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Abstract

We introduce the task of implicit offensive lan-001
guage detection in dialogues, where a state-002
ment may have either an offensive or unoffen-003
sive interpretation, depending on the listener004
and context. We argue that inference is cru-005
cial for understanding this broader set of of-006
fensive utterances, and create a dataset featur-007
ing chains of reasoning to describe how an of-008
fensive interpretation may be reached. Experi-009
ments show that state-of-the-art methods of of-010
fense classification perform poorly on this task,011
achieving less than 0.12 average accuracy. We012
explore the use of pre-trained entailment mod-013
els as part of a multi-hop approach to the prob-014
lem, showing improved accuracy in most sit-015
uations. We discuss the feasibility of our ap-016
proach and the types of external knowledge017
necessary to support it.018

1 Introduction019

With the development and popularity of online fo-020

rums and social media platforms, the world is be-021

coming an increasingly connected place to share022

information, opinions, or points-of-view. How-023

ever, their benefit to society is often marred by024

an unprecedented amount of bullying, hate, and025

other abusive speech1. Such toxic speech has026

detrimental effects on online communities, and027

can cause great personal harm. Work in NLP028

has sought to automate the identification of toxic029

speech, and has achieved high accuracy in specific030

domains, such as identifying sexist (Golbeck et al.,031

2017), racist (Waseem, 2016), or otherwise hate-032

ful text (Ross et al., 2016; Gao and Huang, 2017;033

Davidson et al., 2017).034

While many instances of toxic speech on the web035

are blatant and easily identified with sentence-level036

classifiers, not all offensive text contains obvious037

indicators. Waseem et al. (2017) argues for the038

1Disclaimer: due to the nature of this work, data and ex-
amples may contain content which is offensive to the reader.

classification of offensive text into two categories, 039

(1) explicit abusive text, which is unambiguous 040

in its potential to be offensive and often includes 041

overtly offensive terms, such as slurs, and (2) im- 042

plicit abusive text, which is more ambiguous, and 043

may use sarcasm, innuendo, or other rhetorical 044

devices to hide the intended nature of the state- 045

ment. Previous ML-based approaches to offensive 046

text detection deal almost exclusively with explicit 047

text detection, and achieve high accuracy on many 048

domains. The large pre-trained language models 049

utilized in state-of-the-art offensive text detection 050

systems can exhibit a remarkable ability to infer 051

and reason about the true meaning of text, and so 052

in this work we ask: how effective are these ap- 053

proaches when applied to implicit offensive text 054

detection? Are other methods required to perform 055

this task well? 056

We begin by formalizing the task of implicit 057

offensive text detection. Waseem et al. define 058

implicit abusive text, but they do not discuss the 059

relationship between implicit and explicit offensive 060

text. In this work we argue that each implicitly 061

offensive statement is offensive because it has 062

a corresponding explicitly offensive statement, 063

which is closer to the sentiment the listener feels 064

when interpreting the statement as offensive. 065

Consider the dialogue between two speakers, S1 066

and S2: 067

068

S1: “I love bookclubs, I go every week” 069

S2: “Do they have free food or something?” 070

071

By itself, the statement by S2 is innocuous and 072

could be interpreted as a simple prompt for more 073

information about the bookclub. However, other 074

interpretations of this statement could lead S1 to ar- 075

rive at a number of explicitly offensive statements, 076

such as (1) “You are poor”, (2) “You are fat”, (3) 077

“You are not smart/sophisticated”. Thus we con- 078

sider the chain of reasoning which constitutes the 079
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interpretation to be a crucial part of recognizing im-080

