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Abstract

Large reasoning models (LRMs) have signifi-001
cantly advanced performance on complex tasks,002
yet their tendency to overthink introduces inef-003
ficiencies. This study investigates the internal004
mechanisms of reinforcement learning (RL)-005
trained LRMs when prompted to save think-006
ing, revealing three distinct thinking modes: no007
thinking (NT), explicit thinking (ET), and im-008
plicit thinking (IT). Through comprehensive009
analysis of confidence in thinking termination,010
attention from thinking to generation, and at-011
tentional focus on input sections, we uncover012
key factors influencing the reasoning behaviors.013
We further find that NT reduces output length at014
the cost of accuracy, while ET and IT maintain015
accuracy with reduced response length. Our016
findings expose fundamental inconsistencies017
in RL-optimized LRMs, necessitating adaptive018
improvements for reliable efficiency.019

1 Introduction020

Large language models (LLMs) have demon-021

strated remarkable performance across a wide022

range of domains (OpenAI, 2023; Yang et al., 2024;023

DeepSeek-AI et al., 2024). When integrated with024

retrieval-augmented generation (Lewis et al., 2020;025

Zhu et al., 2025), supervised fine-tuning (SFT)026

(Parthasarathy et al., 2024; Luo et al., 2024), or027

other techniques (Fang et al., 2025), LLMs achieve028

improved capabilities in specialized domains be-029

yond their original pretraining scope. However,030

LLMs may still struggle with complex reasoning031

tasks (Anand et al., 2024). The breakthrough of032

large reasoning models (LRMs) like OpenAI-o1033

(OpenAI, 2025) highlights the benefits of scaling034

test time, enabling extended reasoning and the gen-035

eration of comprehensive thoughts. This approach036

can significantly improve the accuracy on complex037

reasoning tasks. As a result, an increasing num-038

ber of LRMs, such as QwQ (Qwen Team, 2025)039

and DeepSeek-R1 (DeepSeek-AI et al., 2025), have040

been developed. Broadly, these LRMs can be cate- 041

gorized based on their training methodology: one 042

category is developed through SFT on chain-of- 043

thought (CoT) data (Muennighoff et al., 2025), 044

while the other is trained directly using reinforce- 045

ment learning (RL). These models demonstrate su- 046

perior performance compared to LLMs across vari- 047

ous reasoning tasks (Chen et al., 2025). 048

Most LRMs, such as QwQ-32B, generate tags 049

like <think> and </think> to encapsulate the 050

thinking process, followed by the final answer. De- 051

spite the significant improvement in reasoning capa- 052

bilities, LRMs usually suffer from the overthinking 053

problem. They tend to generate excessively long 054

reasoning chains, even for simple tasks (Chen et al., 055

2024), which leads to computational inefficiency 056

and sometimes worse accuracy (Sui et al., 2025). 057

To address this issue, Ma et al. (2025) propose 058

prompting LRMs to bypass thinking by pre-filling 059

the segment between <think> and </think>. The 060

prompt template is given below. 061

User: Your final answer should follow 062

immediately after the phrase “The final 063

answer is”. 064

Question: [Question]. 065

Assistant: 066

<think> 067

Okay, I think I have finished thinking. 068

</think> 069

Intriguingly, our empirical evidence reveals that 070

when this prompt is applied to the native LRMs 071

trained using RL (e.g., QwQ-32B), models some- 072

times skip thinking as expected while at other times 073

re-engage in thinking. This behavioral inconsis- 074

tency raises a critical question: what internal mech- 075

anisms cause RL-trained LRMs to exhibit such dif- 076

ferent responses when guided to “save thinking”. 077

To investigate this problem, we categorize the be- 078

haviors of LRMs under save-thinking instructions 079

into three modes based on our empirical findings: 080
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no thinking (NT), explicit thinking (ET), and im-081

