in this study are listed as follows1: (1) Random; (2) En-
tropy (Coleman et al., 2020); (3) Forgetting (Toneva et al., 2018); (4) EL2N (Paul et al., 2021);
(5) AUM (Pleiss et al., 2020); (6) Moderate (Xia et al., 2022); (7) Dyn-Unc (He et al., 2024); (8)
TDDS (Zhang et al., 2024); (9) CCS (Zheng et al., 2022); and (10) D2 (Maharana et al., 2023). To

1Infomax (Tan et al., 2025) was excluded as it employs different base hyperparameters in the original pa-
per compared to other baselines and does not provide publicly available code. See Appendix A.1 for more
discussion.
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ensure a fair comparison, all methods were trained with the same base hyperparameters for train-
ing, and the best hyperparameters reported in their respective original works for scoring. Technical
details are provided in the Appendix A.1.

4.2 IMAGE CLASSIFICATION BENCHMARKS

-15.5%
-35.5%

-55.5%
-65.5%

-75.5%

Figure 4: Comparison in total time spent on CI-
FAR datasets.

Table 1 presents the test accuracy for image
classification results on CIFAR-10 and CIFAR-
100. Our pruning method consistently out-
performs other baselines, particularly when
combined with Beta sampling. While the
DUAL score exhibits competitive performance
in lower pruning ratios, its accuracy degrades
with more aggressive pruning. Our Beta sam-
pling effectively mitigates this performance
drop.

Notably, the DUAL score only requires training
a single model for only 30 epochs, significantly
reducing the computational cost. In contrast,
the second-best methods, Dyn-Unc and CCS,
rely on scores computed over a full 200-epoch
training cycle, making them considerably less
efficient. Even considering subset selection, score computation, and subset training, the total time
remains less than a single full training run, as shown in Figure 4. Specifically, on CIFAR-10, our
method achieves lossless pruning up to a 50% pruning ratio while saving 35.5% of total training
time.

Table 2: Comparison of test accuracy of DUAL
score with existing coreset selection methods
using ResNet34 for ImageNet-1k. The model
trained with the full dataset achieves 73.1% test
accuracy. The best result in each pruning ratio is
highlighted in bold.

Pruning Rate 30% 50% 70% 80% 90%

Random 72.2 70.3 66.7 62.5 52.3
Entropy 72.3 70.8 64.0 55.8 39.0
Forgetting 72.6 70.9 66.5 62.9 52.3
EL2N 72.2 67.2 48.8 31.2 12.9
AUM 72.5 66.6 40.4 21.1 9.9
Moderate 72.0 70.3 65.9 61.3 52.1
Dyn-Unc 70.9 68.3 63.5 59.1 49.0
TDDS 70.5 66.8 59.4 54.4 46.0
CCS 72.3 70.5 67.8 64.5 57.3
D2 72.9 71.8 68.1 65.9 55.6

DUAL 72.8 71.5 68.6 64.7 53.1
DUAL+β sampling 73.3 72.3 69.4 66.5 60.0

We also evaluate our pruning method on the
large-scale dataset, ImageNet-1k. The DUAL
score is computed during training, specifically
at epoch 60, which is 33% earlier than the orig-
inal train epoch used to compute scores for
other baseline methods. As shown in Table 2,
Dyn-Unc performs worse than random prun-
ing across all pruning ratios, and we attribute
this undesirable performance to its limited total
training epochs (only 90), which is insufficient
for Dyn-Unc to fully capture the training dy-
namics of each sample. In contrast, our DUAL
score, combined with Beta sampling, outper-
forms all competitors while requiring the least
computational cost. The DUAL score’s ability
to consider both training dynamics and the diffi-
culty of examples enables it to effectively iden-
tify uncertain samples early in the training pro-
cess, even when training dynamics are limited.
Remarkably, for 90% pruned Imagenet-1K, it
maintains a test accuracy of 60.0%, surpassing
the previous state-of-the-art (SOTA) by a large
margin.

4.3 EXPERIMENTS UNDER MORE REALISTIC SCENARIOS

4.3.1 LABEL NOISE AND IMAGE CORRUPTION

Data affected by label noise or image corruption are difficult and unnecessary samples that hin-
der model learning and degrade generalization performance. Therefore, filtering out these samples
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(a) Pruned mislabeled data ratio
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(c) Test accuracy under image noise

Figure 5: The left figure shows the ratio of pruned mislabeled data under 20% label noise on CIFAR-
100 trained with ResNet-18. When label noise is 20%, the optimal value (black dashed line) cor-
responds to pruning 100% of mislabeled data at a 20% pruning ratio. The middle and right figures
depict test accuracy under 20% label noise and 20% image corruption, respectively. Our method
effectively prunes mislabeled data near the optimal value while maintaining strong generalization
performance. Results are averaged over five random seeds.

through data pruning is crucial. Most data pruning methods, however, either focus solely on select-
ing difficult samples based on example difficulty (Paul et al., 2021; Pleiss et al., 2020; Coleman et al.,
2020) or prioritize dataset diversity (Zheng et al., 2022; Xia et al., 2022), making them unsuitable
for effectively pruning such noisy and corrupted samples.

In contrast, methods that select uncertain samples while considering training dynamics, such as For-
getting (Toneva et al., 2018) and Dyn-Unc (He et al., 2024), demonstrate robustness by pruning
both the hardest and easiest samples, ultimately improving generalization performance, as illus-
trated in Figure 5a. However, since noisy samples tend to be memorized after useful samples are
learned (Arpit et al., 2017; Jiang et al., 2020), there is a possibility that those noisy samples may still
be treated as uncertain in the later stages of training and thus be included in the selected subset.

The DUAL score aims to identify high-uncertainty samples early in training by considering both
training dynamics and example difficulty. Noisy data, typically under-learned compared to other
challenging samples during this phase, exhibit lower uncertainty (Figure 11, Appendix B.1). Con-
sequently, our method effectively prunes these noisy samples.

To verify this, we evaluate our method by introducing a specific proportion of symmetric label
noise (Patrini et al., 2017; Xia et al., 2020; Li et al., 2022) and applying five different types of
image corruptions (Wang et al., 2018; Hendrycks & Dietterich, 2019; Xia et al., 2021). We use
CIFAR-100 with ResNet-18 and Tiny-ImageNet with ResNet-34 for these experiments. On CIFAR-
100, we test label noise and image corruption ratios of 20%, 30%, and 40%. For Tiny-ImageNet,
we use a 20% ratio of label noise and image corruption. We prune the label noise-added dataset
using a model trained for 50 epochs and the image-corrupted dataset with a model trained for 30
epochs using DUAL pruning—both significantly lower than the 200 epochs used by other methods.
For detailed experimental settings, please refer to Appendix A.2. As shown in Figure 5, the left
plot demonstrates that DUAL pruning effectively removes mislabeled data at a ratio close to the
optimal. Notably, when the pruning ratio is 10%, nearly all pruned samples are mislabeled data.
Consequently, as observed in Figure 5b, DUAL pruning leads to improved test accuracy compared to
training on the full dataset, even up to a pruning ratio of 70%. At lower pruning ratios, performance
improves as mislabeled data are effectively removed, highlighting the advantage of our approach in
handling label noise. Similarly, for image corruption, our method prunes more corrupted data across
all corruption rates compared to other methods, as shown in Figure 13, 14 in Appendix B.2. As a
result, this leads to higher test accuracy, as demonstrated in Figure 5c.

Detailed results, including exact numerical values for different corruption rates and Tiny-ImageNet
experiments, can be found in Appendix B.1 and B.2. Across all experiments, DUAL pruning con-
sistently shows strong noise robustness and outperforms other methods by a substantial margin.

4.3.2 CROSS-ARCHITECTURE GENERALIZATION

We also evaluate the ability to transfer scores across various model architectures. To be specific,
if we can get high-quality example scores for pruning by using a simpler architecture than one
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Table 3: Cross-architecture generalization performance on CIFAR-100 from ResNet-18 to ResNet-
50. We report an average of five runs. ‘R50→ R50’ stands for score computation on ResNet-50, as
a baseline.

ResNet-18→ ResNet-50

Pruning Rate (→) 30% 50% 70% 90%

Random 74.47 ±0.67 70.09 ±0.42 60.06 ±0.99 41.91 ±4.32

EL2N 76.42 ±1.00 69.14 ±1.00 45.16 ±3.21 19.63 ±1.15

Dyn-Unc 77.31 ±0.34 72.12 ±0.68 59.38 ±2.35 31.74 ±2.31

CCS 74.78 ±0.66 69.98 ±1.18 59.75 ±1.41 41.54 ±3.94

DUAL 78.03 ±0.83 72.82 ±1.46 63.08 ±2.45 33.65 ±2.92

DUAL +β 77.82 ±0.65 73.98 ±0.62 66.36 ±1.66 49.90 ±2.56

DUAL (R50→R50) 77.82 ±0.64 73.66 ±0.85 52.12 ±2.73 26.13 ±1.96

DUAL (R50→R50)+β 77.57 ±0.23 73.44 ±0.87 65.17 ±0.96 47.63 ±2.47

for the training, our DUAL pruning would become even more efficient in time and computational
cost. Therefore, we focus on the cross-architecture generalization from relatively small networks to
larger ones with three-layer CNN, VGG-16, ResNet-18, and ResNet-50. Competitors are selected
from each categorized group of the pruning approach: EL2N from difficulty-based, Dyn-Unc from
uncertainty-based, and CCS from the geometry-based group.

For instance, we get training dynamics from the ResNet-18 and then calculate the example scores.
Then, we prune samples using scores calculated from ResNet-18, and train selected subsets on
ResNet-50. The result with ResNet-18 and ResNet-50 is described in Table 3. Surprisingly, the
coreset shows competitive performance to the baseline, where the baseline refers to the test ac-
curacy after training a coreset constructed based on the score calculated from ResNet-50. For all
pruning cases, we observe that our methods reveal the highest performances. Specifically, when we
prune 70% and 90% of the original dataset, we find that all other methods fail, showing worse test
accuracies than random pruning.

We also test the cross-architecture generalization performance with three-layer CNN, VGG-16, and
ResNet-18 in Appendix B.3. Even for a simple model like three-layer CNN, we see our methods
show consistent performance, as can be seen in Table 13 in Appendix B.3. This observation gives
rise to an opportunity to develop some small proxy networks to get example difficulty with less
computational cost. Transfer across models with similar capacities, e.g. from VGG-16 to ResNet-
18 and vice versa, also supports the verification of cross-architecture compatibility.