plicitly offensive statements. As an extreme case of081

this, consider statements which are unintentionally082

offensive, or that the same statement may be con-083

sidered either offensive and unoffensive depending084

on who interprets it (and in what context).085

To study this phenomenon we use human anno-086

tators to construct a dataset consisting of (1) an087

implicitly offensive statement, (2) a corresponding088

explicitly offensive statement, and (3) a chain of089

reasoning mapping (1) to (2). We evaluate state-of-090

the-art offensive text detection models on explicit091

offensive text and reaffirm that they are able to092

perform the task with high accuracy, sometimes093

achieving > 90%. However, when used for im-094

plicit detection, their accuracy drops to an average095

of 10%. We then explore the use of reasoning-096

based approaches to the solution, using currently097

available textual entailment models to score each098

reasoning step in the chain. Even when using099

strong independence assumptions (treating each100

step as an independent event, and therefore scoring101

each chain as a product of reasoning step probabili-102

ties), the multi-hop reasoning approach performs103

comparable, and in some cases better than, state-104

of-the-art models. We examine the role that exter-105

nal knowledge plays in the reasoning process, and106

identify future directions for dedicated reasoning107

systems for offensive text detection.108

Our contributions in this work are threefold:109

• We propose the task of implicit offensive text110

detection, and collect a dataset to support re-111

search on this topic (with additional annota-112

tions for reasoning-based approaches).113

• We conduct experiments using existing state-114

of-the-art offense detection models, and show115

they perform poorly when tasked with predict-116

ing implicit offensive text.117

• We examine the use of existing entailment118

models as part of a multi-hop reasoning ap-119

proach to implicit textual offense detection.120

We provide an analysis of where reasoning121

succeeds, where it fails, and what types of122

external resources would be necessary to sup-123

port reasoning-based approaches for offensive124

text detection.125

2 Related Works126

Offense Detection in Text Classification Early127

approaches to offensive language detection rely128

primarily on dictionaries like hatebase 2 to filter of- 129

fensive words and phrases. Early machine learning- 130

based approaches utilized simple features, such 131

as bag-of-word representations, to train models 132

from small datasets (Davidson et al., 2017). With 133

the advent of social media platforms, many re- 134

sources have been developed for identifying toxic 135

comments in web text (Waseem and Hovy, 2016; 136

Davidson et al., 2017), including non-English lan- 137

guages (such as Italian, (Rizwan et al., 2020), Ara- 138

bic (Mubarak et al., 2020; Chowdhury et al., 2020; 139

Husain and Uzuner, 2021), Greek (Pitenis et al., 140

2020)). Supported by larger datasets, a number 141

of deep learning-based methods have been pro- 142

posed (Pitsilis et al., 2018; Zhang et al., 2018b; 143

Casula et al., 2020; Yasaswini et al., 2021; Djandji 144

et al., 2020). Notably, all of these methods can be 145

described as building a contextual representation of 146

a sentence (whether trained end-to-end or on top of 147

existing pre-trained language models), and making 148

a classification based on this representation. 149

Offense Detection in Dialogue Offensive text 150

detection in dialogue is an important problem since 151

dialogue systems trained on toxic content may re- 152

produce it in interactions with human users. This 153

problem has previously been studied in the context 154

of human-in-the-loop system improvements (the 155

“Build it Break it Fix it” paradigm (Dinan et al., 156

2019)), which found that the offensiveness of the 157

statement must be determined within the context 158

of the larger dialogue (similar to the motivation of 159

this work). Other dialogue-specific work on iden- 160

tification of offensive text includes detecting toxic 161

comments (Gehman et al., 2020a), gender bias (Di- 162

nan et al., 2020) and racism (Zhou et al., 2021). 163

Dialogue-based datasets for offensive text detec- 164

tion also exist (Cercas Curry and Rieser, 2018), 165

though to our knowledge, we are the first to pro- 166

vide a dataset test for implicit offensive text detec- 167

tion with reasoning chains. Detoxifying language 168

can also occur during generation (rather than dur- 169

ing training or as a data cleaning step during pre- 170

processing) (Krause et al., 2020; Gehman et al., 171

2020b), and our dataset could be used as an ad- 172

ditional challenge dataset and diagnostic tool for 173

these systems. 174

Reasoning Processes of Offense The Offensive 175

Language Identification Dataset (OLID) is one of 176

the most commonly used datasets for offensive 177

2www.hatebase.org
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Attribute: I eat lots of
pancakes and syrup.

Implicit: Yeah they are recently
considered as reasons for diabetes. Attribute Substitution

Rephrasing

Knowledge Insertion

Rephrasing

Step 1: Yeah pancakes and
syrup are recently considered

as a reasons for diabetes.

Step 2: You eat pancakes and
syrup which can cause diabetes.

