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ABSTRACT

Genetic Programming (GP) represents a powerful paradigm in diverse real-world
applications. While GP can reach optimal (or at least “good-enough”) solutions
for many problems, such solutions are not without deficiencies. A frequent issue
stems from the representation perspective where GP evolves solutions that contain
unnecessary parts, known as program bloat.
This paper first investigates a combination of deterministic and random simplifi-
cation to simplify the solutions while having a (relatively) small influence on the
solution fitness. Afterward, we use the solutions to extract their subtrees, which
we denote as winning trees. The winning trees can be used to initialize the pop-
ulation for the new GP run and result in improved convergence and fitness, pro-
vided some conditions on the size of solutions and winning trees are fulfilled. To
experimentally validate our approach, we consider several synthetic benchmark
problems and real-world symbolic regression problems.

1 INTRODUCTION

Genetic programming (GP) is an evolutionary algorithm (EA) used to automatically generate com-
puter programs to solve specific tasks (Koza, 1992). Up to now, GP has been used in diverse domains
like image analysis (Varniab et al., 2020), cybersecurity (Picek et al., 2018), or scheduling (Nguyen
et al., 2017). What differentiates GP from other types of evolutionary algorithms is the fact that
the solutions are commonly represented as expression trees. Naturally, due to a specific solution
representation, appropriate variation operators need to be used. Unfortunately, while being very
successful in diverse domains, GP also faces certain representation-specific problems. Indeed, the
GP process will introduce redundancy and functionally useless sections of programs, commonly
denoted as program bloat (Koza, 1992; Blickle et al., 1994).

Program bloat can cause various issues to the GP process. As a consequence of bloat, the evolution
process can prematurely terminate and explore large parts of the search space that are not promising.
Since the solutions with program bloat will be more complex than needed, the interpretability of
solutions will suffer. Additionally, program bloat can be connected with some forms of building
blocks, i.e., parts of the solutions that can be combined to form even more fit solutions.

As there are no universal ways to deal with program bloat, this problem is difficult. Commonly used
methods are mostly based on applying various forms of simplification to reduce the complexity of
a solution and eliminate any useless details. While such techniques can reduce program bloat, there
are further questions to consider. For instance, simplification can be done at the end of the evolution
process (Hooper & Flann, 1996) but also during the evolution process (Wong & Zhang, 2006; 2007).
As simplification will reduce redundancy, it can also have negative effects on the diversity of the
obtained solutions and decrease the protection of useful building blocks within solutions from the
destructive nature of the crossover operator (Blickle et al., 1994).

Numerous works have explored the issues of program bloat or how to simplify the GP solutions as
discussed in Section 2. What is more, multiple works have discussed the notion of building blocks
for GP (Langdon & Poli, 2002), but a widely accepted definition for building blocks is still not
agreed upon. A somewhat similar concept to building blocks has been recently discussed in the deep
learning community. There, the Lottery Ticket Hypothesis for artificial neural networks discussed
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how “...a randomly initialized dense neural network contains a sub-network that is initialized such
that, when trained in isolation, can match the test accuracy of the original network after training
for at most the same number of iterations.”, which surmises the existence of a “winning ticket” for
neural networks (Frankle & Carbin, 2019). This opens up the question of the existence of something
like winning tickets for GP.

This work considers simplifications (both exact and heuristic ones) in tree-based GP applied for
symbolic regression, and we show that building blocks play an important role. More precisely, our
contributions are:

• We present a new technique to conduct heuristic simplification for GP. We combine the
heuristic simplification with the exact one, allowing us to reduce the tree sizes significantly.

• We discuss a new concept in GP that we denote as winning trees. While there are sim-
ilarities between winning trees and building blocks, the main differences stem from the
fact that the winning trees have constraints on fitness and tree depth. We introduce the
notion of winning trees to help us understand better how to guide the evolutionary process
to highly-fit solutions.

• We provide extensive experimental analysis to showcase that the evolutionary process when
using winning trees can result in 1) more fit solutions, 2) faster convergence, and 3) a more
robust evolutionary process. Additionally, we discuss the depth constraints for winning
trees and show they work well only if of sufficient size, coupled with the appropriate solu-
tion depth.

2 RELATED WORK

Several studies have already dealt with the problem of simplifying the expression trees evolved by
GP. These methods can roughly be divided into two groups, methods that simplify the expression
without changing the behavior of the original expression and those which, by simplifying the ex-
pression, change its behavior compared to the original one. The former group consists mostly of
methods that perform algebraic simplification. These methods apply predefined algebraic rules to
replace a part of an expression with a simpler but equivalent one. In the literature, such methods
are usually denoted as algebraic simplification or editing. Such a method was applied by (Wong &
Zhang, 2006), and (Zhang et al., 2006) online during the evolution; the authors defined 30 algebraic
rules which were applied to the evolved trees in the population. The algebraic simplification method
was combined with hashing, which helped to determine equivalent expressions (Wong & Zhang,
2006; 2007). These methods hash sub-expressions and determine whether certain expressions are
equivalent or not based on the hash value. This helps the algebraic procedure to detect situations
that would otherwise go undetected.

