

000 REPURPOSING SYNTHETIC DATA FOR FINE-GRAINED 001 SEARCH AGENT SUPERVISION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 LLM-based search agents are increasingly trained on entity-centric synthetic data
012 to solve complex, knowledge-intensive tasks. However, prevailing training meth-
013 ods like Group Relative Policy Optimization (GRPO) discard this rich entity infor-
014 mation, relying instead on sparse, outcome-based rewards. This critical limitation
015 renders them unable to distinguish informative “near-miss” samples—those with
016 substantially correct reasoning but a flawed final answer—from complete failures,
017 thus discarding valuable learning signals. We address this by leveraging the very
018 entities discarded during training. Our empirical analysis reveals a strong pos-
019 itive correlation between the number of ground-truth entities identified during an
020 agent’s reasoning process and final answer accuracy. Building on this insight, we
021 introduce Entity-aware Group Relative Policy Optimization (**E-GRPO**), a novel
022 framework that formulates a dense entity-aware reward function. E-GRPO as-
023 signs partial rewards to incorrect samples proportional to their entity match rate,
024 enabling the model to effectively learn from these “near-misses”. Experiments
025 on diverse question-answering (QA) and deep research benchmarks show that E-
026 GRPO consistently and significantly outperforms the GRPO baseline. Further-
027 more, our analysis reveals that E-GRPO not only achieves superior accuracy but
028 also induces more efficient reasoning policies that require fewer tool calls, demon-
029 strating a more effective and sample-efficient approach to aligning search agents.

030 1 INTRODUCTION 031

032 The advent of Large Language Models (LLMs) has catalyzed the development of sophisticated
033 autonomous agents, with **search agents** emerging as a prominent class for solving complex,
034 knowledge-intensive tasks (Yao et al., 2023; Wang et al., 2024; Xi et al., 2025). Training these
035 agents to navigate the vast, noisy web effectively requires abundant and challenging data (Google
036 Team, 2025b; OpenAI, 2025; xAI Team, 2025; Moonshot AI, 2025). To meet this demand, a dom-
037 inant paradigm of synthetic data generation has emerged (Wu et al., 2025b; Li et al., 2025b; Gao
038 et al., 2025). In this paradigm, as shown in Figure 1 (left), complex questions are often created by
039 systematically transforming simple “seed” questions through operations like fact injection or delib-
040 erate obfuscation. This process creates an intricate problem structure, paved with key entities that
041 form the factual backbone of the correct answer.

042 This synthetic data is then used to train agents within the now-dominant reinforcement learning (Wen
043 et al., 2024; Singh et al., 2025), especially with Group Relative Policy Optimization (GRPO) (Shao
044 et al., 2024) and its numerous variants (Yu et al., 2025; Dong et al., 2025; Hu, 2025; Xu et al.,
045 2024; Zhao et al., 2025). These methods typically rely on outcome-based rewards, utilizing only
046 the final answer while discarding the intermediate entity information meticulously embedded during
047 data synthesis. This mechanism leads to the reward sparsity problem (Qian et al., 2025; Deng
048 et al., 2025), which manifests critically for search agents (Song et al., 2025; Wu et al., 2025a;
049 Jin et al., 2025; Li et al., 2025c; Zheng et al., 2025; Zhang et al., 2025a; Li et al., 2025b; Gao
050 et al., 2025): by treating all negative samples uniformly, GRPO fails to distinguish a “near-miss”—a
051 response with correct intermediate reasoning steps but a flawed answer—from a complete failure.
052 For instance, in answering *Who was the director of the 1997 film starring the actor who won the
053 Academy Award for Best Actor for the film 'The Revenant'?*, a “near-miss” that correctly identifies
the actor (*Leonardo*) and the film (*Titanic*) but fails on the final answer is far more informative than
one that misunderstands the query entirely. By penalizing both equally, standard GRPO discards

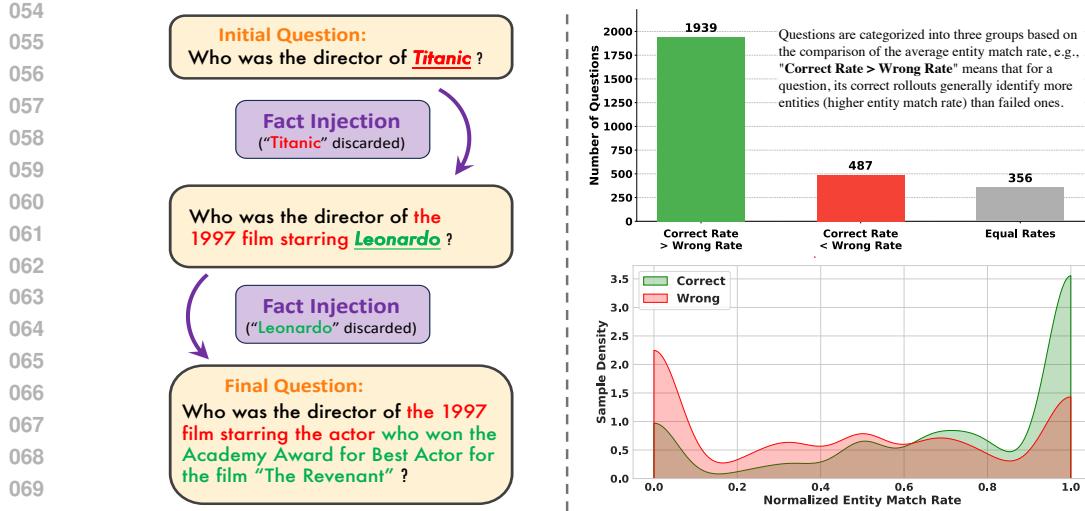


Figure 1: **Left:** An Example of entity-centric synthetic data generation. **Right:** Analysis of the correlation between entity matching and agent performance.

crucial learning signals embedded in partially correct reasoning, forcing the model to re-learn steps it had already mastered.

One natural approach to address this sparse reward problem is to incorporate fine-grained, process-level supervision. In domains such as mathematics and code, this is achieved either by evaluating each intermediate step with a Process Reward Model (PRM) (Fan et al., 2025; Anonymous, 2025; Zhang et al., 2025b) or by employing complex sampling mechanisms (e.g., tree-based search) to derive step-level advantages (Yang et al., 2025; Hou et al., 2025). However, these methods are ill-suited for the open-ended nature of web search. The sheer scale and dynamic nature of web content render the annotation required for a PRM prohibitively expensive. Similarly, the extensive length of search agent trajectories, often involving dozens of tool calls and reasoning steps, makes intricate sampling strategies computationally intractable.

This leaves a critical gap: how can we obtain a fine-grained, informative, yet computationally efficient reward signal for search agents? The answer, we find, lies hidden in plain sight: within the very **entity-centric** information from synthetic data generation that GRPO-like methods discard. These entities, forming the factual backbone for the answer, intuitively represent an untapped source of fine-grained supervision. To validate the potential of these ground-truth entities, we analyze the relationship between agent performance and the number of entities matched during reasoning (**entity match rate**). As illustrated in Figure 1 (right), the strong positive correlation we observed (further discussed in Section 3.1) validates our core hypothesis: the entity match rate serves as a powerful proxy for factual correctness and can be repurposed as a fine-grained reward signal that standard GRPO lacks.

Based on this core insight, we propose **Entity-aware Group Relative Policy Optimization (E-GRPO)**, a novel RL framework that enhances policy optimization by formulating a dense, entity-aware reward function from the entities within the synthetic training data. Specifically, instead of applying a uniform penalty, our method assigns a bonus to negative samples proportional to their entity match rate. By doing so, a “near-miss” sample, which contains many correct entities and is highly informative for learning, receives a better reward than a complete failure. This fine-grained reward, obtained with negligible computational cost, compels the model to move beyond simply avoiding errors and towards mastering the process of identifying and synthesizing key information, thereby addressing the limitation of standard GRPO in complex search tasks.

Our comprehensive evaluation on 11 benchmarks, spanning diverse models and environments, demonstrates that E-GRPO significantly and consistently surpasses the GRPO baseline. Critically, beyond superior accuracy, E-GRPO also enables more efficient reasoning policies that consistently require fewer tool calls. Further analyses validate our core hypothesis, confirming the importance of the entity-aware reward.

108 In summary, the key contributions of this work are as follows:
 109

110 • We identify the “near-miss” problem in GRPO-based training and propose the core insight that
 111 entities from synthetic data can be repurposed as a fine-grained reward signal, supported by em-
 112 pirical analysis revealing a strong correlation between entity match rate and task accuracy.
 113 • We introduce **E-GRPO**, a novel framework that enhances policy optimization by formulating an
 114 entity-aware reward function to differentiate the quality of negative samples and provide more
 115 granular supervision.
 116 • We conduct experiments on multiple QA and deep research benchmarks, demonstrating that E-
 117 GRPO not only outperforms the GRPO baseline in accuracy but also learns more efficient policies.
 118

119 **2 PRELIMINARY**

120 In this section, we provide a brief overview of key concepts in search agents and a review of entity-
 121 centric data synthesis methods. More discussion of related work is available in Section 5.
 122

123 **2.1 SEARCH AGENTS**

124 **Multi-turn Rollout.** We adopt the ReAct (Yao et al., 2023) paradigm for search agents. The LLM
 125 agent iteratively performs thought and action, and receives observation from the environment.
 126 Specifically, in each iteration, the LLM agent generates a free-form thought (τ) and executes a
 127 valid action (e.g., a tool call a). Then it waits for the environment’s feedback as the observation
 128 (o). In the web search setting, the action space typically consists of searching queries, webpage
 129 browsing, and generating the final answer. The iteration terminates when the LLM generates a final
 130 answer. A complete rollout with T iterations can be defined as:
 131

$$132 \mathcal{H} = (\tau_1, a_1, o_1, \dots, \tau_t, a_t, o_t, \dots, \tau_T, a_T),$$

133 where τ_t, a_t, o_t represent thought, action and observation at step t , with τ_t, a_t sampled from a policy
 134 π_θ based on all previous context as $(\tau_t, a_t) \sim \pi_\theta(\cdot \mid q, \tau_1, a_1, o_1, \dots, \tau_{t-1}, a_{t-1}, o_{t-1})$. The specific
 135 format of multi-turn rollout is detailed in Appendix A.
 136

