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Abstract: Robots need to manipulate objects in constrained environments like shelves
and cabinets when assisting humans in everyday settings like homes and offices. These
constraints make manipulation difficult by reducing grasp accessibility, so robots need
to use non-prehensile strategies that leverage object-environment contacts to perform
manipulation tasks. To tackle the challenge of planning and controlling contact-rich
behaviors in such settings, this work uses Hybrid Force-Velocity Controllers (HFVCs)
as the skill representation and plans skill sequences with learned preconditions. While
HFVCs naturally enable robust and compliant contact-rich behaviors, solvers that
synthesize them have traditionally relied on precise object models and closed-loop
feedback on object pose, which are difficult to obtain in constrained environments due
to occlusions. We first relax HFVCs’ need for precise models and feedback with our
HFVC synthesis framework, then learn a point-cloud-based precondition function to
classify where HFVC executions will still be successful despite modeling inaccuracies.
Finally, we use the learned precondition in a search-based task planner to complete
contact-rich manipulation tasks in a shelf domain. Our method achieves a task success
rate of 73.2%, outperforming the 51.5% achieved by a baseline without the learned
precondition. While the precondition function is trained in simulation, it can also trans-
fer to a real-world setup without further fine-tuning. See supplementary materials and
videos at https://sites.google.com/view/constrained-manipulation/.

Keywords: Contact-Rich Manipulation, Hybrid Force-Velocity Controllers, Precon-
dition Learning

1 Introduction

Robots operating in human environments, like homes and offices, need to manipulate objects in constrained
environments like shelves and cabinets. These environments introduce challenges in both action and percep-
tion. Environmental constraints reduce grasp accessibility, so robots must use non-prehensile motions that
leverage object-environment contacts to perform manipulation tasks. For example, a book placed in the cor-
ner of a shelf has no collision-free antipodal grasps, but a robot can retrieve the book by first pivoting or slid-
ing the book to reveal a grasp. Environmental constraints also introduce occlusions both before and during
robot-object interaction, making precise object modeling and closed-loop vision-based feedback impractical.

In this work, we tackle these challenges by first choosing hybrid force-velocity controllers (HFVCs) that
use force control to maintain robot-object contacts and velocity control to achieve the desired motion. Prior
works in HFVCs require accurate object models, object trajectories, known contact modes, and closed-loop
feedback of object pose and contacts. Our work relaxes these requirements by allowing HFVC synthesis
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and execution in more realistic settings with incomplete models, partial observations, and without closed-
loop object feedback. While HFVCs are naturally robust to small modeling errors and collisions, large
model mismatches inherent in constrained manipulation may lead to unsuccessful motions. To address this,
we learn a precondition function that predicts when an HFVC execution will or will not be successful. The
precondition function is a neural network that takes as input segmented point clouds of the scene and the
HFVC skill parameters. It is trained entirely in simulation, and using point clouds without color information
enables easier sim-to-real transfer. It filters for successful HFVC actions, and we use it in an online search-
based task planner to reactively plan sequences of HFVC and Pick-and-Place skills. In our experiments,
our approach allows a robot to slide, topple, push, and pivot objects as needed to manipulate cuboid and
cylindrical objects in an occluded shelf environment. See Figure 1 for an overview of the proposed approach.

The main contributions of our paper are: 1) A compliant manipulation skill through an HFVC synthesis
framework that relaxes previous requirements on object and environment modeling. This skill can
achieve diverse motions like pushing, pivoting, and sliding through generating different parameters. 2)
A point-cloud based precondition function for this HFVC skill that predicts if an HFVC execution with
the given parameter and current observations would be successful, as some may fail due to inaccurate
modeling. 3) Using an search-based planner with the HFVC skill and a Pick-and-Place skill to complete
contact-rich manipulation tasks in an occluded shelf domain.

2 Related Works

Nonprehensile Manipulation.