The second group of simplification methods introduces modifications that can change the expres-
sion’s behavior. The idea is to detect parts of the expression that are not meaningful and remove
them, although this might affect the numerical outcome. The main question is how to determine
which parts of the expression should be eliminated. (Kinzett et al., 2008; 2010) proposed the ap-
plication of a numerical simplification based on node contribution to reduce the complexity of the
evolved trees. (Song et al., 2009) pruned trees by removing a child of an operator with two ar-
guments if, when removed, the removal does not change the output of the node beyond a given
threshold. (Garcia-Almanza & Tsang, 2006) proposed a method for tree pruning applied to decision
trees used to generate classification rules for financial stock markets. The method consists of ex-
tracting rules from a decision tree, evaluating them, and then pruning the rules that did not achieve
the expected pruning threshold in the evaluation phase. A constant sub-tree pruning method was
proposed by (Rockett, 2020). This pruning scheme replaces a subtree with a constant value. The
constant is calculated as the expectation of the subtree, which is replaced on the entire dataset.

Building blocks were first discussed in the context of genetic algorithms as short, low-order, and
highly fit schemata that are sampled, recombined, and resampled to provide solutions of higher
fitness (Goldberg, 1989). Intuitively, building blocks are small parts of a solution that can be formed
into larger, more fit components through genetic operators. Defining a building block for GP is more
difficult, where some common (traditional) interpretations are a subtree to a solution tree (Altenberg,
1994), a rooted subtree (Rosca, 1997), and a block of code (Angeline & Kinnear, 1996). In this work,
we will follow the work from Langdon and Poli that define building blocks as parts of the solution
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that can be combined to form more fit solutions but without any constraints on fitness, length, or
order of building blocks (Langdon & Poli, 2002). We note a recent work by O’Neill et al. where
the authors discuss transfer learning for GP and how to create valuable material as building blocks
dynamically (O’Neill et al., 2017). Still, we consider this work orthogonal to ours as we do not aim
at transferability while imposing other constraints.

Since its definition, several studies which focus on the lottery ticket hypothesis have been made.
For instance, (Chen et al., 2020) used observations from the work on the lottery ticket hypothe-
sis (Frankle & Carbin, 2019) to find trainable and transferable subnetworks in pre-trained BERT
models, which are commonly used in natural language processing. (Frankle et al., 2020) used it-
erative magnitude pruning (IMP) to determine “whether a neural network optimizes to the same,
linearly connected minimum under different samples of SGD noise”.

3 METHODOLOGY

To evaluate the winning trees hypothesis for GP, we need to consider the expressions that GP obtains.
There is no guarantee that the expressions obtained by GP are exact (i.e., they represent the exact
solution), and at the same time, they can contain many unnecessary subexpressions. This is often
true when GP is executed for longer periods, and bloat starts occurring (Luke & Panait, 2006). To
mitigate this problem, we introduce two methods for reducing the complexity of the expression
trees. We denote these methods as simplification, for the exact procedure and pruning, for the
heuristic procedure.

3.1 SIMPLIFICATION

The goal of the simplification approach is to simplify the expression without changing its behavior.
Therefore, this approach replaces expressions with equivalent but simpler ones. One such example
would be to replace the expression x+ 0 with x since the first one includes two redundant symbols.
The rules for simplification in our experiments are based on common algebraic axioms and aim
to reduce the size of the expression, such as the example above, and the complete list is given in
Appendix A, Table 7. The applied rules are not exhaustive, and more rules can be defined and used.
However, the given set of rules has shown to be enough to simplify the obtained expressions.

The simplification is performed using the Compare-Match algorithm proposed in (Steyaert & Fla-
jolet, 1983). The algorithm includes two recursive functions, Match and Compare. The Match
function iterates through the expression tree from the root node through all of its subtrees and de-
termines whether it can find a pattern P in the given expression T . If a match is found, then P is
replaced by a simpler expression defined for that pattern. Finding patterns is performed by the Com-
pare function, which traverses through the expression tree and returns true if it could locate pattern
P in the expression tree, otherwise it returns false. The Compare function applies an additional Map
function to retrieve the information about the located pattern. The outline of the method is given in
Appendix A, Algorithm 1.

3.2 PRUNING

Unlike simplification, which is exact and does not change the behavior of the expression, the pruning
method allows the expression to be simplified by removing parts of it, which will directly influence
its output. This means that the expression does not necessarily need to have the same output value
for a given input before and after pruning. This technique is performed so that certain elements in
the expression are simply replaced by a neutral element for a given operator. For example, in the
expression +XY , where X and Y represent arbitrary subexpressions, the expression can be pruned
by removing either operand and replacing it with a neutral element for summation, which is 0. Thus,
it is possible to obtain either +X0 or +0Y . In that way, one part of the expression can be removed
while keeping the rest of the expression fixed. Each binary operator has its neutral element, which
for the summation and subtraction are 0, whereas, for multiplication and division, they are equal to
1. Unary operators do not have a neutral element as they represent a single expression. Thus, they
are not considered in the pruning process.
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The removal of certain subexpressions can change the behavior of the entire expression. To observe
how the modifications influence the expression’s behavior (the semantics), we monitor the change in
fitness between the original expression and the pruned one. If the fitness improves or stays the same,
the change is accepted. Our approach also allows pruning to be performed even if it reduces the
fitness compared to the original expression; however, a limit is imposed on how much the simplified
expression can be worse than the original one.

