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ABSTRACT

Understanding the mechanism of generative adversarial networks (GANs) helps
us better use GANs for downstream applications. Existing efforts mainly target
interpreting unconditional models, leaving it less explored how a conditional GAN
learns to render images regarding various categories. This work fills in this
gap by investigating how a class conditional generator unifies the synthesis of
multiple classes. For this purpose, we dive into the widely used class-conditional
batch normalization (CCBN), and observe that each feature channel is activated
at varying degrees given different categorical embeddings. To describe such a
phenomenon, we propose channel awareness, which quantitatively characterizes
how a single channel contributes to the final synthesis. Extensive evaluations
and analyses on the BigGAN model pre-trained on ImageNet reveal that only
a subset of channels is primarily responsible for the generation of a particular
category, similar categories (e.g., cat and dog) usually get related to some same
channels, and some channels turn out to share information across all classes. For
good measure, our algorithm enables several novel applications with conditional
GANs. Concretely, we achieve (1) versatile image editing via simply altering a
single channel and manage to (2) harmoniously hybridize two different classes.
We further verify that the proposed channel awareness shows promising potential
in (3) segmenting the synthesized image and (4) evaluating the category-wise
synthesis performance. Code will be made publicly available.

1 INTRODUCTION

The past few years have witnessed the rapid advancement of generative adversarial networks
(GANs) in image synthesis (Karras et al., 2021; Brock et al., 2019). Despite the wide range
of applications powered by GANs, like image-to-image translation (Isola et al., 2017), super-
resolution (Chan et al., 2021; Menon et al., 2020), and image editing (Ling et al., 2021), it typically
requires learning a separate model for a new task, which can be time and resources consuming. Some
recent studies have confirmed that a well-trained GAN model naturally supports various downstream
applications, benefiting from the rich knowledge learned in the training process (Bau et al., 2019;
Shen et al., 2020). Therefore, to make sufficient use of a GAN, it becomes crucial to explore and
further exploit its internal knowledge.

Many attempts have been made to understand the generation mechanism of GANs. It is revealed
that, to produce a fair synthesis, the generator is required to render multi-level semantics, such as
the overall attributes (e.g., the gender of a face image) (Shen et al., 2020), the objects inside (e.g.,
the bed in a bedroom image) (Bau et al., 2019; Yang et al., 2020), the part-whole organization (e.g.,
the segmentation of the synthesis) (Zhang et al., 2021), etc. However, existing efforts mainly focus
on interpreting unconditional GANs, leaving conditional generation as a black box.

Compared with unconditional models, a class conditional model is more informative and efficient
in that it unifies the synthesis of multiple categories, like animals, vehicles, and scenes (Brock et al.,
2019). Figuring out how it manages the class information owns much great potential yet rarely
explored. To fill in this gap, we take a close look at the popular class-conditional batch normalization
(CCBN) (Brock et al., 2019), which is one of the core modules distinguishing conditional generators
from unconditional ones. Concretely, CCBN learns category-specific parameters to scale and shift
the input features, such that the output features developed with different class embeddings can be
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Figure 1: Novel applications enabled by interpreting class conditional GANs. Given
a conditional generator in (a), we propose channel awareness to quantify the contribution of
each feature channel to the output image, as shown in (b), which reveals how the categorical
information is handled by different channels. Red, green, and blue channels are primarily
responsible for the synthesis of a particular category, while yellow ones are shared by all classes.
(c) Such an interpretation facilitates a range of applications, including single-channel image
editing, category hybridization, fine-grained semantic segmentation, and category-wise synthesis
performance evaluation. (Zoom in for better view.)

easily told apart from each other, eventually resulting in the synthesis of various categories. We
notice from such a process that, under the perspective of the ReLU activation (Nair & Hinton, 2010)
following CCBN, different feature channels present varying behaviors given different embeddings.

To quantify the aforementioned channel effect, we propose channel awareness that characterizes
how a single channel contributes to the final synthesis. Through in-depth analyses on the
BigGAN (Brock et al., 2019) model pre-trained on ImageNet (Deng et al., 2009), we have the
following key findings, which are also illustrated in Fig. 1b. First, only a portion of channels are
active in rendering images for a particular class while the remaining channels barely affect the
generation. Second, more similar categories tend to share more relevant channels. For instance,
channels regarding dog synthesis intersect with those of cats but disjoint from those of buses. Third,
some channels highly response to the latent code instead of the class embedding and hence appear
to deliver knowledge to all classes.