Nonprehensile manipulation focuses on controlling contact interactions and planning contact-rich motions.
For control, if we know the object’s geometric and dynamics models and relevant contacts, then traditional
methods can synthesize controllers that perform behaviors like rolling and slipping [1, 2]. In order to
precisely maintain or change the state of contacts, hybrid controllers have been developed based on
reasoning about contact modes [3, 4, 5]. Compared with traditional methods require accurate models,
hybrid and velocity controllers [6] are more robust and have been deployed in industry for decades for
tasks such as polishing Recently, a hybrid force velocity control (HFVC) method [7] has been developed
for general quasi-static contact-rich motion tasks under uncertainty. HFVC is shown to be robust to
modeling errors and contact inaccuracies and can perform general constrained manipulation tasks.

Recent works plan multi-step nonprehensile manipulation by directly planning with contact modes with
optimization [8, 9, 3, 10] or sampling based planning methods [11, 12]. These methods require accurate
models and lack the ability to plan and optimize for longer horizons. If skills and transitions are predefined,
high-level optimizers like [13] can generate the skill and transition sequence for a longer horizon. However,
such optimizers are subject to local optima, often not able to find solutions without good initialization.

Learning approaches can relax modeling assumptions for nonprehensile manipulation. Some works learn
dynamics models [14, 15], while others directly learn policies [16, 17, 18]. They also make additional
assumptions on objects and environments, such as uniform objects and full state information, and they
do not plan with different types of nonprehensile strategies. While there are works on learning-based
skill sequencing [19, 20, 21, 22, 23], they do not address planning with prehensile skills and different
nonprehensile skills in more realistic settings, where skill execution success is unreliable and cannot be
directly optimized by the planner.

Compared with the previous works, our method integrates control, planning, and learning into one system
that can perform contact-rich tasks in the real world. We relax modeling assumptions of HFVCs by learning
precondition models that predict when skill executions will be successful despite modeling inaccuracies. We
exploit the advantages of HFVCs in a search-based planner — its ability to represent diverse non-prehensile
motions, robustness, and the reduced required computation for planning contact-rich manipulation.

Pregrasp Manipulation. Another area of related works is pregrasp manipulation, where a robot must
perform nonprehensile motions not to directly manipulate an object but to enable future grasps. A common
setting is grasping in clutter, where a target object must be first singulated before it can be grasped. Singu-
lation is usually done with a pushing policy to maximize downstream grasp, and it can be hardcoded [24],
planned [25], or learned [26, 27, 28, 29]. In singulation, objects that prevent access to a target object can
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Figure 1: Overview of our approach that manipulates objects in constrained environments by planning with Hybrid
Force-Velocity Controllers (HFVCs). Given partial point clouds, we first estimate object-environment segmentations
and object and environment geometries. These are used to generate HFVC parameters, which are object subgoal poses
and robot-object contact points. Due to model and feedback inaccuracies, not all generated parameters will lead to
successful HFVC executions. As such, we learn the HFVC precondition, which predicts skill success from segmented
point clouds and skill parameters. The planner uses the subgoal poses from the successful parameters to find the current
best action, which is a (skill, parameter) tuple. The robot then executes this action, and replanning is done as needed.

be pushed away. In constrained environments, it is the unmovable environment, like tables or shelf walls,
that prevent grasping. Under this context, many works study how to push an object on a table surface over
the table edge to expose a grasp. Some works plan with known object models [30, 31, 32], learned dynam-
ics [33], or explicit surface constraints [34], and some directly learn an RL policy [35, 36]. Recent works
also proposed online adaptations of object dynamics, like mass and center of mass, to plan for table-edge
grasps [37, 38]. While these works show how nonprehensile manipulation can enable downstream grasps,
they typically cannot plan with multiple types of nonprehensile behaviors. Furthermore, they focus on
revealing grasps, and not object manipulation in general, which sometimes may not require any grasps.

