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Abstract

The rapid advancement of multimodal large lan-
guage models (MLLMs) has significantly en-
hanced performance across benchmarks. How-
ever, data contamination—unintentional memo-
rization of benchmark data during model train-
ing—poses critical challenges for fair evaluation.
Existing detection methods for unimodal large lan-
guage models (LLMs) are inadequate for MLLMs
due to multimodal data complexity and multi-
phase training. We systematically analyze multi-
modal data contamination using our analytical
framework, MM-DETECT, which defines two
contamination categories—unimodal and cross-
modal—and effectively quantifies contamination
severity across multiple-choice and caption-based
Visual Question Answering tasks. Evaluations on
twelve MLLMs and five benchmarks reveal sig-
nificant contamination, particularly in proprietary
models and older benchmarks. Crucially, con-
tamination sometimes originates during unimodal
pre-training rather than solely from multimodal
fine-tuning. Our insights refine contamination
understanding, guiding evaluation practices and
improving multimodal model reliability.

1. Introduction
The development of MLLMs has exceeded expecta-
tions (Liu et al., 2023a; Lin et al., 2023), showcasing extraor-
dinary performance on various multimodal benchmarks (Lu
et al., 2022; Liu et al., 2023b; Song et al., 2024), even sur-
passing human performance. However, due to the partial
obscurity associated with MLLMs training (OpenAI, 2023;
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Reid et al., 2024), it remains challenging to definitively as-
certain the impact of training data on model performance,
despite some works showing the employment of the training
set of certain datasets (Liu et al., 2023a; Chen et al., 2023;
Bai et al., 2023b). The issue of data contamination, occur-
ring when training or test data of benchmarks is exposed
during the model training phase (Xu et al., 2024), could
potentially instigate inequitable performance comparisons
among models. This not only creates a dilemma for users in
model selection but also poses a significant hurdle to further
advancements in this domain.

Existing contamination detection methods primarily focus
on LLMs (Yeom et al., 2018; Deng et al., 2024; Dong et al.,
2024), showing limitations when applied to MLLMs, due to
their multimodal data complexity and multi-stage training
processes (Liu et al., 2023a; Li et al., 2023). Thus, system-
atic analytical frameworks tailored explicitly for multimodal
contamination are urgently needed.

In this study, we address three key questions:

• How can we effectively quantify and detect multimodal
data contamination?

• What is the degree of contamination across different
MLLMs and benchmark datasets?

• When is contamination predominantly intro-
duced—during unimodal pre-training or multimodal
fine-tuning?

To comprehensively answer these questions, we first de-
fine Multimodal Data Contamination, as it pertains to the
modality of data sources exposed to the MLLMs, into two
categories: Unimodal Contamination and Cross-modal Con-
tamination. Subsequently, we unveil a detection framework
designed explicitly as an analytical tool, MM-DETECT,
which incorporates two methods, Option Order Sensitivity
Test and Slot Guessing for Perturbed Caption, designed to
handle two common types of Visual Question Answering
(VQA) tasks: multiple-choice and caption-based questions,
respectively.

To corroborate the validity and sensitivity of our approach,
we deliberately induce contamination in MLLMs, simulat-
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ing realistic contamination scenarios. Experimental results
demonstrate the effectiveness of MM-DETECT in identi-
fying varying contamination degrees. Our evaluations on
twelve widely-used MLLMs across five prevalent VQA
datasets reveal significant contamination among both propri-
etary and open-source models. Critically, contamination is
not only prevalent in multimodal training data but also can
originates from unimodal pre-training phases, impacting
older benchmarks disproportionately.

In summary, this work provides the first systematic analyti-
cal examination of multimodal data contamination, making
the following explicit analytical contributions: 1) We ana-
lytically characterize multimodal contamination into clearly
defined unimodal and cross-modal categories, introducing
MM-DETECT as an essential analytical tool. 2) We sys-
tematically quantify how benchmark leakage inflates per-
formance metrics, providing clear insights into dataset and
model susceptibility to contamination. 3) We present novel
analytical insights indicating that contamination not solely
emerges during the multimodal training stage but could also
from unimodal pre-training stage, critically refining current
understandings of contamination dynamics.

2. Preliminaries
We formally define the multimodal data contamination and
outline the unique challenges associated with its detection.

2.1. Definition of Multimodal Data Contamination

In contrast to single-modal contamination, multimodal con-
tamination may arise from both unimodal and multimodal
data sources. The training data for MLLMs generally con-
sists of pure text pre-training data Dpretrain and multimodal
alignment or instruction-following data Dvision. Consider
an instance (x, i, y) from a benchmark dataset D, where x
represents the text input, i is the image input, and y is the
label. Data contamination in MLLMs can be categorized
into the following two cases:

• Unimodal Contamination: The pair (x, y) or the in-
put x appears in Dpretrain.

• Cross-modal Contamination: The triplet (x, i, y) or
the pair (x, i) appears in Dvision.

In both cases, models trained on these data may gain an
unfair advantage.

2.2. Challenges in Multimodal Detection

The challenges of multimodal contamination detection
mainly arise from two aspects.

Challenge I: Inefficiency of Unimodal Methods. De-
spite the prevalence of unimodal detection methods, their
application in multimodal scenarios often encounters dif-
ficulties. For example, retrieval-based methods (Brown
et al., 2020; Touvron et al., 2023a) attempt to detect con-
tamination by retrieving large-scale corpora used for model
training. Yet, they struggle when retrieving multimodal
information. Similarly, logits-based methods (Shi et al.,
2024; Yeom et al., 2018) rely on observing the distribution
of low-probability tokens in model outputs, but the dispar-
ity in token probability distributions is less pronounced in
instruction-tuned MLLMs. Masking-based methods (Deng
et al., 2024), which assess training contamination by evalu-
ating a model’s ability to predict specific missing or masked
text, face challenges when images in multimodal samples
provide clues, leading to overestimated contamination de-
tection. Finally, comparison-based methods (Dong et al.,
2024) that measure contamination by comparing model out-
puts with benchmark data prove to be ineffective for im-
age caption tasks due to low output similarity. To validate
these inefficiencies, we have conducted comprehensive ex-
periments with compelling results, which are detailed in
Appendix B.

Challenge II: Multi-stage Training in MLLMs. Another
challenge in detecting contamination in MLLMs is the multi-
stage nature of their training (Yin et al., 2023). Each stage
may be subject to data contamination. 1) Initially, the pre-
training corpus could contain the textual components of
questions from benchmark samples. Moreover, in certain na-
tive multimodal model training (Reid et al., 2024), samples
may be entirely exposed. 2) Subsequently, during multi-
modal fine-tuning, the model may utilize training samples
of some benchmarks, leading to skewed performance im-
provements. 3) Furthermore, some models employ exten-
sive mixed image-text data from the internet for modality
alignment training (Lin et al., 2023; Bai et al., 2023b),
potentially introducing additional contamination. Given
the challenges, the development of an effective detection
framework for multimodal contamination becomes an ur-
gent need.