137 **Tool Design.** Following existing search agent studies (Li et al., 2025b; Gao et al., 2025), we define
 138 the agent’s web exploration action space with two essential tools:
 139

140 • **Search:** A search engine that accepts multiple queries and retrieves the top-10 relevant results per
 141 query, including titles, snippets, and the corresponding URLs.
 142 • **Visit:** A browser agent that accesses several web pages simultaneously, given the corresponding
 143 URLs and browsing goals. It first retrieves the full webpage and then uses Qwen3-30B-A3B-
 144 Instruct-2507 (Team, 2025a) to extract relevant information based on the browsing goal.
 145

146 **2.2 ENTITY-CENTRIC DATA SYNTHESIS**

147 A significant line of research has focused on the autonomous generation of complex and grounded
 148 question-answer (QA) pairs (Wu et al., 2025a;b; Li et al., 2025b; Gao et al., 2025), sharing a common
 149 thread in their entity-centric approach. We briefly summarize two state-of-the-art (SOTA) methods
 150 that exemplify this paradigm below.
 151

152 • **ASearcher** (Gao et al., 2025): Starting with a seed question, ASearcher’s synthesis agent iter-
 153 atively increases difficulty via two entity-focused operations: Injection, which replaces named
 154 entities with descriptive facts, and Fuzzing, which substitutes specific entities with more ambigu-
 155 ous, general descriptions.
 156 • **SailorFog-QA** (Li et al., 2025b): SailorFog-QA first constructs a complex knowledge graph via
 157 a random walk from a seed entity, creating intricate entity couplings. It then generates questions
 158 by sampling subgraphs and applying information obfuscation, which involves replacing specific
 159 entity attributes with vague descriptions.
 160

162

3 METHODOLOGY

163

164 In this section, we first give a detailed analysis of the correlation between agent performance and
165 synthetic-data entity matching. Then, we propose the E-GRPO algorithm, designed to improve
166 GRPO with a fine-grained entity-aware reward function.
167

168

3.1 ANALYZING ENTITY MATCHING IN AGENTIC REASONING

169

170 Inspired by the entity-centric approach for data generation, where entities are intuitively the factual
171 backbone of the synthetic data, we conduct an empirical analysis to investigate how these entities
172 correlate with the performance of a search agent.
173

174 **Metrics.** To quantify this correlation, we first define the **entity match rate**. Given a syn-
175 thetic QA pair (q, gt) , we retain all the m ground-truth entities during QA generation $E_q =$
176 $\{e^{(1)}, e^{(2)}, \dots, e^{(m)}\}$, and sample a group of G rollouts $\{\mathcal{H}^{(1)}, \mathcal{H}^{(2)}, \dots, \mathcal{H}^{(G)}\}$. For each roll-
177 out $\mathcal{H}^{(i)}$ in the group, let $\mathcal{T}^{(i)} = \{\tau_1^{(i)}, \tau_2^{(i)}, \dots, \tau_{T_i}^{(i)}\}$ be the collection of all thoughts in rollout i .
178 We identify the set of entities matched within the thoughts as:
179

180
$$E_{\text{matched}}^{(i)} = \left\{ e \in E_q \mid \exists t \in \{1, \dots, T_i\}, e \text{ is mentioned in } \tau_t^{(i)} \right\}, \quad (1)$$
181

182 An entity is considered “mentioned” if its full phrase appears as an exact string match in the
183 thought’s text (more discussion available in Appendix B). The **entity match rate** for rollout i , de-
184 noted as γ_i , is then calculated as the ratio of matched entities to the total:
185

186
$$\gamma_i = \frac{|E_{\text{matched}}^{(i)}|}{|E_q|} = \frac{|E_{\text{matched}}^{(i)}|}{m} \quad (2)$$
187

188 Furthermore, to enable robust comparison across different questions which may have varying dif-
189 ficulty, we introduce the **normalized entity match rate**, $\hat{\gamma}_i$. This is calculated by normalizing the
190 raw rate γ_i against the maximum rate, γ_{\max} , observed within its question group:
191

192
193
$$\hat{\gamma}_i = \begin{cases} \frac{\gamma_i}{\gamma_{\max}} & \text{if } \gamma_{\max} > 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{where } \gamma_{\max} = \max_{j \in \{1, \dots, G\}} \gamma_j. \quad (3)$$
194

195 This normalization allows us to aggregate the match rate of all rollouts on a common 0-to-1 scale.
196

197 **Analysis.** To investigate the correlation between **entity match rate** and accuracy, we first conduct
198 a per-question analysis on a sampled subset of SailorFog-QA (Li et al., 2025b) using the WebSailor-
199 7B agent (Li et al., 2025b). **For each question, we perform 8 rollouts and calculate the average entity**
200 **match rates of correctly solved and failed rollouts, respectively (further explanation in Appendix I).**
201 As shown in Figure 1 (upper right), the average entity match rate of correct rollouts was higher than
202 that of failed ones in the vast majority of the questions, outnumbering the reverse scenario by a clear
203 4-to-1 margin (1939 vs. 487 questions). This establishes a strong correlation between the entity
204 match rate and the correctness of the final answer.
205

206 Moving beyond this aggregate, per-question view, we analyze the distribution of the **normalized**
207 **entity match rate** across all individual rollouts. As shown in Figure 1 (bottom right), the distri-
208 butions for correct and incorrect rollouts diverge significantly. The distribution of correct samples
209 (green) peaks sharply at a normalized rate of 1.0. In contrast, incorrect samples (red) show a bi-
210 modal distribution: a large peak at 0.0, and a notable spread across the mid-to-high range. This
211 latter group represents the informative “near-misses”, where most entities were found but the final
212 reasoning failed.
213

214 This analysis shows that the entity match rate is more than just a pass/fail indicator. Instead, it
215 provides a granular scale to distinguish valuable “near-misses” from complete failures, offering a
216 richer signal of an agent’s reasoning quality.
217

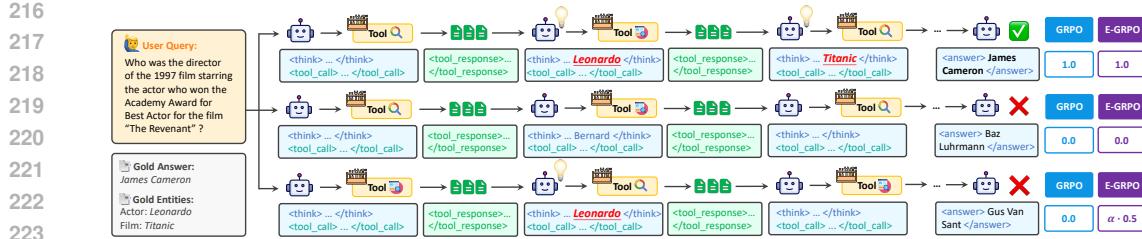


Figure 2: Comparison of GRPO and E-GRPO. GRPO applies outcome-based reward, while E-GRPO additionally assigns a bonus to negatives proportional to their **normalized entity match rate**. The three rollouts illustrate a success, a complete failure, and a “near-miss”, respectively.

3.2 ENTITY-AWARE GROUP RELATIVE POLICY OPTIMIZATION

The preceding analysis shows that entity match rate offers a fine-grained signal of an agent’s reasoning quality. Conventional policy optimization methods, however, largely ignore this signal by relying on a sparse, outcome-based reward tied only to answer correctness, thereby treating all failures as equally undesirable. Therefore, we introduce **Entity-aware Group Relative Policy Optimization (E-GRPO)**, a framework that directly incorporates the entity match rate into its reward function to guide policy learning better.

Limitations of Reward Formulation in GRPO. Existing GRPO-like frameworks (Shao et al., 2024) for search agents typically employ outcome-based reward. Specifically, the reward R_i for a rollout $\mathcal{H}^{(i)}$ is defined simply as 1 if it leads to a correct answer, and 0 otherwise. This reward is then used to compute a group-relative advantage. This advantage value, denoted as $\hat{A}_{i,j}$, is calculated once for the entire rollout i and then applied to every token j within it, serving as the core learning signal:

$$\hat{A}_{i,j} = \frac{R_i - \text{mean}(\{R_k\}_{k=1}^G)}{\text{std}(\{R_k\}_{k=1}^G)}. \quad (4)$$

The limitation of this formulation is evident: as shown in Figure 2, standard GRPO assigns an identical reward of 0 to both a complete failure (middle rollout, 0 entities matched) and an informative “near-miss” (bottom rollout, 1 entity matched), thus rendering their different reasoning qualities indistinguishable.

Entity-aware Reward Formulation. E-GRPO addresses the limitation of outcome-based rewards by redefining the reward function with an entity-aware bonus. We utilize the **normalized entity match rate** $\hat{\gamma}_i$ rather than the raw rate, as its consistent 0-to-1 scale is essential for a stable advantage calculation across different groups. Our entity-aware reward is thus defined as:

$$R_i = \begin{cases} 1 & \text{if } \mathcal{H}^{(i)} \text{ is correct} \\ \alpha \cdot \hat{\gamma}_i & \text{if } \mathcal{H}^{(i)} \text{ is wrong} \\ 0 & \text{if error}^1 \text{ occurs in } \mathcal{H}^{(i)} \end{cases}, \quad (5)$$

where $\alpha \in [0, 1]$ is a hyperparameter balancing the value of accuracy and entity matching. This formulation yields two significant advantages. (1) It creates a dense reward spectrum to distinguish the quality of incorrect rollouts. As shown in Figure 2, a “near-miss” that identifies a correct entity (*Leonardo*) is rewarded ($\alpha \cdot 0.5$), unlike a complete failure which receives zero. (2) It provides a meaningful training signal even in all-wrong groups where standard GRPO offers no gradient.

Overall Training Objective. With our entity-aware reward defined, we can now formalize the complete E-GRPO objective. First, the refined reward from Eq. 5 is used to compute a more informative advantage $\hat{A}_{i,j}$ via Eq. 4. The policy is then optimized by maximizing the GRPO objective

¹Errors (format and overlength problems) are detailed in the subsequent paragraph **Implementation Details**.