Beyond model interpretation, our proposed channel awareness facilitates a range of novel applica-
tions with class conditional GANs, as shown in Fig. 1c. First, after identifying the relevant channels
through awareness ranking, we realize versatile image editing by simply altering a single feature
channel (Sec. 5.1). Second, through mixing the channels that are related to two classes respectively,
we achieve harmonious category hybridization (Sec. 5.2). Third, we verify that intermediate feature
maps from the generator, after weighted by our channel awareness, can be convincingly used for
fine-grained semantic segmentation (Sec. 5.3). Fourth, we empirically demonstrate the potential of
our channel awareness in evaluating the category-wise synthesis performance (Sec. 5.4).

2 RELATED WORK

Among various types of generative models, such as variational auto-encoder (VAEs) (Kingma
& Welling, 2013; Razavi et al., 2019), flow-based model (Kingma & Dhariwal, 2018), diffusion
model (Ho et al., 2020; Dhariwal & Nichol, 2021), etc., GAN (Goodfellow et al., 2014) has received
wide attention due to its impressive performance on both unconditional synthesis (Karras et al.,
2019; 2020; 2021) and conditional synthesis (Zhang et al., 2019; Brock et al., 2019; Sauer et al.,
2022). Early studies on interpreting GANs (Bau et al., 2019; Shen et al., 2020) suggest that, a
well-learned GAN generator has encoded rich knowledge that can be promising applied to various
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downstream tasks, including attribute editing (Zhu et al., 2022; Yang et al., 2020; Ling et al., 2021),
image processing (Pan et al., 2020; Zhu et al., 2020), super-resolution (Menon et al., 2020; Chan
et al., 2021), image classification (Xu et al., 2021), semantic segmentation (Zhang et al., 2021; Xu
& Zheng, 2021), and visual alignment (Peebles et al., 2022). Existing interpretation approaches
usually focus on the relationship between the latent space and the image space (Shen et al., 2020;
Zhu et al., 2021; Yang et al., 2020; Wu et al., 2021), hence commonly evaluated on unconditional
models. Some attempts are made to also analyze class conditional models (Jahanian et al., 2020;
Voynov & Babenko, 2020; Härkönen et al., 2020; Shen & Zhou, 2021), but they still target the
latent space, leaving it unclear how the generator leverages the categorical information. This work
clearly differs from prior arts from the following aspects. (1) We inspect the conditional generator
from the channel perspective, which aggregates the messages from both the latent code and the
class embedding. To our knowledge, this is the first attempt on understanding the function of
embedding space in conditional generation. (2) We demonstrate the editability of altering a single
channel of the conditional generator. Different from the single-channel editing in unconditional
GANs (Wu et al., 2021), our approach identifies different relevant channels with respect to different
categories in an unsupervised manner. (3) We achieve fine-grained semantic segmentation by
paying more attention to some “important” channels. Unlike the existing efforts on single-object
generation (Zhang et al., 2021; Xu & Zheng, 2021), our method does not require data-driven
learning and can be robustly generalized to all classes. (4) We also enable some applications that are
peculiar to conditional models, including the category hybridization and the category-wise synthesis
performance evaluation.

3 METHODOLOGY

In this section, we introduce the proposed channel awareness. Specifically, we re-examine the class-
conditional batch normalization (CCBN), which is widely used in class conditional generation,
and investigate how it helps the generator with the categorical information provided by the class
embedding. It is noteworthy that our approach is fully unsupervised, without relying on any
segmentation masks or annotations.

3.1 PRELIMINARIES

Unlike unconditional GANs, where the generator takes the latent code z, as the only input, a
class conditional generator employs an additional embedding vector, e, to provide the categorical
information. Accordingly, the generation process can be formulated as I = G(z, e), where I and
G(·, ·) are the output image and the generator, respectively. That way, given a different embedding,
the generator is able to produce images for that specific category.

There are many ways of integrating e into G(·, ·), where the most popular one is to adopt the class-
conditional batch normalization (CCBN) (Brock et al., 2019). In particular, CCBN learns class-
specific parameters to scale and shift the input feature maps as

y = γ(concat(z, e))⊙ x− µ(x)

σ(x)
+ β(concat(z, e)), (1)

where x and y, both with shape C × H × W , denote the input and output features. µ(·) and
σ(·) compute the mean and variance of a tensor along the spatial dimensions (i.e., H and W ).
concat(·, ·) stands for the concatenation operation. γ(·) and β(·) outputs the C-dimensional
scale and bias by learning from both z and e. ⊙ represents the element-wise multiplication with
broadcasting.