Step 3: You eat pancakes and
syrup which can make you fat

and unhealthy.

Step 4: You are fat and unhealthy.

Es0->s1=0.994

Es1->s2=0.962

Es2->s3=0.315

Es3->s4=0.739

Knowledge: Fat people are often
unhealthy and have diabetes.

Es0->sl=0.023

Speaker Listener

Figure 1: An example demonstrating the entailment experiment. Entailment scores between adjacent steps are
given by the text entailment models. Arrows represent the entailment processes. Esi→sj represents the entailment
score from step i to step j, where s0 represents the implicit offense and sl represents the last step (step 4 in this
example) of the chain.

text detection (Zampieri et al., 2019a,b, 2020), and178

consists of a multi-level annotation scheme. Each179

level dictates the target of the offensive text, in180

terms of their identity as a group, individual, or181

entity. Caselli et al. (2020) augmented the OLID182

with labels for capturing the degree of explicitness183

in the offense (defined primarily as the presence184

of an overtly offensive word/slur), but obtaining185

a significant number of truly ambiguous implicit186

offensive statements is difficult enough task that we187

provide our dataset as a dedicated resource for this188

task, therefore guaranteeing the presence of some189

chain of reasoning to a corresponding explicitly190

offensive statement. In this sense, a more similar191

approach comes from normative reasoning in moral192

stories (Emelin et al., 2020), where the focus is to193

predict the “moral norm” with a two-hop style input194

of “moral/immoral action” and “moral/immoral195

consequence”.196

3 Data Collection197

The dataset consists of three parts: (1) a personal at-198

tribute the reader/listener has (thus providing some199

context in which to interpret the potentially offen-200

sive statement), (2) an implicitly offensive state-201

ment implicit and its corresponding explicitly of-202

fensive statement, and (3) chain of reasoning for203

describing the relationship between the two offen-204

sive statements.205

Mechanical Turk was used to collect 2,800 ex-206

amples, of which 1,000 remained after filtering for207

quality.208

3.1 Personal Attribute209

The goal of dataset construction is to create a collec-210

tion of implicitly offensive statements for further211

study, and as we have defined in Section 1, the212

context in which a statement occurs is crucial to un-213

derstanding its interpretation as offensive. As it can214

be difficult to ask annotators to provide statements215

which are ambiguously offensive and relevant to an 216

existing dialogue, we reduce the context to a single 217

feature: a personal attribute of the reader/listener. 218

By introducing attributes, we are able to: 1) limit 219

the domain of generated utterances, 2) establish 220

context for further reasoning. We collect a set of at- 221

tributes from the profile sentences in the PERSON- 222

CHAT corpus (Zhang et al., 2018a), of the form “I 223

like sweets.”, or “I work as a stand up comedian.”. 224

Attributes related to ethnicity, gender, sexuality, 225

and other protected classes are manually removed, 226

leaving 5334 distinct attributes. 350 attributes were 227

chosen for use in the dataset, in order to have mul- 228

tiple annotations for each attribute. 229

3.2 Implicit & Explicit Text Pairs 230

For each given attribute, we collect two different 231

types of offensive statements, the implicitly offen- 232

sive statement and the corresponding explicitly of- 233

fensive statement, as defined below: 234

Implicit offensive statement Utterances that do 235

not express an overt intention to cause offense and 236

often require complicated reasoning or external 237

knowledge to be fully recognized as offensive con- 238

tents. 239

Explicit offensive statement Utterances which 240

contain an obvious and direct intention to cause 241

offense without external knowledge or reasoning 242

processes. 243

We ask each annotator to provide an implicitly 244

offensive statement (which would be offensive to 245

a reader who has the given attribute), after which 246

they are asked to rewrite the utterance as an explic- 247

itly offensive statement so that the both statements 248

share the same meaning in terms of being offensive. 249

3.3 Chain of Reasoning 250

A distinguishing characteristic of our work is the 251

use of chains of reasoning to explain the interpreta- 252

tion process for implicitly offensive text. We repre- 253

3



Knowledge

Only the best can win contests.
Classic things are usually old.
Grown-ups don’t play with dolls.
Parents want children to be independent.
Overworking makes people exhausted.