4.4 ABLATION STUDIES
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Figure 6: Left: Varying T with J = 10 and cD =
4. Right: Varying cD with T = 30 and J = 10.

Hyperparameter Analysis. Here, we inves-
tigate the robustness of our hyperparameters,
T , J , and cD. We fix J across all experi-
ments, as it has minimal impact on selection,
indicating its robustness (Fig 9, Appendix B).
In Figure 6, we assess the robustness of T by
varying it from 20 to 200 on CIFAR-100. We
find that while T remains highly robust in ear-
lier epochs, increasing T degrades generaliza-
tion performance. This is expected, as larger
T overemphasizes difficult samples due to our difficulty-aware selection. Thus, pruning in earlier
epochs (from 30 to 50) proves to be more effective and robust. For the cD, we vary it from 3 to 7 and
find robustness, especially in the aggressive pruning regime. All results are averaged across three
runs.

Beta Sampling Analysis. Next, we study the impact of our proposed pruning-ratio-adaptive Beta
sampling on existing score metrics. We apply our Beta sampling strategy to prior score-based meth-
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Table 4: Comparison on CIFAR-10 and CIFAR-100 for 90% pruning rate. We report average accu-
racy with five runs. The best performance is in bold in each column.

CIFAR-10 CIFAR-100

Method Thresholding β-Sampling Thresholding β-Sampling

Random 83.74 ±0.21 83.31 (-0.43) ±0.14 45.09 ±1.26 51.76 (+6.67) ±0.25

EL2N 38.74 ±0.75 87.00 (+48.26) ±0.45 8.89 ±0.28 53.97 (+45.08) ±0.63

Forgetting 46.64 ±1.90 85.67 (+39.03) ±0.13 26.87 ±0.73 52.40 (+25.53) ±0.43

Dyn-Unc 59.67 ±1.79 85.33 (+25.66) ±0.20 34.57 ±0.69 51.85 (+17.28) ±0.35

Ours 54.95 ±0.42 87.09 (+32.14) ±0.36 34.28 ±1.39 54.54 (+20.26) ±0.09

ods, including Forgetting, EL2N, and Dyn-Unc, using the CIFAR10 and CIFAR100 datasets. By
comparing our sampling approach with vanilla threshold pruning, which selects only the highest-
scoring samples, we observe that prior score-based methods become remarkably comparable to
random pruning after Beta sampling is adjusted (see Table 4).

Even adapted for random pruning, our Beta sampling proves to perform well. Notably, EL2N, which
performs poorly on its own, becomes significantly more effective when combined with our sampling
method. Similar improvements are also seen with Forgetting and Dyn-Unc scores. This is because
our proposed Beta sampling enhances the diversity of selected samples in turn, especially when used
with example difficulty-based methods. More results conducted for 80% pruning cases are included
in the Appendix B.4.

Additional Analysis. In addition to the main results presented in this paper, we also conducted
various experiments to further explore the effectiveness of our method. These additional results
include an analysis of coreset performance under a time budget (e.g. other score metrics are also
computed by using training dynamics up to epoch 30) and Spearman rank correlation was calculated
between individual scores and the averaged score across five runs to assess the consistency of scores
for each sample. Furthermore, additional results in extreme cases, 30% and 40% of label noise and
image corruption can be found in Appendix B.

5 CONCLUSION

We introduce the Difficulty and Uncertainty-Aware Lightweight (DUAL) score, a novel scoring
metric designed for cost-effective pruning. The DUAL score is the first metric to integrate both dif-
ficulty and uncertainty into a single measure, and its effectiveness in identifying the most informa-
tive samples early in training is further supported by theoretical analysis. Additionally, we propose
pruning-ratio-adaptive sampling to account for sample diversity, particularly when the pruning ratio
is extremely high. Our proposed pruning methods, DUAL score and DUAL score combined with
Beta sampling demonstrate remarkable performance, particularly in realistic scenarios involving
label noise and image corruption, by effectively distinguishing noisy samples.

Data pruning research has been evolving in a direction that contradicts its primary objective of re-
ducing computational and storage costs while improving training efficiency. This is mainly because
the computational cost of pruning often exceeds that of full training. By introducing our DUAL
method, we take a crucial step toward overcoming this challenge by significantly reducing the com-
putation cost associated with data pruning, making it feasible for practical scenarios. Ultimately, we
believe this will help minimize resource waste and enhance training efficiency.
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A TECHNICAL DETAILS

A.1 DETAILS ON BASELINE IMPLEMENTATION

EL2N Paul et al. (2021) is defined as the error L2 norm between the true labels and predictions of
the model. The examples with low scores are pruned out. We calculated error norms at epoch 20
from five independent runs, then the average was used for Ethe L2N score.

Forgetting Toneva et al. (2018) is defined as the number of forgetting events, where the model
prediction goes wrong after the correct prediction, up until the end of training. Rarely unforgotten
samples are pruned out.

AUM Pleiss et al. (2020) accumulates the margin, which means the gap between the target proba-
bilities and the second largest prediction of a model. They calculate the margin at every epoch and
then transform it into an AUM score at the end of the training. Here samples with small margins are
considered as mislabeled samples, thus data points with small AUM scores are eliminated.

Entropy Coleman et al. (2020) is calculated as the entropy of prediction probabilities at the end of
training, and then the samples that have high entropy are selected into coreset.

Dyn-Unc He et al. (2024) is also calculated at the end of training, with the window length J set as
10. Samples with high uncertainties are selected into the subset after pruning.

TDDS Zhang et al. (2024) adapts different hyperparameter for each pruning ratio. As they do not
provide full information for implementation, we have no choice but to set parameters for the rest
cases arbitrarily. The provided setting for (pruning ratio, computation epoch T , the length of sliding
window K) is (0.3, 70, 10), (0.5, 90, 10), (0.7, 80, 10), (0.8, 30, 10), and (0.9, 10, 5) for CIFAR-100,
and for ImageNet-(0.3, 20, 10), (0.5, 20, 10), (0.7, 30, 20). Therefore, we set the parameter for
CIFAR-10 as the same as CIFAR-100, and for 80%, 90% pruning on ImageNet-1k, we set them as
(30, 20), following the choice for 70% pruning.

CCS Zheng et al. (2022) for the stratified sampling method, we adapt the AUM score as the original
CCS paper does. They assign different hard cutoff rates for each pruning ratio. For CIFAR-10, the
cutoff rates are (30%, 0), (50%, 0), (70%, 10%), (80%, 10%), (90%, 30%). For CIFAR-100 and
ImageNet-1k, we set them as the same as in the original paper.

D2 Maharana et al. (2023) for D2 pruning, we set the initial node using forgetting scores for CIFAR-
10 and CIFAR-100, we set the number of neighbors k, and message passing weight γ the same as in
the original paper.

Note that, Infomax (Tan et al., 2025) was excluded as it employs different base hyperparameters in
the original paper compared to other baselines and does not provide publicly available code. Ad-
ditionally, implementation details, such as the base score metric used to implement Infomax, are
not provided. As we intend to compare other baseline methods with the same training hyperpa-
rameters, we do not include the accuracies of Infomax in our tables. To see if we can match the
performance of Infomax, we tested our method with different training details. For example, if we
train the subset using the same number of iterations (not epoch) as the full dataset and use a different
learning rate tuned for our method, then an improved accuracy of 59% is achievable for 90% prun-
ing on CIFAR-100, which surpasses the reported performance of Infomax. For the ImageNet-1k
dataset, our method outperforms Infomax without any base hyperparameter tuning, while also being
cost-effective.

A.2 DETAILED EXPERIMENTAL SETTINGS

Here we clarify the technical details of our work. For training the model on the full dataset and the
selected subset, all parameters are used identically except for batch sizes. For CIFAR-10/100, we
train ResNet-18 for 200 epochs with a batch size of 128, for each pruning ratio {30%, 50%, 70%,
80%, 90%} we use different batch sizes with {128, 128, 128, 64, 32}. We set the initial learning rate
as 0.1, the optimizer as SGD with momentum 0.9, and the scheduler as cosine annealing scheduler
with weight decay 0.0005. For training ImageNet, we use ResNet-34 as the network architecture.
For all coresets with different pruning rates, we train models for 300,000 iterations with a 256
batch size. We use the SGD optimizer with 0.9 momentum and 0.0001 weight decay, using a 0.1
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initial learning rate. The cosine annealing learning rate scheduler was used for training. For a
fair comparison, we used the same parameters across all pruning methods, including ours. All
experiments were conducted using an NVIDIA A6000 GPU.

For calculating the DUAL score, we need three parameters T , J , and cD, each means score compu-
tation epoch, the length of the sliding window, and hyperparameter regarding the training dataset.
We fix J as 10 for all experiments. We use (T , J , cD) for each dataset as follows. For CIFAR-10,
we use (30, 10, 5.5), for CIFAR-100, (30, 10, 4), and for ImageNet-1k, (60, 10, 11). We first roughly
assign the term cD based on the size of the initial dataset and by considering the relative difficulty of
each, we set cD for CIFAR-100 smaller than that of CIFAR-10. For the ImageNet-1k dataset, which
contains 1,281,167 images, the size of the initial dataset is large enough that we do not need to set
cD to a small value to intentionally sample easier samples. Also, note that we fix the value of C of
Beta distribution at 15 across all experiments. A more detailed distribution, along with visualization,
can be found in Appendix C.

Experiments with label noise and image corruption on CIFAR-100 are conducted under the same
settings as described above, except for the hyperparameters for DUAL pruning. For label noise
experiments, we set T to 50 and J to 10 across all label noise ratios. For cD, we set it to 6 for 20%
and 30% noise, 8 for 40% noise. For image corruption experiments, we set T to 30, J to 10, and cD
to 6 across all image corruption ratios.

For the Tiny-ImageNet case, we train ResNet-34 for 90 epochs with a batch size of 256 across
all pruning ratios, using a weight decay of 0.0001. The initial learning rate is set to 0.1 with the
SGD optimizer, where the momentum is set to 0.9, combined with a cosine annealing learning rate
scheduler. For the hyperparameters used in DUAL pruning, we set T to 60, J to 10, and cD to 6 for
the label noise experiments. For the image corruption experiments, we set T to 60, J to 10, and cD
to 2. We follow the ImageNet-1k hyperparameters to implement the baselines.
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B MORE RESULTS ON EXPERIMENTS

We evaluate our proposed DUAL score through a wide range of analyses in this section. In Ap-
pendix B.1 and B.2, we demonstrate the robustness of the DUAL score across a variety of experi-
ments. In Appendix B.3, we investigate the cross-architecture performance of DUAL pruning. In
Appendix B.4, we show that beta sampling performs well even when combined with other score
metrics, such as EL2N and Dyn-Unc, and also shows strong performance when compared to other
sampling methods, especially CCS.