3 Method

Problem Definition and Assumptions. We tackle the problem of moving rigid objects from a start to
a goal pose in constrained environments by a robot arm. The start and goal poses may be in different
stable poses, and the object may not have any collision-free antipodal grasps at these poses. There is only
one movable object in the environment. For actions, the robot arm can perform joint torque control. For
perception, we assume access to an end-effector force-torque sensor and partial point clouds from an RGB-D
camera, from which we can estimate segmentation masks and object poses. For skill parameter generation,
we assume object geometries are similar to known geometric primitives, and that we can estimate these
primitive shapes and environmental constraints from the segmented point clouds. Note this assumption does
not apply to our learned precondition model and controller synthesis algorithm. Lastly, we assume object
dynamic properties are within a reasonable range that enables nonprehensile manipulation by our robot arm.

Approach Overview. At the high level, the inputs to our system are partial point clouds that represent the
current observation, and the outputs are actions represented as parameterized skills. Our approach has three
main components. The first is synthesizing HFVCs that allow for compliant execution with inaccurate
object models and feedback. The second is learning the HFVC skill precondition to filter out motions that
will likely fail due to modeling mismatches. The third is using the learned precondition to plan sequences
of skills for object manipulation tasks in constrained environments. The planner uses subgoals from the
skill parameters as the skill-level transition model. The planner replans if the reached state deviates a lot
from the subgoal. See Figure 1.

Parameterized Skill Formulation. We follow the options formulation of skills [39, 40]. We denote a
parameterized skill as owith parameters θ∈Θ. In our work, a parameterized skill o has five elements: a
parameter generator that generates both feasible and infeasible θ, a precondition function that classifies skill
success given current observations and skill parameters, a controller that performs the skill, a termination
condition that tells when the skill should stop, and a skill-level dynamics model that predicts the next
state after skill execution terminates. We assume the parameter generator, controller, and termination
conditions are given. We assume skills have subgoal parameters, which contains information about the
next world state if skill execution is successful. For example, an HFVC skill parameter will contain the
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Figure 2: Our HFVC parameter generator gives diverse contact-rich behaviors. Each column is an HFVC skill
execution. Top: initial states. Bottom: final states. Left to right: sliding, toppling, pivoting, and pushing.

desired object pose, and the planner assumes the object will reach the desired pose if 1) that parameter
satisfies preconditions and 2) the HFVC commands are computed using that parameter.

3.1 Hybrid Force Velocity Controller Skill

The HFVC skill moves an object using a given skill parameter θ, which contains the initial object pose,
the desired object pose and the robot-object contact(s). Poses are 6D SE(3). To achieve the desired object
motions, we use an optimization-based solver to output a sequence of hybrid force and velocity commands
for the robot to follow. Below, we explain how parameters are generated for both precondition learning
and planning, how HFVC commands are synthesized and executed from the parameter θ, and how we
learn the precondition function to classify successful parameters.

HFVC Skill Parameter Generation. The HFVC skill parameter contains the initial and subgoal object
poses and the robot-object contact point(s). We generate two types of subgoal poses: ones that are in
the same stable pose as the current pose, and ones that are in “neighboring” stable poses (i.e., toppled by
90◦). Initial robot-object contact points come from evenly spaced points on the surface of object primitives.
We filter out contact points at which the robot would collide with the environment either for the initial or
subgoal object poses. These intended initial contact points should be treated as skill parameters (like ones
that parameterize grasps [41]), as they may not be the actual robot-object contact points achieved during exe-
cution, due to the end-effector geometry and inaccurate pose estimation. This parameter generation scheme
can generate a diverse range of 3D behaviors such as pushing, sliding, pivoting, and toppling. See Figure 2.

We assume known geometric primitives (cuboids and cylinders) for parameter generation, but this does
not significantly affect the focus of this work. One reason is that many real-world objects resemble cuboids
and cylinders, especially in interacting with constrained environments like shelves and cabinets. Another is
that this assumption is only made for parameter generation (the precondition directly takes in point clouds),
and it can still generate a wide range of parameters with only some satisfying preconditions. As such, the
object primitive assumption does not overly limit the types of behaviors the HFVC skill can achieve, and
the parameter generator is useful even if the real object cannot be perfectly represented by the primitives.