The procedure that performs the pruning starts from the root node of the expression tree and traverses
the tree. At each node, it replaces the current node with a corresponding neutral element. Then, the
new expression is evaluated, and its fitness is compared to the fitness of the original expression. The
new expression is accepted if it does not degrade the performance of the original expression beyond
a certain degree. In our experiments, we set that the solution should not be degraded beyond 15% of
its original quality. Naturally, this parameter can be arbitrarily chosen to balance the complexity and
quality of the expressions. If the change is not accepted, then the procedure continues the traversal
through the expression tree. Otherwise, if the change was accepted, the procedure is restarted at the
root node and traverses the tree again to check whether it is possible to perform additional simplifi-
cations. The procedure stops when both the entire expression tree is traversed, and no modification
is performed. To the best of our knowledge, this kind of pruning approach for GP has not been
applied before.

3.3 SEARCH FOR WINNING TREES

We define winning trees for GP as parts (subtrees) of a solution (tree) that can be formed into larger,
more fit components through the use of genetic operators. Differing from building blocks, winning
trees have:

• constraints on the fitness value - as they are formed as subtrees of highly fit solutions (trees),
and

• constraints on the size – as they cannot be arbitrarily small or large.

Note that winning trees are actually subtrees, but we denote them as trees for simplicity.

The candidates for the winning trees will be obtained by first identifying highly fit simplified ex-
pressions in the following procedure. A full GP evolution will be executed n times, and the best
individual from each run on the training set will be stored. When n individuals are obtained, each of
them is simplified by the previously outlined methods in the following way. First, the exact simplifi-
cation is performed, followed by the heuristic pruning, and then again the exact simplification. The
goal of the first exact simplification is to reduce the complexity of the original expression if possi-
ble. Since the heuristic pruning needs to evaluate the expression after each change, it is beneficial
to start with an already simplified expression to reduce the number of possible evaluations (espe-
cially in cases where the fitness function is more complex). After pruning, the exact simplification
is again invoked to remove possible redundant elements introduced by the heuristic simplification
(for example, when introducing neutral elements in the expression).

After the process mentioned above, the n obtained expressions are considered simplified. Therefore,
in our approach, the simplification is performed offline after the GP run has finished. The simplified
expressions can then be used as the basis to create subtrees that will be used for the initialization
of the initial population of a new GP run. However, using only the complete expressions would not
make sense as it would mean that GP would be starting from the best solutions and trying to improve
them further (emulating a setting with a longer evolution process). Therefore, smaller subexpres-
sions (winning trees) that are part of the original ones are inserted into the initial population. This
is performed by selecting random subtrees (with a defined depth) from the n available expressions.
These selected subtrees are then used as individuals in the starting population of a new GP run.

A depth limit for the selected expressions is additionally imposed. If the GP is allowed to evolve
expression trees of depth d, then the maximum depth of the randomly selected subtrees is equal to
d
2 . In that way, we wish to include smaller subtrees (relative to the maximal depth of the tree) but
also ensure that not only small subtrees are included in the new population. Note that we limit the
minimal tree depth to 2 for all settings. What is more, the limit on d

2 represents an upper bound,
which means we also use smaller winning trees. The value d

2 was selected arbitrarily, and we leave
further investigation on various depths for winning trees for future work.
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4 EXPERIMENTAL SETUP

4.1 DATASETS

To test our hypothesis, we use two symbolic regression benchmark sets. One set is based on existing
synthetic benchmark functions whose exact target expressions are known and, as such, can be fitted
without error. The second benchmark set consists of several real-world regression datasets for which
the exact solution is not known.

Table 8 in Appendix A shows a selected set of ten synthetic symbolic regression problems (Oliveira
et al., 2018). This set was selected to include functions of different forms and complexities. All
selected functions are either one or two-dimensional. A training set consisting of 10 000 instances
and a test set of 1 000 instances were generated for all functions. Both sets contain instances sampled
uniformly from the interval [−5, 5]. Table 9 in Appendix A denotes the properties of the datasets
for the five real-world regression problems (Dua & Graff, 2017). These sets were divided into the
training set containing 70% of instances and the test set containing 30% of instances. Compared to
the synthetic benchmark problems, these problems have fewer instances that can be used for training
and contain more input variables.