We first investigate the stability of our DUAL score compared to other baselines. We calculate the
Spearman rank correlation of each score and the average score across five runs, following Paul et al.
(2021). As shown in Figure 7, snapshot-based methods such as EL2N and Entropy exhibit relatively
low correlation compared to methods that consider training dynamics. In particular, the DUAL
score shows minimal score variation across runs, resulting in a high Spearman rank correlation,
indicating strong stability across random seeds. Notably, even when the scores are calculated at the
30th epoch, the Spearman correlation between the individual scores and the overall average score
remains approximately 0.95.
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Figure 7: Average of Spearman rank correlation among independent runs and an overall average of
five runs.

Next, we compute the Dyn-Unc, TDDS, and AUM scores at the 30th epoch, as we do for our
method, and then compare the test accuracy on the coreset. Our pruning method, using the DUAL
score and ratio-adaptive beta sampling, outperforms the others by a significant margin, as illustrated
in Figure 8. We see using epoch 30 results in insufficient training dynamics for the others, thus it
negatively impacts their performance.
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Figure 8: Test accuracy comparison under limited computation budget (epoch 30)
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Figure 9: J varies from 5 to 15, showing minimal differences, which demonstrates its robustness.
We fix T = 30, CD = 4. Runs are averaged over three runs.

B.1 IMAGE CLASSIFICATION WITH LABEL NOISE

We evaluated the robustness of our DUAL pruning method against label noise. We introduced
symmetric label noise by replacing the original labels with labels from other classes randomly. For
example, if we apply 20% label noise to a dataset with 100 classes, 20% of the data points are
randomly selected, and each label is randomly reassigned to another label with a probability of 1/99
for the selected data points.

Even under 30% and 40% random label noise, our method achieves the best performance and accu-
rately identifies the noisy labels, as can be seen in Figure 10. By examining the proportion of noise
removed, we can see that our method operates close to optimal.
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(b) 40% label noise

Figure 10: Ratio of pruned mislabeled data under 30% and 40% label noise on CIFAR-100

Figure 11 shows a scatter plot of the CIFAR-100 dataset under 20% label noise. The model is
trained for 30 epochs, and we compute the prediction mean (y-axis) and standard deviation (x-axis)
for each data point. Red dots represent the 20% mislabeled data. These points remain close to the
origin (0,0) during the early training phase. Therefore, pruning at this stage allows us to remove
mislabeled samples nearly optimally while selecting the most uncertain ones.

We evaluated the performance of our proposed method across a wide range of pruning levels, from
10% to 90%, and compared the final accuracy with that of baseline methods. As shown in the
Table 5-8, our method consistently outperforms the competition with a substantial margin in most
cases. For a comprehensive analysis of performance under noisy conditions, please refer to Tables 5
to 7 for CIFAR-100, which show results for 20%, 30%, and 40% noise, respectively. Additionally,
the results for 20% label noise in Tiny-ImageNet are shown in Table 8.
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Figure 11: Pruning ratio is set to 50%. Only 116 data points over 10,000 mislabeled data are selected
as a subset where red dots indicate mislabeled data.

Table 5: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 20% label noise using ResNet-18 for CIFAR-100. The model trained with the full dataset
achieves 65.28% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 64.22 ±0.37 63.12 ±0.26 61.75 ±0.24 58.13 ±0.22 50.11 ±0.75 44.29 ±1.2 32.04 ±0.93

Entropy 63.51 ±0.25 60.59 ±0.23 56.75 ±0.37 44.90 ±0.74 24.43 ±0.12 16.60 ±0.29 10.35 ±0.49

Forgetting 64.29 ±0.26 63.40 ±0.14 64.00 ±0.27 67.51 ±0.52 59.29 ±0.66 50.11 ±0.91 32.08 ±1.15

EL2N 64.51 ±0.35 62.67 ±0.28 59.85 ±0.31 46.94 ±0.75 19.32 ±0.87 11.02 ±0.45 6.83 ±0.21

AUM 64.54 ±0.23 60.72 ±0.22 50.38 ±0.66 22.03 ±0.92 5.55 ±0.26 3.00 ±0.18 1.68 ±0.10

Moderate 64.45 ±0.29 62.90 ±0.33 61.46 ±0.50 57.53 ±0.61 49.50 ±1.06 43.81 ±0.80 29.15 ±0.79

Dyn-Unc 68.17 ±0.26 71.56 ±0.27 74.12 ±0.15 73.43 ±0.12 67.21 ±0.27 61.38 ±0.27 48.00 ±0.79

TDDS 62.86 ±0.36 61.96 ±1.03 61.38 ±0.53 59.16 ±0.94 48.93 ±1.68 43.83 ±1.13 34.05 ±0.49

CCS 64.30 ±0.21 63.24 ±0.24 61.91 ±0.45 58.24 ±0.29 50.24 ±0.39 43.76 ±1.07 30.67 ±0.96

DUAL 69.78 ±0.28 74.79 ±0.07 75.40 ±0.11 73.43 ±0.16 67.57 ±0.18 61.46 ±0.45 43.30 ±1.59

DUAL+β sampling 69.95 ±0.60 74.68 ±1.22 75.37 ±1.33 73.29 ±0.84 68.43 ±0.77 63.74 ±0.35 54.04 ±0.92

Table 6: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 30% label noise using ResNet-18 for CIFAR-100. The model trained with the full dataset
achieves 58.25% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 57.67 ±0.52 56.29 ±0.55 54.70 ±0.60 51.41 ±0.38 42.67 ±0.80 36.86 ±1.01 25.64 ±0.82

Entropy 55.51 ±0.42 51.87 ±0.36 47.16 ±0.58 35.35 ±0.49 18.69 ±0.76 13.61 ±0.42 8.58 ±0.49

Forgetting 56.76 ±0.62 56.43 ±0.28 58.84 ±0.26 64.51 ±0.37 61.26 ±0.69 52.94 ±0.68 34.99 ±1.16

EL2N 56.39 ±0.53 54.41 ±0.68 50.29 ±0.40 35.65 ±0.79 13.05 ±0.51 8.52 ±0.40 6.16 ±0.40

AUM 56.51 ±0.56 49.10 ±0.72 37.57 ±0.66 11.56 ±0.46 2.79 ±0.23 1.87 ±0.24 1.43 ±0.12

Moderate 57.31 ±0.75 56.11 ±0.45 54.52 ±0.48 50.71 ±0.42 42.47 ±0.29 36.21 ±1.09 24.85 ±1.72

Dyn-Unc 62.20 ±0.44 66.48 ±0.40 70.45 ±0.50 71.91 ±0.34 66.53 ±0.19 61.95 ±0.46 49.51 ±0.52

TDDS 57.24 ±0.44 55.64 ±0.46 53.97 ±0.46 49.04 ±1.05 39.90 ±1.21 35.02 ±1.34 26.99 ±1.03

CCS 57.26 ±0.48 56.52 ±0.23 54.76 ±0.52 51.29 ±0.32 42.33 ±0.78 36.61 ±1.31 25.64 ±1.65

DUAL 62.42 ±0.48 67.52 ±0.40 72.65 ±0.17 71.55 ±0.23 66.35 ±0.14 61.57 ±0.44 48.70 ±0.19

DUAL+β sampling 63.02 ±0.41 67.52 ±0.24 72.57 ±0.15 71.68 ±0.27 66.75 ±0.45 62.28 ±0.43 52.60 ±0.87
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Table 7: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 40% label noise using ResNet-18 for CIFAR-100. The model trained with the full dataset
achieves 52.74% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 51.13 ±0.71 48.42 ±0.46 46.99 ±0.29 43.24 ±0.46 33.60 ±0.50 28.28 ±0.81 19.52 ±0.79

Entropy 49.14 ±0.32 46.06 ±0.58 41.83 ±0.73 28.26 ±0.37 15.64 ±0.19 12.21 ±0.68 8.23 ±0.40

Forgetting 50.98 ±0.72 50.36 ±0.48 52.86 ±0.47 60.48 ±0.68 61.55 ±0.58 54.57 ±0.86 37.68 ±1.63

EL2N 50.09 ±0.86 46.35 ±0.48 41.57 ±0.26 23.42 ±0.80 9.00 ±0.25 6.80 ±0.44 5.58 ±0.40

AUM 50.60 ±0.54 41.84 ±0.76 26.29 ±0.72 5.49 ±0.19 1.95 ±0.21 1.44 ±0.14 1.43 ±0.24

Moderate 50.62 ±0.27 48.70 ±0.79 47.01 ±0.21 42.73 ±0.39 32.35 ±1.29 27.72 ±1.69 19.85 ±1.11

Dyn-Unc 54.46 ±0.27 59.02 ±0.23 63.86 ±0.47 69.76 ±0.16 65.36 ±0.14 61.37 ±0.32 50.49 ±0.71

TDDS 50.65 ±0.23 48.83 ±0.38 46.93 ±0.66 41.85 ±0.37 33.31 ±0.79 29.39 ±0.35 21.09 ±0.89

CCS 64.30 ±0.29 48.54 ±0.35 46.81 ±0.45 42.57 ±0.32 33.19 ±0.88 28.32 ±0.59 19.61 ±0.75

DUAL 54.46 ±0.33 58.99 ±0.34 64.71 ±0.44 69.87 ±0.28 64.21 ±0.21 59.90 ±0.44 49.61 ±0.27

DUAL+β sampling 54.53 ±0.06 59.65 ±0.41 64.67 ±0.34 70.09 ±0.33 65.12 ±0.46 60.62 ±0.30 51.51 ±0.41

Table 8: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 20% label noise using ResNet-34 for Tiny-ImageNet. The model trained with the full dataset
achieves 42.24% test accuracy on average. Results are averaged over three runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 41.09 ±0.29 39.24 ±0.39 37.17 ±0.23 32.93 ±0.45 26.12 ±0.63 22.11 ±0.42 13.88 ±0.60

Entropy 40.69 ±0.06 38.14 ±0.92 35.93 ±1.56 31.24 ±1.76 23.65 ±2.05 18.53 ±2.10 10.52 ±1.64

Forgetting 43.60 ±0.65 44.82 ±0.20 45.65 ±0.48 46.05 ±0.07 41.08 ±0.53 34.89 ±0.12 24.58 ±0.06