270 $\mathcal{J}(\theta)$, defined as:

$$272 \quad \mathcal{J}(\theta) = \mathbb{E}_{(q, gt) \sim \mathcal{D}, \{\mathcal{H}^{(i)}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{\sum_{i=1}^G |\mathcal{H}^{(i)}|} \sum_{i=1}^G \sum_{j=1}^{|\mathcal{H}^{(i)}|} \min \left(r_{i,j}(\theta) \hat{A}_{i,j}, \text{clip}(r_{i,j}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}}) \hat{A}_{i,j} \right) \right], \quad (6)$$

277 where $r_{i,j}(\theta) = \frac{\pi_{\theta}(\mathcal{H}_j^{(i)} | q, \mathcal{H}_{j-1}^{(i)})}{\pi_{\theta_{\text{old}}}(\mathcal{H}_j^{(i)} | q, \mathcal{H}_{j-1}^{(i)})}$ is the importance sampling ratio.

280 **Implementation Details.** Based on this objective, we additionally apply the following practical
281 modifications to the training of all models (both our method and the baselines):
282

- 283 • **KL-Free Objective and Policy Exploration.** Following DAPO (Yu et al., 2025), we remove the
284 KL-divergence regularization term in GRPO and apply the “clip-higher” method, which increases
285 the upper clipping bound $\varepsilon_{\text{high}}$, to better encourage policy exploration.
- 286 • **Handling Format Errors.** Rollouts with format errors (defined in Appendix A) are assigned a
287 reward of 0. This strict penalty is justified because our RL training is preceded by a cold-start
288 SFT phase that ensures the model is already familiar with the required output format.
- 289 • **Handling Overlength Rollouts.** Overlength rollouts (i.e., those exceeding token or tool-call lim-
290 its) are also assigned a reward of 0. We observed in preliminary experiments that directly optimiz-
291 ing on these rollouts can lead to policy collapse. Therefore, we adopt a specific handling strategy:
292 while these rollouts contribute to the advantage normalization (i.e., computing the group’s mean
293 and standard deviation), they are excluded from the final loss computation to prevent instability.

295 4 EXPERIMENTS

297 4.1 EXPERIMENT SETUP

299 **Benchmarks.** Our evaluation spans a diverse set of 11 benchmarks to comprehensively assess
300 E-GRPO’s effectiveness. For question-answering tasks, we use three single-hop datasets: Natural
301 Questions (NQ) (Kwiatkowski et al., 2019), TriviaQA (TQ) (Joshi et al., 2017), and PopQA (Mallen
302 et al., 2022); and four multi-hop datasets: 2WikiMultiHopQA (2Wiki.) (Ho et al., 2020), HotpotQA
303 (HQA) (Yang et al., 2018), Bamboogle (Bamb.) (Press et al., 2022), and MuSiQue (Musi.) (Trivedi
304 et al., 2022). We further test our agent on four challenging deep research benchmarks: GAIA (Mi-
305 alon et al., 2023), BrowseComp (Wei et al., 2025), BrowseComp-ZH (Zhou et al., 2025), and
306 xbench-DeepSearch (xbench-DS) (Xbench-Team, 2025). Following Asearcher (Gao et al., 2025),
307 we use 1000 sampled instances from the validation sets of HQA, 2Wiki., and Musi. For GAIA, we
308 use the 103-sample text-only validation subset (Li et al., 2025c). For all other benchmarks, we use
309 their full test sets.

310 **Baselines and Reference Agents.** Our primary baseline is the direct counterpart trained with
311 GRPO (Shao et al., 2024), allowing for a controlled comparison of the algorithmic enhancement.
312 We also compare against a suite of ReAct-based agents. For QA benchmarks, this includes R1-
313 Searcher-7B (Song et al., 2025), DeepResearcher-7B (Zheng et al., 2025), Search-R1-32B (Jin et al.,
314 2025), Simple-DS-QwQ (Sun et al., 2025), and ASearcher-14B (Gao et al., 2025). For deep research
315 benchmarks, we include advanced models like OpenAI-o3, Claude-4-Sonnet (Anthropic, 2025),
316 Kimi-K2 (Team et al., 2025), and DeepSeek-V3.1 (Liu et al., 2024), alongside open-source mod-
317 els with no more than 32B parameters such as R1-Searcher-7B, WebThinker-RL (Li et al., 2025d),
318 WebDancer-QwQ (Wu et al., 2025a), and WebSailor-7B/32B (Li et al., 2025b).

319 **Environment Settings.** We conduct training in two distinct environments to validate E-GRPO’s
320 robustness: a closed-world **local knowledge base (Local)** and an open-world **web exploration**
321 (**Web**) environment. In the Local setting, search and visit tools are simulated via information re-
322 trieval over a Wikipedia 2024 corpus (Karpukhin et al., 2020; Gao et al., 2025). In the Web setting,
323 the agent interacts with the live web using Google Search and Jina (Jina.ai, 2025) for page fetching.

324 Table 1: Overall **Pass@1** performance on standard QA benchmarks. Results with \dagger are sourced
 325 from Gao et al. (2025). The top scores of each evaluation environment are **bolded**.

327 Environment	328 Model	329 Multi-Hop QA				330 Single-Hop QA			331 Avg
		332 2Wiki.	333 HQA	334 Bamb.	335 Musi.	336 NQ	337 TQ	338 PopQA	
<i>330 Comparison among Our Models</i>									
331 Local	332 Local-7B-SFT	74.0	66.7	72.8	30.2	49.8	78.4	49.6	60.2
	333 Local-7B-GRPO	75.1	65.1	74.4	31.2	51.5	82.0	50.4	61.4
	334 Local-7B-E-GRPO	79.6	69.0	78.4	32.8	55.8	83.9	50.2	64.2
<i>335 Comparison with Other Reference Agents</i>									
336 Web	337 R1-Searcher-7B \dagger	69.4	61.6	72.0	25.3	48.7	79.5	45.2	57.4
	338 DeepResearcher-7B \dagger	64.1	61.0	76.8	24.5	52.9	82.8	45.7	58.3
	339 Search-R1-32B \dagger	69.3	64.2	81.6	30.8	51.1	86.6	53.6	62.5
	340 Simple-DS-QwQ \dagger	80.4	67.5	83.2	32.9	55.3	90.2	47.8	65.3
	341 ASearcher-14B \dagger	79.8	70.5	80.8	33.8	55.4	88.5	50.5	65.6
	342 Local-7B-SFT	76.8	70.7	80.2	32.2	55.4	88.7	48.9	64.7
	343 Local-7B-GRPO	77.2	73.8	82.4	34.9	55.9	89.3	50.1	66.2
<i>344 Local-7B-E-GRPO</i>									
80.4	73.7	85.6	34.9	59.1	90.4	50.2	67.8		

345 **Training Details.** Our experiments are based on Qwen2.5-7B-Instruct (Yang et al., 2024) and
 346 Qwen3-30B-A3B-Instruct-2507 (Team, 2025a), covering different model sizes and architectures
 347 (dense and MoE). It is important to note that our study aims to **validate the effectiveness of E-**
 348 **GRPO at the algorithmic level**, not merely to pursue state-of-the-art performance. Therefore, we
 349 use limited data to ensure training efficiency while still enabling performance comparison.

350

- 351 • **Cold-start SFT:** We first fine-tune the base models on 11K samples from SailorFog-QA (Li et al.,
 352 2025b). This step, following Dong et al. (2025), mitigates reward collapse and ensures the model
 353 understands the agentic format before RL.
- 354 • **RL:** We generate two distinct 1k-sample datasets for RL training. For the Local environment, we
 355 [synthesize data using the Asearcher](#) (Gao et al., 2025) method over the 2024 Wikipedia corpus.
 356 For the Web environment, we use the SailorFog-QA data generation pipeline. Note that both
 357 methods are anchored in entities from Wikipedia despite the distinct environments they use. Crucially,
 358 for both datasets, we retain all ground-truth entities generated during the synthesis process
 359 to enable E-GRPO. We train the 7B model in both environments, while the 30B model is trained
 360 only in the more complex Web environment. For each setup, we apply both GRPO and E-GRPO.

361 We denote our models by their training environment, model sizes, and the training algorithm, e.g.,
 362 **Local-7B-GRPO**. Detailed hyperparameters are presented in Appendix C.

363 **Evaluation Metrics.** Model answers, extracted from the model output enclosed in `<answer>` and
 364 `</answer>` tags (detailed in Appendix A), are evaluated for correctness using Qwen2.5-72B-Instruct
 365 under the LLM-as-Judge setting. We report the average **Pass@1** over all test samples, as well as the
 366 **Pass@3** across three rollouts.

369 4.2 MAIN RESULTS

370 We present the experiment results across three evaluation settings: (1) 7B models trained and evaluated
 371 with the Local environment on standard QA benchmarks, (2) the same 7B models evaluated
 372 with the Web environment on the same benchmarks, and (3) all models trained and evaluated with
 373 the Web environment on deep research benchmarks.

374 **Performance in the Local Environment on QA benchmarks.** The top block of Table 1 presents
 375 the results for models trained and evaluated within the controlled Local environment. Our Local-
 376 7B-E-GRPO model achieves the highest average score of 64.2, marking a substantial improvement

378
 379 Table 2: Overall performance on four challenging deep research benchmarks. Results with \dagger are
 380 sourced from Wu et al. (2025c). The top two Pass@1 scores of agents $\leq 32B$ are **bolded** and
underlined. The top Pass@3 scores of our agents are **bolded**.

Model	GAIA		BrowseComp		BrowseComp-ZH		xbench-DS	
	Pass@1	Pass@3	Pass@1	Pass@3	Pass@1	Pass@3	Pass@1	Pass@3
<i>Advanced Models</i>								
OpenAI-o3 \dagger	70.5	-	50.9	-	58.1	-	66.7	-
Claude-4-Sonnet \dagger	68.3	-	12.2	-	29.1	-	64.6	-
Kimi-K2 \dagger	57.7	-	14.1	-	28.8	-	50.0	-
DeepSeek-V3.1 \dagger	63.1	-	30.0	-	49.2	-	71.0	-
<i>Open-source Agents $\leq 32B$</i>								
R1-Searcher-7B	20.4	-	0.4	-	0.6	-	4.0	-
WebThinker-RL	48.5	-	2.8	-	7.3	-	24.0	-
WebDancer-QwQ	<u>51.5</u>	-	3.8	-	18.0	-	39.0	-
WebSailor-7B	37.9	-	6.7	-	14.2	-	34.3	-
WebSailor-32B	53.2	-	10.5	-	25.5	-	53.3	-
<i>Our Agents</i>								
Web-7B-SFT	31.7	44.7	5.7	10.5	13.2	25.6	37.3	55.0
Web-7B-GRPO	33.0	44.7	6.3	11.7	17.5	31.5	40.7	56.0
Web-7B-E-GRPO	36.9	<u>51.5</u>	9.3	16.1	18.1	32.1	42.0	59.0
Web-30B-SFT	45.0	60.2	10.8	18.5	23.8	38.1	43.7	63.0
Web-30B-GRPO	47.6	62.1	<u>12.3</u>	18.9	<u>25.7</u>	38.8	45.3	65.0
Web-30B-E-GRPO	48.5	65.1	12.9	21.0	26.4	41.2	<u>46.7</u>	66.0

404
 405 of 2.8 points over the GRPO baseline and 4.0 points over the initial SFT model. This superiority
 406 is consistent across most individual benchmarks, demonstrating that the entity-aware reward allows
 407 the model to learn a more effective reasoning policy than the outcome-based reward.