4.2 GENETIC PROGRAMMING

The applied GP uses the steady-state tournament selection with a tournament consisting of three
individuals. The population size of the algorithm was set to 500 individuals and the mutation prob-
ability to 0.3. The tree depths of 6, 8, and 10 will be used in experiments to test the hypothesis with
different expression sizes. The crossover operators included the subtree, context preserving, one
point, size fair, and uniform operators, whereas the set of mutation operators contains the subtree,
shrink, permutation, node replacement, node complement, hoist, and Gauss mutation operators (Poli
et al., 2008). Each time individuals are crossed over or mutated, the operators that will be applied are
randomly selected from the set of crossover and mutation operators. The function set contains the
addition, subtraction, multiplication, and division operator, as well as the sine, cosine, and square
root. In addition to the input variables, the set of terminal nodes also includes numerical constants
generated from the interval [−1, 1]. Two stopping criteria were used, the maximum number of eval-
uations and the maximum number of evaluations without improvement in the best individual. The
maximum number of evaluations was set to 500 000, whereas the number of evaluations without
improvement was set to 25 000. The fitness function being minimized is the mean squared error
between the expected outputs and the output values obtained by the evolved expression for all input
values. Each experiment was executed 50 times to obtain statistically significant results.

5 EXPERIMENTAL RESULTS

5.1 RESULTS FOR SYNTHETIC BENCHMARKS

In the first set of experiments, GP is tasked with finding the expression for ten synthetic benchmark
functions, using the three specified maximum tree depths (6, 8, and 10). In every experiment, the
fitness of original expressions is denoted as original, whereas the fitness of simplified expressions is
denoted as final. Three scenarios were conducted in the experiments. The first scenario, where GP
was executed with a random initial population to find the symbolic expression for the given data,
is denoted as Random. The expressions obtained from this run are then used as the seeds for the
initial population of a second GP execution denoted as SubtreeInit. Since the comparison between
those two approaches could be considered unfair, we include an additional experiment in which GP
was given twice the number of evaluations than the Random variant to compensate for the additional
time that is used when rerunning the GP with a new initial population. This scenario is denoted as
Random2x.

Table 1 gives the results for the test set. The experiments demonstrate that the obtained results
depend quite heavily on the maximum tree depth. Indeed, for expressions of depth 6, the results
demonstrate that the initialization with the winning trees did not improve the results in most cases.
However, as the depth of the expressions increases, the results of the SubtreeInit approach improve.
This is most evident when using a tree depth of size 10. For the tree depth of 10, the results obtained
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by SubtreeInit are equally good or better than the results obtained by both Random or Random2x for
all the tested functions. Another interesting result is that the method initialized with winning trees
outperformed GP with the random initialization, which was given twice the number of evaluations.
This shows that the improvement in the results is not a consequence of the extra time that GP was
given. Rather, the good solutions obtained seem to be a direct consequence of the winning trees
inserted in the starting population.

Such a behavior can be explained so that the winning trees obtained for tree depth six will be quite
small and thus very general. Therefore, GP will still struggle to combine such subtrees in a mean-
ingful way. However, for the larger tree depths, a larger portion of the solution will be transferred.
Naturally, this subtree does not have a good fitness by itself since it represents only a part of the
expression. However, it is more “specialized” for the considered problem.

Table 1: Test set results.

depth 6 8 10
original final original final original final

Keijzer 4 Random 0.364598 0.389749 0.323364 0.349782 0.34916 0.389907
Random2x 0.369 0.391 0.323 0.351 0.303 0.337
SubtreeInit 0.404064 0.404064 0.296285 0.314635 0.307674 0.330624

Keijzer 12 Random 0.6998565 0.700004 0.6735125 0.700004 0.6719495 0.700004
Random2x 0.697 0.700 0.674 0.700 0.659 0.700
SubtreeInit 0.700004 0.700004 0.700004 0.700004 0.700004 0.700004

Keijzer 16 Random 2.59087 2.86854 1.336335 1.51365 1.2123 1.42172
Random2x 2.840 3.082 1.232 1.420 1.158 1.230
SubtreeInit 3.74226 3.99701 0.987748 1.08079 0.894961 0.982344

Korns 4 Random 0.020706 0.020706 0.009821 0.009821 0.008658 0.00921
Random2x 0.013 0.013 0.012 0.012 0.011 0.011
SubtreeInit 0.040262 0.040262 0.031405 0.031405 0.011096 0.011096

Korns 12 Random 1.01063 1.01063 1.00646 1.01892 0.986981 1.01063
Random2x 1.010 1.098 0.995 1.011 0.991 1.011
SubtreeInit 1.01063 1.01063 1.008765 1.01063 0.998089 1.01063

Nguyen 1 Random 9.72E-05 9.77E-05 0.082576 0.082576 0.135774 0.137373
Random2x 0.000 0.000 0.018 0.018 0.103 0.110
SubtreeInit 4.97E-15 5.74E-15 4.97E-15 5.74E-15 4.97E-15 5.74E-15

Nguyen 4 Random 59.94085 59.94105 63.46775 69.0745 48.5 51.867
Random2x 15.998 15.998 57.950 65.081 28.058 30.807
SubtreeInit 3.20736 3.24277 1.079874 1.079875 2.27039 2.298855