EL2N 41.05 ±0.35 38.88 ±0.63 32.91 ±0.39 20.89 ±0.80 8.08 ±0.24 4.92 ±0.32 3.12 ±0.07

AUM 40.20 ±0.27 34.68 ±0.35 29.01 ±0.12 10.45 ±0.85 2.52 ±0.75 1.30 ±0.23 0.79 ±0.40

Moderate 41.23 ±0.38 38.58 ±0.60 37.60 ±0.66 32.65 ±1.18 25.68 ±0.40 21.74 ±0.63 14.15 ±0.73

Dyn-Unc 45.67 ±0.78 47.49 ±0.46 49.38 ±0.17 47.47 ±0.32 42.49 ±0.39 37.44 ±0.73 28.48 ±0.73

TDDS 36.56 ±0.54 36.90 ±0.48 47.62 ±1.36 42.44 ±0.63 34.32 ±0.26 24.32 ±0.26 17.43 ±0.17

CCS 40.49 ±0.67 39.06 ±0.24 37.67 ±0.46 30.83 ±1.02 22.38 ±0.70 19.66 ±0.58 12.23 ±0.64

DUAL 45.76 ±0.67 48.20 ±0.20 49.94 ±0.17 48.19 ±0.27 42.80 ±0.74 37.90 ±0.59 27.80 ±0.49

DUAL+β sampling 45.21 ±0.08 47.76 ±0.33 48.99 ±0.32 46.95 ±0.23 43.01 ±0.43 37.91 ±0.28 28.78 ±0.57
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B.2 IMAGE CLASSIFICATION WITH IMAGE CORRUPTION

We also evaluated the robustness of our proposed method against five different types of realistic
image corruption: motion blur, fog, reduced resolution, rectangular occlusion, and Gaussian noise
across the corruption rate from 20% to 40%. The ratio of each type of corruption is 4% for 20%
corruption, 6% for 30% corruption, and 8% for 40% corruption. Example images for each type of
corruption can be found in Figure 12. Motion blur, reduced resolution, and rectangular occlusion
are somewhat distinguishable, whereas fog and Gaussian noise are difficult for the human eye to
differentiate. Somewhat surprisingly, our DUAL pruning prioritizes removing the most challenging
examples, such as fog and Gaussian corrupted images, as shown in Figure 14.

Motion Fog Resolution Rectangle Gaussian

Figure 12: Examples of the different types of noise used for image corruption. Here we consider
motion blur, fog, resolution, rectangle, and Gaussian noise.
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(a) 20% image corruption
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(b) 30% image corruption
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(c) 40% image corruption

Figure 13: Ratio of pruned corrupted samples with corruption rate of 20%, 30% and 40% on CIFAR-
100.
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Figure 14: Illustration of the different types of noise used for image corruption. DUAL pruning
prioritizes removing the most challenging corrupted images, such as fog and Gaussian noise.

We evaluated the performance of our proposed method across a wide range of pruning levels, from
10% to 90%, and compared the final accuracy with that of baseline methods. As shown in the table,
our method consistently outperforms the competitors in most cases. For a comprehensive analysis
of performance under noisy conditions, please refer to Tables 9 to 11 for CIFAR-100, which show
results for 20%, 30%, and 40% corrupted images, respectively. Additionally, the results for 20%
image corruption in Tiny-ImageNet are shown in Table 12.
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Table 9: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 20% image corrupted data using ResNet-18 for CIFAR-100. The model trained with the full
dataset achieves 75.45% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 74.54 ±0.14 73.08 ±0.27 71.61 ±0.14 67.52 ±0.32 59.57 ±0.52 52.79 ±0.68 38.26 ±1.32

Entropy 74.74 ±0.25 73.15 ±0.26 71.15 ±0.13 64.97 ±0.52 49.49 ±1.40 35.92 ±0.64 17.91 ±0.45

Forgetting 74.33 ±0.25 73.25 ±0.29 71.68 ±0.37 67.31 ±0.23 58.93 ±0.35 52.01 ±0.62 38.95 ±1.24

EL2N 75.22 ±0.09 74.23 ±0.11 72.01 ±0.18 48.19 ±0.47 14.81 ±0.14 8.68 ±0.06 7.60 ±0.18

AUM 75.26 ±0.25 74.47 ±0.31 71.96 ±0.22 47.50 ±1.39 15.35 ±1.79 8.98 ±1.37 5.47 ±0.85

Moderate 75.25 ±0.23 74.34 ±0.31 72.80 ±0.25 68.75 ±0.40 60.98 ±0.39 54.21 ±0.93 38.72 ±0.30

Dyn-Unc 75.22 ±0.25 75.51 ±0.22 75.09 ±0.23 72.02 ±0.07 62.17 ±0.55 53.49 ±0.47 35.44 ±0.49

TDDS 73.29 ±0.40 72.90 ±0.31 71.83 ±0.78 67.24 ±0.92 57.30 ±3.11 55.14 ±1.21 41.58 ±2.10

CCS 74.31 ±0.14 73.04 ±0.23 71.83 ±0.25 67.61 ±0.48 59.61 ±0.64 53.35 ±0.71 39.04 ±1.14

DUAL 75.95 ±0.19 75.66 ±0.23 75.10 ±0.23 72.64 ±0.27 65.29 ±0.64 57.55 ±0.55 37.34 ±1.70

DUAL+β sampling 75.50 ±0.21 75.78 ±0.15 75.10 ±0.13 72.08 ±0.22 65.84 ±0.37 62.20 ±0.72 53.96 ±0.35

Table 10: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 30% image corrupted data using ResNet-18 for CIFAR-100. The model trained with the full
dataset achieves 73.77% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 72.71 ±0.34 71.28 ±0.31 69.84 ±0.24 65.42 ±0.33 56.72 ±0.56 49.71 ±0.65 35.75 ±1.41

Entropy 72.94 ±0.09 71.14 ±0.14 68.74 ±0.20 61.34 ±0.59 42.70 ±1.02 29.46 ±1.68 12.55 ±0.66

Forgetting 72.67 ±0.21 71.22 ±0.08 69.65 ±0.45 65.25 ±0.33 56.47 ±0.31 49.07 ±0.32 34.62 ±1.15

EL2N 73.33 ±0.08 71.99 ±0.11 67.72 ±0.50 37.57 ±0.70 10.75 ±0.28 9.08 ±0.30 7.75 ±0.08

AUM 73.73 ±0.19 72.99 ±0.22 70.93 ±0.33 57.13 ±0.42 28.98 ±0.50 19.73 ±0.28 12.18 ±0.46

Moderate 74.02 ±0.28 72.70 ±0.30 71.51 ±0.26 67.35 ±0.16 59.47 ±0.34 52.95 ±0.60 37.45 ±1.21

Dyn-Unc 73.86 ±0.21 73.78 ±0.20 73.78 ±0.12 71.01 ±0.23 61.56 ±0.46 52.51 ±1.08 35.47 ±1.34

TDDS 71.58 ±0.50 71.45 ±0.68 69.92 ±0.25 65.12 ±2.08 55.79 ±2.16 53.85 ±0.94 40.51 ±1.34

CCS 72.58 ±0.12 71.38 ±0.35 69.83 ±0.26 65.45 ±0.23 56.65 ±0.45 49.75 ±0.90 34.63 ±1.79

DUAL 73.96 ±0.20 74.07 ±0.43 73.74 ±0.18 71.23 ±0.08 64.76 ±0.32 57.47 ±0.51 37.93 ±2.38

DUAL+β sampling 73.91 ±0.17 73.80 ±0.48 73.59 ±0.19 71.12 ±0.29 65.18 ±0.44 61.07 ±0.47 52.61 ±0.47

Table 11: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 40% image corrupted data using ResNet-18 for CIFAR-100. The model trained with the full
dataset achieves 72.16% test accuracy on average. Results are averaged over five runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 70.78 ±0.25 69.30 ±0.29 67.98 ±0.26 63.23 ±0.26 53.29 ±0.64 45.76 ±0.85 32.63 ±0.61

Entropy 70.74 ±0.18 68.90 ±0.37 66.19 ±0.46 57.03 ±0.60 35.62 ±1.58 22.50 ±1.03 7.46 ±0.52

Forgetting 70.54 ±0.10 69.17 ±0.30 67.41 ±0.28 62.77 ±0.15 52.89 ±0.36 44.94 ±0.66 30.48 ±0.49

EL2N 71.57 ±0.28 69.24 ±0.16 62.95 ±0.52 28.33 ±0.47 9.48 ±0.21 8.86 ±0.21 7.58 ±0.16

AUM 71.66 ±0.23 69.75 ±0.30 62.10 ±0.46 26.56 ±0.62 8.93 ±0.19 5.82 ±0.09 4.15 ±0.11

Moderate 72.10 ±0.14 71.55 ±0.25 69.84 ±0.39 65.74 ±0.21 56.96 ±0.52 49.04 ±0.74 34.87 ±0.57

Dyn-Unc 71.86 ±0.12 71.65 ±0.18 71.79 ±0.27 69.17 ±0.44 59.69 ±0.30 51.36 ±0.70 34.02 ±0.45

TDDS 70.02 ±0.43 69.27 ±0.74 68.03 ±0.55 63.42 ±0.77 55.28 ±1.93 51.44 ±1.36 38.42 ±0.80

CCS 70.84 ±0.41 69.08 ±0.41 68.11 ±0.09 63.36 ±0.16 53.21 ±0.54 46.27 ±0.52 32.72 ±0.52

DUAL 71.90 ±0.27 72.38 ±0.27 71.79 ±0.11 69.69 ±0.18 63.35 ±0.29 56.57 ±1.07 37.78 ±0.73

DUAL+β sampling 71.96 ±0.13 71.92 ±0.22 71.69 ±0.18 69.23 ±0.15 63.73 ±0.43 59.75 ±0.32 51.51 ±0.68
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Table 12: Comparison of test accuracy of DUAL pruning with existing coreset selection methods
under 20% image corrupted data using ResNet-34 for Tiny-ImageNet. The model trained with the
full dataset achieves 57.12% test accuracy on average. Results are averaged over three runs.