408
 409 **Performance in the Web Environment on QA benchmarks.** As shown in the second block of
 410 Table 1, even when evaluated with the unfamiliar web environment, our Local-7B-E-GRPO model
 411 again achieves the highest average score among its peers at 67.8, outperforming the GRPO counter-
 412 part and other open-source baselines with larger sizes. This result strongly validates the gen-
 413 eralizability and robustness of our method, allowing a locally trained model to achieve superior
 414 performance in a completely different, real-world setting.

415
 416 **Performance on Deep Research Benchmarks.** As presented in Table 2, results on deep research
 417 benchmarks consistently underscore the superiority of E-GRPO. Across both 7B and 30B scales, our
 418 E-GRPO models significantly outperform their GRPO counterparts. Notably, Web-30B-E-GRPO
 419 achieves the best performance among open-source agents on BrowseComp (12.9) and BrowseComp-
 420 ZH (26.4), even surpassing advanced models like Claude-4-Sonnet on BrowseComp, and narrows
 421 the gap with others.

422
 423 The algorithmic advantage of E-GRPO is most evident in the Pass@3 results. While GRPO of-
 424 fers minimal gains over the SFT baseline (e.g., 44.7 on GAIA), E-GRPO delivers substantial im-
 425 provements (e.g., a 6.8-point jump to 51.5). This stems from a key algorithmic difference: GRPO’s
 426 outcome-based reward tends to refine existing successful strategies, whereas E-GRPO’s entity-aware
 427 reward explicitly encourages exploring promising but incomplete paths. This allows the agent to
 428 build a more diverse set of solutions, which directly increases its chances of succeeding within a few
 429 attempts and explains the significant Pass@3 gains.

429 4.3 ANALYSIS

430
 431 **Training Dynamics.** We begin by analyzing the training dynamics of E-GRPO against the GRPO
 432 baseline. As shown in Figure 3, E-GRPO demonstrates superior learning efficiency and effective-

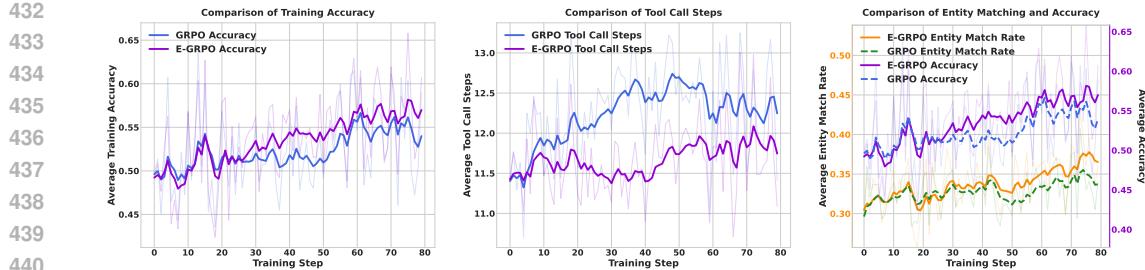


Figure 3: Training dynamics of 30B models with the Web environment, including the comparison of E-GRPO and GRPO over training accuracy, tool call steps, and the analysis between entity matching and training accuracy.

ness. The left panel shows that E-GRPO (purple) consistently achieves **higher training accuracy**, showing a steadier and more pronounced upward trend than the GRPO baseline (blue). This suggests that the dense, entity-aware reward provides a more effective and stable learning signal. Simultaneously, the middle panel reveals that E-GRPO learns a more efficient reasoning policy, consistently using **fewer tool calls** per rollout. This efficiency can be attributed to rewarding the discovery of key entities, which guides the agent towards more direct and informative solution steps. Extended training dynamics are provided in Appendix G for reference.

To further validate E-GRPO’s mechanism, we analyze the relationship between the entity match rate and the accuracy during training, as illustrated in the right panel of Figure 3. A strong positive correlation is evident: for both GRPO and E-GRPO, the curves of the entity match rate and accuracy rise in tandem. This confirms our core hypothesis that **the entity match rate serves as an effective proxy for final answer accuracy**. Crucially, the plot reveals the direct impact of our entity-aware reward: by explicitly incentivizing a higher entity match rate, E-GRPO (orange) consistently outperforms the GRPO baseline (green) on this metric. This advantage, in turn, directly translates into superior final answer accuracy (purple vs. blue), validating that **mastering the sub-goal of entity matching leads to better overall performance**.

A detailed case study in Appendix D provides a qualitative illustration of these dynamics, concretely demonstrating how E-GRPO’s focus on entity matching leads to a more efficient and accurate reasoning path. Through the case study, we also analyze several failure cases of E-GRPO in Appendix E.

Ablations of Entity Matching Weights. We conduct an ablation study on the hyperparameter α , which balances the outcome-based reward and the entity-matching bonus. As shown in Figure 4, setting $\alpha = 0.0$ reduces our method to the GRPO baseline. For all four benchmarks, performance consistently improves as α increases from 0.0, peaking at 0.3. This clearly demonstrates the benefit of incorporating the entity-aware reward. However, a further increase to $\alpha = 0.5$ leads to a performance drop on most benchmarks, suggesting that an excessively strong entity-matching bonus can distract the model from the primary goal of generating a correct final answer. This highlights the importance of balancing the two reward components, with a moderate α value yielding the optimal policy. More analysis of a decaying α value during training is available in Appendix F.

5 RELATED WORK

Search Agents. The capabilities of Large Language Models (LLMs) have fueled a surge in research on autonomous agents that can interact with external environments to solve complex tasks. A foundational paradigm in this area is the ReAct framework (Yao et al., 2023), which interleaves reasoning (thought) and action steps. Building on this, a prominent line of research has focused on search agents designed to navigate the web (Song et al., 2025; Zheng et al., 2025; Li et al., 2025c; Zhang et al., 2025a; Sun et al., 2025). Advanced models like Gemini Deep Research (Google Team,

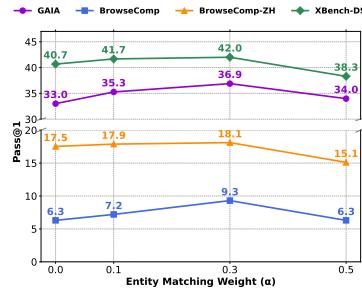


Figure 4: Comparison of different entity matching weights.

486 2025b), OpenAI Deep Research (OpenAI, 2025), Grok DeepSearch (xAI Team, 2025), along with
 487 smaller open-source models such as Asearcher (Gao et al., 2025), WebThinker (Li et al., 2025d),
 488 WebWalker (Wu et al., 2025b), WebDancer (Wu et al., 2025a), and WebSailor (Li et al., 2025b;a)
 489 have demonstrated increasing proficiency in retrieving and synthesizing information from noisy,
 490 real-world web sources. Our work directly contributes to improving the training methodology for
 491 this class of agents, addressing the challenge of learning robust policies in complex web environ-
 492 ments.

493

494 **Synthetic Data Generation for Search Agents.** The now-dominant paradigm for training search
 495 agents relies heavily on high-quality synthetic data (Team, 2025b). A common thread in these
 496 generation methods is an entity-centric approach to complexity generation (Gao et al., 2025; Wu
 497 et al., 2025b;a; Li et al., 2025b;a; Tao et al., 2025; Wu et al., 2025c). During data synthesis, a rich
 498 set of ground-truth entities that form the factual backbone of the correct answer are systematically
 499 discarded. Prior work has exclusively used the final question-answer pairs from this process for
 500 post-training (Dong et al., 2025; Wu et al., 2025a; Li et al., 2025b). In contrast, our work is the
 501 first, to our knowledge, to recognize these discarded entities not as a byproduct, but as an untapped
 502 source of fine-grained, factual supervision. We pioneer the idea of repurposing this “waste” material
 503 to formulate an entity-aware reward function, thereby bridging the gap between the data generation
 504 process and the RL alignment phase in a novel and efficient manner.

504

505 **Reinforcement Learning for Search Agents.** Group Relative Policy Optimization (GRPO) and
 506 its variants (Shao et al., 2024; Yu et al., 2025; Xu et al., 2024; Zhao et al., 2025; Hu, 2025; Xue
 507 et al., 2025; Su et al., 2025) have become a dominant paradigm for aligning search agents. Notable
 508 advancements within this paradigm, such as ARPO (Dong et al., 2025), have adapted the framework
 509 with an entropy-based rollout mechanism for complex multi-turn web search settings. Despite these
 510 refinements, the entire family of GRPO-like methods is fundamentally constrained by its reliance on
 511 a sparse, outcome-based reward signal. While conventional solutions to such sparsity, like Process
 512 Reward Models (PRMs) (Fan et al., 2025; Anonymous, 2025; Zhang et al., 2025b) or tree-based
 513 sampling (Yang et al., 2025; Hou et al., 2025), exist in related domains, they are ill-suited for open-
 514 ended web search due to prohibitive annotation costs and computational intractability. Our work,
 515 E-GRPO, diverges from these approaches by proposing a reward signal that is both fine-grained and
 516 computationally efficient, requiring no additional annotation, model training, or complex sampling.