Based on the discussion above, we have designed a detection
method specifically tailored for multimodal contamination,
with a particular focus on VQA tasks. Additionally, we have
developed a heuristic method to trace the introduction of
contamination across different training phases.

3. Detection Framework: MM-DETECT

We introduce the multimodal contamination detection frame-
work, MM-DETECT, designed explicitly to support our
systematic analysis of contamination phenomena. The core
philosophy of MM-DETECT is to detect the unusual dis-
crepancies in model performance before and after semantic-
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irrelevant perturbations. The framework operates in two
primary steps:

• The first step is to generate perturbed datasets using
two methods: Option Order Sensitivity Test (§C.1) and
Slot Guessing for Perturbed Captions (§C.2), tailored
for multiple-choice and image captioning tasks, respec-
tively.

• The second step involves the application of predefined
metrics to detect contamination (§3.3), conducting thor-
ough analyses at both the dataset and instance levels.

3.1. Option Order Sensitivity Test

This method is based on a reasonable and intuitive premise
that if the model’s performance is highly sensitive to the
order of the options, it indicates potential contamination,
leading the model to memorize a certain canonical order of
the options.

3.2. Slot Guessing for Perturbed Caption

This method is based on the intuition that if a model can
predict a missing and important part of a sentence but fails
with the back-translated version (from English to Chinese,
then back to English), it likely indicates that the model has
encountered the original sentence during training.

As shown in Figure 5, the keywords identified are “woods”
and “bike”. Since the image contains “woods”, a correct
guess by the model may stem from its multimodal capabili-
ties rather than data contamination. However, if the model
fails to predict “bike”, which is also present in the image,
this may indicate potential leakage of this instance.

For details of the two methods, see Appendix C and D.

3.3. Detection Metrics

Detection Metrics serve as the core analytical instruments
within MM-DETECT. Having introduced two detection
methods, we now delineate the atomic metrics for the detec-
tion pipeline, which consists of two primary steps.

Step 1: Correct Rate Calculation. This step assesses
the model’s performance on benchmark D before and after
perturbation. We denote the correct rate (CR) and perturbed
correct rate (PCR) uniformly for both Option Order Sensi-
tivity Test (using Accuracy) and Slot Guessing (using Exact
Match). Here, N and N ′ are the counts of correct answers
before and after perturbation, respectively. They are calcu-
lated as:

CR =
N

|D|
, PCR =

N ′

|D|
.

Step 2: Contamination Degree Analysis. This step quan-
tifies the model’s contamination degree based on the per-

formance variation pre- and post-perturbation. Specifically,
we introduce two metrics to evaluate contamination at both
dataset and instance levels.

Dataset Level Metric. We evaluate the reduction in atomic
metrics, denoted as ∆:

∆ = PCR− CR

This reduction indicates the model’s familiarity or mem-
ory of the original benchmark relative to the perturbed set,
thereby offering insights into potential contamination at
the dataset level. A significant negative ∆ suggests poten-
tial extensive leakage in the benchmark dataset, leading to
highly perturbation-sensitive model performance.

Instance Level Metric. Despite a non-significant or posi-
tive ∆, contamination may still occur at the instance level, as
some instances may still have been unintentionally included
during training. To identify such instances, we compute
X , the count of cases where the model provided correct
answers before perturbation but incorrect answers after. The
instance leakage metric Φ is then obtained by dividing X
by the dataset size:

Φ =
X

|D|
,

where a larger Φ indicates a higher likelihood of instance
leakage.

Compared to methods relying solely on accuracy or perplex-
ity, MM-DETECT explicitly highlights performance drop
after perturbations, preventing exaggeration or underesti-
mation of contamination. Moreover, it offers advantages
of lower computational overhead, higher sensitivity, and ef-
fective black-box applicability, thus serving as an essential
analytical toolkit in our study.

4. Evaluating MM-DETECT with Intentional
Contamination

This section tackles our first overarching research question
— How can we effectively quantify and detect multi-
modal data contamination? To operationalise this goal,
we break RQ1 into three sub-questions:

SQ1 (Effectiveness) Is MM-DETECT able to detect contam-
ination regardless of where it is injected?
SQ2 (Sensitivity) How finely can MM-DETECT measure
different leakage levels?
SQ3 (Bias Diagnostic) When training-set data leak, can
MM-DETECT reveal the evaluation bias?

We answer these sub-questions by adopting the LLaVA
framework and training a suite of 7B-parameter models with
intentionally contaminated data during the visual-instruction
tuning phase. The contamination protocol and data split
follow §5.1.
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4.1. MM-DETECT is An Effective Detector

We reproduced the LLaVA-1.5-7B experiment to obtain a
baseline model without contamination. Recognizing that
contamination can occur anywhere in the training data, we
inserted contaminated samples into the visual instruction
tuning dataset (Dtuning) at three positions, early, mid, and
late, creating two groups of contaminated training sets using
1340 ScienceQA test samples or 1000 NoCaps validation
samples. Corresponding models, termed Early Cont., Mid
Cont., and Late Cont., were then trained for comparison
with the baseline.

Models ScienceQA Test Set NoCaps Val. Set
CR PCR ∆ CR PCR ∆

Baseline 61.4 61.5 0.01 33.0 32.1 -0.9
Early Cont. 71.5 68.1 -3.4 37.5 32.0 -5.5
Mid Cont. 69.4 67.3 -2.1 38.5 35.1 -3.4
Late Cont. 70.2 66.9 -3.3 38.7 32.6 -6.1

Table 1. Detection results on contamination using the ScienceQA
test set and NoCaps validation set.

Table 1 shows that incorporating contaminated data dur-
ing training increases both the model’s performance and
its sensitivity to perturbations. Compared with the base-
line, ScienceQA-contaminated models exhibit average in-
creases in CR and PCR of 9.0% and 5.9%, while NoCaps-
contaminated models show increases of 5.2% and 1.1%.
Moreover, all contaminated models demonstrate a marked
decrease in ∆, confirming that MM-DETECT effectively
identifies data contamination.

4.2. MM-DETECT is Sensitive and Fine-grained

We evaluated MM-DETECT’s sensitivity by varying leakage
levels in the training set. Using the fully contaminated
model as our baseline, we trained additional models with
moderate and minimal contamination, by inserting reduced
amounts (10% and 50%) of contaminated data at the late
position of the training set, to assess leakage impact.
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Figure 1. Metrics evaluated under varying leakage levels on the
ScienceQA test set and NoCaps validation set.