Table 1: Samples of the knowledge used to construct
chains of reasoning.

sent the chain of reasoning as a series of sentence-254

to-sentence rewrites. One practical advantage of255

choosing a sentence-based representation for the256

reasoning steps is that it allows the use of powerful257

text-to-text (T5) (Raffel et al., 2019) and entailment258

models (Liu et al., 2019; He et al., 2021), which259

is not immediately compatible with structured rep-260

resentations like predicate-argument tuples. Each261

chain begins with an implicitly offensive statement262

(0-th step, denoted as s0) and ends with an explicit263

offense (sl), making the length of the chain the264

number of steps between s0 and sl, inclusive.265

3.4 Annotation Guidelines266

The high annotation rejection rate (64.3%) con-267

veys the difficulty of this particular annotation task.268

We utilize common tactics for improving annota-269

tion quality, including performing annotations in270

batches, and removing poor annotators from future271

data iterations. We employ a number of additional272

annotation guidelines to help normalize the col-273

lected annotations, applied in a second stage by a274

different set of annotators, after the first round had275

commenced.276

Attribute Substitution Rule (ASR). This rule al-277

lows annotators to substitute part of the implicit278

offense with the given attribute. ASR is often used279

to create the 1-st step (denoted as s1) of the chain280

which asserts that the chain of reasoning can be281

consistent with the context given in the attribute.282

For instance, regarding the attribute “I am color-283

blind.” and the implicit offense “Oh, that would284

explain your wardrobe!”, the s1 in the chain can be285

created with the ASR as “Oh, your color blindness286

would explain your wardrobe!”287

Knowledge Insertion Rule (KIR). This rule al-288

lows annotators to insert commonsense knowledge289

to support the reasoning. Table 1 shows some sam-290

ples of the external commonsense knowledge used291

by KIR. For instance, the knowledge of “Poor peo-292

ple can’t afford to rent a house.” is used to support293

the reasoning step from “You are a grown-up who 294

can’t afford to rent a house.” to “You are poor.” 295

Rephrasing Rule (RR). This rule allows annota- 296

tors to rephrase or replace part of the reasoning 297

steps with more explicit expressions. For instance, 298

by rephrasing “Do you like meat too much, or just 299

food in general?” to “You must love food too much 300

in general.”. This substitution often used to create 301

the last steps of the chain to make sure the end 302

of the chain is exactly the explicit offense, e.g., 303

changing “You must be eating too much.” to “You 304

are fat.”, where the latter utterance is the explicit 305

offense. 306

3.5 Post-processing 307

In order to ensure the quality of the data, we also 308

personally modified the data to fix common simple 309

mistakes, including: (1) swapping the position of 310

the implicit and explicit offense stemming from 311

annotators misunderstanding the instructions, (2) 312

grammar checking to correct typos, and (3) reorder- 313

ing, when the chain reflected sound reasoning but 314

appeared to be out of order (not obeying an increas- 315

ing order in the explicitness of the offense). We 316

release both versions of the dataset, before and after 317

post-processing3. 318

4 Experiments 319

We perform two experiments to evaluate the diffi- 320

culty and characteristics of the implicit offensive 321

text detection task. 322

4.1 Sentence Classification 323

We begin by evaluating existing state-of-the-art 324

offensive text detection models on both the im- 325

plicit and explicit offensive text detection task. We 326

use BERT (Devlin et al., 2019), RoBERTa (Liu 327

et al., 2019), and ALBERT (Lan et al., 2020), three 328

large-pretrained language models fine-tuned on of- 329

fensive text detection datasets. The data includes 330

(1) the OLID/OffensEval2019 dataset (Zampieri 331

et al., 2019a), discussed in Section 2, which con- 332

tains 14,200 labeled tweets and includes implicit 333

offensive statements, (2) the TWEETEVALL (Bar- 334

bieri et al., 2020) multi-task offensive Twitter set 335

for detecting irony, hate speech and offensive lan- 336

guage, and (3) the Google Jigsaw Toxic Comments 337

dataset 4 which contains 159,571 samples in the 338

3http://www.available-upon-acceptance
4Google Jigsaw Toxic Comments
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Figure 2: Performance of the models on each step of the chains of reasoning with different lengths.