516

574 6 CONCLUSION

595

596 In conclusion, we propose Entity-aware Group Relative Policy Optimization (E-GRPO), a novel
 597 framework designed to enhance policy optimization for search agents. Our analysis reveals that the
 598 ground-truth entities discarded during synthetic data generation serve as a powerful proxy for factual
 599 correctness, offering a fine-grained reward signal that standard methods ignore. E-GRPO leverages
 600 this insight by formulating an entity-aware reward function, assigning partial credit to negative sam-
 601 ples based on their entity match rate to encourage meaningful exploration. Across a wide array of
 602 QA and deep research benchmarks, E-GRPO consistently and significantly outperforms the GRPO
 603 baseline. Remarkably, it not only achieves superior accuracy but also learns more efficient policies
 604 with fewer tool calls, offering a more effective and sample-efficient solution for aligning search
 605 agents in complex, knowledge-intensive tasks.

606

607

608 REFERENCES

609

610 Anonymous. LSRL: Process-supervised GRPO on latent recurrent states improves mathematical
 611 reasoning. In *Submitted to ACL Rolling Review - May 2025*, 2025. URL <https://openreview.net/forum?id=NcrDaFJfQk>. under review.

612 Anthropic. Introducing claude 4, 2025. URL <https://www.anthropic.com/news/claude-4>.

613 Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
 614 Shuo Yang, Zhanwei Zhang, Qiwen Wang, Yang Qin, Yuan Wang, Quanxing Zha, Sunhao Dai,
 615 and Changhua Meng. Atom-searcher: Enhancing agentic deep research via fine-grained atomic
 616 thought reward, 2025. URL <https://arxiv.org/abs/2508.12800>.

540 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
 541 Chen, Jiazen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
 542 *arXiv preprint arXiv:2507.19849*, 2025.

543 Lishui Fan, Yu Zhang, Mouxiang Chen, and Zhongxin Liu. Posterior-grpo: Rewarding reasoning
 544 processes in code generation, 2025. URL <https://arxiv.org/abs/2508.05170>.

545 Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
 546 Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl, 2025.
 547 URL <https://arxiv.org/abs/2508.07976>.

548 Google Team. Gemini 2.5 pro. <https://deepmind.google/models/gemini/pro/>, 2025a.

549 Google Team. Introducing gemini deep research. <https://gemini.google/overview/deep-research/>, 2025b.

550 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 551 qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*,
 552 2020.

553 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
 554 learning with on-policy tree search, 2025. URL <https://arxiv.org/abs/2506.11902>.

555 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
 556 preprint arXiv:2501.03262*, 2025.

557 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 558 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 559 learning. *arXiv preprint arXiv:2503.09516*, 2025.

560 Jina.ai. Jina, 2025. URL <https://jina.ai/>.

561 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 562 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

563 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 564 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
 565 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on
 566 Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
 567 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
 568 URL [https://aclanthology.org/2020.emnlp-main.550/](https://aclanthology.org/2020.emnlp-main.550).

569 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 570 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 571 benchmark for question answering research. *Transactions of the Association for Computational
 572 Linguistics*, 7:453–466, 2019.

573 Kuan Li, Zhongwang Zhang, Hufeng Yin, Rui Ye, Yida Zhao, Liwen Zhang, Litu Ou, Dingchu
 574 Zhang, Xixi Wu, Jialong Wu, Xinyu Wang, Zile Qiao, Zhen Zhang, Yong Jiang, Pengjun Xie, Fei
 575 Huang, and Jingren Zhou. Websailor-v2: Bridging the chasm to proprietary agents via synthetic
 576 data and scalable reinforcement learning, 2025a. URL <https://arxiv.org/abs/2509.13305>.

577 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 578 uan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu,
 579 Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-
 580 human reasoning for web agent. *arXiv preprint arXiv:2507.02592*, 2025b.

581 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 582 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint
 583 arXiv:2501.05366*, 2025c.

584 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 585 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 586 *arXiv preprint arXiv:2504.21776*, 2025d.

594 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 595 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 596 *arXiv:2412.19437*, 2024.

597 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 598 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 599 memories. *arXiv preprint arXiv:2212.10511*, 2022.

600 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 601 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 602 *Representations*, 2023.

603 Moonshot AI. Kimi-researcher: End-to-end rl training for emerging agentic capabilities. <https://moonshotai.github.io/Kimi-Researcher/>, 2025. URL <https://moonshotai.github.io/Kimi-Researcher/>.

604 OpenAI. Openai deep research. <https://openai.com/index/introducing-deep-research/>,
 605 2025.

606 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 607 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 608 2022.

609 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
 610 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
 611 2025.

612 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 613 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 614 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

615 Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
 616 integration for llms via reinforcement learning. *arXiv preprint arXiv:2505.01441*, 2025.

617 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 618 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 619 learning. *arXiv preprint arXiv:2503.05592*, 2025.

620 Zhenpeng Su, Leiyu Pan, Xue Bai, Dening Liu, Guanting Dong, Jiaming Huang, Wenping Hu, and
 621 Guorui Zhou. Klear-reasoner: Advancing reasoning capability via gradient-preserving clipping
 622 policy optimization. *arXiv preprint arXiv:2508.07629*, 2025.

623 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
 624 Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
 625 web-powered reasoning trajectory synthesis. *arXiv preprint arXiv:2505.16834*, 2025.

626 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li, Liwen
 627 Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webshaper: Agenti-
 628 cally data synthesizing via information-seeking formalization. *arXiv preprint arXiv:2507.15061*,
 629 2025.

630 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 631 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 632 *preprint arXiv:2507.20534*, 2025.

633 Qwen Team. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

634 Tongyi DeepResearch Team. Tongyi-depresearch. <https://github.com/Alibaba-NLP/DeepResearch>, 2025b.

635 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 636 questions via single-hop question composition. *Transactions of the Association for Computational*
 637 *Linguistics*, 10:539–554, 2022.

648 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 649 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 650 *Frontiers of Computer Science*, 18(6):186345, 2024.

651 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 652 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 653 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

654 Muning Wen, Ziyu Wan, Jun Wang, Weinan Zhang, and Ying Wen. Reinforcing llm agents via policy
 655 optimization with action decomposition. *Advances in Neural Information Processing Systems*, 37:
 656 103774–103805, 2024.

657 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 658 Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards au-
 659 tonomous information seeking agency. *arXiv preprint arXiv:2505.22648*, 2025a.

660 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Deyu Zhou,
 661 Pengjun Xie, and Fei Huang. Webwalker: Benchmarking llms in web traversal. *arXiv preprint
 662 arXiv:2501.07572*, 2025b.

663 Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Yong
 664 Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong Cheng, and Jingren Zhou.
 665 Resum: Unlocking long-horizon search intelligence via context summarization, 2025c. URL
 666 <https://arxiv.org/abs/2509.13313>.

667 xAI Team. Grok agents: Combining reasoning and tool use. [https://x.ai/news/grok-3#
 668 grok-agents-combining-reasoning-and-tool-use](https://x.ai/news/grok-3#grok-agents-combining-reasoning-and-tool-use), 2025.

669 Xbench-Team. Xbench-deepsearch, 2025. URL <https://xbench.org/agi/aisearch>.

670 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 671 Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
 672 A survey. *Science China Information Sciences*, 68(2):121101, 2025.

673 Zheng Xu, Xu Dai, Shaojun Wei, Shouyi Yin, and Yang Hu. Gspo: A graph substitution and paral-
 674 lelization joint optimization framework for dnn inference. In *Proceedings of the 61st ACM/IEEE
 675 Design Automation Conference*, pp. 1–6, 2024.

676 Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
 677 pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. *arXiv preprint
 678 arXiv:2509.02479*, 2025.

679 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 680 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 681 arXiv:2412.15115*, 2024.

682 Zhicheng Yang, Zhijiang Guo, Yinya Huang, Xiaodan Liang, Yiwei Wang, and Jing Tang. Treerpo:
 683 Tree relative policy optimization, 2025. URL <https://arxiv.org/abs/2506.05183>.

684 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 685 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 686 answering. *arXiv preprint arXiv:1809.09600*, 2018.

687 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 688 React: Synergizing reasoning and acting in language models. In *International Conference on
 689 Learning Representations (ICLR)*, 2023.

690 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 691 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 692 scale. *arXiv preprint arXiv:2503.14476*, 2025.

693 Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang,
 694 Yufeng Li, Kewei Tu, Pengjun Xie, et al. Evolvesearch: An iterative self-evolving search agent.
 695 *arXiv preprint arXiv:2505.22501*, 2025a.

702 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
703 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
704 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.

705 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shao-
706 han Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. *arXiv preprint*
707 *arXiv:2507.20673*, 2025.

708 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
709 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
710 ments. *arXiv preprint arXiv:2504.03160*, 2025.

711 Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling
712 Jin, Chenxuan Xie, Meng Cao, et al. Browsecamp-zh: Benchmarking web browsing ability of
713 large language models in chinese. *arXiv preprint arXiv:2504.19314*, 2025.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A FORMAT
757758 Our ReAct framework follows Li et al. (2025b). A complete rollout follows the format below:
759

```

760 Format
761
762 <think> thinking process here </think>
763 <tool_call>
764 {“name”: “tool name here”, “arguments”: {“parameter name here”: parameter value here,
765 “another parameter name here”: another parameter value here, ...}}
766 </tool_call>
767 <tool_response>
768 tool_response here
769 </tool_response>
770 (more thinking processes, tool calls and tool responses here)
771 <think> thinking process here </think>
772 <answer> answer here </answer>
773

```

774 Any response that does not strictly follow the format will be considered a case with format errors.
775776 B DISCUSSION ABOUT SYNTHETIC-DATA ENTITIES
777778 B.1 ENTITY CONSTRUCTION
779780 First, we explain the construction of the ground-truth entity sets for two different data synthesis
781 methods used in our experiments.
782783 **ASearcher.** As illustrated in Figure 1 and Section 2.2, the question is iteratively constructed by
784 selecting an entity and replacing it with descriptive facts or fuzzing it. Consequently, we use all
785 selected and modified entities for a question as its ground-truth entity set.
786787 **SailorFog-QA.** As shown in Section 2.2, data generation begins by sampling an entity subgraph,
788 followed by prompting an LLM to generate a question centered around these entity nodes. There-
789 fore, the node set of the sampled subgraph is regarded as the ground-truth entity set.
790791 **Entity Quality Control.** Since the question generation process ensures question quality, e.g., in-
792 jected facts strictly adhere to the selected entity, and generated questions are consistently centered
793 around the sampled subgraph, the resulting entity sets are highly precise. Even if there are unex-
794 pectedly noisy entities, our reward mechanism is robust to them. Since any irrelevant entity is likely
795 to be missed by all rollouts within a group, it does not change their relative performance and thus
796 does not affect the normalized reward signal.
797798 B.2 ENTITY MATCHING
799800 Then, we consider two questions related to the entity matching mechanism: (1) Why do we use the
801 exact string match rather than using an LLM for matching? (2) Why do we only count the entities
802 matched in thoughts, excluding those matched in observation?
803804 **Rationale for Exact String Matching.** Our decision to use exact string matching instead of an
805 LLM-based judge is primarily motivated by the nature of our ground-truth entities, which are def-
806 inite, short-formed strings with little ambiguity. This characteristic makes exact matching a natural
807 and sufficient method, which in turn addresses two practical concerns: training efficiency and ro-
808 bustness against reward hacking.
809810 First, employing an LLM to semantically parse and match entities within long reasoning traces
811 would introduce significant computational latency, impeding the throughput of the RL training loop.
812 In contrast, exact string matching is computationally trivial and adds negligible overhead.
813