Pruning Rate (→) 10% 20% 30% 50% 70% 80% 90%

Random 49.59 ±0.93 48.64 ±0.94 45.64 ±0.53 41.58 ±0.66 33.98 ±0.55 28.88 ±0.67 18.59 ±0.25

Entropy 50.34 ±0.19 48.02 ±0.49 44.80 ±0.30 36.58 ±0.19 25.20 ±0.53 16.55 ±0.40 3.32 ±0.26

Forgetting 46.81 ±0.26 41.16 ±0.28 35.58 ±0.17 26.80 ±0.18 17.66 ±0.23 12.61 ±0.04 6.01 ±0.19

EL2N 50.66 ±0.27 47.76 ±0.25 42.15 ±1.02 23.42 ±0.26 8.07 ±0.09 6.57 ±0.36 3.75 ±0.13

AUM 51.11 ±0.73 47.70 ±0.51 42.04 ±0.81 20.85 ±0.79 6.87 ±0.24 3.75 ±0.21 2.27 ±0.11

Moderate 51.43 ±0.76 49.85 ±0.23 47.85 ±0.31 42.31 ±0.40 35.00 ±0.49 29.63 ±0.67 19.51 ±0.72

Dyn-Unc 51.61 ±0.19 51.47 ±0.34 51.18 ±0.58 48.88 ±0.85 42.52 ±0.34 37.85 ±0.47 26.26 ±0.70

TDDS 51.53 ±0.40 49.81 ±0.21 48.98 ±0.27 45.81 ±0.16 38.05 ±0.70 33.04 ±0.39 22.66 ±1.28

CCS 50.26 ±0.78 48.00 ±0.41 45.38 ±0.63 40.98 ±0.23 33.49 ±0.04 27.18 ±0.66 15.37 ±0.54

DUAL 51.22 ±0.40 52.06 ±0.55 50.88 ±0.64 47.03 ±0.56 40.03 ±0.09 34.92 ±0.15 20.41 ±1.07

DUAL+β sampling 52.15 ±0.25 51.11 ±0.34 50.21 ±0.36 46.85 ±0.27 42.97 ±0.28 38.30 ±0.06 27.45 ±0.50
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B.3 CROSS-ARCHITECTURE GENERALIZATION

In this section, we investigate the cross-architecture generalization ability of our proposed method.
Specifically, we calculate the example score on one architecture and test its coreset performance on
a different architecture. This evaluation aims to assess the ability of example scores to be transferred
across diverse architectural designs.

Table 13: Cross-architecture generalization performance on CIFAR-100 from three layer CNN to
ResNet-18. We report an average of five runs. ‘R18 → R18’ stands for score computation on
ResNet-18, as a baseline.

3-layer CNN→ ResNet-18
Pruning Rate (→) 30% 50% 70% 90%
Random 75.15 ±0.28 71.68 ±0.31 64.86 ±0.39 45.09 ±1.26

EL2N 76.56 ±0.65 71.78 ±0.32 56.57 ±1.32 22.84 ±3.54

Dyn-Unc 76.61 ±0.75 72.92 ±0.57 65.97 ±0.53 44.25 ±2.47

CCS 75.29 ±0.20 72.06 ±0.19 66.11 ±0.15 36.98 ±1.47

DUAL 76.61 ±0.08 73.55 ±0.12 65.97 ±0.18 39.00 ±2.51

DUAL+β sampling 76.36 ±0.18 72.46 ±0.41 65.50 ±0.53 48.91 ±0.60

DUAL (R18→R18) 77.43 ±0.18 74.62 ±0.47 66.41 ±0.52 34.38 ±1.39

DUAL (R18→R18) +β sampling 77.86 ±0.12 74.66 ±0.12 69.25 ±0.22 54.54 ±0.09

Table 14: Cross-architecture generalization performance on CIFAR-100 from three layer CNN to
VGG-16. We report an average of five runs. ‘V16→V16’ stands for score computation on VGG-16,
as a baseline.

3-layer CNN→ VGG-16
Pruning Rate (→) 30% 50% 70% 90%
Random 69.47 ±0.27 65.52 ±0.54 57.18 ±0.68 34.69 ±1.97

EL2N 70.35 ±0.64 63.66 ±1.49 46.12 ±6.87 20.85 ±9.03

Dyn-Unc 71.18 ±0.96 67.06 ±0.94 58.87 ±0.83 31.57 ±3.29

CCS 69.56 ±0.33 65.26 ±0.50 57.60 ±0.80 23.92 ±1.85

DUAL 71.75 ±0.16 67.91 ±0.27 59.08 ±0.64 29.16 ±2.28

DUAL+β sampling 70.78 ±0.41 67.47 ±0.44 60.33 ±0.32 43.92 ±1.15

DUAL (V16→V16) 73.63 ±0.62 69.66 ±0.45 58.49 ±0.77 32.96 ±1.12

DUAL (V16→V16) +β sampling 72.77 ±0.41 68.93 ±0.23 61.48 ±0.36 42.99±0.62

Table 15: Cross-architecture generalization performance on CIFAR-100 from VGG-16 to ResNet-
18. We report an average of five runs. ‘R18→ R18’ stands for score computation on ResNet-18, as
a baseline.

VGG-16→ ResNet-18
Pruning Rate (→) 30% 50% 70% 90%
Random 75.15 ±0.28 71.68 ±0.31 64.86 ±0.39 45.09 ±1.26

EL2N 76.42 ±0.27 70.44 ±0.48 51.87 ±1.27 25.74 ±1.53

Dyn-Unc 77.59 ±0.19 74.20 ±0.22 65.24 ±0.36 42.95 ±1.14

CCS 75.19 ±0.19 71.56 ±0.28 64.83 ±0.25 46.08 ±1.23

DUAL 77.40 ±0.36 74.29 ±0.12 63.74 ±0.30 36.87 ±2.27

DUAL+ β sampling 76.67 ±0.15 73.14 ±0.29 65.69 ±0.57 45.95 ±0.52

DUAL (R18→R18) 77.43 ±0.18 74.62 ±0.47 66.41 ±0.52 34.38 ±1.39

DUAL (R18→R18) +β sampling 77.86 ±0.12 74.66 ±0.12 69.25 ±0.22 54.54 ±0.09
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Table 16: Cross-architecture generalization performance on CIFAR-100 from ResNet-18 to VGG-
16. We report an average of five runs. ‘V16→ V16’ stands for score computation on VGG-16, as a
baseline.

ResNet-18→ VGG-16
Pruning Rate (→) 30% 50% 70% 90%
Random 70.99 ±0.33 67.34 ±0.21 60.18 ±0.52 41.69 ±0.72

EL2N 72.43 ±0.54 65.36 ±0.68 43.35 ±0.81 19.92 ±0.89

Dyn-Unc 73.34 ±0.29 69.24 ±0.39 57.67 ±0.52 31.74 ±0.80

CCS 71.18 ±0.16 67.35 ±0.38 59.77 ±0.43 41.06 ±1.03

DUAL 73.44 ±0.29 69.87 ±0.35 60.07 ±0.47 29.74 ±1.70

DUAL +β sampling 73.50 ±0.27 70.43 ±0.26 64.48 ±0.47 49.61 ±0.49

DUAL (V16→V16) 73.63 ±0.61 69.66 ±0.45 58.49 ±0.77 32.96 ±1.12

DUAL (V16→V16)+β sampling 72.66 ±0.17 68.80 ±0.34 60.40 ±0.68 41.51 ±0.47

Table 17: Cross-architecture generalization performance on CIFAR-100 from ResNet-18 to ResNet-
50. We report an average of five runs. ‘R50→ R50’ stands for score computation on ResNet-50, as
a baseline.

ResNet-18→ ResNet-50
Pruning Rate (→) 30% 50% 70% 90%
Random 74.47 ±0.67 70.09 ±0.42 60.06 ±0.99 41.91 ±4.32

EL2N 76.42 ±1.00 69.14 ±1.00 45.16 ±3.21 19.63 ±1.15

Dyn-Unc 77.31 ±0.34 72.12 ±0.68 59.38 ±2.35 31.74 ±2.31

CCS 74.78 ±0.66 69.98 ±1.18 59.75 ±1.41 41.54 ±3.94

DUAL 78.03 ±0.83 72.82 ±1.46 63.08 ±2.45 33.65 ±2.92

DUAL +β sampling 77.82 ±0.65 73.98 ±0.62 66.36 ±1.66 49.90 ±2.56

DUAL (R50→R50) 77.82 ±0.64 73.66 ±0.85 52.12 ±2.73 26.13 ±1.96

DUAL (R50→R50)+β sampling 77.57 ±0.23 73.44 ±0.87 65.17 ±0.96 47.63 ±2.47

Table 18: Cross-architecture generalization performance on CIFAR-100 from VGG-16 to ResNet-
50. We report an average of five runs. ‘R50→ R50’ stands for score computation on ResNet-50, as
a baseline

VGG-16→ ResNet-50
Pruning Rate (→) 30% 50% 70% 90%
Random 71.13 ±6.52 70.31 ±1.20 61.02 ±1.68 41.03 ±3.74

EL2N 76.30 ±0.69 67.11 ±3.09 44.88 ±3.65 25.05 ±1.76

Dyn-Unc 77.91 ±0.54 73.52 ±0.41 62.37 ±0.62 39.10 ±4.04

CCS 75.40 ±0.64 70.44 ±0.49 60.10 ±1.24 41.94 ±3.01

DUAL 77.50 ±0.53 71.81 ±0.48 60.68 ±1.67 34.88 ±3.47

DUAL +β sampling 76.67 ±0.15 73.14 ±0.29 65.69 ±0.57 45.95 ±0.52

DUAL (R50→R50) 77.82 ±0.64 73.66 ±0.85 52.12 ±2.73 26.13 ±1.96

DUAL (R50→R50)+β sampling 77.57 ±0.23 73.44 ±0.87 65.17 ±0.96 47.63 ±2.47
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B.4 EFFECTIVENESS OF BETA SAMPLING

We study the impact of our Beta sampling on existing score metrics. We apply our Beta sampling
strategy to forgetting, EL2N, and Dyn-Unc scores of CIFAR10 and 100. By comparing Beta sam-
pling with the vanilla threshold pruning using scores, we observe that prior score-based methods
become competitive, outperforming random pruning when Beta sampling is adjusted.

Table 19: Comparison on CIFAR-10 and CIFAR-100 for 90% pruning rate. We report average
accuracy with five runs. The best performance is in bold in each column.

CIFAR-10 CIFAR-100

Method Thresholding β-Sampling Thresholding β-Sampling

Random 83.74 ± 0.21 83.31 (-0.43) ± 0.14 45.09 ± 1.26 51.76 (+6.67) ± 0.25

EL2N 38.74 ± 0.75 87.00 (+48.26) ± 0.45 8.89 ± 0.28 53.97 (+45.08) ± 0.63

Forgetting 46.64 ± 1.90 85.67 (+39.03) ±0.13 26.87 ± 0.73 52.40 (+25.53) ± 0.43

Dyn-Unc 59.67 ± 1.79 85.33 (+32.14) ± 0.20 34.57 ± 0.69 51.85 (+17.28) ± 0.35

DUAL 54.95 ± 0.42 87.09 (+31.51) ± 0.36 34.28 ± 1.39 54.54 (+20.26) ± 0.09

Table 20: Comparison on CIFAR-10 and CIFAR-100 for 80% pruning rate. We report average
accuracy with five runs. The best performance is in bold in each column.