Accuracy
Models Implicit Explicit

RoBERTa-Twitter 1.7 79.0
BERT-OffensEval 15.9 93.2

ALBERT-OffensEval 9.7 88.6
BERT-toxicity 14.8 96.6

ALBERT-toxicity 11.4 91.5

Table 2: Performance of SOTA offensive language de-
tection models on the classification task.

training set. We refer to these datasets as OffensE-339

val, Twitter, and toxicity, in the subsequent experi-340

ments.341

Table 2 shows the results of the baseline models342

on correctly classifying the implicit and explicitly343

offensive text as offensive/non-offensive (systems344

are denoted as a hyphenated combination of pre-345

trained model and dataset). In every situation, the346

performance on the implicit task is significantly347

lower. The overall trend is perhaps unsurprising,348

as implicit examples lack clear indicators of offen-349

siveness, such as highly offensive words. However,350

the degree to which these models underperform351

in the implicit task illustrates the extent to which352

these tasks differ, and highlights the risk of deploy-353

ing such models to perform this task in real-world354

situations.355

Classification Performance Across the Chain356

An underlying assumption of this work and the357

motivation for reasoning chains is the expectation358

that as the reasoning process is applied, the interpre-359

tation of the implicitly offensive utterance becomes360

increasingly (explicitly) offensive. We evaluate the361

extent to which this holds true in the dataset, using 362

the baseline systems to predict the offensiveness of 363

each rewrite across the reasoning chain. Figure 2 364

shows that this is indeed the case, that moving 365

down the reasoning chain correlates with higher 366

accuracy, and implying that each step gradually re- 367

veals more of the offensive connotations in implicit 368

offense. It also verifies that the collected/annotated 369

chains have the property of being orderly. 370

4.2 Reasoning by Entailment 371

Having shown that existing state-of-the-art ap- 372

proaches are insufficient for identifying implicitly 373

offensive text, we now explore the use of multi-hop 374

reasoning. Our dataset contains costly human an- 375

notations that may be impractical to have access to 376

in a real deployment situation, and may be outside 377

the ability of current models, but assessing the fea- 378

sibility of the multi-hop approach would motivate 379

further developments into automated methods of 380

producing these annotations. 381

We utilize existing state-of-the-art textual entail- 382

ment models to score the transition (as being an “en- 383

tailment” relation) from each step in the chain si to 384

the next, si+1. We use Esi→sj to denote the score 385

of the entailment model. For this task, we used 386

DeBERTa-base (He et al., 2021) and RoBERTa- 387

large (Liu et al., 2019), fine-tuned on the MNLI 388

corpus (Nangia et al., 2017). 389

Entailment with a Reasoning Oracle In our ini- 390

tial experiment we assess the potential for solving 391

implicit offensive text detection with a multi-hop 392

reasoning approach assuming we access to a per- 393

fect reasoning model. Thus the task reduces to 394

whether we can predict the first transition from the 395
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Entailment Scores
3-steps 4-steps 5-steps 6-steps

Steps RoBERTa DeBERTa RoBERTa DeBERTa RoBERTa DeBERTa RoBERTa DeBERTa

s0 → s1 64.7 68.4 84.4 78.2 89.9 86.5 90.0 90.7
s1 → s2 37.1 29.7 58.0 46.1 46.9 41.2 57.4 45.0
s2 → s3 73.6 64.4 55.1 50.5 42.5 35.5 50.2 44.3
s3 → s4 58.2 51.0 61.6 55.6 40.6 37.5
s4 → s5 60.9 50.0 65.9 63.3
s5 → s6 67.5 57.8

MUL 14.3 12.1 13.1 7.7 4.6 1.8 5.4 3.3
Es0→sl 17.2 8.3 9.1 5.9 4.4 2.4 5.6 3.6

MUL (k+) 38.1 30.2 32.0 20.3 17.9 7.6 16.5 4.0
Es0→sl (k+) 35.9 25.3 15.9 11.9 10.8 7.5 8.6 6.6

Table 3: Entailment scores between various steps of the reasoning chain, and the scores of a product model pro-
cessing each step sequentially (MUL). Column headers indicate subsets of the data, where all chains are of 3, 4, 5,
or 6 steps respectively. k+: scores indicate those where external knowledge is concatenated to all statements prior
to a KIR step.