HFVC Synthesis from Subgoals. Our controller synthesis algorithm generates hybrid force-velocity
commandsH for the robot to execute. Initially, the algorithm needs the current object pose WT O∈SE(3),
desired object pose WT sg∈SE(3), initial estimated object-environment contacts, and initial robot-object
contact point. An HFVC commandh∈H include the velocity control directionsTv∈Rnv×6 and magnitude
ηv∈Rnv , and the force control direction Tf ∈Rnf×6 and magnitude ηf ∈Rnf . Here, we adopt maximum
velocity control where nv =5 and nf =1. During HFVC execution, HFVC commands are computed at
a frequency of 20Hz, and this procedure only needs the current estimated object pose (see next section).

There are three steps in the HFVC synthesis algorithm. First, we use a quadratic program (QP) to
optimize Tv and ηv that moves the object to WT sg under the contact mode constraints. Second, we
compute the force control direction Tf , which is chosen to be as close as possible to the robot-object
contact normal nh while being as orthogonal as possible to the desired hand velocity direction vh: Tf =
argminTf

(‖Tfvh‖+‖Tf−nh‖). Third, we solve for the force control magnitude ηf by trying to maintain
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a small amount of normal contact forces on every non-separating environment contact under the quasi-
dynamic assumption. If the robot-object contact normal is parallel to the desired hand velocity direction,
we only do velocity control (nf =0,nv =6), which results in a pushing motion. See details in Appendix.

HFVC Execution with Partial Information. Computing new HFVC commands during execution
requires object pose feedback (WT O) at about 10Hz, which cannot be directly obtained due to occlusions
in constrained environments and delay in perception and state estimation. As such, we estimate WT O

from robot proprioception, and we constrain HFVC velocity commands to prevent inaccuracies in this
estimation to drastically alter execution behavior. See Figure 3.

Figure 3: HFVC execution with partial in-
formation with example pivoting motion (start
pose is object on the left). Gray objects rep-
resent linearly interpolated object poses used
by proprioception-based object pose estimation.
Object translation is exaggerated for visual clar-
ity. Blue arrow represents direction of force
command, purple is velocity. Velocity com-
mands are projected onto the (green) plane con-
taining the interpolated end-effector trajectory.

We first linearly interpolate a trajectory from the initial pose
to the subgoal pose. Each point on the trajectory contains
an object pose and its corresponding end-effector pose. To
estimate the current object pose from robot proprioception,
we assume static robot-object contacts (no slipping) during
execution. Given the current end-effector pose, we find its
closest end-effector pose in the interpolated trajectory. The
corresponding object pose to the closest end-effector pose is
the estimated current object pose.

HFVC is robust to pose estimation errors in the direction of
the force controller, which moves the end-effector to maintain
the desired robot-object contact. This is not the case for errors
in the direction of the velocity controller, which will keep
moving as if the object is still on the interpolated trajectory,
leading to execution failure. To alleviate this issue, we con-
strain HFVC commands by projecting velocity control onto
the plane that contains the interpolated end-effector trajectory,
preventing the end-effector from traveling too far from the
intended motion.

3.2 Learning HFVC Preconditions

Due to errors in visual perception (e.g. noisy point clouds), real-time feedback (noisy end-effector force-
torque sensing, inaccurate object pose estimations), controls (e.g. HFVC solver does not take into account
how the low-level controller actually achieves the commanded velocities and forces), and robot-object
contacts (they are often non-sticking in practice), HFVC executions are not always successful. This
motivates learning the HFVC skill precondition. The inputs to the precondition are segmented point clouds
and the skill parameter. The output is whether or not executing the HFVC skill at the given state with the
given parameter will be successful.