CIFAR-10 CIFAR-100

Method Thresholding β-Sampling Thresholding β-Sampling

Random 88.28 ± 0.17 88.83 (+0.55) ± 0.18 59.23 ± 0.62 61.74 (+2.51) ± 0.15

EL2N 74.70 ± 0.45 87.69 (+12.99) ± 0.98 19.52 ± 0.79 63.98 (+44.46) ± 0.73

Forgetting 75.47 ± 1.27 90.86 (+15.39) ± 0.07 39.09 ± 0.41 63.29 (+24.20) ± 0.13

Dyn-Unc 83.32 ± 0.94 90.80 (+7.48) ± 0.30 55.01 ± 0.55 62.31 (+7.30) ± 0.23

DUAL 82.02 ± 1.85 91.42 (+9.68) ± 0.35 56.57 ± 0.57 64.76 (+8.46) ± 0.23

We also study the impact of our pruning strategy with DUAL score combined with Beta sampling.
We compare different sampling strategies i.e. vanilla thresholding, stratified sampling Zheng et al.
(2022), and our proposed Beta sampling on CIFAR10 and 100, at 80% and 90% pruning rates. We
observe that our proposed method mostly performs the best, especially with the high pruning ratio.

Table 21: Comparison on Sampling Strategy

CIFAR10

Pruning Rate 30% 50% 70% 80% 90%

DUAL 95.35 95.08 91.95 81.74 55.58
DUAL + CCS 95.54 95.00 92.83 90.49 81.67
DUAL + β 95.51 95.23 93.04 91.42 87.09

CIFAR100

Pruning Rate 30% 50% 70% 80% 90%

DUAL 77.61 74.86 66.39 56.50 34.28
DUAL + CCS 75.21 71.53 64.30 59.09 45.21
DUAL + β 77.86 74.66 69.25 64.76 54.54
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C DETAILED EXPLANATION ABOUT OUR METHOD

In this section, we provide details on the implementation used across all experiments for repro-
ducibility. Appendix C.2 presents the full algorithm for our pruning method, DUAL, along with the
Beta sampling strategy. Additionally, in a later subsection, we visualize the selected data using Beta
sampling.

Recall that we define our sampling distribution Beta(αr, βr) as follows:

βr = C (1− µD) (1− rcD )

αr = C − βr,
(6)

where µD ∈ [0, 1] is the probability mean of the highest DUAL score training sample. To ensure
stability, we compute this as the average probability mean of the 10 highest DUAL score training
samples. Additionally, as mentioned earlier, we set the value of C to 15 across all experiments. For
technical details, we add 1 to αr to further ensure that the PDF remains stationary at low pruning
ratios.

We illustrate the Beta PDF, as defined above, in Figure 15 for different values of cD. In both
subplots, we set µD as 0.25. The left subplot shows the PDF with cD = 5.5, which corresponds to
the value used in CIFAR-10 experiments, while the right subplot visualizes the PDF where cD = 4,
corresponding to CIFAR-100.
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Figure 15: Visualization of Beta distribution for varying cD. The left subplot corresponds to the
value used in CIFAR-10, and the right subplot corresponds to the value used in CIFAR-100.
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C.1 VISUALIZATION OF SELECTED DATA WITH BETA SAMPLING

Here we illustrate the sampling probability of being selected into coreset, selected samples, and
pruned samples in each figure when using the DUAL score combined with Beta sampling. As the
pruning ratio increases, we focus on including easier samples.

(a) CIFAR-100 at pruning ratio 30%

(b) CIFAR-100 at pruning ratio 50%

(c) CIFAR-100 at pruning ratio 70%

(d) CIFAR-100 at pruning ratio 90%

Figure 16: Pruning visualization on CIFAR-100.
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C.2 ALGORITHM OF PROPOSED PRUNING METHOD

The detailed algorithms for DUAL pruning and Beta sampling are as follows:

Algorithm 1 DUAL pruning + β-sampling

input Training dataset D, pruning ratio r, dataset simplicity cD, training epoch T , window length
J .

output Subset S ⊂ D such that |S| = (1− r)|D|
for (xi, yi) ∈ D do

for k = 1, · · · , T − J + 1 do
P̄k(xi, yi)← 1

J

∑J−1
j=0 Pk+j(yi | xi)

Uk(xi, yi)←
√

1
J−1

∑J−1
j=0

[
Pk+j(yi | xi)− P̄k(xi, yi)

]2
DUALk(xi, yi)← (1− P̄k(xi, yi))× Uk(xi, yi)

end for
DUAL(xi, yi)← 1

T−J+1

∑T−J+1
k=1 DUALk(xi, yi)

end for
if β-sampling then

for (xi, yi) ∈ D do
P̄(xi, yi)← 1

T

∑T
k=1 Pk(yi | xi)

φ
(
P̄(xi, yi)

)
← PDF value of Beta(αr, βr) from Equation (5)

φ̃(xi)← φ
(
P̄(xi, yi)

)
×DUAL(xi, yi)

end for
φ̃(xi)← φ̃(xi)∑

j∈D φ̃(xj)

S ← Sample (1− r)|D| data points according to φ̃(xi)
else
S ← Sample (1− r)|D| data points with the largest DUAL(xi, yi) score

end if
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D THEORETICAL RESULTS

Throughout this section, we will rigorously prove Theorem 3.1, providing the intuition that Dyn-Unc
takes longer than our method to select informative samples.

D.1 PROOF OF THEOREM 3.1

Assume that the input and output (or label) space are X = Rn and Y = {±1}, respectively. Let
the model f : X → R be of the form f(x;w) = w⊤x parameterized by w ∈ Rn with zero-
initialization. Let the loss be the exponential loss, ℓ(z) = e−z . Exponential loss is reported to
induce implicit bias similar to logistic loss in binary classification tasks using linearly separable
datasets (Soudry et al., 2018; Gunasekar et al., 2018).

The task of the model is to learn a binary classification. The dataset D consists only two points, i.e.
D = {(x1, y

∗
1) , (x2, y

∗
2)}, where without loss of generality y∗i = 1 for i = 1, 2. The model learns

from D with the gradient descent. The update rule, equipped with a learning rate η > 0, is:

w0 = 0

wt+1 = wt − η∇w

[
2∑

i=1

ℓ (f (xi;wt))

]
= wt + η

(
e−w⊤

t x1x1 + e−w⊤
t x2x2

)
.

For brevity, denote the model output of the i-th data point at the t-th epoch as y
(i)
t := f(xi;wt).

The update rule for the parameter is simplified as:

wt+1 = wt + η
(
e−y

(1)
t x1 + e−y

(2)
t x2

)
. (7)

We also derive the update rule of model output for each instance:
y
(1)
t+1 = w⊤

t+1x1 =
(
wt + η

(
e−y

(1)
t x1 + e−y

(2)
t x2

))⊤
x1

= y
(1)
t + ηe−y

(1)
t ∥x1∥2 + ηe−y

(2)
t ⟨x1,x2⟩,

y
(2)
t+1 = y

(2)
t + ηe−y

(2)
t ∥x2∥2 + ηe−y

(1)
t ⟨x1,x2⟩.

(8)

Assume that x2 is farther from the origin in terms of distance than x1 is, but not too different in
terms of angle. Formally,
Assumption D.1. ∥x2∥ > 1, 4∥x1∥2 < 2⟨x1,x2⟩ < ∥x2∥2. Moreover, ⟨x1,x2⟩ < ∥x1∥∥x2∥.

Under these assumptions, as ⟨x1,x2⟩ > 0, D is linearly separable. Also, notice that x1 and x2 are
not parallel. Our definition of a linearly separable dataset is in accordance with Soudry et al. (2018).
A dataset D is linearly separable if there exists w∗ such that ⟨xi,w

∗⟩ > 0,∀i.

Theorem D.2. Let V (i)
t;J be the variance and µ

(i)
t;J be the mean of σ(y(i)t ) within a window from time

t to t + J − 1. Denote Tv and Tvm as the first time when V
(1)
t;J > V

(2)
t;J and V

(1)
t;J (1 − µ

(i)
t;J) >

V
(2)
t;J (1−µ

(2)
t;J) occurs, respectively. Under Assumption D.1, if η is sufficiently small then Tvm < Tv .

By Soudry et al. (2018), the learning is progressed as: wt, y
(1)
t , and y

(2)
t diverges to positive infinity

(Lemma 1) but wt directionally converges towards L2 max margin vector, ŵ = x1/∥x1∥2, or
limt→∞

wt

∥wt∥ = ŵ
∥ŵ∥ (Theorem 3). Moreover, the growth of w is logarithmic, i.e. wt ≈ ŵ log t.

We hereby note that Theorem 3 of Soudry et al. (2018) holds for learning rate η smaller than a
global constant. Since our condition requires η to be sufficiently small, we will make use of the
findings of Theorem 3.

Lemma D.3. ∆yt := y
(2)
t − y

(1)
t is a non-negative, strictly increasing sequence. Also,

limt→∞ ∆yt =∞.
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Proof.

1) Since w0 = 0, y(1)0 = 0 = y
(2)
0 so ∆y0 = 0. By Equation (8) and Assumption D.1, ∆y1 =

y
(2)
1 − y

(1)
1 = η

(
∥x2∥2 − ∥x1∥2

)
> 0.

2)

∆yt+1 −∆yt = η
[
e−y

(2)
t
(
∥x2∥2 − ⟨x1,x2⟩

)
+ e−y

(1)
t
(
⟨x1,x2⟩ − ∥x1∥2

)]
=: K1e

−y
(1)
t +K2e

−y
(2)
t > 0,

for some positive constant K1,K2. As y
(i)
t = w⊤

t xi would logarithmically grow in terms of t,
e−y

(i)
t is decreasing in t. Moreover, as y

(1)
t = w⊤

t x1 ≈ ŵ⊤x1 log t = log t, e−y
(1)
t is (asymp-

totically) in scale of t−1 and so is ∆yt+1 − ∆yt. Hence, {∆yt} is non-negative and increases to
infinity.

The notation ∆yt := y
(2)
t − y

(1)
t will be used throughout this section. Next, we show that, under

Assumption D.1, y(1)t+1 < y
(2)
t for all t > 0.

Lemma D.4. For all t > 0, y(1)t+1 < y
(2)
t .