Entailment Scores
Steps RoBERTa DeBERTa

s0 → s1 86.1 83.1
s0 → sl 6.7 3.9

Table 4: The entailment scores from first step to second
step versus first step to last step in the chain. The higher
the scores are, the better the previous steps can entail
the next steps.

implicit statement to the next step in the chain. This396

is akin to moving from an observed statement to a397

hypothetical knowledge base, upon which reason-398

ing can occur to produce the explicitly offensive399

analog, which can be classified with high accuracy.400

As shown in Table 4, the initial transition,401

Es0→s1 , can be predicted with much higher score402

than the direct prediction, Es1→sl . This result403

shows that even if the model is aware of the cor-404

responding explicitly offensive rewrite, it has dif-405

ficulty directly understanding the relationship be-406

tween them. But it also shows that if a knowledge-407

base followed the general structure of the reasoning408

chains, grounding the implicit statement in such a409

knowledgebase can be done with higher accuracy410

than the direct prediction. If reasoning can be per-411

formed with high accuracy, improvements in the412

overall text classification scores will follow.413

Entailment as Multi-Hop Reasoning The pre-414

ceding experiment illustrated the potential for im-415

plicit text understanding when reasoning is highly 416

accurate, but to what extent can we perform rea- 417

soning on this task with today’s models? A naive 418

approach is to treat each transition in the reasoning 419

chain c as an independent event, and model the 420

probability of a reasoning chain as a product of 421

transition scores: 422

E(c) =
l−1∏
i=0

Esi→si+1

In Table 3, we compare the scores of the chain 423

when treated as a product model (MUL) with the 424

entailment model. We observe that even under 425

naive modeling assumptions (that each transition 426

is independent), the product model outperforms di- 427

rectly predicting entailment between the implicit 428

and explicit statements in across almost all scenar- 429

ios. When tested on the 6-step reasoning chain 430

data, performance suffers as a result of an increas- 431

ing number of < 1.0 multiplications, and negating 432

the margins between the two systems. 433

Upon further investigation, we found that perfor- 434

mance decreases most at points in the reasoning 435

chain where knowledge is required (preceding a 436

KIR step). Table 5, 6 shows the performance of 437

the models on the sk−1 and sk+1, before and after 438

knowledge integration. This is reasonable as KIR 439

steps introduce external knowledge which may not 440

have been induced by the model, even when pre- 441

trained on large amounts of text. We perform an 442

additional set of experiments (denoted k+) where 443
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Accuracy
Models sk−1 sk+1

RoBERTa-Twitter 9.1 46.9
BERT-OffensEval 17.7 61.1

ALBERT-OffensEval 24.2 69.7
BERT-toxicity 11.8 57.7

ALBERT-toxicity 17.2 60.0

Table 5: Performance of models on steps before KIR
(sk−1) and steps after KIR (sk+1).