As illustrated in Figure 1, increasing contamination from
10% to 50% to 100% results in corresponding increases
in CR and PCR, alongside progressively larger ∆ values.
The findings confirm that our framework can accurately

differentiate between varying leakage levels in datasets.

4.3. MM-DETECT Diagnoses Evaluation Bias from
Training-set Leakage

We investigated whether MM-DETECT can detect training
set leakage by comparing models trained with and without
benchmark data contamination. For the ScienceQA exper-
iment, we appended 2000 ScienceQA training samples to
the training dataset, creating a contaminated model. For the
COCO experiment, we removed the COCO-Caption2017
training data from the original training dataset, resulting in
a model without leakage.

Model Dataset CR PCR ∆

Clean ScienceQA 61.4 61.5 0.01
Leaked ScienceQA 64.3 63.8 -0.5

Clean COCO-Caption2017 32.5 31.9 -0.6
Leaked COCO-Caption2017 38.1 34.9 -3.2

Table 2. Performance of models trained without (Clean) and with
(Leaked) training set contamination.

Table 2 compares the models’ performance. On the Sci-
enceQA test set, the contaminated model outperforms the
clean model by 2.9% in CR and 2.3% in PCR, with a ∆ of
-0.5. On the COCO-Caption2017 validation set, the model
trained with COCO data shows a ∆ of -3.2. The results
indicate that training set leakage inflates performance and
that MM-DETECT effectively detects it.

5. Assessing the Extent of Contamination in
MLLMs

In this section, we systematically quantify the extent of con-
tamination across various MLLMs and benchmarks, address-
ing our second research question — What is the degree of
contamination?

5.1. Setup

Models. We conducted extensive evaluations on nine
open-source MLLMs, including LLaVA-1.5-7B (Liu et al.,
2023a), VILA1.5-3B (Lin et al., 2023), Qwen-VL-Chat
(Bai et al., 2023b), fuyu-8b5, idefics2-8b (Laurençon et al.,
2024), Phi-3-vision-128k-instruct (Abdin et al., 2024), Yi-
VL-6B (AI et al., 2024), InternVL2-8B (Chen et al., 2023;
2024b), DeepSeek-VL2-Tiny (Wu et al., 2024), as well as
three proprietary MLLMs: GPT-4o-2024-08-06 (OpenAI,
2023), Gemini-1.5-Pro-002 (Reid et al., 2024), and Claude-
3.5-Sonnet-2024-06-206.
Benchmark Datasets. Our analysis leverages two multi-
choice datasets: ScienceQA (Lu et al., 2022) and MM-
Star (Chen et al., 2024a), along with three caption datasets:
COCO-Caption2017 (Lin et al., 2015), NoCaps (Agrawal

5https://www.adept.ai/blog/fuyu-8b
6https://www.anthropic.com/news/claude-3-5-sonnet
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Model ScienceQA Training Set ScienceQA Test Set MMStar Validation Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 59.7 58.6 -1.1 12.7 60.3 61.6 1.3 10.5 38.9 41.7 2.8 11.0
VILA1.5-3B 57.7 58.3 0.6 14.5 60.3 59.8 -0.5 14.8 38.6 37.6 -1.0 13.9
Qwen-VL-Chat 58.4 60.8 2.5 13.3 60.3 60.4 0.1 13.7 40.9 44.2 3.3 13.2
fuyu-8b 36.5 37.5 1.0 13.4 37.4 36.9 -0.5 14.9 28.2 27.0 -1.2 17.7
idefics2-8b 85.1 84.0 -1.2 3.7 84.0 84.3 0.3 2.8 48.2 49.3 1.1 7.9
Phi-3-vision-128k-instruct 90.5 90.4 -0.1 4.6 88.4 89.1 0.7 3.9 48.7 51.9 3.2 7.2
Yi-VL-6B 60.5 61.8 1.3 10.0 59.5 61.3 1.8 9.6 38.8 44.0 5.2 9.3
InternVL2-8B 94.1 93.9 -0.3 2.0 92.3 93.1 0.8 1.7 56.9 60.1 3.2 5.1
DeepSeek-VL2-Tiny 86.4 86.5 0.1 5.3 87.1 86.9 -0.2 5.3 51.1 52.1 1.0 10.7

Proprietary MLLMs
GPT-4o 69.9 70.0 0.1 2.7 69.1 69.7 0.6 2.8 48.6 50.5 1.9 9.4
Gemini-1.5-Pro 68.5 67.9 -0.6 6.6 66.5 66.2 -0.3 7.1 45.7 45.5 -0.2 9.9
Claude-3.5-Sonnet 70.3 65.0 -5.3 15.3 67.3 64.9 -2.4 12.4 36.3 36.4 0.1 15.9

Table 3. Comparison of MLLMs on multi-choice datasets. Bold values represent the most significant ∆ or Φ; color codes denote
contamination degree: green for minor leakage, yellow for partial leakage, and red for severe leakage.2

Model COCO Validation Set NoCaps Validation Set Vintage Training Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 34.6 34.0 -0.6 19.0 30.9 28.5 -2.4 17.9 10.8 10.1 -0.7 9.0
VILA1.5-3B 19.1 20.5 1.4 13.0 19.1 20.5 1.4 13.0 1.5 2.2 0.7 1.5
Qwen-VL-Chat 32.2 30.3 -1.9 19.2 28.7 27.3 -1.4 16.7 15.1 15.4 0.3 12.4
fuyu-8b 9.6 10.6 1.0 7.8 10.0 9.8 -0.2 8.3 2.4 3.3 0.9 2.3
idefics2-8b 43.5 42.3 -1.2 21.2 42.6 37.5 -5.1 23.3 18.5 17.0 -1.5 14.5
Phi-3-vision-128k-instruct 38.8 39.3 0.5 19.4 36.9 33.3 -3.6 19.7 17.4 11.7 -5.7 14.3
Yi-VL-6B 43.9 43.3 -0.6 19.4 37.2 36.1 -1.1 17.5 3.3 4.2 0.9 2.8
InternVL2-8B 53.3 51.9 -1.4 20.4 48.0 46.2 -1.8 20.9 28.0 28.7 0.7 18.8
DeepSeek-VL2-Tiny 23.8 21.4 -2.4 13.5 19.3 18.1 -1.2 12.2 7.5 6.9 -0.6 6.3

Proprietary MLLMs
GPT-4o 58.1 54.4 -3.7 23.1 54.2 55.1 0.9 19.4 36.3 38.4 2.1 20.1
Gemini-1.5-Pro 57.5 55.3 -2.2 21.6 51.2 52.0 0.8 18.7 46.3 41.0 -5.3 28.3
Claude-3.5-Sonnet 53.7 51.0 -2.7 21.8 50.8 51.5 0.7 20.0 35.2 33.0 -2.2 21.3

Table 4. Comparison of MLLMs on caption datasets. Bold values represent the most significant ∆ or Φ; color codes denote contamination
degree: green for minor leakage, yellow for partial leakage, and red for severe leakage.4

et al., 2019), and Vintage7. MMStar and Vintage, owing
to their recent inception, serve to contrast leakage levels
with other datasets. We randomly selected 2000 and 1340
samples from ScienceQA’s training and test sets, respec-
tively, with 1000 samples from the other datasets. Given the
unavailability of public test labels for COCO-Caption2017
and NoCaps, we used their validation sets.