Nguyen 5 Random 0.196108 0.196108 0.209633 0.213252 0.167364 0.195794
Random2x 0.122 0.122 0.075 0.081 0.226 0.237
SubtreeInit 0.359085 0.395686 0.240072 0.244396 7.02E-17 7.02E-17

Nguyen 6 Random 0.294081 0.294081 0.371099 0.403021 0.353553 0.40881
Random2x 0.436 0.454 0.258 0.276 0.379 0.426
SubtreeInit 0.425501 0.442081 0.481001 0.524147 0 5.72E-16

Nguyen 12 Random 3.678065 3.892595 3.65844 4.038375 3.89702 4.29179
Random2x 4.385 4.398 4.367 4.881 5.006 4.892
SubtreeInit 5.40213 5.40213 4.907745 5.39591 0.712049 0.706132

UNIVERSALITY OF WINNING TREES

After the initial results, we can investigate whether the winning trees for one problem are universal,
i.e., can they also be used to initialize the population when applying GP for a different problem.
To test this hypothesis, we selected five function pairs and used the obtained individuals for one
function to initialize the population of GP when optimizing the second function. The functions
were selected so that in certain cases, similar functions are paired together (Nguyen 12 and Keijzer
16) while, in other cases, functions with completely different behavior are paired together (Nguyen
4 and Keijzer 4). Table 2 shows the results for this experiment. The first function represents the
optimized function, while the second represents the one from which the subtrees were used for
initialization (e.g., Keijzerf12 subtree Kornsf12 denotes that we optimize function Keijzer 12, and
we use subtrees from Korns 12).

The results generally suggest that the winning trees are not universal, since in most cases, the results
obtained by the unmatched initialization procedure were worse than those obtained by either the ran-
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Table 2: Test set results with the wrong subtree initialization.

depth 6 8 10

min med max min med max min med max

Keijzerf12 subtree Kornsf12 original 0.572146 0.700004 0.701603 0.000349386 0.700004 1.42152 0 0.700004 3.10611
final 0.572146 0.700004 0.700004 0.000349386 0.700004 0.701212 0 0.700004 0.705602

Keijzerf16 subtree Nguyenf12 original 1.13344 2.684715 15.9416 0.448655 1.10806 5.37345 0.407764 0.99726 5.01995
final 1.35741 2.844835 16.0473 0.561838 1.21787 3.76721 0.478139 1.127875 5.58704

Nguyenf4 subtree Keijzerf4 original 5.99974E-13 1.957375 118.984 4.31563E-13 7.54E-13 45.4089 4.53E-13 0.553775 41.3374
final 4.69576E-13 1.957375 123.222 4.49482E-13 7.3E-13 51.4943 4.53E-13 0.589304 41.3374

Nguyenf5 subtree Nguyenf1 original 7.02167E-17 0.348687 0.428466 7.02167E-17 0.348284 0.428484 7.02E-17 0.20722 0.428465
final 7.02167E-17 0.354029 0.440514 7.02167E-17 0.394857 0.440291 7.02E-17 0.23288 0.428465

Nguyenf6 subtree Kornsf4 original 0 0.5507845 0.647055 0 0.502387 0.647055 0 0.414604 0.647055
final 0 0.5817115 0.655615 0 0.551956 0.647055 0 0.465653 0.647055

Table 3: Test set results with random initialization, real-world datasets.

depth 6 8 10
function min med max min med max min med max

airfoil original 5.396 6.934 14.975 4.538 5.966 15.640 3.948 5.783 77.790
final 5.455 7.487 17.482 5.223 6.150 16.583 4.799 5.923 8.507

ccpp original 4.771 7.433 33.544 4.524 6.125 16.189 4.126 5.194 45.341
final 5.059 7.668 35.548 4.827 6.710 16.824 4.741 5.946 51.875

concrete original 8.024 11.972 19.390 9.887 12.109 175.524 10.123 13.027 20.201
final 7.856 12.006 18.627 9.185 12.462 19.769 9.304 12.594 22.162

wine red original 0.637 0.678 0.733 0.639 0.675 0.966 0.653 0.684 0.835
final 0.647 0.727 0.850 0.653 0.722 0.834 0.690 0.739 0.847

wine white original 0.684 0.720 0.994 0.688 0.715 0.809 0.667 0.709 0.793
final 0.702 0.775 0.883 0.711 0.776 0.895 0.720 0.760 0.883

dom or subtree initialization procedures. Therefore, winning trees seem exclusive to the considered
problem and cannot be reused across different problems. As such, this is an indication that winning
trees represent a specialization of building blocks in GP.

5.2 RESULTS FOR THE REAL-WORLD DATASETS

Table 3 gives the results obtained by GP when using random initialization, whereas Table 4 presents
the results obtained when the population is initialized by winning trees obtained from the initial run.
For the first two test problems, namely AFN and CCP, it is evident that initializing the population
with winning trees improves the overall results. For the other three, the results are more evenly
matched. This is especially true for the WIR and WIW problems, where both methods achieved an
almost equal performance.