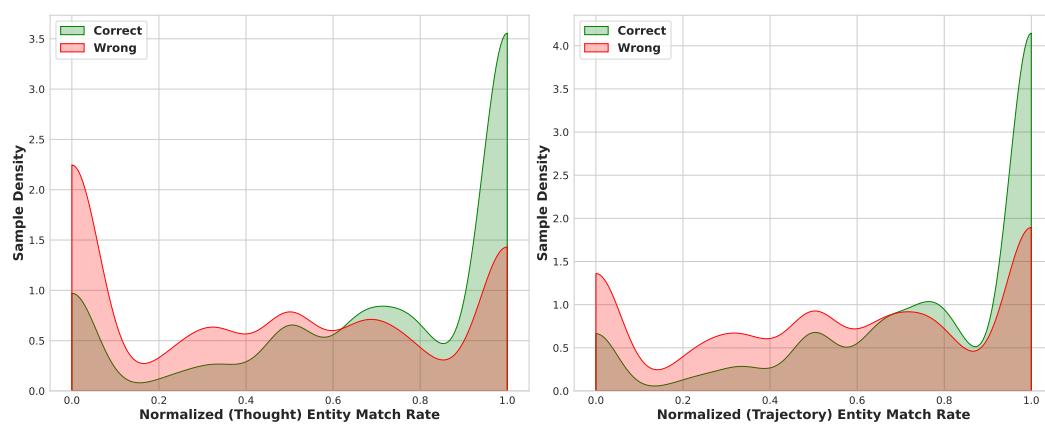


Figure 5: Comparison of Normalized entity match rate in thoughts and entire trajectories.

Second, while advanced LLMs can perform semantic matching, they are also more susceptible to exploitation by the policy model. In preliminary experiments, we observed a distinct reward-hacking behavior: the agent learned to extend its thoughts with verbose, superficially relevant phrases that, while not containing the correct entities, would mislead the LLM judge into erroneously assigning partial credit. Exact string matching, being less flexible, provides a more reliable reward signal, ensuring the agent is rewarded for factual correctness rather than plausible-sounding text.

Rationale for Thought-Only Matching. To justify why we match entities exclusively within the agent’s thoughts (`<think>` `</think>` blocks), we analyze the difference between this approach and matching across the entire trajectory (including observations).

As shown in Figure 5, the two methods yield notably different distributions for incorrect trajectories. While thought-based matching (left) shows a clear separation with most failures having a low match rate, trajectory-based matching (right) produces significantly more “false positives”: incorrect rollouts that still achieve a high entity match rate.

We do several case studies and find the cause of this discrepancy. Often, a key entity is present in the observation returned by a tool (e.g., a search snippet), but the agent fails to extract and incorporate this information into its reasoning process. Rewarding the agent based on the entire trajectory would grant unearned credit for merely encountering information, not for understanding and acting upon it. This creates a noisy reward signal that fails to penalize a true reasoning failure. Therefore, by confining entity matching to the agent’s thoughts, we ensure the reward is directly coupled to the model’s ability to identify and internalize key information, providing a cleaner and more targeted learning signal.

C HYPERPARAMETERS

SFT. We apply a training batch size of 32, a cosine decay learning rate of 5e-6 for about 4.8 epochs, with a linear warm up starting from 1e-10 for 0.2 epochs.

RL. We apply a context length of 32k, a tool call budget of 40, a training batch size of 64, a ppo batch size of 64 (exactly **on policy** optimization), a group size of 8, and a learning rate of 2e-6 for about 5 epochs. For E-GRPO, we set the entity matching weight α as 0.3 by default.

Inference. We apply a temperature of 0.6, a `top_p` of 0.95, and a tool call budget of 40 for inference.

864 **D CASE STUDY**
865

866
867 To illustrate the qualitative differences in reasoning, we present a comparative case study using tra-
868 jectories generated by Web-30B-GRPO and Web-30B-E-GRPO for the same query. The E-GRPO
869 agent demonstrates a more direct and efficient reasoning path, requiring fewer tool calls to suc-
870 cessfully identify all key entities and culminating in the correct answer. In stark contrast, the GRPO agent
871 embarks on a longer, less fruitful trajectory. Despite using more tool calls, it fails to pinpoint the
872 critical entity in the thoughts, the **First International Polar Year** (described as the “*international*
873 *scientific initiative focused on the polar regions*”), which ultimately leads to an incorrect answer.
874

875 **Case Trajectory on SailorFog-QA: Solved by Web-30B-E-GRPO**

876 **Question:** A European naval officer, known for leading a significant polar expedition in
877 the late 19th century aboard a vessel named after an Austrian admiral, later proposed a
878 major international scientific initiative focused on the polar regions. For his contributions
879 to exploration, he received one of the highest honors from a major British geographical
880 society. Who is this explorer?

881 **Ground-truth Entities:** [Tegetthoff, International Polar Year, Royal Geographical Soci-
882 ety’s Founder’s Medal]

883 **Answer:** Karl Weyprecht

884 **Round 1**

885 **<think>**

886 To identify the explorer in question, I need to connect several specific clues: a European
887 naval officer who led a notable polar expedition in the late 19th century aboard a ship named
888 after an Austrian admiral, later proposed a major international polar scientific initiative, and
889 received a top honor from a major British geographical society. These are highly distinctive
890 details, but the identity is not immediately clear. By structuring my search queries to include
891 all these elements—expedition timing, vessel name origin, scientific initiative, and British
892 recognition—I maximize the chance of surfacing sources that directly link these facts to a
893 single individual. This comprehensive approach should yield either the explorer’s name or
894 authoritative references that will allow me to deduce the answer. I need to run these targeted
895 searches now to synthesize the relevant information.

896 **</think>**

897 **<tool_call>**

898 {“name”: “search”, “arguments”: {“query”: [“European naval officer polar expedition late
899 19th century vessel named after Austrian admiral”, “European naval officer proposed major
900 international scientific initiative polar regions”, “European naval officer received highest
901 honors major British geographical society”, “late 19th century vessel named after Austrian
902 admiral polar expedition”]}
903 **</tool_call>**

904 **<tool_response>**

905 A Google search for ‘European naval officer polar expedition late 19th century vessel
906 named after Austrian admiral’ found 10 results:

907 ## Web Results 1. [Austro-Hungarian North Pole expedition - Wikipedia]
908 (https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition) The main ship
909 was the Tegetthoff, named for the Austrian Admiral Wilhelm von Tegetthoff, under whom
910 Weyprecht had served. It was built for this expedition by Teklenborg & Beurmann in
911 Bremerhaven. It was a three-masted barkentine of 220 tons, 38.34 m long, with a 100
912 horsepower (75 kW) steam engine.
913 2. [Wilhelm von Tegetthoff - Wikipedia]
914 (https://en.wikipedia.org/wiki/Wilhelm_von_Tegetthoff)
915 ...
916 **</tool_response>**

917 **Round 2**

918

<think>

The Wikipedia article on the Austro-Hungarian North Pole expedition is likely to provide authoritative details about the expedition's leader, the ship's name, and its namesake. Since the question hinges on connecting the identity of the naval officer, the vessel named after an Austrian admiral, and subsequent achievements, reviewing this page should clarify who led the expedition and confirm the link between the ship and Admiral Wilhelm von **Tegetthoff**. Additionally, the article may mention the leader's later scientific initiatives and honors, which are crucial for fully answering the question. I need to visit this page to extract these specific details and establish the explorer's identity.

</think>

<tool_call>

```
{"name": "visit", "arguments": {"url": ["https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition"], "goal": "Identify the commander (led by) and the vessel's namesake name, Admiral Wilhelm von Tegetthoff"}}
```

</tool_call>

<tool_response>

The useful information in https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition for user goal Identify the commander (led by) and the vessel's namesake name, Admiral Wilhelm von Tegetthoff as follows:

Evidence in page: The Austro-Hungarian North Pole expedition was an Arctic expedition to find the North-East Passage that ran from 1872 to 1874 under the leadership of Julius von Payer and Karl Weyprecht. The expedition discovered and partially explored Franz Josef Land.

...

</tool_response>

Round 3

<think>

To determine whether Karl Weyprecht received one of the highest honors from a major British geographical society, I need to directly associate his name with such recognition. The previous information confirmed his leadership of the expedition and the vessel's namesake, but the question also requires evidence of prestigious British honors. By searching for combinations of "Karl Weyprecht" with terms like "highest honors" and "British geographical society," I can efficiently uncover whether he was awarded something like the Founder's Medal or a similar distinction from the Royal Geographical Society. This targeted search should clarify if Weyprecht fits all aspects of the question. I need to run these specific queries now to confirm the final piece of information.

</think>

<tool_call>

```
{"name": "search", "arguments": {"query": ["Karl Weyprecht highest honors British geographical society", "Karl Weyprecht British geographical society", "Karl Weyprecht Founder's Medal", "Karl Weyprecht honors Royal Geographical Society"]}}
```

</tool_call>

<tool_response>

A Google search for 'Karl Weyprecht highest honors British geographical society' found 10 results:

Web Results 1. [Karl Weyprecht - Wikipedia]

(https://en.wikipedia.org/wiki/Karl_Weyprecht) Missing: highest honors

...