5.2. Main Results

Multi-choice Datasets. Table 3 yields several conclu-
sions: (1) Both open-source and proprietary models
exhibit contamination. For example, on the ScienceQA
training set, both open-source models like LLaVA-1.5-7B
and idefics2-8b and proprietary model Gemini-1.5-Pro show
minor contamination degree. (2) Proprietary models are
more contaminated. Claude-3.5-Sonnet, for instance, reg-
isters a severe ∆ with higher Φ values on both ScienceQA

7https://huggingface.co/datasets/
SilentAntagonist/vintage-artworks-60k-captioned

training and test sets, indicating extensive leakage. (3)
Training set leakage is more pronounced than test set
leakage. On the ScienceQA dataset, models generally ex-
hibit larger ∆ values in the training set, for instance, Claude-
3.5-Sonnet shows ∆ = −5.3 on training versus ∆ = −2.4
on the test set, while most models have near-zero ∆ on the
test set. (4) Older benchmarks are more prone to leak.
The older ScienceQA test set shows more severe leakage
compared to the newer MMStar validation set.

Caption Datasets. Table 4 yields several conclusions:
(1) Both open-source and proprietary models exhibit
contamination on caption datasets. For example, in
the COCO Validation Set, open-source models such as
DeepSeek-VL2-Tiny and proprietary models like GPT-4o

7Based on §4.1, the degrees on multi-choice datasets are de-
fined as: ∆ ∈ (−1.6,−0.2] for minor leakage, ∆ ∈ (−2.9,−1.6]
for partial leakage, and ∆ ≤ −2.9 for severe leakage.

7Based on §4.1, the degrees on caption datasets are defined
as: ∆ ∈ (−2.4,−1.1] for minor leakage, ∆ ∈ (−5.0,−2.4] for
partial leakage, and ∆ ≤ −5.0 for severe leakage.

5
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record a significant contamination degree. (2) Leakage lev-
els vary significantly by benchmark. For example, on the
NoCaps Validation Set, open-source models exhibit more
pronounced contamination degree than proprietary models,
whereas the trend reverses on the COCO Validation Set.
These findings confirm that caption datasets are vulnerable
to leakage, with proprietary models generally exhibiting
more pronounced contamination effects.

6. Identifying the Origin of Contamination in
MLLMs

In this section, we address our third research question —
When is contamination predominantly introduced? Al-
though the training data for some MLLMs is openly docu-
mented, an important question remains: if contamination
does not arise from the visual training, could it stem from
the unimodal (pre-training) phase, as defined in §2.1? To ad-
dress this possibility, we examined the underlying LLMs of
the evaluated MLLMs and conducted a series of experiments
(§6.1). We also explored the origins of cross-modal contam-
ination arising during visual instruction tuning (§6.2).

6.1. Heuristic Detection of Unimodal Pre-training
Contamination

Model Accuracy ΦM

LLaMA2-7b (LLaVA-1.5 & VILA) 25.6 11.0
Qwen-7B (Qwen-VL) 13.2 13.2
Internlm2-7B (InternVL2) 11.0 5.1
Mistral-7B-v0.1 (idefics2) 10.7 7.9
Phi-3-small-128k-instruct (Phi-3-vision) 6.1 7.2
Yi-6B (Yi-VL) 3.4 9.3

Table 5. Contamination rates of LLMs used by MLLMs. ΦM

denotes the Φ of the respective MLLMs.

We employ a heuristic approach based on the intuition that
if LLMs can correctly answer an image-required question
without the image when random guessing is effectively
inhibited, it may indicate the leakage of that instance.

Experiment Setup. We used MMStar as the benchmark,
where every question relies on visual input for correct
answers. The tested models include LLaMA2-7B (Touvron
et al., 2023b) (used by LLaVA-1.5 and VILA), Qwen-7B
(Bai et al., 2023a) (used by Qwen-VL), Mistral-7B-v0.1
(Jiang et al., 2023) (used by idefics2), Phi-3-small-128k-
instruct (Abdin et al., 2024) (used by Phi-3-vision), Yi-6B
(AI et al., 2024) (used by Yi-VL), and Internlm2-7B (Cai
et al., 2024) (used by InternVL2). To inhibit random
guessing, we appended the prompt “If you do not know the
answer, output I don’t know” to the instructions. A sanity
check in Appendix G.2 confirms that this uncertainty clause
effectively suppresses lucky guesses, validating its inclusion
in our main protocol. Accuracy — the frequency with which
models correctly answer questions without image input — is
reported as the primary metric. Note that we did not evaluate

Model ScienceQA COCO Caption Nocaps

Phi-3-Vision 0.7 0.5 -3.6
VILA -0.5 1.4 1.4

Idefics2 0.3 -1.2 -5.1
LLaVA-1.5 1.3 -0.6 -2.4

Yi-VL 1.8 -0.6 -1.1
DeepSeek-VL2 -0.2 -2.4 -1.2
Qwen-VL-Chat 0.1 -1.9 -1.4

InternVL2 0.8 -1.4 -1.8

Table 6. Overlap between the training data of MLLMs and the
benchmarks, as well as the contamination degree ∆ of MLLMs on
benchmarks. Green signifies no overlap, yellow suggests potential
overlap, and Red indicates partial or entire overlap.
Fuyu-8B and proprietary models since their unimodal LLM
components and training data remain undisclosed.

Main Results. Table 5 yields several conclusions: (1)
Contamination occurs in LLM. All models exhibit var-
ied contamination rates, indicating that their pre-training
data likely included text from multimodal benchmarks. (2)
Elevated LLM contamination correlates with increased
MLLM leakage. For instance, VILA1.5-3B and Qwen-VL-
Chat exhibit significant Φ values that mirror their under-
lying LLM contamination levels. These findings suggest
that contamination in these MLLMs may originate partly
from the LLMs’ pre-training phase, rather than solely from
multimodal training.