Proof. Notice that: {
y
(1)
1 = η∥x1∥2 + η⟨x1,x2⟩
y
(2)
1 = η∥x2∥2 + η⟨x1,x2⟩.

1) y(1)2 < y
(2)
1 :

y
(1)
2 = y

(1)
1 + ηe−y

(1)
1 ∥x1∥2 + ηe−y

(2)
1 ⟨x1,x2⟩

= η
(
e−y

(1)
1 + 1

)
∥x1∥2 + η

(
e−y

(2)
1 + 1

)
⟨x1,x2⟩

< η × 2∥x1∥2 + η × 2⟨x1,x2⟩

< η⟨x1,x2⟩+ η∥x2∥2 = y
(2)
1 .

2) Assume, for t > 0, y(1)t+1 < y
(2)
t .

y
(1)
t+2 = y

(1)
t+1 + ηe−y

(1)
t+1∥x1∥2 + ηe−y

(2)
t+1⟨x1,x2⟩

< y
(2)
t + ηe−y

(1)
t ∥x1∥2 + ηe−y

(2)
t ⟨x1,x2⟩

< y
(2)
t + ηe−y

(1)
t ⟨x1,x2⟩+ ηe−y

(2)
t ∥x2∥2 = y

(2)
t+1.

By Lemma D.4, for all t > 0,
(
y
(2)
t , y

(2)
t+1

)
lies entirely on right-hand side of

(
y
(1)
t , y

(1)
t+1

)
, without

any overlap.

We first analyze the following term:
y
(1)
t+1−y

(1)
t

y
(2)
t+1−y

(2)
t

. Observe that:

y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

=
ηe−y

(1)
t ∥x1∥2 + ηe−y

(2)
t ⟨x1,x2⟩

ηe−y
(2)
t ∥x2∥2 + ηe−y

(1)
t ⟨x1,x2⟩

=
∥x1∥2 + e−∆yt⟨x1,x2⟩
⟨x1,x2⟩+ e−∆yt∥x2∥2

.

(9)
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It is derived that the fraction is an increasing sequence in terms of t. For values a, b, c, c′, d, d′ >

0, a+c
b+d < a+c′

b+d′ ⇔ ad′ + cb+ cd′ < ad+ c′b+ c′d. Taking:{
a = ∥x1∥2
b = ⟨x1,x2⟩

{
c = e−∆yt⟨x1,x2⟩
d = e−∆yt∥x2∥2

{
c′ = e−∆yt+1⟨x1,x2⟩
d′ = e−∆yt+1∥x2∥2

,

we have
ad′ + cb+ cd′

= e−∆yt+1∥x1∥2∥x2∥2 + e−∆yt⟨x1,x2⟩2 + e−∆yte−∆yt+1⟨x1,x2⟩∥x2∥2

< e−∆yt∥x1∥2∥x2∥2 + e−∆yt+1⟨x1,x2⟩2 + e−∆yte−∆yt+1⟨x1,x2⟩∥x2∥2

= ad+ c′b+ c′d.

The inequality holds by Lemma D.3 and the Cauchy-Schwarz inequality. Taking the limit of Equa-
tion (9) as t→∞, the ratio converges to:

R :=
∥x1∥2

⟨x1,x2⟩
. (10)

For the later uses, we also define the initial ratio, which is smaller than 1:

R0 :=
y
(1)
1 − y

(1)
0

y
(2)
1 − y

(2)
0

=
∥x1∥2 + ⟨x1,x2⟩
⟨x1,x2⟩+ ∥x2∥2

(≤ R). (11)

Now we analyze a similar ratio of the one-step difference, but in terms of σ
(
y
(i)
t

)
instead of y(i)t .

There, σ stands for the logistic function, σ(z) = (1 + e−z)
−1. Notice that σ′(z) = σ(z) (1− σ(z)).

Lemma D.5. γV (t) :=
σ
(
y
(1)
t+1

)
−σ

(
y
(1)
t

)
σ
(
y
(2)
t+1

)
−σ

(
y
(2)
t

) monotonically increases to +∞.

Proof.

γV (t) =
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

σ′
(
ζ
(1)
t

)
σ′
(
ζ
(2)
t

) (for some

ζ
(1)
t ∈

(
y
(1)
t , y

(1)
t+1

)
ζ
(2)
t ∈

(
y
(2)
t , y

(2)
t+1

) by the mean value theorem.)

≥
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

σ′
(
y
(1)
t+1

)
σ′
(
y
(2)
t

) (∵ σ′: decreasing on R+)

=
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

e−y
(1)
t+1

(
1 + e−y

(1)
t+1

)−2

e−y
(2)
t

(
1 + e−y

(2)
t

)−2

≥
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

1

4
ey

(2)
t −y

(1)
t+1 (∵

(
1 + e−z

)−2 ∈ [1/4, 1] on R+)

≥ R0

4
ey

(2)
t −y

(1)
t+1 .

As y(2)t −y
(1)
t+1 = y

(2)
t −y

(1)
t −η

(
e−y

(1)
t ∥x1∥2 + e−y

(2)
t ⟨x1,x2⟩

)
→∞, γV (t)→∞. For the part

that proves γV (t) is increasing, see Appendix D.1.1.

Notice that γV (0) < 1. Lemma D.5 implies that there exists (unique) Tv > 0 such that for all
t ≥ Tv , γV (t) > 1 holds, or σ

(
y
(1)
t+1

)
−σ

(
y
(1)
t

)
> σ

(
y
(2)
t+1

)
−σ

(
y
(2)
t

)
. Recall that the (sample)

variance of a finite dataset T = {x1, · · · ,xn} can be computed as:

Var[T ] = 1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(xi − xj)
2
.
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Hence, for given J , (which corresponds to the window size,) for all t ≥ Tv ,

V
(1)
t;J := Var

[{
σ
(
y(1)τ

)}t+J−1

τ=t

]
=

1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(1)
t+l

)
− σ

(
y
(1)
t+k

)]2
>

1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(2)
t+l

)
− σ

(
y
(2)
t+k

)]2
= Var

[{
σ
(
y(2)τ

)}t+J−1

τ=t

]
=: V

(2)
t;J .

It is easily derived that the converse is true: If γV (t) is increasing and V
(1)
t;J > V

(2)
t;J then γV (t) > 1.

We have two metrics: the first is only the variance (which corresponds to the Dyn-Unc score) and the
second is the variance multiplied by the mean subtracted from 1 (which corresponds to the DUAL
pruning score). Both the variance and the mean are calculated within a window of fixed length. At
the early epoch, as the model learns x2 first, both metrics show a smaller value for x1 than that for
x2. At the late epoch, now the model learns x1, so the order of the metric values reverses for both
metrics.

Our goal is to show that the elapsed time of the second metric for the order to be reversed is shorter
than that of the first metric. Let Tvm be that time for our metric. We represent the mean of the
logistic output within a window of length J and from epoch t, computed for i-th instance by µ

(i)
t;J :

µ
(i)
t;J :=

1

J

t+J−1∑
τ=t

σ
(
y(i)τ

)
. (12)

For t ≥ Tv , we see that the inequality still holds:

V
(1)
t;J

(
1− µ

(1)
t;J

)
=

[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(1)
t+l

)
− σ

(
y
(1)
t+k

)]2][
1− 1

J

t+J−1∑
τ=t

σ
(
y(1)τ

)]

>

[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(2)
t+l

)
− σ

(
y
(2)
t+k

)]2][
1− 1

J

t+J−1∑
τ=t

σ
(
y(2)τ

)]
= V

(2)
t;J

(
1− µ

(2)
t;J

)
.

as for all t, σ
(
y
(2)
t

)
> σ

(
y
(1)
t

)
. Indeed, Tvm ≤ Tv holds, but is Tvm < Tv true? To verify the

question, we reshape the terms for a similar analysis upon µ:

V
(1)
t;J

(
1− µ

(1)
t;J

)
=

[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(1)
t+l

)
− σ

(
y
(1)
t+k

)]2][ 1
J

t+J−1∑
τ=t

1− σ
(
y(1)τ

)]

>

[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(2)
t+l

)
− σ

(
y
(2)
t+k

)]2][ 1
J

t+J−1∑
τ=t

1− σ
(
y(2)τ

)]
= V

(2)
t;J

(
1− µ

(2)
t;J

)
.

(13)

The intuition is now clear: for any time before Tv , we know that the variance of x1 is smaller than
that of x2, if the ratio corresponding to 1 − σ(y) is large, the factors could be canceled out and the
inequality still holds. If this case is possible, definitely Tvm < Tv .

Now let us analyze the ratio of 1− σ
(
y
(i)
t

)
.
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Lemma D.6. γM (t) :=
1−σ

(
y
(1)
t

)
1−σ

(
y
(2)
t

) increases to +∞.

Proof.

γM (t) =
1 + ey

(2)
t

1 + ey
(1)
t

= e∆yt − e∆yt − 1

1 + ey
(1)
t

≥ e∆yt − e∆yt

1 + ey
(1)
t

= e∆ytσ
(
y
(1)
t

)
.

The quantity in the last line indeed diverges to infinity. We now show that γM (t) is increasing.

γM (t) = e∆yt − e∆yt

1 + ey
(1)
t

+
1

1 + ey
(1)
t

= e∆ytσ
(
y
(1)
t

)
+ 1− σ

(
y
(1)
t

)
=
(
e∆yt − 1

)
σ
(
y
(1)
t

)
+ 1

<
(
e∆yt+1 − 1

)
σ
(
y
(1)
t+1

)
+ 1 = γM (t+ 1).

Notice that, for a > c > 0, b > d > 0, a−c
b−d < a

b ⇔
a
b < c

d . Recall from Lemma D.5 that

γV (t) =
1−σ

(
y
(1)
t

)
−
[
1−σ

(
y
(1)
t+1

)]
1−σ

(
y
(2)
t

)
−
[
1−σ

(
y
(2)
t+1

)] , hence γV (t) < γM (t). Moreover,

γV (t) ≤
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

σ′
(
y
(1)
t

)
σ′
(
y
(2)
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)
=

y
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t+1 − y
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t

y
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t
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(2)
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(1)
t

(
1 + e−y

(2)
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1 + e−y
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t

)2
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y
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t

y
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t+1 − y
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t
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t

(
1 + e−y

(2)
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1 + e−y
(1)
t

)
∵

(
1 + e−y

(2)
t+1

1 + e−y
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t

)
∈ (0, 1].