Precondition Success Definition. An HFVC skill execution is considered successful if it satisfies three
conditions: 1) the object moved more than 1.5cm or 20◦ after skill execution, 2) the final pose is within
7cm and 60◦ of the subgoal pose (avoids pose differences that are more than an object’s dimension away
or in a different stable pose), and 3) the object does not move after the end-effector leaves contact. Since
HFVC executions with model mismatches rarely reach exactly the intended subgoals, having a loose
subgoal vicinity requirement allows the planner to execute more HFVC skills and make planning feasible.
These thresholds are specific to a skill and indirectly depend on the object and environment properties.
Tuning them will affect the positive-negative data ratio for training precondition models, but downstream
task planning is somewhat robust to these changes, as the planner’s prediction threshold for precondition
satisfaction can be tuned after the model has been trained.

HFVC Data. The precondition is trained with HFVC execution data generated in simulation with cuboid
and cylindrical-shaped objects from the YCB dataset [42]. To improve data diversity, we randomize object
geometries by sampling non-uniform scales along object principal axes and randomly setting object mass
and friction values. The range for both scaling and dynamics values are chosen so that the resulting object
is feasible for manipulation in our shelf domain. See Figure 4 for visualization of the objects used. We also
randomly sample the environment shelf dimensions, as well as the initial object pose and stable pose. From
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Figure 4: Object-in-Shelf Task Domain. Left: cuboid and cylindrical YCB objects used in simulation for training the
HFVC precondition. Middle: objects used in real-world experiments. Right: real-world setup.

simulation, we obtain ground truth segmented point clouds and object poses after skill execution, the latter
of which is used to compute ground truth skill preconditions. We use Nvidia IsaacGym, a GPU-accelerated
robotics simulator [43, 44].

Model Architecture. The HFVC precondition is a neural network with a PointNet++ [45] backbone. The
input point cloud is centered and cropped around the point that is in the center between the initial object
position and the subgoal object position. This improves data efficiency as the network only has to reason
about environment points relevant to object-environment interactions. The features of each point include
its 3D coordinate as well as the segmentation label. For object points, we additionally append the skill
parameter as additional features. These parameter dimensions are set to all 0’s for the environment points.
The PointNet++ backbone produces embeddings per point. We take the mean of the point-wise embeddings
corresponding to the object points to produce a global object embedding. This embedding is passed to a
multi-layer perceptron (MLP) to produce the final precondition prediction. The entire network is trained
with a binary cross-entropy loss.

3.3 Search-Based Task Planning

Once the precondition is learned, we can use it along with the skill parameter generator to plan for tasks.
We perform task planning in a search-based manner on a directed graph, where each node of the graph
corresponds to a planning state, and each directed edge corresponds to a (skill, parameter) whose execution
from the source state would result in the next state. In our domain, a task is specified by an initial and a
goal object pose, and the planning state is the 6D object pose. For parameter generation, if the goal pose is
close enough to the current pose, then it is included in the list of subgoal poses, so the planner can find
plans that take the object directly to the goal pose. The output of the planner is a sequence of parameterized
skills to be executed from the initial state.

We interleave planning graph construction with graph search, and search is performed in a best-first manner,
similar to [46] which uses A* to perform task planning. However, it is difficult to efficiently perform
A*-style optimal planning in our domain. This is due to several factors — 1) inaccurate transition models
because we directly use subgoals as the next state, 2) expensive edge evaluation (node generation requires
storing new point clouds for future precondition inference), and 3) high branching factor with many possible
skill parameters at a given state. As such, we instead use Real-Time A* [47] with an inadmissible heuristic,
where A* is performed until a search budget is exhausted or when a path to the goal is found. Then, the
robot executes the first (skill, parameter) tuple of the path that reaches the best leaf node found so far. After
skill execution, if the observed next state is not close enough to the expected next state, or we have reached
the end of the current plan, we will replan again.