6.2. Analyzing Cross-modal Contamination in
Multimodal Fine-tuning

To investigate the origins of cross-modal contamination,
we scrutinize the visual instruction tuning data of MLLMs.
We delve into the construction process of three benchmark
datasets: ScienceQA, COCO Caption, and Nocaps, compar-
ing them with the training data and its sources of various
open-source MLLMs to analyze the degree of overlap.

As Table 6 illustrates, MLLMs marked in red and yel-
low typically exhibit a significant contamination degree.
Yet, even MLLMs labeled in green aren’t exempt from the
risk of cross-modal contamination. This is because some
models have been trained on large-scale interleaved image-
text datasets (e.g., OBELICS (Laurençon et al., 2023)),
datasets derived from online sources (e.g., Conceptual Cap-
tion (Sharma et al., 2018)), or in-house data. Furthermore,
some models haven’t fully disclosed their training data,
which may lead to overlooked potential leaks. A more de-
tailed analysis is shown in the appendix F.

7. Conclusion and Future Work
We have presented MM-DETECT, a lightweight, black-box
framework that systematically detects and quantifies mul-
timodal data contamination in MLLMs. Our experiments
reveal that leakage—originating both in large-scale text pre-
training and in multimodal fine-tuning—can significantly
inflate performance and undermine fair evaluation.

6



Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM

References
Abdin, M. I., Jacobs, S. A., Awan, A. A., Aneja, J., Awadal-

lah, A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H. S., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck,
S., Cai, M., Mendes, C. C. T., Chen, W., Chaudhary, V.,
Chopra, P., Giorno, A. D., de Rosa, G., Dixon, M., El-
dan, R., Iter, D., Garg, A., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi,
M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim, D.,
Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li,
Y., Liang, C., Liu, W., Lin, E., Lin, Z., Madan, P., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,
Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma,
H., Song, X., Tanaka, M., Wang, X., Ward, R., Wang,
G., Witte, P., Wyatt, M., Xu, C., Xu, J., Yadav, S., Yang,
F., Yang, Z., Yu, D., Zhang, C., Zhang, C., Zhang, J.,
Zhang, L. L., Zhang, Y., Zhang, Y., Zhang, Y., and Zhou,
X. Phi-3 technical report: A highly capable language
model locally on your phone. CoRR, abs/2404.14219,
2024. doi: 10.48550/ARXIV.2404.14219. URL https:
//doi.org/10.48550/arXiv.2404.14219.

Agrawal, H., Desai, K., Wang, Y., Chen, X., Jain, R., John-
son, M., Batra, D., Parikh, D., Lee, S., and Anderson,
P. nocaps: novel object captioning at scale. In 2019
IEEE/CVF International Conference on Computer Vi-
sion (ICCV). IEEE, October 2019. doi: 10.1109/iccv.
2019.00904. URL http://dx.doi.org/10.1109/ICCV.
2019.00904.

AI, ., :, Young, A., Chen, B., Li, C., Huang, C., Zhang, G.,
Zhang, G., Li, H., Zhu, J., Chen, J., Chang, J., Yu, K.,
Liu, P., Liu, Q., Yue, S., Yang, S., Yang, S., Yu, T., Xie,
W., Huang, W., Hu, X., Ren, X., Niu, X., Nie, P., Xu, Y.,
Liu, Y., Wang, Y., Cai, Y., Gu, Z., Liu, Z., and Dai, Z. Yi:
Open foundation models by 01.ai, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang,
Z., Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen
technical report. CoRR, abs/2309.16609, 2023a. doi:
10.48550/ARXIV.2309.16609. URL https://doi.org/
10.48550/arXiv.2309.16609.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P.,
Lin, J., Zhou, C., and Zhou, J. Qwen-vl: A versatile
vision-language model for understanding, localization,

text reading, and beyond, 2023b. URL https://arxiv.
org/abs/2308.12966.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Cai, Z., Cao, M., Chen, H., Chen, K., Chen, K., Chen, X.,
Chen, X., Chen, Z., Chen, Z., Chu, P., Dong, X., Duan,
H., Fan, Q., Fei, Z., Gao, Y., Ge, J., Gu, C., Gu, Y., Gui,
T., Guo, A., Guo, Q., He, C., Hu, Y., Huang, T., Jiang,
T., Jiao, P., Jin, Z., Lei, Z., Li, J., Li, J., Li, L., Li, S.,
Li, W., Li, Y., Liu, H., Liu, J., Hong, J., Liu, K., Liu, K.,
Liu, X., Lv, C., Lv, H., Lv, K., Ma, L., Ma, R., Ma, Z.,
Ning, W., Ouyang, L., Qiu, J., Qu, Y., Shang, F., Shao,
Y., Song, D., Song, Z., Sui, Z., Sun, P., Sun, Y., Tang, H.,
Wang, B., Wang, G., Wang, J., Wang, J., Wang, R., Wang,
Y., Wang, Z., Wei, X., Weng, Q., Wu, F., Xiong, Y., and
et al. Internlm2 technical report. CoRR, abs/2403.17297,
2024. doi: 10.48550/ARXIV.2403.17297. URL https:
//doi.org/10.48550/arXiv.2403.17297.

Chen, L., Li, J., Dong, X., Zhang, P., Zang, Y., Chen, Z.,
Duan, H., Wang, J., Qiao, Y., Lin, D., et al. Are we on the
right way for evaluating large vision-language models?
arXiv preprint arXiv:2403.20330, 2024a.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., Li, B., Luo,
P., Lu, T., Qiao, Y., and Dai, J. Internvl: Scaling up
vision foundation models and aligning for generic visual-
linguistic tasks. arXiv preprint arXiv:2312.14238, 2023.

Chen, Z., Wang, W., Tian, H., Ye, S., Gao, Z., Cui, E.,
Tong, W., Hu, K., Luo, J., Ma, Z., et al. How far are
we to gpt-4v? closing the gap to commercial multi-
modal models with open-source suites. arXiv preprint
arXiv:2404.16821, 2024b.

Deng, C., Zhao, Y., Tang, X., Gerstein, M., and Cohan, A.
Investigating data contamination in modern benchmarks
for large language models. In Duh, K., Gómez-Adorno,
H., and Bethard, S. (eds.), Proceedings of the 2024 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, pp. 8706–8719.
Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.NAACL-LONG.482. URL https:
//doi.org/10.18653/v1/2024.naacl-long.482.