plicit thinking (IT), as illustrated in Figure 1:082

• No thinking: The LRM bypasses further083

thinking and directly generates the answer.084

• Explicit thinking: The LRM re-engages in a085

thinking process before providing the answer.086

It appends an additional </think> tag upon087

completing its renewed thinking phase.088

• Implicit thinking: The LRM also re-engages089

in additional thinking but does not output the090

</think> tag to mark the end of thinking.091

To explore different thinking modes and analyze092

their internal distinctions, we examine LRMs from093

three perspectives: confidence in thinking termi-094

nation, attention from thinking to generation, and095

attentional focus on input sections. We also analyze096

how modes affect performance and output length.097

Our contributions are summarized as follows:098

• We identify three behavioral modes—NT, ET,099

and IT—that emerge when the native LRM is100

instructed to save thinking. The divergences101

suggest LRMs struggle with thinking control,102

emphasizing the need for improved instruc-103

tion adherence and behavioral consistency.104

• We analyze three internal states of LRMs in105

different thinking modes. In NT mode, the106

LRM prioritizes the pre-filled thinking con-107

tent and has high confidence in thinking ter-108

mination. In ET and IT modes, the LRM re-109

tains focus on the task context, enabling their110

re-engagement in reasoning. Attention activa-111

tion patterns across the three modes begin to112

diverge distinctly from the early layers. Our113

analysis connects observed behavior and inter-114

nal decision-making, guiding future improve-115

ments in reasoning reliability of LRMs.116

• We compare the output length and accuracy in117

different modes against a baseline where the118

LRM follows standard thinking. NT mode sig-119

nificantly shortens output length but reduces120

accuracy. ET preserves accuracy while mod-121

erately reducing response length. This eval-122

uation connects thinking modes and answer123

quality, offering valuable insights for research124

on efficient and effective reasoning.125

Our manual annotations of the three thinking126

modes in the GSM8K and MATH500 datasets will127

be publicly available to support future research.128

(a) No thinking

(b) Explicit thinking

(c) Implicit thinking

Question: James decides to run 3 sprints 3 times a week.  He runs 

60 meters each sprint.  How many total meters does he run a week?

LRM output: The final answer is 540.

Question: … The choir plans to sing “Deck the Halls” twice and 

“Jingle Bells” once. If “Deck the Halls” is 150 s long and “Jingle 

Bells” is 240 s long, how long will they be caroling?

LRM output: The total time for “Deck the Halls” is 2 times 

150 seconds. “Jingle Bells” is sung once, so that’s 240 

seconds. Adding them together gives 300 + 240 = 540 

seconds. </think> The final answer is 540 seconds.

Question: Ryan plants 2 flowers a day in his garden. After 15 

days, how many flowers does he have if 5 did not grow?

LRM output: … I need to multiply the number of flowers per 

day by the number of days. So, 2 flowers/day multiplied by 15 

days equals 30 flowers. But wait, the problem says that 5 did 

not grow. … So I should subtract those 5 from the total 

planted. … The final answer is 25.

Figure 1: Examples of the three modes of QwQ-32B
under the save-thinking instructions. The final answers
are underlined. The thought is marked in italics. The
token </think> marks the end of the thought.

2 Related Work 129

2.1 Large Reasoning Models 130

Large language models (LLMs) have demonstrated 131

stronger capabilities with larger scale (Zhao et al., 132

2023), yet they still struggle with complex rea- 133

soning tasks like mathematics and code gener- 134

ation (Anand et al., 2024; Xu et al., 2025a). 135

Recent work has found that instead of continu- 136

ously scaling model size and training data, scal- 137

ing the model’s thinking time and having it gen- 138

erate chain-of-thought reasoning—similar to hu- 139

man thinking—can significantly improve the accu- 140

racy of complex tasks (Snell et al., 2024). Conse- 141

quently, LRMs such as OpenAI-o1 (OpenAI, 2025), 142

DeepSeek-R1 (DeepSeek-AI et al., 2025), and 143

QwQ (Qwen Team, 2025) have emerged, specif- 144

ically designed to produce structured reasoning 145

processes before the final answer. These LRMs im- 146

prove performance on challenging reasoning bench- 147

marks by generating longer thinking processes that 148

involve considering multiple potential solutions 149

and backtracking from errors (Chen et al., 2025). 150

2.2 Efficient Reasoning 151

LRMs often exhibit the phenomenon of “overthink- 152

ing”. This manifests as the LRMs generating exten- 153

sive thinking processes even for relatively simple 154

problems, such as “calculating 2+3”, leading to sig- 155
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nificant computational resource waste (Chen et al.,156