3.2 CHANNEL AWARENESS

Channel Probe. From Eq. (1), we can tell that both the latent code and the class embedding act on
the generation through CCBN. In other words, their messages are delivered to the feature channels
through the learning of γ(·) and β(·). Now, we take a look at how each single channel contributes
to the synthesis. For a particular channel with index c, Eq. (1) can be simplified as

yc = γc
ex

c + βc
e, (2)
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Figure 2: Concept diagram of channel probe, from whose statistics we develop the channel
awareness. For a particular feature channel, it is first transformed by class-conditional batch
normalization (CCBN) with category-specific scale γc

e , and bias βc
e , then activated by ReLU to

filter out negative neurons. Such a process is reformulated as a combined operation (as shown at the
bottom), where we define the channel probe as t = −βc

e

γc
e

. This value reflects the integrated action of
CCBN and ReLU.

where xc and yc, both with shape 1×H ×W , denote the normalized input (i.e., subtracting mean
and dividing by standard deviation) and the output. γc

e and βc
e are scalars for the c-th channel. Here,

e stands for the embedding index, carrying the categorical information, and the effect of z is omitted
for simplicity.

CCBN is usually followed by ReLU (Brock et al., 2019). Such an activation controls the information
flow in that negative values in yc are cut off to zero. According to Eq. (2), it is equivalent to cutting
off the values in xc that are smaller than

tce = −βc
e

γc
e

. (3)

In this way, we manage to directly relate the output feature channel to its corresponding input
channel, as shown in Fig. 2. The value tce acts like a channel probe since it measures the channel-wise
activation of a particular synthesis. Generally, for a certain channel, it presents different behaviours
(i.e., with different tce values) for different samples and different categories.

Category-oriented Channel Awareness. As discussed above, given a well-trained generator with
CCBN, tce is strictly determined by the latent code, z, and the class embedding, e. Recall that the
channel probe tce is instance-aware, which fluctuates along with the synthesis varying. To get a more
reliable understanding of the function of a single feature channel, we derive channel awareness from
the statistics of tce. Oriented to the class embedding, e, we would like to eliminate the impacts caused
by the randomness of z. To this end, we first sample a number of latent codes with the embedding
fixed, then calculate the tce value for each synthesis and perform averaging. The resulting averaged
score can be used to evaluate how a feature channel is responsible for the synthesis of a particular
category. Recall that a lower tce suggests that more information will be preserved along this channel.
Therefore, channels with lower mean values are more likely to be used for generating the target
class. We define category-oriented channel awareness as −Ez[tce].
Latent-oriented Channel Awareness. We further study the contribution of the latent code, z, to
each channel. Similarly, we sample a collection of latent codes with a fixed embedding and calculate
tce. Differently, this time we are interested in the variance instead of the mean, which gives us the
latent-oriented channel awareness. A larger variance indicates that the randomness has a stronger
influence on the synthesis regarding this channel. Hence, the latent-oriented channel awareness,
Var(tce), reflects how sensitively a channel reacts to the latent code with the given embedding.

4 EVALUATION AND ANALYSIS

4.1 CATEGORY-ORIENTED CHANNEL AWARENESS

Qualitative Evaluation. We measure the causal channel effect on image generation via masking
the target channels to zero during the forward process (Bau et al., 2019). Then we compare the
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Figure 3: Qualitative results of masking channels with the lowest (the 1st column) and the highest
(the 3rd column) category-oriented channel awareness (CCA) as well as masking randomly selected
channels (the 2ndcolumn, as baseline). Masking channels with the highest CCA results in the most
noticeable class-relevant features lost, while masking channels with the lowest CCA causes only
mild changes in the outputs. Results of more classes are shown in Appendix D.

generation results between masking channels with the highest and lowest channel awareness, and
masking random channels, which is served as a baseline experiment. The qualitative results are
shown in Fig. 3 which demonstrate that channels are not equally contributing to the generation of a
particular class: Only partial channels (with the highest class awareness) primarily contribute to it,
and some channels barely affect its generation (with the lowest class awareness).

English Foxhound Bull Mastiff

Aircraft Carrier Police Van

Correlation: 0.904 Correlation: 0.922

Correlation: 0.922 Correlation: 0.912

Figure 4: Quantitative results of the
correlation between category-oriented
channel awareness (blue line) and cat-
egorical score change (red line) of
four classes. Top: The correlation
between the two curves; Bottom: the
corresponding class name. (The chan-
nel indices are sorted by the aware-
ness scores for better display).