=
y
(1)
t+1 − y
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t

y
(2)
t+1 − y

(2)
t
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(2)
t+1−y

(2)
t e∆yt

(
1 + e−y

(2)
t+1

1 + e−y
(1)
t

)

≤
y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t
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(2)
t+1−y

(2)
t e∆yt

(
1 + e−y

(2)
t

1 + e−y
(1)
t

)
≤ Rey

(2)
1 −y

(2)
0 γM (t).

Now we revisit Equation (13).[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(1)
t+l

)
− σ

(
y
(1)
t+k

)]2][ 1
J

t+J−1∑
τ=t

1− σ
(
y(1)τ

)]

>

[
1

J(J − 1)

J−2∑
k=0

J−1∑
l=k+1

[
σ
(
y
(2)
t+l

)
− σ

(
y
(2)
t+k

)]2][ 1
J

t+J−1∑
τ=t

1− σ
(
y(2)τ

)]
.

(14)
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Assume, for the moment, that for some constant C > 1, σ
(
y
(1)
t+1

)
− σ

(
y
(1)
t

)
>

C−1
[
σ
(
y
(2)
t+1

)
− σ

(
y
(2)
t

)]
but 1−σ

(
y
(1)
t

)
> C2

[
1− σ

(
y
(2)
t

)]
for all large t. Then the ratio of

the first term of the left-hand side of Equation (14) to the first term of the right-hand side is greater
than C−2. Also, the ratio of the second term of the left-hand side of Equation (14) to the second term
of the right-hand side is greater than C2. If so, we observe that 1) the inequality in Equation (14)
holds, 2) as the condition γV (t) ≥ 1 for Tv now changed to γV (t) ≥ C−1 for Tvm, hence Tvm < Tv

is guaranteed. It remains to find the constant C. Recall that, for all t,

γV (t) ≤ Rey
(2)
1 −y

(2)
0 γM (t).

If we set Rey
(2)
1 −y

(2)
0 = C−3, when γV (t) becomes at least C−1, we have γM (t) ≥ C2, satisfying

the condition for Tvm. If the learning rate is sufficiently small, then γV (t) cannot significantly
increase in one step, allowing γV (t) to fall between C−1 and 1. Refer to Figure 18a to observe that
the graph of γV (t) resembles that of a continuously increasing function.

D.1.1 MONOTONICITY OF γV (t)

Recall that:

γV (t) :=
σ
(
y
(1)
t+1

)
− σ

(
y
(1)
t

)
σ
(
y
(2)
t+1

)
− σ

(
y
(2)
t

)
=

y
(1)
t+1 − y

(1)
t

y
(2)
t+1 − y

(2)
t

σ′
(
ζ
(1)
t

)
σ′
(
ζ
(2)
t

)
for some ζ

(1)
t ∈

(
y
(1)
t , y

(1)
t+1

)
, ζ

(2)
t ∈

(
y
(2)
t , y

(2)
t+1

)
by the mean value theorem. The first term is

shown to be increasing (to R). γV (t) is increasing if the second term is also increasing in t.

Let ∆ζt := ζ
(2)
t − ζ

(1)
t . By Lemma D.4, ∆ζt > 0.

σ′
(
ζ
(1)
t

)
σ′
(
ζ
(2)
t

) =
e−ζ

(1)
t

e−ζ
(2)
t

(
1 + e−ζ

(2)
t

1 + e−ζ
(1)
t

)2

= e∆ζt

(
1 + e−ζ

(1)
t −∆ζt

1 + e−ζ
(1)
t

)2

.

Define g(x, y) := ex
(

1+e−y−x

1+e−y

)2
. The partial derivatives satisfy:

∇xg =
(ey−e−x)(ex+y+1)

(1+ey)2
> 0 for x > 0 if y > 0

∇yg =
2ey−x(ex−1)(ex+y+1)

(1+ey)3
> 0,∀y if x > 0.

Notice that
σ′

(
ζ
(1)
t

)
σ′

(
ζ
(2)
t

) = g(∆ζt, ζ
(1)
t ). Since ζ

(1)
t ∈

(
y
(1)
t , y

(1)
t+1

)
is (strictly) increasing and positive,

if we show that ∆ζt is increasing in t, we are done. Our result is that, if y(i)t+1 − y
(i)
t is small for

i = 1, 2, ζ(i)t ≈
(
y
(i)
t + y

(i)
t+1

)
/2 so ∆ζt ≈ (∆yt +∆yt+1) /2, which is indeed increasing.
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In particular, if (, assume for now) for all t,

ζ
(i)
t ∈

(
2y

(i)
t + y

(i)
t+1

3
,
y
(i)
t + 2y

(i)
t+1

3

)
(15)

⇒ ∆ζt ∈

(
∆yt +∆yt+1

3
+

y
(2)
t − y

(1)
t+1

3
,
∆yt +∆yt+1

3
+

y
(2)
t+1 − y

(1)
t

3

)

⇒ ∆ζt <
∆yt +∆yt+1

3
+

y
(2)
t+1 − y

(1)
t

3

<
∆yt+1 +∆yt+2

3
+

y
(2)
t+1 − y

(1)
t+2

3
(†)

< ∆ζt+1

(†) holds by Assumption D.1:

(†)⇔ ∆yt+2 −∆yt > y
(1)
t+2 − y

(1)
t ,∀t

⇐ ∆yt+1 −∆yt > y
(1)
t+1 − y

(1)
t ,∀t

⇔ η
[
e−y

(1)
t
(
⟨x1,x2⟩ − ∥x1∥2

)
+ e−y

(2)
t
(
∥x2∥2 − ⟨x1,x2⟩

)]
>

η
[
e−y

(1)
t ∥x1∥2 + e−y

(2)
t ⟨x1,x2⟩

]
,∀t.

It remains to show Equation (15). To this end, we use Lemma D.7.
Lemma D.7. Let z2 > z1(≥ 0) be reals and ζ ∈ (z1, z2) be a number that satisfies the following:
σ (z2) − σ (z1) = (z2 − z1)σ

′(ζ). Denote the midpoint of (z1, z2) as m := (z1 + z2) /2. For
(1≫)ϵ > 0, if z2 − z1 < O (

√
ϵ) then |ζ −m| < ϵ.

Proof. Expand the Taylor series of σ at m for zi:

σ (zi) = σ(m) + σ′(m) (zi −m) +
1

2!
σ′′(m) (zi −m)

2
+

1

3!
σ′′′(m) (zi −m)

3
+O

(
|zi −m|4

)
We have:

σ (z2)− σ (z1) = σ′(m) (z2 − z1) +
1

24
σ′′′(m) (z2 − z1)

3
+O

(
(z2 − z1)

5
)

σ′ (ζ) = σ′(m) +
1

24
σ′′′(m) (z2 − z1)

2
+O

(
(z2 − z1)

4
)

Now, expand the Taylor series of σ′ at m for ζ:

σ′ (ζ) = σ′(m) + σ′′(m) (ζ −m) +
1

2!
σ′′′(m) (ζ −m)

2
+O

(
|ζ −m|3

)
Comparing the above two lines gives

24σ′′(m)(ζ −m) + 12σ′′′(m)(ζ −m)2 = σ′′′(m) (z2 − z1)
2
+O

(
(z2 − z1)

3
)

If σ′′′(m) = 0 then |ζ −m| = O
(
(z2 − z1)

3
)

, so z2 − z1 = O (
√
ϵ) is sufficient.

Otherwise, we can solve the above for ζ −m from the fact that σ′′(z) < 0 for z > 0:

12σ′′′(m)(ζ −m) = −12σ′′(m)−
√
(12σ′′(m))

2
+ 12σ′′′(m)

[
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2
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(
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The last equality is from the Taylor series
√

1 + a
x2 − 1 = a

2x2 + O
(
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)
, or
√
x2 + a − x =

a
2x +O

(
a2x−3

)
. We have |ζ −m| = Θ

(
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2
)
.
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For |ζ(i)t −
(
y
(i)
t + y

(i)
t+1

)
/2| <

(
y
(i)
t+1 − y

(i)
t

)
/6, it suffices to have y

(i)
t+1 − y

(i)
t <

O
(√(

y
(i)
t+1 − y

(i)
t

)
/6

)
. This generally holds for sufficiently small η.

D.2 EXPERIMENTAL RESULTS UNDER SYNTHETIC SETTING

This section displays the figures plotted from the experiments on the synthetic dataset. We choose
X = R2 and D = { ((0.1, 0.1), 1), ((10, 5), 1)}. We fix J = 10 and η = 0.01 (unless specified).
The total time of training T is specified for each figure for neat visualization. In this setting, the
upper bound for the learning rate is log(75)/126.5 ≈ 0.034.
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Figure 17: Illustration of the evolution of the weight as the model learns from the two-point dataset.
Observe that the weight learns x2 first (closer to the orange dashed line), but gradually moves
towards x1 (closer to the brown dashed line). Here T = 10, 000.

We also empirically validate our statements of Appendix D.1.1. Figure 18 shows that γV (t) and ∆ζt
are indeed increasing functions. Figure 19 shows that ζ(i)t is sufficiently close to the midpoint of the
interval it lies in,

(
y
(i)
t , y

(i)
t+1

)
.
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(a) γV (t) in log scale.
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Figure 18: Empirical validations of the critical statements in Appendix D.1.1. We ran experiments
and plot the results that both γV (t) (left—in log scale) and ∆ζt (right) are an increasing sequence in
terms of t. Here, we set η = 0.0005. The reason is that if the learning rate is larger, σ(y(2)t ) quickly
saturates to 1, leading to a possibility of division by zero in γV (t) and degradation in numerical
stability of ∆ζt. Moreover, notice that the graph of γV (t) in the log scale closely resembles that of
∆ζt in the original scale.
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Figure 19: Empirical validations of the critical statements in Appendix D.1.1. We ran experiments
and plot the results that both ζ

(1)
t (left) and ζ

(2)
t (right) are extremely close to the midpoint (y(1)t +

y
(1)
t+1)/2 and (y

(2)
t + y

(2)
t+1)/2, compared to the interval length, respectively. In both plots, the blue

line is the true distance while the orange line is the interval length. Here, we set η = 0.0005 for the
same reasoning of Figure 18. Empirically, the noise introduced by MVT is too small to deny that
∆ζt is an increasing sequence.
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We also show that we can observe the “flow” of the moon plot as in Figure 2 for the synthetic dataset.
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Figure 20: Evolution of x1,x2 by their mean and standard deviation in prediction probabilities at
different epochs. The marker ‘o’ and ‘x’ stands for x1 and x2, respectively. The red color indicates
the sample to be selected, and the blue color indicates the sample to be pruned. Observe that the
path that each data point draws resembles is of moon-shape. Here T = 30, 000.
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