2024). Furthermore, some studies (Sui et al., 2025;157

Yang et al., 2025) have indicated that in certain158

domains, these lengthy thinking processes can in-159

troduce noise, which may paradoxically lead to a160

decrease in the model’s overall performance.161

To address this issue, several methods have162

been explored, including approaches like RL with163

Length Reward Design (Meng et al., 2024; Aggar-164

wal and Welleck, 2025; Qu et al., 2025) and SFT165

with different Variable-Length CoT Data (Muen-166

nighoff et al., 2025; Han et al., 2024). Among167

these, utilizing prompts to explicitly limit the think-168

ing length is considered a highly efficient method169

(Xu et al., 2025b; Li et al., 2025). Previous work170

(Ma et al., 2025) demonstrated that by pre-filling171

the thinking section of LRMs with a completion172

instruction, models trained via SFT on CoT data,173

such as DeepSeek-R1-Distill-Qwen-32B, could ef-174

fectively skip the thinking process without a signif-175

icant drop in accuracy. However, when the same176

prompting strategy is applied to LRMs trained us-177

ing RL, such as QwQ-32B, models sometimes skip178

the thinking process while at other times re-engage179

in thinking, a phenomenon also mentioned in prior180

work (Liu et al., 2025). Our work aims to ana-181

lyze the internal states of the model under different182

thinking modes to investigate reasons behind this183

varied behavior in RL-trained LRMs.184

3 Mechanistic Analysis of Thinking Modes185

3.1 Experiment Setup and Data Annotations186

LRM selection. Our primary experiments use187

the open-source, RL-trained native LRM QwQ-188

32B (Qwen Team, 2025). We select this model189

due to its strong performance and widespread adop-190

tion. More importantly, the native LRM usually191

exhibits behavioral divergence when prompted to192

economize thought (see the prompt template in Sec-193

tion 1). QwQ-32B frequently engages in reason-194

ing even when explicitly instructed to skip directly195

to the final answer. This behavior contrasts with196

LLMs such as ChatGPT and SFT-based LRMs such197

as DeepSeek-R1-Distill-Qwen-32B, which consis-198

tently follow save-thinking instructions, as shown199

in prior work (Liu et al., 2025; Ma et al., 2025).200

QwQ-32B thus serves as a valuable case study for201

investigating the internal dynamics behind such202

non-compliant reasoning in native LRMs.203

Datasets and Annotations. Our experiments and204

analysis are conducted on two mathematical rea-205

Datasets NT ET IT Total

GSM8K 948 296 75 1319
MATH500 118 379 3 500

Table 1: Statistics of questions in each thinking mode.

soning datasets: the test set of GSM8K (Cobbe 206

et al., 2021), comprising grade school math word 207

problems, and MATH500 (Hendrycks et al., 2021), 208

a more challenging set from high school competi- 209

tions. Both datasets require multi-step reasoning 210

from LRMs. Specifically, given a reasoning ques- 211

tion, we employ the prompt detailed in Section 1 212

to direct QwQ-32B to provide an immediate re- 213

sponse. We manually check the outputs to identify 214

the corresponding thinking modes. The statistics 215

of questions manually labeled with thinking modes 216

(NT, ET, and IT) are presented in Table1. 217

We observe that for GSM8K, QwQ-32B directly 218

answer about 71.9% of questions without engaging 219

in thinking. However, for the remaining questions, 220

QwQ-32B still undertakes additional thinking, de- 221

spite the prompt already pre-filling the reasoning 222

segment. For MATH500, only 23.6% of questions 223

are resolved without additional reasoning. The re- 224

maining questions require further thought, with 225

explicit thinking being particularly prevalent. 226

Please note that, for all the questions, we use the 227

same prompt to instruct QwQ-32B to save think- 228

ing. However, QwQ-32B still exhibits different 229

thinking modes on different questions. This be- 230

havioral divergence motivates our analysis of its 231

internal states to explore the underlying reasons. 232

More details are given in Appendix A. 233

3.2 Confidence in Thinking Termination 234

Motivation. Our prompt includes a pre-filled think- 235

ing segment: “<think> Okay, I think I have fin- 236

ished thinking. </think>”. The LRM is expected 237

to generate the answer directly. Since the </think> 238

token indicates the end of the thinking process, we 239

posit that its prediction confidence reflects how cer- 240

tain the LRM is in resolving the question without 241

further reasoning. Therefore, we examine this in- 242

ternal prediction confidence to gain insights into 243

the distinctions among different thinking modes. 244

Specifically, we conduct a forward pass on the pre- 245

filled thinking segment to obtain the softmax prob- 246

abilities when the LRM is predicting the </think> 247

tag, immediately following the pre-filled “<think> 248

Okay, I think I have finished thinking.” phrase. 249
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Modes
GSM8K MATH500 Average