Table 4: Test set results with subtree initialization, real-world datasets.

depth 6 8 10
function min med max min med max min med max

airfoil original 5.182 5.795 138.921 4.483 5.495 8.952 4.405 5.407 64.376
final 5.536 5.994 139.233 4.964 5.729 7.469 4.557 5.670 64.429

ccpp original 4.635 5.561 15.990 4.411 5.330 17.331 4.137 4.707 15.980
final 4.637 6.058 15.990 4.972 5.967 17.331 4.701 5.390 15.980

concrete original 9.489 13.025 20.428 9.535 11.953 19.549 8.329 12.934 96.710
final 9.474 12.145 19.095 8.735 11.856 19.152 7.819 12.634 25.108

wine red original 0.644 0.675 0.778 0.645 0.671 0.698 0.632 0.676 0.882
final 0.662 0.717 0.832 0.652 0.727 0.834 0.652 0.717 0.825

wine white original 0.695 0.728 0.857 0.688 0.712 2.780 0.687 0.705 20.870
final 0.720 0.770 0.951 0.726 0.771 0.892 0.712 0.769 0.904
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5.3 EXPRESSION COMPLEXITY ANALYSIS

Besides the test performance, another perspective worth considering is their complexity, i.e., the
sizes of the obtained expressions. Table 5 shows the median of expression sizes for all synthetic test
functions. First, it can be noticed that the applied simplification and pruning methods were effective
in reducing the complexity of the expressions. On average, a reduction of 40% was achieved across
all the experiments after both simplification methods were applied. Although for some functions,
like Korns 12, the method simplifies the expression to only a single node, this result is not indicative
of simplification only. The reason is that GP was, in this case, actually unable to fit this function
well, and the expression it obtained does not perform better than only a single constant node that is
obtained after simplification.

The second important observation is that the expressions that are evolved when initializing the popu-
lation with winning trees are, in most cases, significantly smaller than when using random initializa-
tion. On average, when considering all the experiments, initialization with winning trees reduces the
size of the evolved expressions by around 50%. This demonstrates that a good initialization leads
to a smaller occurrence of bloat. Still, it should be noted that it does not eliminate bloat completely
since the obtained solutions could be simplified further.

Table 5: Synthetic problems, solution sizes with random init, random init with twice the evaluations,
and subtree init, size median. The first occurrence of the smallest solution is denoted in bold style.

Random Random2x Subtree

depth 6 8 10 6 8 10 6 8 10

Keijzer 4 original 29.5 62 123 28 69.5 135.5 8 52 67
simplify 27 54.5 109 25.5 64 122 8 46 63
prune 22.5 41.5 62 21 43 87 8 34 42
simplify 21 39 54 19 38.5 81 8 33 36

Keijzer 12 original 17.5 32 51.5 17 36.5 52 3 3 3
simplify 15.5 30 50 15 33 50.5 3 3 3
prune 5 9 5 5 7 8 3 3 3
simplify 3 7 3 3 3 3 3 3 3

Keijzer 16 original 53 106 142.5 59.5 110 153.5 53 66 158.25
simplify 51 99 134 55 108 144 51.5 62.25 147.5
prune 47 92 121 54.5 103.5 130.5 48.5 59.25 140.75
simplify 46 87 111.5 52.5 100.5 125.5 46.5 57.5 139.75

Korns 4 original 22 28 43.5 23 32 42 11 14 33
simplify 12 20 31.5 12 21.5 27 8.5 11 24
prune 11.5 19.5 30.5 11.5 21.5 26 8.5 11 21.5
simplify 11.5 19 29.5 11 21 23 8 11 20

Korns 12 original 35 66.5 98.5 36 64 94 7 44 96.5
simplify 25.5 57.5 90 31 56 87.5 1 36.5 83
prune 7 9 8 8 11 8 1 7 8
simplify 1 1 1 1 1 1 1 1 1

Nguyen 1 original 20.5 32.5 72 24.5 41.5 55.5 11 11 11
simplify 13 23 56.5 15 32.5 43 9 9 9
prune 13 23 51.5 13 26 38 9 9 9
simplify 13 23 50 13 26 36 9 9 9

Nguyen 4 original 54.5 107.5 183 50 113 232 28 33 46.5
simplify 49 95.5 165 47 104 217 23 27.5 39
prune 47 91.5 154 45.5 99 193 23 27 39
simplify 47 89.5 144 44.5 98 188 23 26.5 39

Nguyen 5 original 25 46.5 99 24 40.5 78 10.5 19 11
simplify 21.5 37.5 86.5 20 32 72 9 16.5 9
prune 17.5 23 61.5 14 28 46 7.5 14.5 9
simplify 17 16.5 59.5 13 28 37.5 7.5 12 9

Nguyen 6 original 17.5 31 58 19 31 54 11 17 9
simplify 14 29.5 55 17.5 27 49.5 10.5 16.5 9
prune 11.5 25.5 36.5 16 19 33.5 9 11.5 9
simplify 9.5 22.5 31.5 15 17 29.5 9 10.5 9