7

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
http://dx.doi.org/10.1109/ICCV.2019.00904
http://dx.doi.org/10.1109/ICCV.2019.00904
https://doi.org/10.48550/arXiv.2309.16609
https://doi.org/10.48550/arXiv.2309.16609
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2403.17297
https://doi.org/10.48550/arXiv.2403.17297
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.naacl-long.482


Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM

Dong, Y., Jiang, X., Liu, H., Jin, Z., Gu, B., Yang, M.,
and Li, G. Generalization or memorization: Data con-
tamination and trustworthy evaluation for large language
models. In Ku, L., Martins, A., and Srikumar, V. (eds.),
Findings of the Association for Computational Linguis-
tics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 12039–12050. Associa-
tion for Computational Linguistics, 2024. URL https:
//aclanthology.org/2024.findings-acl.716.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Laurençon, H., Tronchon, L., Cord, M., and Sanh, V.
What matters when building vision-language models?
CoRR, abs/2405.02246, 2024. doi: 10.48550/ARXIV.
2405.02246. URL https://doi.org/10.48550/arXiv.
2405.02246.

Laurençon, H., Saulnier, L., Tronchon, L., Bekman, S.,
Singh, A., Lozhkov, A., Wang, T., Karamcheti, S., Rush,
A. M., Kiela, D., Cord, M., and Sanh, V. Obelics: An
open web-scale filtered dataset of interleaved image-text
documents, 2023. URL https://arxiv.org/abs/2306.
16527.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Lin, J., Yin, H., Ping, W., Lu, Y., Molchanov, P.,
Tao, A., Mao, H., Kautz, J., Shoeybi, M., and Han,
S. VILA: on pre-training for visual language models.
CoRR, abs/2312.07533, 2023. doi: 10.48550/ARXIV.
2312.07533. URL https://doi.org/10.48550/arXiv.
2312.07533.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollár, P. Microsoft coco: Common objects in context,
2015.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. CoRR, abs/2310.03744,
2023a. doi: 10.48550/ARXIV.2310.03744. URL https:
//doi.org/10.48550/arXiv.2310.03744.

Liu, Y., Duan, H., Zhang, Y., Li, B., Zhang, S., Zhao,
W., Yuan, Y., Wang, J., He, C., Liu, Z., Chen, K., and
Lin, D. Mmbench: Is your multi-modal model an all-
around player? CoRR, abs/2307.06281, 2023b. doi:
10.48550/ARXIV.2307.06281. URL https://doi.org/
10.48550/arXiv.2307.06281.

Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu,
S.-C., Tafjord, O., Clark, P., and Kalyan, A. Learn to
explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on
Neural Information Processing Systems (NeurIPS), 2022.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. doi: 10.48550/ARXIV.2303.08774. URL https:
//doi.org/10.48550/arXiv.2303.08774.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Sharma, P., Ding, N., Goodman, S., and Soricut, R. Con-
ceptual captions: A cleaned, hypernymed, image alt-text
dataset for automatic image captioning. In Proceedings
of ACL, 2018.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretrain-
ing data from large language models. In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net, 2024. URL https://openreview.net/
forum?id=zWqr3MQuNs.

Song, D., Chen, S., Chen, G. H., Yu, F., Wan, X., and Wang,
B. Milebench: Benchmarking mllms in long context.
arXiv preprint arXiv:2404.18532, 2024.

Toutanvoa, K. and Manning, C. D. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger.
In Schütze, H. and Su, K. (eds.), Joint SIGDAT Confer-
ence on Empirical Methods in Natural Language Process-
ing and Very Large Corpora, EMNLP 2000, Hong Kong,
October 7-8, 2000, pp. 63–70. Association for Computa-
tional Linguistics, 2000. doi: 10.3115/1117794.1117802.
URL https://aclanthology.org/W00-1308/.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,

8

https://aclanthology.org/2024.findings-acl.716
https://aclanthology.org/2024.findings-acl.716
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/arXiv.2405.02246
https://doi.org/10.48550/arXiv.2405.02246
https://arxiv.org/abs/2306.16527
https://arxiv.org/abs/2306.16527
https://doi.org/10.48550/arXiv.2312.07533
https://doi.org/10.48550/arXiv.2312.07533
https://doi.org/10.48550/arXiv.2310.03744
https://doi.org/10.48550/arXiv.2310.03744
https://doi.org/10.48550/arXiv.2307.06281
https://doi.org/10.48550/arXiv.2307.06281
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://aclanthology.org/W00-1308/


Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM

Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288,
2023a. doi: 10.48550/ARXIV.2307.09288. URL https:
//doi.org/10.48550/arXiv.2307.09288.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288,
2023b. doi: 10.48550/ARXIV.2307.09288. URL https:
//doi.org/10.48550/arXiv.2307.09288.

Wu, Z., Chen, X., Pan, Z., Liu, X., Liu, W., Dai, D., Gao, H.,
Ma, Y., Wu, C., Wang, B., Xie, Z., Wu, Y., Hu, K., Wang,
J., Sun, Y., Li, Y., Piao, Y., Guan, K., Liu, A., Xie, X.,
You, Y., Dong, K., Yu, X., Zhang, H., Zhao, L., Wang, Y.,
and Ruan, C. Deepseek-vl2: Mixture-of-experts vision-
language models for advanced multimodal understanding,
2024. URL https://arxiv.org/abs/2412.10302.

Xu, R., Wang, Z., Fan, R.-Z., and Liu, P. Benchmark-
ing benchmark leakage in large language models. arXiv
preprint arXiv:2404.18824, 2024.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July
9-12, 2018, pp. 268–282. IEEE Computer Society, 2018.
doi: 10.1109/CSF.2018.00027. URL https://doi.org/
10.1109/CSF.2018.00027.

Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., and Chen,
E. A survey on multimodal large language models. arXiv
preprint arXiv:2306.13549, 2023.

9

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2412.10302
https://doi.org/10.1109/CSF.2018.00027
https://doi.org/10.1109/CSF.2018.00027


Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM

A. Illustrative Overview and Framework Visualization

A Sample in Multimodal 
Benchmark

Question Answer

Question
ORContains Contains

Contamination Accumulation

Image

Question Answer

Pure-text Pre-train Data Multimodal Post-train Data

Image

Question Answer

Unimodal 
Contamination

Cross-modal 
Contamination

LLM MLLM Contaminated

Figure 2. An analytical breakdown illustrating different forms and origins of multimodal data contamination across distinct training stages
of MLLMs.
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Figure 3. The overview of proposed MM-DETECT framework.

B. Inefficiency of Unimodal Methods
We demonstrate the results of traditional unimodal contamination detection methods applied to MLLMs.

B.1. Logits-base

These methods determine contamination by observing the distribution of low-probability tokens in model outputs. However,
MLLMs typically undergo instruction fine-tuning, which enhances their instruction-following capabilities, leading to less
significant differences in token probability distributions. As shown in Table 7, LLaVA-1.5-13b exhibits extremely low
perplexity on multimodal benchmark datasets.