the external knowledge acquired in data annotation444

is added to each statement as a conjunction, until445

after a KIR step occurs. For instance, if the knowl-446

edge in sk is “Eating too much can make people447

fat.”, this knowledge will then be connected to all448

steps in {si|i = 0, 1, ..., k − 1} to form “<si> and449

eating too much can make people fat.” This has450

the effect of increasing scores for both models, but451

notably resulting in a significant advantage to the452

RoBERTa product model, which now outperforms453

direct prediction in all scenarios. The resulting sys-454

tem is more robust to long reasoning chains. We455

even observe that the performance margins over456

direct prediction in the 6-step chains exceeds that457

of 3-step setting.458

5 Discussion459

We introduced this work based on a hypothesis460

of multi-hop approach as having a conceptual ad-461

vantage over existing approaches to offensive text462

detection, in that humans must each be perform-463

ing some reasoning process in order to find state-464

ments either offensive or unoffensive in different465

situations. We then showed that this conceptual466

advantage could translate to an empirical one, and467

showed performance gains over current approaches.468

However, we do so under strong assumptions and469

with access to additional information. How realis-470

tic is our experimental setup?471

One concern with the presented experiments is472

that the data is one-sided: all examples in the data473

are offensive. In theory, a naive classifier which474

is biased towards predicting offense where there is475

none will perform higher on this dataset than others,476

even if it does so in nonsensical ways. We argue477

that we trained these models on balanced data, and478

they are the current state-of-the-art in the literature,479

and are not prone to solving the task in a trivial480

manner. The consistently low scores compared481

Entailment Scores
Length Models sk−1 → sk sk → sk+1

4-steps RoBERTa 28.2 66.4
DeBERTa 19.8 58.3

5-steps RoBERTa 23.0 78.2
DeBERTa 15.7 66.5

6-steps RoBERTa 19.1 79.5
DeBERTa 17.5 71.5

7-steps RoBERTa 14.1 85.8
DeBERTa 8.1 84.5

Table 6: Entailment scores between the KIR step (sk)
and step before KIR (sk−1) and step after KIR (sk+1).
The chains with length of three are not included in this
evaluation as they do not frequently contain a KIR step.

to explicit offensive text detection tasks indicates 482

that, regardless of whether or not these models 483

are biased to making positive predictions, the false 484

negative rate is extremely high in all scenarios, and 485

the problem requires new task-specific models. 486

5.1 What Knowledge is Necessary? 487

Second, it is worth considering how difficult it 488

would be to replace the provided annotations with 489

comparable information which can be used in novel 490

situations. In our experiments we showed that if 491

reasoning worked flawlessly, implicit text detec- 492

tion could be performed with high accuracy (Sec- 493

tion 4.2). In a separate experiment, we identified 494

the biggest obstacle to accurate reasoning to be the 495

integration of existing knowledge. What type of 496

knowledge is necessary? 497

In Table 1 we provide examples of knowledge 498

used when constructing reasoning chains. We also 499

examined the entire set of knowledge to study 500

what types of information is important to reason- 501

ing. Largely the information falls in 3 categories: 502

(1) dictionary-based knowledge, (2) commonsense, 503

and (3) folk knowledge. Statements of knowledge 504

like “classic things are old.” account for many 505

instances of knowledge, and their existence in the 506

dataset is explained primarily as a way to bridge the 507

gap between the specific words used in earlier steps 508

of reasoning, and those used in later steps of reason- 509

ing. If each annotator was consistent in terminol- 510

ogy throughout the reasoning chain, it is possible 511

that this type of knowledge would not be necessary, 512

but we otherwise hypothesize that a dictionary or 513

thesaurus would suffice in many circumstances. A 514

second form of knowledge, commonsense knowl- 515
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edge, is exemplified in statements like, “salad is516