</tool_response>

Round 4

<think>

The search results strongly suggest that Karl Weyprecht is the central figure in question, with multiple sources mentioning his leadership of the 1872–74 polar expedition aboard

972
 973 the **Tegetthoff** and his later scientific initiatives. However, to fully confirm his identity
 974 and gather all the necessary details—such as the ship’s name, the Austrian admiral it was
 975 named after, his role in proposing the **International Polar Year**, and whether he received
 976 the **Royal Geographical Society’s Founder’s Medal**—I need a comprehensive, authorita-
 977 tive summary. Visiting the Wikipedia page dedicated to Karl Weyprecht should provide a
 978 consolidated account of his achievements, honors, and scientific contributions. I need to
 979 visit this page now to extract these specific details and definitively answer the question.
 980

</think>
 980 <tool_call>
 981 {"name": "visit", "arguments": {"url": ["https://en.wikipedia.org/wiki/Karl_Weyprecht"],
 982 "goal": "Extract details: vessel name, the Austrian admiral, international scientific initiative,
 983 Founder's Medal of Royal Geographical Society"}}
 984 </tool_call>

985
 986 <tool_response>
 987 The useful information in https://en.wikipedia.org/wiki/Karl_Weyprecht for user goal Ex-
 988 tract details: vessel name, the Austrian admiral, international scientific initiative, Founder’s
 989 Medal of Royal Geographical Society as follows:
 990 Evidence in page: He co-led, with Julius von Payer, the 1872-1874 [[Austro-Hungarian
 991 North Pole Expedition]] which discovered the archipelago [[Franz Josef Land]] in the
 992 Arctic Ocean. The expedition’s ship “Admiral Tegetthoff”...

993 </tool_response>
 994
 995 <think>
 996 To arrive at the answer “Karl Weyprecht,” I pieced together several key clues from the ques-
 997 tion and verified them through targeted searches and authoritative sources. First, I con-
 998 firmed that Weyprecht led a late 19th-century polar expedition aboard the ship “Admiral
 999 **Tegetthoff**,” which was named after Austrian Admiral **Wilhelm von Tegetthoff**—this di-
 1000 rectly matched the ship and admiral mentioned in the question. Next, I established that
 1001 Weyprecht was instrumental in proposing the **International Polar Year**, a major collabo-
 1002 rative scientific initiative for the polar regions. Finally, I verified through multiple sources
 1003 that he was awarded the 1875 **Royal Geographical Society’s Founder’s Medal**, one of the
 1004 highest honors in British geography. The convergence of these facts—leadership of the
 1005 Tegetthoff expedition, advocacy for the International Polar Year, and receipt of the RGS
 1006 Founder’s Medal—confirms that Karl Weyprecht is the explorer described.
 1007

1008 </think>
 1009 <answer>
 1010 **Karl Weyprecht** exemplifies the characteristics in your query: as commander of a
 1011 significant polar expedition (aboard the ship “Admiral **Tegetthoff**”) after a promi-
 1012 nent Austrian admiral, as a proposal target of a major international scientific initiative (the
 1013 **International Polar Year**), and as a recipient of one of the most distinguished honors from a
 1014 major British geographical society (the **Royal Geographical Society’s Founder’s Medal**).
 1015 </answer> ✓

Case Trajectory on SailorFog-QA: Failed by Web-30B-GRPO

1016
 1017 **Question:** A European naval officer, known for leading a significant polar expedition in
 1018 the late 19th century aboard a vessel named after an Austrian admiral, later proposed a
 1019 major international scientific initiative focused on the polar regions. For his contribu-
 1020 tions to exploration, he received one of the highest honors from a major British geographical
 1021 society. Who is this explorer?
 1022

1023 **Ground-truth Entities:** [Tegetthoff, International Polar Year, Royal Geographical Soci-
 1024 ety’s Founder’s Medal]

1025 **Answer:** Karl Weyprecht

1026

1027

1028

Round 1

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

Round 2

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

<think>

The question involves a European naval officer who led a significant polar expedition in the late 19th century, had a vessel named after an Austrian admiral, later proposed a major international scientific initiative for the polar regions, and was honored by a prominent British geographical society. To pinpoint the individual, I need to connect the dots between the expedition, the vessel's name, the Austrian admiral reference, and the scientific initiative. Using search queries that combine these elements—such as the vessel's naming, the Austrian admiral, the polar expedition, and the proposal of an international scientific initiative—should surface historical records or articles that directly mention the explorer and clarify his contributions. By searching with these targeted terms, I aim to identify the officer and gather the necessary context for the rest of the question. I need to conduct this search now to find the explorer's identity.

</think>**<tool_call>**

```
{"name": "search", "arguments": {"query": ["vessel named after Austrian admiral polar expedition late 19th century", "proposal major international scientific initiative polar regions", "later proposed major international scientific initiative polar regions"]}}
```

</tool_call>**<tool_response>**

A Google search for 'vessel named after Austrian admiral polar expedition late 19th century' found 10 results:

Web Results

1. [Austro-Hungarian North Pole expedition - Wikipedia]

(https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition) The main ship was the Tegetthoff, named for the Austrian Admiral Wilhelm von Tegetthoff, under whom Weyprecht had served. It was built for this expedition by Teklenborg & Beurmann in Bremerhaven.

...

</tool_response>**<think>**

The Wikipedia page for the Austro-Hungarian North Pole expedition is likely to contain authoritative details about the expedition's leadership, the role of the vessel named after an Austrian admiral, and key figures involved. Since the question requires identifying the naval officer who led this expedition, as well as his later contributions and honors, this page should provide not only his name but also contextual information about his career and achievements. By visiting this URL, I can directly extract the name of the expedition leader and see if there are references to his subsequent actions, such as proposing major scientific initiatives and receiving recognition from British geographical societies. I need to visit this page now to gather these crucial details.

</think>**<tool_call>**

```
{"name": "visit", "arguments": {"url": ["https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition"], "goal": "Identify the leader of the expedition and aircraft details including his name, and whether he proposed a Polar Year or similar initiative later, and awards"}}
```

</tool_call>**<tool_response>**

The useful information in https://en.wikipedia.org/wiki/Austro-Hungarian_North_Pole_expedition for user goal Identify the leader of the expedition and aircraft details including his name, and whether he proposed a Polar Year or similar initiative later, and awards as follows:

1080
 1081 Evidence in page: The Austro-Hungarian North Pole expedition was an Arctic expedition
 1082 to find the North-East Passage that ran from 1872 to 1874 under the leadership of Julius von
 1083 Payer and Karl Weyprecht.
 1084 ...
 1085 </tool_response>

Round 3

1086
 1087 <think>
 1088 Although I have identified Julius von Payer as a leader of the Austro-Hungarian North Pole
 1089 expedition aboard the **Tegetthoff** and found that the expedition contributed to the idea of
 1090 international polar scientific collaboration, I have not yet pinpointed the exact honor from a
 1091 British geographical society. This is a crucial detail needed to fully answer the question and
 1092 distinguish his achievements from those of his contemporaries. By searching with focused
 1093 queries such as 'Julius von Payer British Geographical Society honors', and 'Weyprecht
 1094 British Geographical Society honors', I can directly target sources that clarify the connection
 1095 between the expedition leaders and the specific honors received. I need to conduct this search
 1096 now to fill these key information gaps.
 1097 </think>
 1098 <tool_call>
 1099 {"name": "search", "arguments": {"query": ["Julius von Payer British Geographical
 1100 Society honors", "Weyprecht British Geographical Society honors"]}}
 1101 </tool_call>
 1102 <tool_response>
 1103 A Google search for 'Julius von Payer British Geographical Society honors' found 10 re-
 1104 sults:
 1105 ## Web Results 1. [Julius von Payer - Wikipedia]
 1106 (https://en.wikipedia.org/wiki/Julius_von_Payer) He is chiefly known for the Austro-
 1107 Hungarian North Pole expedition in 1872–74 and the discovery of Franz Josef Land ...
 1108 </tool_response>

Round 4

1109
 1110 <think>
 1111 To fully confirm whether Julius von Payer received one of the highest honors from a major
 1112 British geographical society, and to directly tie him to any significant international scientific
 1113 initiatives for the polar regions, I need authoritative biographical details. The Wikipedia page
 1114 dedicated to Julius von Payer is likely to provide a concise summary of his major achieve-
 1115 ments, awards, and any notable proposals or initiatives he was responsible for. By visiting
 1116 this page, I can efficiently extract explicit references to British geographical society hon-
 1117 ors—such as the **Royal Geographical Society's Founder's Medal** or Patron's Medal—and
 1118 clarify his role in shaping international polar scientific collaboration. I need to visit this page
 1119 now to gather these definitive details.
 1120 </think>
 1121 <tool_call>
 1122 {"name": "visit", "arguments": {"url": ["https://en.wikipedia.org/wiki/Julius_von_Payer"],
 1123 "goal": "Extract awards of Julius von Payer, particularly any from British Geographical
 1124 Society, and clarify his role in shaping international polar scientific collaboration"}}
 1125 </tool_call>
 1126 <tool_response>
 1127 The useful information in https://en.wikipedia.org/wiki/Julius_von_Payer for user goal
 1128 Extract awards of Julius von Payer, particularly any from British Geographical Society, and
 1129 clarify his role in shaping international polar scientific collaboration as follows: ...
 1130 </tool_response>