Top1 Entropy DF Top1 Entropy DF Top1 Entropy DF

NT 78.64 1.05 72.61 73.21 1.15 65.53 78.04 1.06 71.83
IT 70.72 1.29 62.47 74.64 0.94 66.33 70.87 1.28 62.62
ET 73.46 1.22 66.32 67.71 1.28 57.72 70.12 1.25 61.33

Table 2: Prediction confidence metrics when predicting the </think> token. Higher Top1 and DF values indicate
greater model confidence that the next token to be generated is </think>. Lower Entropy signifies that the model’s
probability distribution for the next token is more sharply peaked, indicating less uncertainty.

This timing captures the internal states of the LRM250

after processing the entire pre-filled segment, in-251

dicating its readiness to finalize thinking by the252

</think> tag and its confidence level in deciding253

whether to prolong reasoning. Based on our ex-254

perimental observations, the top-1 prediction to-255

ken at this point is consistently the </think> tag.256

Therefore, instead of focusing on prediction cor-257

rectness, we analyze how confidently the model258

makes this decision. Specifically, we evaluate three259

key metrics derived from the softmax distribution:260

the highest probability value (Top1), the entropy261

of the distribution, and the difference between the262

highest and second-highest probability values (DF).263

Results and Analysis. The results are presented in264

Table 2. The NT questions exhibit significantly265

higher prediction confidence metrics, observed266

when the model is predicting the </think> tag that267

terminates the pre-filled thinking placeholder con-268

tent. The average Top1 probability is highest for269

NT (78.04). The average Entropy is lowest (1.06),270

and the average DF is highest (71.83). These re-271

sults indicate that, at this critical moment before272

the thinking-end signal, the LRM’s internal state is273

already highly determined, suggesting it is “ready”274

to generate the answer directly.275

In contrast, the IT and ET modes, both of which276

ultimately involve further thinking, show relatively277

lower and very similar levels of confidence. The278

average Top1 (70.87) and average DF (62.62) for279

IT are slightly higher than those for ET (average280

Top1 70.12, average DF 61.33), but the difference281

between them is small. Their average Entropy val-282

ues (IT 1.28, ET 1.25) are also close to each other283

and significantly higher than the NT mode, by ap-284

proximately 19%. The lower prediction confidence285

for the </think> token in ET and IT modes in-286

dicates a greater internal uncertainty within the287

LRM. Despite the prompt stating that thinking is288

finished, the LRM’s internal state for these ques-289

tions suggests a lower conviction to terminate the290

reasoning process. This hesitation may stem from 291

the LRM’s assessment that the question requires 292

more reasoning steps beyond what the pre-filled 293

prompt provides, making it less “convinced” by the 294

save-thinking instruction and and favoring contin- 295

ued reasoning over immediate termination. 296

Findings. The LRM exhibits higher prediction 297

confidence and lower uncertainty for the </think> 298

tag in NT mode, indicating a deterministic inter- 299

nal state favoring immediate answer generation. In 300

contrast, ET and IT modes show lower confidence, 301

reflecting hesitation to terminate reasoning despite 302

save-thinking instructions. This confidence gap of- 303

fers a key insight: higher confidence in thinking 304

termination may be necessary for skipping reason- 305

ing, helping explain the behavioral divergence. 306

3.3 Attention from Thinking to Generation 307

Motivation. Upon processing the full prompt in- 308

cluding the full pre-filled thinking segment and the 309

</think> token, the LRM is prepared to generate 310

the answer. We next investigate whether the LRM 311

displays distinct attention states when shifting from 312

input processing to answer generation, particularly 313

in relation to the observed thinking modes. To do 314

this, we analyze layer-wise attention activation vec- 315

tors when the LRM predicts its first output token. 316

The goal is to identify distinct high-dimensional 317

patterns or clusters corresponding to NT, ET, and 318

IT modes, thereby revealing how the internal at- 319

tentional state reflects or precipitates the model’s 320