healthy.” or “pork comes from pig.”. For these517

basic object properties, existing knowledgebases518

(such as ConceptNet (Speer et al., 2017)) may be519

sufficient. Identifying which types of knowledge to520

include is an open research question. Existing work521

on defeasible reasoning (Sap et al., 2019; Zhang522

et al., 2020) aims to solve a similar problem, and523

has shown improvements incorporating external524

knowledge to support entailment-based reasoning525

using models similar to those used in this work.526

A third and unusual type of knowledge might be527

characterized as “folk knowledge”, and includes528

knowledge that people use during reasoning, but529

which may be merely a personal opinion, an over-530

generalization, factually inaccurate, or drawn from531

anecdotal evidence. Examples of this in the dataset532

are “smart people don’t make mistakes.”or “people533

who eat too much meat are out of shape.”. This is534

an interesting and rather unique problem since, in535

contrast to commonsense knowledge, many would536

not technically be true statements, but are other-537

wise important in understanding a particular inter-538

pretation. As such, these statements are unlikely to539

be found in a curated knowledgebase. We conjec-540

ture that one possibility for acquiring relevant folk541

knowledge may be from large pre-trained language542

models. While a current trend in NLP research543

is to remove the biases that language models in-544

duce from their training data (Bender et al., 2021),545

in this case it is precisely those biases which we546

would like to extract and formalize as statements547

of knowledge. However, we leave this (or other ap-548

proaches for collecting folk knowledge) for future549

work.550

6 Ethical Considerations551

In this work we aim to develop models which can552

more accurately predict the emotions elicited from553

text statements, and although our goal is to identify554

potentially harmful statements in order to avoid555

them, it is important to consider potential negative556

use-cases for such work. A system which can iden-557

tify offensive statements can also select for them,558

and it may be possible to use such a system to tar-559

get users, attacking them on topics or attributes560

which they are most sensitive about. To the extent561

that we are able, we must be cautious not to aid in562

the development of such systems in the process of563

furthering research for more empathetic dialogue564

systems.565

We tailor our study in two ways in an effort to 566

reduce the risk of harm. First, we focus primar- 567

ily on identifying implicitly offensive statements. 568

While a system which produces implicitly offen- 569

sive statements may still be used to attack users, 570

they are significantly more challenging to generate 571

when compared to explicitly offensive statements, 572

which do not require any additional inferences or 573

world knowledge. We hypothesize that this makes 574

implicitly offensive statements unlikely to be uti- 575

lized in offensive systems. Second, our dataset size 576

is chosen with the goal of being large enough to 577

support evaluation, but not training. It can there- 578

fore function as a useful diagnostic of offensive 579

text detection systems, with limited risk of being 580

used to create one. 581

7 Conclusion 582

In this work we aim to broaden the scope of offen- 583

sive text detection research, to include the nuanced 584

utterances . Improvements in these models have 585

applications ranging from distant futures where hu- 586

mans frequently interact with dialogue systems in 587

situated ways which require such pragmatic reason- 588

ing to avoid unintended offense, to today’s online 589

forums, where often a cat-and-mouse game of in- 590

creasingly more creative offensive text creation and 591

moderation occurs. 592

In addition to providing a dataset of implicitly of- 593

fensive text, which can itself be used purely as a di- 594

agnostic of systems’ ability to identify more subtle 595

instances of offensive text, we also provide chain of 596

reasoning annotations which we hope can provide 597

insight to how statements lead to offensive interpre- 598

tations in certain situations. Our experiments pro- 599

vide a proof of concept of how multi-hop reasoning 600

models have the potential to outperform directly 601

classifying offensive text using current state-of-the- 602

art approaches, and identify areas for improvement 603

via future research in commonsense knowledge 604

base construction and inference. 605
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Attribute I eat lots of pancakes and syrup.
Implicit Offense That can indeed give you extra energy.
Explicit Offense You are fat.

Chain of Reasoning Pancakes and syrup can indeed give you extra energy. (ASR)
You got extra energy from eating. (RR)
You eat too much. (RR)
You eat too much which makes you fat. (KIR)
You are fat. (RR)

Attribute I am a guitar player.
Implicit Offense Oh did you learn that by yourself?
Explicit Offense Your guitar skills are awful.

Chain of Reasoning Did you learn guitar by yourself? (ASR)
You must have learned guitar by yourself. (RR)
You must have learned guitar by yourself because you don’t look so professional. (KIR)
You are not professional at guitar. (RR)
Your guitar skills are awful. (RR)

Attribute I wear contacts.
Implicit Offense Another reason why I’m scared to get old.
Explicit Offense You are so old.

Chain of Reasoning Wearing contacts is another reason why I’m scared to get old. (ASR)
I’m scared to get old because I don’t want to wear contacts like you. (RR)
I’m scared to get old because old people wear contacts like you. (KIR)
Old people like you wear contacts like you. (RR)
You are so old. (RR)

Attribute I come from a small town.
Implicit Offense Are you coming here for higher education?
Explicit Offense You are uneducated, then.

Chain of Reasoning Are you coming to this big city for higher education? (ASR)
You come to this big city for higher education. (RR)
You come to this big city for education because you couldn’t get enough education in the small town. (KIR)
You couldn’t get enough education in the small town. (RR)
You are uneducated. (RR)

Table 7: Some chain of reasoning samples.

sk−1 You eat too much.
sk You eat too much which makes you fat.

Knowledge Eating too much can make people fat.
sk−1 I’ve never seen you on TV as a comedian.
sk I’ve never seen you on TV as a comedian because you’re not famous.

Knowledge Famous comedians are always on TV.
sk−1 You should lose weight.
sk You should lose weight because you are fat.

Knowledge Fat people should lose weight.
sk−1 You quit school.
sk You quit school which makes you uneducated.

Knowledge People who quit school are uneducated.

Table 8: Some external knowledge samples.
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