Round 5

1131
 1132
 1133

1134
 1135 **<think>**
 1136 To determine which expedition leader—Julius von Payer or Karl Weyprecht—received the
 1137 Royal Geographical Society’s highest honors, I need to clarify whether Payer was actually
 1138 awarded the gold medal or the Patron’s Medal, and in which year. The summary on the main
 1139 Julius von Payer page referenced the Patron’s Medal in 1971, but individual award listings
 1140 on the Gold Medal (RGS) Wikipedia page should provide a definitive, year-by-year roster
 1141 of recipients, ensuring accuracy regarding both the medal and its recipients. By visiting this
 1142 page, I can confirm the exact year and whether Julius von Payer is indeed listed among the
 1143 honorees, which is crucial for answering the question about his recognition by the British
 1144 geographical society. I need to check this official list now to confirm the details.
 1145 **</think>**
 1146 **<tool_call>**
 1147 {“name”: “visit”, “arguments”: {“url”: [“[https://en.wikipedia.org/wiki/Gold_Medal_\(RGS\)](https://en.wikipedia.org/wiki/Gold_Medal_(RGS))”],
 1148 “goal”: “Check if Julius von Payer is listed as a recipient of the Royal Geographical Society’s highest honor and year”}}
 1149 **</tool_call>**
 1150
 1151 **<tool_response>**
 1152 The useful information in [https://en.wikipedia.org/wiki/Gold_Medal_\(RGS\)](https://en.wikipedia.org/wiki/Gold_Medal_(RGS)) for user goal
 1153 Check if Julius von Payer is listed as a recipient of the Royal Geographical Society’s highest
 1154 honor and year as follows:
 1155 Evidence in page: 1875 —[[Julius Payer]] —For explorations and discoveries in the Arctic
 1156 regions ...
 1157 **</tool_response>**
 1158
 1159 **Round 6**
 1160 **<think>**
 1161 To arrive at the answer, I first noticed that the question described a European naval officer
 1162 who led a significant polar expedition in the late 19th century aboard a vessel named after an
 1163 Austrian admiral, later proposed a major international scientific initiative, and received a top
 1164 honor from a British geographical society. My initial searches confirmed that the Austro-
 1165 Hungarian North Pole expedition (1872–1874), led by Julius von Payer and Carl Weyprecht,
 1166 used the ship **Tegetthoff**, named after Admiral Wilhelm von **Tegetthoff**. Further investiga-
 1167 tion revealed that while both men were key figures, it was Julius von Payer who was awarded
 1168 the Royal Geographical Society’s Patron’s Medal (the highest British geographical honor)
 1169 for his achievements. Therefore, by piecing together the expedition details, the naming of
 1170 the vessel, and the specific recognition from the RGS, I concluded that the explorer in ques-
 1171 tion is Julius von Payer.
 1172 **</think>**
 1173 **<answer>**
 1174 **Julius von Payer** stands out as the notable European naval officer who fits all aspects of
 1175 your query, having led a landmark polar expedition, played a key role in the foundation of
 1176 international polar science initiatives, and been honored by the foremost British geographical
 1177 society for his achievements.
 1178 **</answer>** X
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 E FAILURE ANALYSIS
11891190 Our extensive case study reveals that, in addition to the factual errors our paper targets at, agent
1191 failures frequently stem from several other distinct error modes, which we detail below.
11921193
1194 • **Broken Reasoning Coherence:** The agent loses reasoning coherence by failing to act on its
1195 previously stated goal, particularly after a **Visit** tool call.
1196

1197 Example:

```

1198 <tool_call>
1199   {"name": "visit", "arguments": {"url": "https://en.wikipedia.org/wiki/Teatro_Farnese",
1200     "goal": "Extract notable architectural features, innovative aspects, and check
1201     perspective scenery introduction"}}
1202   </tool_call>
1203   <tool_response>
1204     The useful information...a theatre in which the audience views the action through a
1205     single frame...
1206   </tool_response>
1207   <think> To determine whether the Teatro alla Scala is relevant to the question or if
1208     it is merely a famous modern opera house... </think>
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
33
```

1242
1243
1244
1245
1246
1247

<tool_call>

```
{ "name": "search", "arguments": { "query": [ "appointed board central banking system 2016", "appointed serve on board central banking system appointed 2016", "appointed board central banking system later became Chair 2016" ] } }
```

</tool_call>

1248
1249
1250
1251
1252
1253

In this example, the agent executes three highly similar queries simultaneously. While only the third query is well-targeted, containing the critical term “Chair”, the valuable information it returns is buried within the larger volume of text from all three searches. Overwhelmed by the dense context, the agent fails to isolate the key signal from the noise, which misleads it down a flawed reasoning path.

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

Our case study indicates E-GRPO mitigates **broken reasoning coherence**. By incentivizing the agent to carry forward critical entities into its thought process, the entity-aware reward implicitly enforces topical continuity and prevents the reasoning from drifting into irrelevance.

The other identified failure modes, however, suggest promising avenues for future work:

- For **distracted querying**, a potential solution is to periodically re-inject the original question into the agent’s context, orienting the agent’s focus towards the primary objective.
- We attribute **information overload** primarily to the inherent limitations of the base model in processing long, unstructured contexts. Addressing this could involve either leveraging more advanced models with superior long-context capabilities or designing a penalty mechanism for imprecise or redundant queries.

F DECAYING ENTITY MATCHING WEIGHTS

alpha	GAIA	BrowseComp	BrowseComp-ZH	xbench-DS
0.3	48.5	12.9	26.4	46.7
decay	48.2	12.8	26.2	47.3

Table 3: The Pass@1 performance of different entity matching weights.

We also train the 30B model with an alpha that linearly decays from 0.3 to 0.0 over the first 60 steps (80 steps in total). The results are presented in Table 3.

Comparing with a fixed 0.3, the results show no clear or consistent advantage for the decaying alpha strategy. This suggests our paper’s choice of a simple, fixed alpha as a practical and effective setting. However, we believe a dynamic alpha holds potential. It’s possible that applying the decaying schedule over longer training horizons could be more impactful, which is a promising direction for future research.

G EXTENDED TRAINING DYNAMICS

We extend the training of 30B models from 80 steps to 120 steps with the Web environment. As shown in Figure 6, the results align with our analysis in Section 4.3. While both methods’ performance gradually converges, E-GRPO maintains a consistent lead over GRPO. Crucially, E-GRPO also continues to use fewer steps on average. This demonstrates E-GRPO’s dual advantages in both effectiveness and efficiency.

H ROBUST MATCHING ANALYSIS

While exact string matching is computationally efficient and effectively mitigates reward hacking (see Appendix B.2), its rigidity presents practical challenges when faced with natural language variations such as alternative spellings, synonyms, or abbreviations. To address this limitation, we

Figure 6: Extended training dynamics of 30B models with the Web environment.

introduce a “Robust Matching” strategy. This approach involves first prompting an advanced LLM to generate a set of 5-10 plausible variations for each ground-truth entity, as detailed in the prompt below. Subsequently, we perform exact string matching against this expanded set of candidates. An entity is matched if any of its generated variations are found in the agent’s thought process.

Prompt

I need to match an entity in a text, but I need to account for various paraphrases, abbreviations, and potential spelling variations. For each of the entities listed below, please provide 5-10 alternative phrasings or variations that I can use for a more robust matching system. When generating the alternatives, please consider:

1. Synonyms and Paraphrasing: Using different words or sentence structures to convey the same meaning.
2. Abbreviations: Common initials, acronyms, or shortened forms.
3. Spelling Variations: Including regional differences (e.g., US vs. UK English) or common typos.
4. Formality: Both formal and informal ways of referring to the entity.

Note that you do not have to include words like “the” or “a” in your responses in order for robust matching.

I will give you the entity, and you should directly return a list of alternative phrasings in a valid JSON list format like [“phrasing 1”, “phrasing 2”, ...], do not include any other text in your response.

Entity: {entity}

With this “Robust Matching” strategy, we conduct the analysis of entity matching and correctness. Figure 7 visualizes the efficacy of this strategy. Compared with exact string matching, the “Robust Matching” strategy demonstrates a much stronger correlation with factual correctness. Specifically, for correct samples, the density peak at a match rate of 1.0 is significantly higher. Conversely, for incorrect samples, the peak at 0.0 is reduced, and the distribution becomes more spread out, better capturing “near-misses”.

This analysis confirms that “Robust Matching” serves as a more accurate proxy for factual correctness. Motivated by this finding, we conducted an additional RL experiment using the “Robust Matching” strategy, keeping all other settings identical to Web-30B-E-GRPO. The results are presented in Table 4.

Strategy	GAIA	BrowseComp	BrowseComp-ZH	xbench-DS
Exact String Matching	48.5	12.9	26.4	46.7
Robust Matching	49.2	12.9	26.8	47.0

Table 4: The Pass@1 performance of different entity matching strategies.

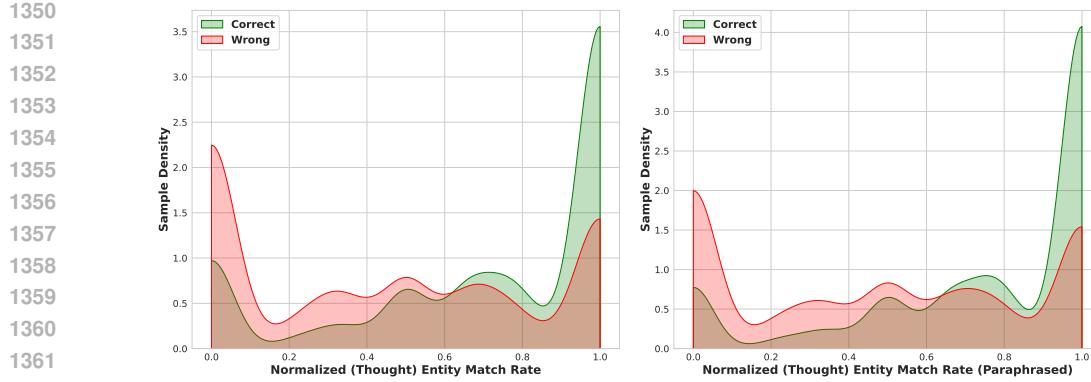


Figure 7: The entity match rate of exact string matching and robust matching.

The results are promising. The agent trained with “Robust Matching” achieves slight performance gains on three of the four deep research benchmarks, further validating the benefits of it. We consider the continued refinement of this strategy a promising direction for future work.

I EXPLANATION OF THE ANALYSIS FIGURE

Here we clarify the upper-right subfigure of Figure 1. For a question q , we sample 8 responses r_1, r_2, \dots, r_8 for it. Each response matches m_i entities. We calculate the average matched entities of correct responses and that of incorrect ones. For example, if only r_1, r_2, r_3 are correct, then **correct rate** is $(m_1 + m_2 + m_3)/3$ and **wrong rate** is $(m_4 + m_5 + m_6 + m_7 + m_8)/5$. We compare these two rates for each question. The analysis shows that for most of the questions, correct rate is larger than wrong rate, i.e., **correct responses of each question often match more entities than wrong ones**. This establishes a strong correlation between the entity match rate and the correctness of the final answer.

J USE OF LARGE LANGUAGE MODELS (LLMs)

In this paper, we leverage Gemini-2.5-Pro (Google Team, 2025a) to polish paper writing grounded on our human-written content. The usage is limited to language polishing. We are responsible for any contributions generated by LLMs.