4 Experiments

Our experiments focus on evaluating our approach in a shelf domain, where a robot needs to move an
object from a start pose to a goal pose. We perform three types of evaluations. The first gauges how much
proprioception-based object pose estimation and velocity command projections improve HFVC execution
success. The second is about HFVC skill precondition training performance. The third is on the overall
task performance by running the planner with the learned HFVC skill precondition. A key comparison we
make is between planning with and without the learned precondition function. Lastly, we demonstrate our
planner and learned precondition on a real-world robot setup without further model fine-tuning.
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Skill Success SG-ADD (cm) S-SG-ADD (cm)

Ours 52.3% 6.9±8.1 3.4±1.9
No-Feedback 38.6% 10.2±10.3 3.9±1.9
No-Constraint 46.0% 7.6±8.1 3.6±2.1
No-Both 38.3% 10.3±10.3 3.8±1.9

Table 1: Skill execution evaluations for our approach vs. ablations that do not use proprioception-based object pose
estimation and planar velocity constraints. We report skill success rate and error distance between the subgoal pose and
the actual reached pose over all executions (SG-ADD) and over just the successful ones (S-SG-ADD). Numbers after
± are standard deviations.

Ours Full-PC GT-Primitive No-Params

Accuracy 79% 76% 85% 65%
Precision 78% 73% 85% 60%
Recall 77% 79% 83% 79%

Table 2: Precondition training results with different input representations.

Task Domain. Our task domain consists of a 7 DoF Franka Panda robot arm, a rectangular shelf, and a set
of objects for the robot to manipulate. Each task instance is specified by a different object geometry, shelf
dimensions, shelf pose, initial object pose, and goal object pose. The robot successfully completes the task
if it executes a sequence of (skill, parameter) tuples that brings the object from the initial pose to the goal
pose, with a goal threshold of 1.5cm for translation and 10◦ for rotation. In addition to the HFVC skill, the
planner also has access to a Pick-and-Place skill that can move objects via grasps if grasps are available.

4.1 HFVC Execution with Partial Information.

We first demonstrate the value of estimating object pose from proprioception and applying planar constraints
on velocity commands. One ablation is running HFVC with “open-loop” pose estimation, where the
current object pose is indexed from the interpolated trajectory with a time-based index (No-Feedback).
This assumes the object is following the interpolated trajectory at a fixed speed. Another is running HFVC
with proprioceptive feedback but without the velocity planar constraints (No-Constraint). The third variant
is running HFVC without both of these modifications (No-Both). We report the execution success rate,
the object’s average discrepancy distance (ADD) between achieved and subgoal poses for all executions
(SG-ADD) and only for the successful executions (S-SG-ADD). A total of 7.5k skill executions per method
were used in these evaluations. See results in Table 1. Our approach achieves 52.3% success rate, higher
than the ablations, with proprioception-based pose feedback (38.6%) making the most difference. These
results demonstrate that both proprioceptive object pose feedback and planar velocity constraints can
improve HFVC skill executions.

4.2 Precondition Learning

We generate the HFVC execution dataset with 6 cuboid-shaped and 2 cylindrical-shaped objects from the
YCB dataset (see Figure 4). Train-test split is done across object scaling factors, with the test set having the
smallest and biggest scales. To see how the network would perform with full, instead of partial observations,
we include one ablation that uses full point clouds (Full-PC) and another that uses vertices of ground-truth
object primitive meshes (GT-Primitive). We also train a variant that does not use skill parameter features
(No-Params). See Table 2. Our method using partial point clouds is on par with Full-PC, and GT-Primitive
performs the best. However, we cannot directly use GT-Primitive in planning due to having access to only
partial point clouds. Instead, we include a comparison by using estimated object geometries in the task
planning experiments below. No-Params performs the worst as expected, but it is still able to improve over
random guessing due to biases in our collected data.