Nguyen 12 original 37.5 77 105.5 43 89 111.5 12 23 56
simplify 33 72.5 97 39.5 79.5 103.5 11 20 51.5
prune 31 66.5 86 38.5 72 94 11 19 42.5
simplify 30 65 81.5 38 70 92 11 18 38.5
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Table 6 shows the summary of the obtained expression sizes for real-world problems after the exe-
cution of the simplification and pruning methods. The expressions obtained using the winning trees
for initialization did not always lead to smaller expressions for these problems. This happens for
the WIW and WIR datasets, in which the expressions obtained with the initialization by winning
trees were larger than those obtained with random initialization. A probable cause for this is that the
algorithm quickly converged to a good region of solutions and simply started to bloat and overfit on
the training set. On the WIW dataset, we observe some spikes on the test set for two experiments
(random initialization with the tree depth of 6 and subtree initialization with the three depth of 8).
At this point, it seems that the method started to overfit, but nevertheless, in the next iterations, solu-
tions that performed well on the test set were evolved. For CST, the expressions are of similar size,
whereas initialization with winning trees resulted in smaller expressions being evolved for the other
two problems. In those cases, the algorithm converged more slowly, and as such, it seems that they
did not have the chance to overfit the training set.

Table 6: Real-world datasets, solution sizes with random and subtree initialization, size median. The
first occurrence of the smallest solution is denoted in bold style.

Random Subtree
depth 6 8 10 6 8 10

Airfoil original 69 154 233.5 53.5 77.5 201
simplify 67 143.5 230 49.5 73.5 191.5
prune 54 114 169 34.5 44.5 141
simplify 48 105.5 154.5 28 37.5 134.5

Ccpp original 45.5 107 180.5 39.5 72.5 140
simplify 44.5 104.5 171.5 38.5 72 138
prune 39 77 101 33 58 66
simplify 36 72.5 86 29.5 51 55.5

Concrete original 43.5 80.5 157.5 40.5 77 156.5
simplify 43.5 79.5 152.5 40.5 76.5 154
prune 32 52.5 77 29 48.5 79
simplify 28 45.5 64 24 42 72

Red wine original 29 51 64 20 45 83
simplify 29 50.5 64 20 44.5 82
prune 17 21.5 19 14 19 20
simplify 13 17.5 14 11.5 13.5 12

White wine original 31 50 84.5 18.5 42 96
simplify 31 49.5 83 18.5 41.5 95.5
prune 16 20 22.5 12 15 18.5
simplify 11.5 13.5 14 9 9 10

6 CONCLUSIONS AND FUTURE WORK

This paper analyses the influence of simplification in GP for regression problems. First, we inves-
tigate how various simplification procedures can result in smaller, yet fit solutions. Afterward, we
use the parts of the obtained solutions (denoted as winning trees) to seed the population for new
runs. Our results indicate that winning trees can help reach better solutions in a smaller number
of evaluations. This approach works especially well for cases where solutions have larger depth as
then, winning trees have sufficient “space” to be properly adapted, and where the tree depth size
makes it more challenging for the GP process to evolve highly fit solutions.

As this paper proposes a new concept – winning trees, there are multiple possible future research
directions. It is possible to look at winning trees as a building block specialization with constraints
on size and fitness. Still, one could question our design choices in several places. For instance,
why considering the problems we consider, why not tune more or the GP’s parameters, why go
for subtrees (winning trees) of depth half the maximum tree depth. Furthermore, the insertion and
application of subtrees in the new population can also be performed to provide more influence to the
evolutionary process. We consider the investigation of those alternatives a natural next step.
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Table 7: Mapping rules for simplification.

∗X1→ X −XX → 0 +X ∗ Y X → ∗+ 1Y X + ∗XY ∗XZ → ∗X + Y Z
∗1X → X −X0→ X +X ∗XY → ∗+ 1Y X + ∗ Y X ∗ ZX → ∗X + Y Z
∗X0→ 0 /X1→ X + ∗ Y XX → ∗+ 1Y X + ∗ sinA cosB ∗ cosA sinB → sin+AB
∗0X → 0 / ∗XY Y → X + ∗XYX → ∗+ 1Y X − ∗ sinA cosB ∗ cosA sinB → sin−AB
+0X → X ∗/XY Y → X −X −−1Y 1→ +XY − ∗ cosA cosB ∗ sinA sinB → cos+AB
+X0→ X −X − 0Y → +XY sin 0→ 0 + ∗ cosA cosB ∗ sinA sinB → cos−AB
/XX → 1 +X −−1Y 1→ −XY sin−0X → −0 sinX ∗D2 ∗ sinA cosA→ sin ∗2A
cos 0→ 1

Table 8: Synthetic benchmark functions.