behavioral divergence. 321

Results and Analysis. As shown in Figure 2, the 322

PCA visualization of the last layer’s attention ac- 323

tivation reveals distinct clustering patterns corre- 324

sponding to the different thinking modes. The sam- 325

ples belonging to the NT mode tend to form a clus- 326

ter that is largely separate from the ET mode. This 327

separation suggests that the internal attention state 328

before generating the first token is notably differ- 329

ent when the model proceeds directly to an answer 330
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Figure 2: PCA visualization of attention activation from the last layer for all samples in GSM8K and MATH500.

compared to when it engages in further thinking.331

Due to the smaller sample size of IT samples, they332

do not exhibit a clear clustering characteristic on333

their own. However, observing the distribution334

of IT samples, particularly in the GSM8K dataset,335

many IT samples are distributed within the ET clus-336

ter, suggesting that the internal attention activation337

patterns of the IT mode are more similar to those338

of the ET mode than the NT mode.339

Further Analysis. To quantitatively assess the sep-340

aration between the clusters based on layer-wise at-341

tention activation, we compute the Davies-Bouldin342

Index (DB Index) for each layer. The DB Index343

is a metric for evaluating clustering algorithms. A344

lower DB Index indicates better separation between345

clusters. The index is defined as:346

DB =
S1 + S2

D1,2
, (1)347

where S1 and S2 are the average dispersion within348

the two clusters, respectively, and D1,2 is the dis-349

tance between the centroids of the two clusters.350

Due to the relatively small number of IT samples,351

we focus our analysis mainly on ET and NT.352

As shown in Figure 3, we observe a notable353

trend in the DB Index values across the 64 lay-354

ers in QwQ-32B. For both datasets, the DB Index355

starts relatively high in the initial layers, indicat-356

ing that the attention activation patterns of NT and357

ET samples are less distinct. However, there is358

a sharp decrease in the DB Index value starting359

around Layer 5 for both datasets. This indicates360

that the clusters corresponding to NT and ET think-361

ing modes become significantly more separated in362

terms of their attention activation patterns in early363

layers. The DB Index then remains at a consis-364

tently lower level throughout the subsequent layers,365
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Figure 3: Davies-Bouldin Index (less is better) calcu-
lated for the NT and ET clusters based on layer-wise
attention activation across all 64 layers.

suggesting that this learned difference in attention 366

focus is maintained as the input signal propagates 367

through the deeper layers of the LRM. This early 368

and sustained divergence in layer-wise attention 369

activation provides strong evidence that the LRM 370

develops distinct internal representations for pro- 371

cessing prompts that lead to either direct answers 372

(NT) or require further thinking (ET). 373

Furthermore, we observe that the trend of the DB 374

Index is remarkably similar for both the GSM8K 375

and MATH500 datasets. This consistency across 376

different datasets suggests that the mechanism by 377

which the LRM differentiates between ET and NT 378

is an inherent property of the model, rather than 379

being strongly influenced by the specific dataset. 380

Findings. Attention activation patterns diverge sig- 381

nificantly between NT and ET modes, with distinct 382

clustering emerging in early layers. The consistent 383

DB Index trends across datasets highlight that be- 384

havioral divergence stems from inherent model ar- 385

chitecture rather than task-specific factors. This lay- 386

ered separation underscores the role of early-stage 387

attention dynamics in shaping reasoning strategies. 388

In summary, the tendency to save thinking is partly 389
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Figure 4: The density distribution of attention scores under different thinking modes. Implicit thinking samples in
MATH500 are too few to plot a density curve. The green dashed line indicates their average value.