Dataset Perplexity Split

ScienceQA 1.4498 Training Set
MMStar 1.4359 Validation Set

COCO-Caption2017 1.7530 Validation Set
NoCaps 1.8155 Validation Set

Table 7. Perplexity of LLaVA-1.5-13b on various multimodal benchmarks (100 samples randomly selected from each dataset).
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B.2. Masking-base

These methods involve masking phrases or sentences and providing data from the benchmark to guide the model in filling
in the missing parts. However, multimodal datasets often contain images that include the masked portions of sentences,
effectively providing answers to the model. This results in significantly higher success rates for MLLMs in predicting
missing parts compared to unimodal language models, leading to exaggerated contamination detection. As shown in Table 8,
LLaVA-1.5-13b has a high probability of Exact Match for predicting the masked word.

Dataset Exact Match ROUGE-L F1 Split

COCO-Caption2017 0.24 0.36 Validation Set
NoCaps 0.22 0.29 Validation Set

Table 8. Contamination detection of LLaVA-1.5-13b using TS-Guessing (question-based) on various multimodal benchmarks (100
samples randomly selected from each dataset).

B.3. Comparison-base

These methods identify contamination by comparing the similarity between models’ outputs and benchmark data. However,
MLLMs often undergo data augmentation, causing their outputs to diverge significantly from the labels in benchmark data,
making effective contamination detection challenging. From Table 9, we can see that CDD (Contamination Detection via
Output Distribution) indicates a contamination metric of 0% across all multimodal benchmark datasets.

Dataset Contamination Metric Split

COCO-Caption2017 0.0000% Validation Set
NoCaps 0.0000% Validation Set

Table 9. Contamination detection of LLaVA-1.5-13b using CDD (Contamination Detection via Output Distribution) on various multimodal
benchmarks (100 samples randomly selected from each dataset).

C. Details of the Methods

Figure 4. An example of Option Order Sensitivity Test applied to a contaminated model.

C.1. Option Order Sensitivity Test

This method is based on a reasonable and intuitive premise that if the model’s performance is highly sensitive to the order of
the options, as shown in Figure 4, it indicates potential contamination, leading the model to memorize a certain canonical
order of the options.
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Figure 5. A simple example shows the procedure of caption pertubation.

Method Formulation. Let D be a dataset consisting of n datapoints. Each datapoint di (i ∈ {1, . . . , n}) comprises a
question Qi, an associated image Ii, and a set of answer choices Ai = {a1i , a2i , . . . , ami }, where m is the number of choices
and the correct answer is denoted by aci .

To introduce positional variation, the set Ai is randomly shuffled to obtain a new set A′
i, ensuring that the index of the

correct answer aci in A′
i differs from its original position in Ai. The final prompts, before and after shuffling, are constructed

by concatenating the image, question and choices:

P = Concat(Ii, Qi, Ai),

P ′ = Concat(Ii, Qi, A
′
i),

where P and P ′ are the inputs to the model, and Qi and Ii remain unchanged throughout this process.

C.2. Slot Guessing for Perturbed Caption

This method is based on the intuition that if a model can predict a missing and important part of a sentence but fails with the
back-translated version (from English to Chinese, then back to English), it likely indicates that the model has encountered
the original sentence during training.

As shown in Figure 5, the keywords identified are “woods” and “bike”. Since the image contains “woods”, a correct guess
by the model may stem from its multimodal capabilities rather than data contamination. However, if the model fails to
predict “bike”, which is also present in the image, this may indicate potential leakage of this instance.

Method Formulation. Let D be a dataset containing n datapoints. Each datapoint di (i ∈ {1, . . . , n}) consists of an
image-caption pair, where the caption Si describes the visual features of the corresponding image Ii. We first apply a
back-translation function8, where we use the Google Translate API for Python to implement back-translation, to Si:

S′
i = fback-translate(Si).

resulting in a paraphrased version S′
i. Next, we perform keyword extraction9 on both Si and S′

i:

Ki = fkeyword(Si), K ′
i = fkeyword(S

′
i),

8A quantitative analysis of the semantic and lexical similarity between the original and back-translated captions is provided in
Appendix G.1.

9We employ the Stanford POS Tagger (Toutanvoa & Manning, 2000), targeting nouns, adjectives, and verbs, as they encapsulate the
core meaning of the sentences.
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where Ki and K ′
i denote the extracted keywords from Si and S′

i, respectively. We then apply a masking function fmask to
replace the extracted keywords with a placeholder token [MASK]:

Si,mask = fmask(Si,Ki), S
′
i,mask = fmask(S

′
i,K

′
i).

The final prompt guiding the model to complete the masked-word prediction can be represented as:

Pi = Concat(Ii, Qi, Si,mask),

P ′
i = Concat(Ii, Qi, S

′
i,mask).

D. Detailed Slot Guessing Pipeline
D.1. Back-Translation

The back-translation function applies a two-step translation process to generate a paraphrased caption S′
i from the original

caption Si. In this method, we use the Google Translate API to translate the caption into Chinese and then back into the
original language to generate the paraphrase.

Algorithm 1 Back-Translation
1: Input: Original caption Si

2: Translate Si to an intermediate language L
3: Translate the resulting caption back from language L to the original language
4: Output: Paraphrased caption S′

i

D.2. Keyword Extraction

We extract keywords from both the original caption Si and the paraphrased caption S′
i using the Stanford POS Tagger.

Keywords are identified as nouns (NN), adjectives (JJ), and verbs (VB), which are considered to encapsulate the core
meaning of the sentence. We apply this process to both captions.

Algorithm 2 Keyword Extraction
1: Input: Caption S
2: Apply POS tagging to S to obtain tags for each word
3: Extract words whose POS tags are in {NN, JJ, VB}
4: Output: List of extracted keywords K

D.3. Keyword Masking

We apply a masking function to randomly select one keyword from the extracted keywords and replace it with a placeholder
token [MASK]. This is done by identifying the position of the selected keyword in the sentence and substituting it with the
placeholder.

Algorithm 3 Keyword Masking
1: Input: Caption S, Keywords K
2: If K is empty then return "failed"
3: Randomly select a keyword k from K
4: Find the first occurrence of k in S
5: Replace k with the placeholder [MASK]
6: Output: Masked caption Smask

E. Contamination Degree Analysis
Based on §4.1, the degrees on multi-choice datasets are defined as: ∆ ∈ (−1.6,−0.2] for minor leakage, ∆ ∈ (−2.9,−1.6]
for partial leakage, and ∆ ≤ −2.9 for severe leakage. Based on §4.1, the degrees on caption datasets are defined as:
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∆ ∈ (−2.4,−1.1] for minor leakage, ∆ ∈ (−5.0,−2.4] for partial leakage, and ∆ ≤ −5.0 for severe leakage. Details are
shown in the algorithm 4.