Name Definition

Keijzer 4 f(x) = 0.3 ∗ x ∗ sin(2 ∗ π ∗ x)
Keijzer 12 f(x, y) = xy + sin((x− 1)(y − 1))

Keijzer 16 f(x, y) = x3

5 + y3

2 − y − x
Korns 4 f(x) = −2.3 + (0.13 ∗ sin(x))
Korns 12 f(x, y) = 2.0− (2.1 ∗ cos(9.8 ∗ x) ∗ sin(1.3 ∗ y))
Nguyen 1 f(x) = x3 + x2 + x
Nguyen 4 f(x) = x6 + x5 + x4 + x3 + x2 + x
Nguyen 5 f(x) = sin(x2) cos(x)− 1
Nguyen 6 f(x) = sin(x) + sin(x+ x2)

Nguyen 12 f(x, y) = x4 − x3 + y2

2 − y

A ADDITIONAL RESULTS

The mapping rules for simplification in our experiments are given in Table 7, defined using the prefix
notation. The left side of each line denotes the original pattern that the Compare-Match algorithm
searches for in the expression. On the other hand, the right side represents the expression by which
the pattern in the original expression will be replaced.

Algorithm 1 Compare-Match procedure
Input: P – pattern (left side of the rule), T – expression
Output: Boolean: true if the rule has changed, false otherwise.

Function Compare
if root(P) = null —— root(T) = null then

return true
end if
if !(Map(P, T)) then

return false
end if
for (i := 0; i < degree(P ); i+ +) do

if !Compare(P-¿child[i], T-¿child[i]) then
return false

end if
end for
return true

Function Match
if Compare(P, T) then

Replace pattern P in T with the simplified expression
return true

end if
Boolean matched := false
if T != null then

for (i := 0; i < degree(T ); i+ +) do
matched := Match(P, T-¿child[i]) —— matched

end for
end if
return matched

CONVERGENCE

Figure 1 shows the GP convergence results for real-world problems. The plots represent the median
of the best individuals from the 50 performed runs. The convergence is shown both on the training
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Table 9: Real-world datasets.

Abbr. Dataset # of instances # of features

AFN Airfoil self-noise 1 503 6
CCP Combined cycle power plant 9 568 4
CST Concrete strength 1 030 9
WIR Wine quality, red wine 1 599 12
WIW Wine quality, white wine 4 898 12

set and on the test set, where in each iteration, the best individual from the training set was selected
and evaluated on the test set.

The problems can be roughly grouped into two categories by their behavior. For the first three
problems, we observed that some of the methods still did not converge in the given time and were
improving the solutions. For the final two problems, namely WIR and WIW, the algorithms con-
verged quite quickly, and for most of the run, the solutions did not improve significantly. The best
convergence was achieved on the training set by GP initialized with winning trees and with the max-
imum tree depth of 10. The convergence also improves when using winning trees for the other tree
depths, although not as consistently. On the test set, it is evident that these methods reach good
solutions faster than random initialization. This means that inserting existing genetic material into
the initial population did not lead to overfitting but rather helped speed up the convergence.

STABILITY AND DIVERSITY OF THE SYNTHETIC SOLUTIONS

Figure 2 shows the boxplot results for the synthetic benchmark datasets. This figure aims to deter-
mine the stability and dissipation of the results between the tested methods. For the smallest depth
of 6, the initialization with winning trees did not improve the stability of the results. In general, the
results obtained by this method were, in several cases, even more dispersed than with random ini-
tialization (for example, in cases of the Korns 4 and Keijzer 16 functions). In cases where the results
had a small dissipation, they were generally worse than the results obtained by random initialization.
For tree depth of 8, the results tend to improve in some cases, but still, the initialization with winging
trees does not demonstrate a clear dominance over the GP results obtained by random initialization.
However, the situation largely improves with the tree depth of 10. In this case, the initialization with
winning trees leads to significantly less dispersed results than all the other experiments. This is es-
pecially evident in the Nguyen type functions, in which the dispersion is almost negligible compared
to the other experiments. This suggests that for the depths of 6 and 8, the extracted winning trees
were too small to provide useful information that could more efficiently guide GP towards better
solutions.

To evaluate the diversity of solutions, we can compare the obtained solutions semantically (i.e., if the
resulting trees “look” the same) and functionally (if the trees give the same fitness value as output).
For ten synthetic benchmarks, for 21 out of 30 cases, initialization with winning tress gives less
semantically diverse solutions. Additionally, for 21 out of 30 cases, initialization with winning trees
gives less functionally diverse solutions.

STABILITY AND DIVERSITY OF THE REAL-WORLD SOLUTIONS

Figure 3 shows the boxplot results for the real-world problems. These plots suggest that for these
problems, the initialization with winning trees again provides several benefits. However, this again
becomes evident only for the two larger tree sizes, as for the tree depth of 6 initialization with
winning trees did not always perform better. The initialization with winning trees resulted in less
dispersed and more stable results for the other two tree depths, confirming the results obtained for
the synthetic benchmarks.

Finally, for 4 out of 15 cases, initialization with winning tress gives less semantically diverse solu-
tions. For 6 out of 15 cases, initialization with winning trees gives less functionally diverse solutions.
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(a) Training set (b) Test set (c) Training set

(d) Test set (e) Training set (f) Test set

(g) Training set (h) Test set (i) Training set

(j) Test set

Figure 1: Algorithm convergence comparison for the real-world problems.
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Figure 2: Synthetic problems, boxplot results.
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Figure 3: Real-world problems, boxplot results.
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