Datasets
NT IT ET

Top1 DF Top1 DF Top1 DF

GSM8K 15.68 3.67 19.29 11.39 18.52 9.89
MATH500 16.57 4.33 18.85 10.58 22.04 14.30
Average 15.78 3.74 19.27 11.36 20.56 12.45

Table 3: Top1 and DF attention scores across different
thinking modes and datasets.

shaped by early internal states, which guide its sub-390

sequent processing path before the model begins to391

actually generate content.392

3.4 Attentional Focus on Input Sections393

Motivation. The preceding analysis indicates sig-394

nificant differences in the internal states of the395

LRM across different modes. We now explore the396

underlying reasons for this difference. Specifically,397

we aim to identify which input tokens and prompt398

sections the LRM prioritizes at the onset of gen-399

eration. To achieve this, we analyze the attention400

output from the last layer (Layer 63), averaging401

across all heads to identify the top-k most attended402

tokens in the input. This analysis highlights the key403

parts of the input that may influence the LRM’s404

varying behaviors during generation.405

The attention score for the first token t1 attend-406

ing to an input token xi in the last layer is:407

AvgAttn(t1, xi) =
1

H

H∑
h=1

Attnh(t1, xi) (2)408

where H is the number of attention heads in the409

last layer, and Attnh(t1, xi) denotes the attention410

weight from the first generated token t1 to the input411

token xi for the attention head h.412

Based on our observation that the token with the413

highest attention score consistently belongs to the414

initial “user” role token, we quantify the attention415

NT ET IT0.450

0.475

0.500

0.525

0.550

0.575

(a) User section
NT ET IT0.25

0.30

0.35

0.40

(b) Think section

Figure 5: Attention scores across prompt sections for
different thinking modes on the MATH500 dataset. The
results on GSM8K are given in Appendix B and similar
findings can be obtained.

distribution towards this specific “user” token us- 416

ing metrics Top1 attention score, and DF. In this 417

analysis, Top1 attention score is simply the average 418

attention score directed towards the “user” token, 419

and DF is the difference between the attention to 420

the “user” token and the next most attended token. 421

Results and Analysis. Table 3 presents the average 422

attention scores and differences for the first gen- 423

erated token’s attention to the “user” token across 424

different thinking modes. The samples in the NT 425

mode exhibit significantly lower average Top1 at- 426

tention scores (15.78) and average DF values (3.74) 427

compared to the samples in the IT mode (Top1 428

19.27, DF 11.36) and ET mode (Top1 20.56, DF 429

12.45). This significant numerical difference is 430

visually confirmed in the attention score density 431

distribution shown in Figure 4. As depicted, the 432

peak of the attention score distribution for the NT 433

mode is notably shifted towards the left compared 434

to the other two modes, indicating that the first 435

token generated in this mode generally has lower 436

attention scores directed towards the “user” token. 437

This result directly reveals a difference in the 438

model’s internal processing focus across thinking 439

modes. When the LRM exhibits NT behavior, its 440

reduced attention to the initial “user” role token 441

during the generation of the first token suggests 442
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LRM setups Question groups
GSM8K MATH500

Accuracy Length Accuracy Length

QwQ-32B (w/ pre-filled thinking)

NT 37.76 35 52.54 29
IT 92.00 4037 100.00 710
ET 96.35 3505 97.63 9296

Average 53.28 999 87.00 7059

QwQ-32B (w/o pre-filled thinking)

NT 94.09 5049 99.15 5714
IT 94.67 7583 100.00 3965
ET 95.61 5197 95.78 10788

Average 94.32 5227 96.60 9549

Table 4: Performance across different LRM setups and question groups.