Algorithm 4 Contamination Degree Analysis
Require: Benchmark dataset D, Model M
1: Define contamination degree CMinor, CPartial, CSevere
2: if D is multiple-choice then
3: Generate perturbed set Dpert via §C.1
4: else
5: Generate perturbed set Dpert via §C.2
6: end if
7: Compute CR, PCR, ∆, Φ using §3.3
8: if multiple-choice then

9: C ←


CMinor, ∆ ∈ (−1.6,−0.2]
CPartial, ∆ ∈ (−2.9,−1.6]
CSevere, ∆ ≤ −2.9

10: else

11: C ←


CMinor, ∆ ∈ (−2.4,−1.1]
CPartial, ∆ ∈ (−5.0,−2.4]
CSevere, ∆ ≤ −5.0

12: end if
Ensure: CR, PCR, ∆, Φ, C

F. Detailed Overlap Analysis
It is impractical to quantify overlapping samples: 1) Many models do not release their complete training datasets publicly;
instead, they only mention the data sources in their technical reports. 2) Even if we had access to complete training datasets,
identifying specific overlapping samples using matching algorithms (such as exact match) remains challenging. This is
because the original benchmarks might have undergone data augmentation before being used for model training, and
multimodal benchmarks include images, both of which complicate the practical utility of matching algorithms. The feasible
approach is manually reviewing the technical reports of these models to verify whether their training data overlaps with
benchmarks, as shown in the table 10.

MLLMs Multimodal Alignment/Pretraining Data Supervised Fine-Tuning Data
Phi-3-Vision Alignment Data includes FLD-5B. Not yet released

Open Images is one source of FLD-5B.
Open Images is also a source of Nocaps.
Therefore, there is potential overlap in Nocaps.

VILA No overlap Includes RefCOCO, VQAv2, GQA
MS COCO is a source of RefCOCO, VQAv2.
GQA’s source is Visual Genome Scene Graph, which also includes MS COCO.
COCO Caption’s source is MS COCO, and NoCaps’ source includes COCO Caption.
Therefore, there is potential overlap in COCO Caption and NoCaps.

Idefics2 Alignment Data includes SBU Captions SFT Data includes SBU Captions: potential overlap in COCO Caption and NoCaps.
SBU Captions’ source includes Flickr
COCO Caption’s source includes MS COCO, and MS COCO’s source includes Flickr
NoCaps’ source includes COCO Caption
Therefore, there is potential overlap in COCO Caption and NoCaps.

LLaVA-1.5 Alignment Data includes SBU Captions: COCO Caption and NoCaps with potential overlap. SFT Data includes RefCOCO, VQAv2, GQA: COCO Caption and NoCaps with potential overlap.
Yi-VL Alignment Data includes Flickr, VQAv2, RefCOCO: SFT Data includes GQA: COCO Caption and NoCaps with potential overlap.

COCO Caption and NoCaps with potential overlap.
DeepSeek-VL2 No overlap SFT Data includes Flickr, GQA: COCO Caption and NoCaps with potential overlap.
Qwen-VL-Chat Directly uses COCO Caption in the pretraining stage, Not yet released

therefore there is partial or entire overlap in COCO Caption and NoCaps.
InternVL2 Alignment Data includes COCO Caption: partial or entire overlap in COCO Caption and NoCaps. SFT Data includes ScienceQA, therefore there is partial or entire overlap in ScienceQA.

Table 10. Comparison of MLLMs and Their Data Sources

G. Other Experiments
G.1. Semantic & Lexical Similarity After Back-Translation

Setup. To quantify how much meaning and wording change during our caption perturbation step (§C.2), we applied an
English→Chinese→English back-translation to every caption in three validation splits – COCO-Caption, NoCaps, and our
Vintage dataset. For each original (c) and back-translated caption (c̃) we computed

14



Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM

• SBERT cosine similarity (Reimers & Gurevych, 2019) as a sentence-level semantic score, and

• BLEU-4 (Papineni et al., 2002) as a token-overlap lexical score.

We additionally report the Pearson correlation between the two metrics across captions within each dataset.

Dataset Avg. SBERT ↑ Avg. BLEU ↑ Correlation r

COCO Caption 0.894 0.236 0.386
NoCaps 0.887 0.264 0.410
Vintage 0.914 0.441 0.423

Table 11. Average semantic (SBERT) and lexical (BLEU-4) similarity between original and back-translated captions, together with their
Pearson correlation (r).

Key Observations.

• High semantic preservation. All three datasets record SBERT scores close to 0.9, indicating that back-translation
keeps the meaning of captions largely intact; the VINTAGE split achieves the strongest preservation (0.914).

• Substantial lexical variation. BLEU-4 values are comparatively low, showing that wording and surface forms
differ considerably—consistent with the presence of synonym substitutions and syntactic reshuffling introduced by
back-translation.

• Weak yet positive coupling. Pearson correlations between the two metrics lie in the 0.38-0.42 band, suggesting only a
mild positive relationship: captions that keep more tokens also tend to retain semantics, but plenty of cases preserve
meaning even with low lexical overlap.

These results justify using back-translation as a semantics-preserving yet lexically diversifying perturbation in our
contamination-detection pipeline.

G.2. Sanity Check for the “I don’t know” Instruction

Setup. To verify that appending the uncertainty clause “If you do not know the answer, output “I don’t know”.” effectively
suppresses random guessing, we performed a pilot experiment on 1 000 randomly sampled questions from MMSTAR. All
images were removed, so a truly vision-grounded model should either fail or explicitly abstain. We evaluated the unimodal
LLaMA2-7B language model under two settings:

• Deter: deterministic decoding with the uncertainty instruction;

• Non-Deter: deterministic decoding without the instruction.

Results. Table 12 shows that the instruction causes the model to respond “I don’t know” 238 times and reduces apparent
accuracy from 44.8% to 25.6% (a drop of 19.2%). This confirms that nearly half of the seemingly correct answers in the
uninstructed setting are likely due to lucky guesses rather than genuine reasoning, justifying our decision to include the
clause in all main experiments.

“I don’t know” will therefore be treated as an explicit abstention in the main study, ensuring reported accuracies reflect
genuine vision-language capabilities rather than random chance.
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Setting Accuracy (%) # “I don’t know”

Deter (+ instruction) 25.6 238
Non-Deter (- instruction) 44.8 0

Table 12. Effect of the uncertainty instruction on LLaMA2-7B.

16