4.3 Task Planning Experiments

We evaluate task planning performance across several ablations in simulation. For each method, we run
trials across the 8 YCB objects and 8 task scenarios, with 5 trials per object and scenario pair, resulting in a
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Ours Est-Primitive No-PC Only-Pick-Place No-Replan

Plan Success 73.2% 61.1% 51.5% 27.4% 28.0%
Plan Time (s) 43.1±23.0 44.5±26.5 36.5±20.3 6.7±11.6 22.4±13.1
Plan Length 3.5±1.3 3.2±1.5 3.6±1.5 1.6±0.8 1.9±1.0

Table 3: Task performance of our approach using partial point clouds vs. using estimated object primitives (Est-
Primitive), not using learned preconditions (No-PC), only using Pick-and-Place (Only-Pick-Place), and not doing
replanning (No-Replan). Plan time includes replanning time. Numbers after ± are standard deviations. Plan time and
length statistics are computed only over successful trials.

total of 240 trials per method. Each trial samples different initial and goal poses, and object geometries
used in task evaluation are not in the training set. A task scenario specifies whether or not the initial object
pose and goal pose are close to the shelf wall (4 variants) and whether they have the same stable pose (2
variants), for a total of 8 scenarios. We report the overall task success rate, average planning time and plan
length for successful trials.

The first ablation is on using vertices from estimated object primitives (Est-Primitive) as the input to the
precondition, instead of partial point clouds. The second is planning without the learned precondition,
so the planner treats all generated parameters as feasible (No-PC). The third evaluates the usefulness of
the HFVC skill in our domain by planning only with the Pick-and-Place skill (Only-Pick-Place). The
last ablation does not replan and executes the entire found path from the initial state without feedback
(No-Replan). For this method, we double the planning budget to 60s, so the planner is more likely to find a
path all the way to the goal state.

See Table 3. The proposed approach achieves a success rate of 74.7%, higher than Est-Primitive (61.1%)
and No-PC (48.9%), and much higher than Only-Pick-Place (22.9%) and No-Replan (28.8%). The drop
in performance of Est-Primitive shows that while using ground truth primitives gives better precondition
predictions, this improvement does not apply when primitives must be estimated from partial point clouds.
The other ablations show the importance of learning HFVC preconditions, using HFVC skills in constrained
environments, and replanning to compensate for inaccurate subgoal transition models.

Real-world Demonstration. Lastly, we demonstrate our planner with the learned precondition can operate
in the real world. We use FrankaPy [48] to control the real Franka arm at 100Hz, similar to simulation.
While the learned precondition can operate on real-world point clouds without further training, we had
to tune low-level controller gains to reproduce similar contact-rich motions on the real robot. As with
simulation, our planner is able to find plans that include a variety of contact-rich behaviors, like pushing,
sliding, toppling, and pivoting, to manipulate objects on the shelf. Please see supplementary materials for
more details and real-world videos.

Failure Modes and Limitations. The most common failure mode is precondition errors that lead the
planner into finding infeasible plans or not finding a plan when there is one. This may be addressed by
further improving precondition performance with more data, or enforcing domain-specific invariances.
In addition, the object primitive assumption does prevent the parameter generator from supporting more
complex objects, and this may be resolved by using learned parameter generator and visual perception
module. For execution, our planner does not perform online precondition adaptation for unexpected
object dynamics; doing so may improve task performance for objects with out-of-distribution dynamics
parameters. Lastly, our method assumes only one movable object in the scene. Manipulating multiple
objects may require learned perception systems and skill-level dynamics models that work in clutter.

5 Conclusion

HFVCs can naturally express Contact-rich manipulation behaviors. However, their reliance on precise
models and closed-loop object feedback have prevented their use in cases where such information cannot
be easily obtained. Our work 1) modifies HFVCs to not rely on privileged information and 2) learns
where HFVCs are successful despite inaccurate models so 3) a planner can plan sequences of HFVC and
Pick-and-Place skills to do contact-rich tasks in constrained environments.
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