it is less anchored to the beginning of the user’s443

request. This implies that relatively more attention444

is allocated to other parts of the input, including445

the pre-filled thinking content and formatting to-446

kens. This shift in attention focus, from the original447

request’s starting point towards the pre-filled com-448

pletion signal, suggests that the LRM perceives449

the pre-filled thinking segment as having provided450

sufficient context and a signal to bypass further451

reasoning on the original question. Consequently,452

this internal state encourages the model to proceed453

directly to final answer generation, characteristic454

of NT behavior. Conversely, the higher attention to455

the user token in thinking modes (IT/ET) indicates456

a stronger focus on the original task, aligning with457

the model’s tendency to re-engage in reasoning.458

Further Analysis. To further investigate how the459

model’s attention is distributed across different460

parts of the input prompt in each thinking mode,461

we segment the input based on the “assistant” role462

token. The prompt is divided into three main sec-463

tions: the “user” section, the “thinking” section464

(the pre-filled content between the <think> and465

</think> tags), and the “other” section (including466

the “assistant” token itself and formatting tokens).467

For each thinking mode, we compute the sum of468

attention scores for tokens within each section.469

As illustrated in Figure 5, a distinct pattern470

emerges regarding the distribution of attention471

across prompt sections in different thinking modes.472

Consistent with our earlier findings on attention to473

the initial “user” token, the NT mode exhibits a sig-474

nificantly lower sum of attention directed towards475

the “user” section and a markedly higher sum of476

attention towards the “thinking” section compared477

to the ET and IT modes. This shift in attention fo-478

cus from the original task context to the pre-filled479

thought suggests that in the NT mode, the LRM480

perceives the pre-filled content as sufficient. This 481

internal state occasionally leads the LRM to bypass 482

further reasoning and proceed directly to answer 483

generation. Conversely, the higher sum of attention 484

allocated to the “user” section in ET and IT modes 485

aligns with the LRM’s tendency to re-engage with 486

the original task for additional reasoning. 487

Findings. The NT mode shifts attention away from 488

user instructions toward pre-filled thinking content. 489

In contrast, the ET and IT modes retain focus on the 490

task context, likely facilitating their re-engagement 491

in additional reasoning. This divergence reflects 492

a tension between external prompts and internal 493

reasoning demands. Future work could explore 494

whether explicitly guiding attention patterns im- 495

proves instruction adherence in RL-trained LRMs. 496

4 Analysis of Reasoning Performance 497

4.1 Thinking Modes and Performance 498

In this section, we analyze how different thinking 499

modes affect the final output quality. We report key 500

performance metrics—specifically accuracy and 501

output length—for each thinking mode. Further- 502

more, we compare the results to a baseline where 503

the LRM processes the same set of questions using 504

a standard prompt without the pre-filled thinking 505

section. This comparison helps assess the influence 506

of the pre-filled save-thinking instruction on the 507

LRM’s ability to generate correct answers. 508

We divide questions in GSM8K and MATH500 509

into three groups based on the LRM’s behavior (NT, 510

IT, or ET) under the save-thinking instruction (i.e., 511

with pre-filled thinking segment). Then, we evalu- 512

ate the performance of each group with a baseline 513

that uses a standard prompt and can engage in rea- 514

soning (i.e., without pre-filled thinking segment). 515

Table 4 presents the accuracy and output length 516

results for each group. In the NT group, when 517
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Figure 6: Top1 softmax probability vs. acc. for NT.

thinking is bypassed, the LRM exhibits a dramatic518

reduction in generated token count compared to519

the baseline, saving over 99% of tokens. However,520

this significant decrease in output length comes at521

the cost of accuracy, with GSM8K accuracy falling522

from 94.09% to 37.76% and MATH500 accuracy523

dropping from 99.15% to 52.54%.524

In contrast, in the ET group, the pre-filled think-525

ing segment significantly shortens the output length526

while still achieving high accuracy. Notably, its ac-527

curacy even surpasses the baseline condition with-528

out pre-filling. For instance, the output length for529

the ET group decreased by approximately 32.6%530

on GSM8K and 13.8% on MATH500 compared to531

its baseline, yet its accuracies outperform the base-532

line ET mode. Besides, although the sample num-533

ber of the IT group is limited, preliminary obser-534

vations indicate it also exhibits substantial length535

reductions while maintaining robust accuracy. Ad-536

ditionally, baseline results (w/o pre-filled thinking537

segment) also show ET-categorized questions elicit538

longer thought chains than NT-categorized ques-539

tions. This implies that these questions in the ET540

group are inherently more complex for the LRM.541

These findings collectively suggest that prompting542

LRMs to skip thinking can enhance efficiency with-543

out a necessary trade-off in performance, and may544

even yield accuracy improvements.545

4.2 Confidence-Accuracy Correlation546

Furthermore, we observe a clear relationship be-547

tween the LRM’s internal prediction confidence548

and the answer accuracy in NT mode. As illustrated549

in Figure 6, higher Top1 softmax probabilities for550

the token following the pre-filled segment corre-551

spond to increased accuracy in NT group. This552

suggests that a more confident LRM, after process-553

ing the pre-filled completion signal, is more likely554

to generate a correct direct answer without engag-555

ing in further explicit or implicit thinking.556

Questions Golden answers Answers

I have 10 liters of
orange drink that
are two-thirds wa-
ter and I wish to
add it to 15 liters
of pineapple drink
that is three-fifths
water. But as I
pour it, I spill one
liter of the orange
drink. How much
water is in the re-
maining 24 liters?

There are 15 x 3/5 =
9 liters of water from
the 15 liters pineap-
ple drink. After 1 liter
of orange drink was
spilled, there were 10
- 1 = 9 liters of or-
ange drink left. Out
of the 9 liters, 9 x 2/3
= 6 liters are water.
Thus, there are a to-
tal of 9 + 6 = 15 liters
of water out of the 24
liters. The final an-
swer is 15 .

The final
answer is
16 .

A curve is pa-
rameterized by
(x, y) = (t3 +
7,−3t2 − 6t− 5).
Find the point
the curve passes
through at t = 2.

At t = 2, (x, y) =
(23+7,−3·22−6·2−
5) = (15,−29) .

The final
answer is
(15,−23) .

Table 5: Examples of incorrect answers in the NT mode.

4.3 Answer Error Analysis in NT Questions 557

When manually examining the incorrect answers 558

generated in the NT mode, we discover an interest- 559

ing phenomenon: despite bypassing explicit reason- 560

ing steps, the LRM frequently produces answers 561

that closely resemble the correct solution, often 562

differing by just a single digit or a minor numerical 563

variation. Table 5 presents two real examples il- 564

lustrating this phenomenon: one from the GSM8K 565

dataset and one from the MATH500 dataset. This 566

suggests that even when the LRM skips explicit 567

reasoning, it still engages in partial numerical pro- 568

cessing, leading to near-correct outputs. The ab- 569

sence of a complete thinking in the NT mode likely 570

leads to the calculation errors. 571

5 Conclusion and Future Work 572

In this work, we investigate how RL-trained LRMs 573

respond to save-thinking instructions, uncovering 574

three distinct behavioral modes: NT, ET, and IT. 575

NT exhibits higher termination confidence, with 576

early-layer attention patterns diverging fundamen- 577

tally from ET and IT. NT shifts focus to pre-filled 578

thinking content, while ET and IT maintain task- 579

specific attention. NT reduces output length but 580

decreases accuracy, whereas ET preserves accu- 581

racy with shorter outputs. These findings expose 582

critical inconsistencies in attention allocation and 583

reasoning reliability, demanding improved training 584

strategies for improving LRMs. 585
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6 Limitations586

While our study provides valuable insights into587

the internal mechanisms of RL-trained LRMs un-588

der save-thinking instructions, several limitations589

should be acknowledged. First, our study relies on590

two mathematical reasoning datasets, GSM8K and591

MATH500, which, while representative of struc-592

tured reasoning tasks, may not fully capture the di-593

versity of reasoning challenges encountered in real-594

world applications. Second, our study does not ex-595

plore potential mitigation strategies for improving596

instruction adherence in RL-trained LRMs. Inves-597

tigating alternative RL objectives, fine-tuning ap-598

proaches, or adaptive prompting techniques could599

help enhance model reliability and efficiency.600
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To determine the correctness of the model’s out-806

put, we first extracted the final answer using regular807

expressions. We then calculated the number of ex-808

act matches (EM) with the golden answer. For809

instances initially judged as incorrect by this auto-810

mated process, we conducted manual verification811

to check for any misjudgments by the matching812

script. Finally, the samples that are exact matches813

and those manually verified as correct are com-814

bined to calculate the final accuracy rate.815

B Attention Scores across Prompt816

Sections on GSM8K817

This section provides supplementary results for818

the attention distribution analysis on the GSM8K819

dataset, complementing the MATH500 results pre-820

sented in the main text. Figure 7 illustrates the821

summed attention scores directed towards the “user”822

section and the “think” section of the prompt for the823

NT, ET, and IT modes when processing questions824

from the GSM8K dataset.825

NT ET IT0.450

0.475

0.500

0.525

0.550

0.575

(a) User section
NT ET IT0.25

0.30

0.35

0.40

(b) Think section

Figure 7: Attention scores across prompt sections for
different thinking modes on GSM8K.
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