Quantitative Evaluation. We further quantitatively verify
the category-oriented channel awareness regarding every
single channel in all 1,000 classes. We utilize a pre-
trained classifier as an channel effect evaluator by assessing
generated class images with and without a certain channel.
Specifically, we measure the classification score drop after
masking the target channel, which we refer to as categorical
score change. We then estimate the correlation coefficient
between the categorical score change and the proposed
category-oriented channel awareness. We show four classes
with the highest correlation in Fig. 4. For all 1,000 classes,
the averaged correlation is 0.503 for BigGAN and 0.603
for BigGAN-Deep respectively. Details of evaluation on
BigGAN-deep can be found in Appendix B. Note that a
high correlation indicates the effectiveness of our method.

Implementation details. We exploit the representative
BigGAN (Brock et al., 2019) and BigGAN-deep condition-
ally trained on the large-scale ImageNet (Deng et al., 2009)
as the target models, which can generate realistic images
of 1,000 various categories at 256 × 256 resolution. We
use the Inception-v3 (Szegedy et al., 2016) model trained
on ImageNet as the evaluation classifier, which is a widely used model for assessing generated
images (Heusel et al., 2017). Then we calculate each channel’s categorical score change before and
after masking and take the average among 1,000 generated samples. The sampling process is without
truncation for a fair estimation. To reduce data noise, we smooth the raw data of the categorical score
change (see those pink dots in Fig. 4) via the Savitzky-Golay filter (Luo et al., 2005) with a window
length 51. The smoothed curves are shown in red line in Fig. 4. The channel awareness (including
both category-oriented and latent-oriented) is computed by sampling 10,000 samples per class, and
then taking the average (for category) and variance (for latent) among samples of the per-channel
channel probe scores. Please note that, the awareness scores are fixed after computation on a target
generator, and can be directly used for the following analysis and applications.

Channel overlap estimation. After discovering high class-related channels, we wonder how
distinct those channels are regarding different classes? Therefore, we estimate the channel overlap
of two classes as |Si∩Sj |

k , where Si and Sj represent the set of channel indices with top k highest
awareness of class i and j, and k is the number of selected channels. Results of channel overlaps
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Figure 5: Cross-class analysis on category-oriented channel awareness. (a) Ratio of overlapped
channels between 9 different classes. e select the top 100 channels with the highest category-oriented
channel awareness for each class. A high ratio indicates more shared channels between the two
classes. (b) Single-channel manipulation results on different classes. The semantics discovered
from the source class (1st and 2nd columns) are applied to other target classes (3rd - 7th columns).
(Zoom in for better view.)

Table 1: Cross-class analysis on latent-oriented channel awareness. Results of the number of
shared channels among 1,000 classes in different layers (layer 0 - layer 11) in three types of channel
selection criterion. For each class, we select only 10 channels (k=10) and perform intersection
among all classes. The category-oriented channel awareness is served as baseline. Channel
overlapping results of more ks, as well as an extreme case of k=1 can be found in Appendix C.

Selection Criterion L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
highest awareness w.r.t. category 0 0 0 0 0 0 0 0 0 0 0 0
lowest awareness w.r.t. category 0 0 0 0 0 0 0 0 0 0 0 0
highest awareness w.r.t. latent 3 3 3 1 3 3 0 4 2 1 5 4

of 81 class pairs and k = 100 are shown in Fig. 5a. This matrix indicates that visually similar
classes(e.g., two different kinds of dogs) share more related channels, while distinct classes (e.g.,
dogs with cars) have nearly zero channel overlap.

Single-channel manipulation. Furthermore, we discover that channels with the highest category-
oriented channel awareness control meaningful semantic information for that class, thus simply
manipulating one target channel can achieve semantic editing. We provide the single-channel
manipulation results in Fig. 5b, where each manipulation is achieved by multiplying a scale factor
(=3) on the target channel during the forward process of generator. However, channels discovered
by the source class can only manipulate itself as well as similar classes, while hard to manipulate
other classes which do not have such attributes, as shown in Fig. 5b.

4.2 LATENT-ORIENTED CHANNEL AWARENESS

Discovery of class-shared channels. Different from the category-oriented channel awareness,
which is used for finding highly class-related channels, the latent-oriented channel awareness is
used for finding class-shared channels (even shared among all the 1,000 classes). Results in Tab. 1
demonstrate that, when only selecting 10 channels for each class of the highest latent-oriented
channel awareness, then performing intersection on the sets of channel indices among all the classes,
there still exists many channels left (the 3rd row of Tab. 1), while other two baseline experiments both
have no overlapped channels (the 1st and 2nd row of Tab. 1). This implies that a class-conditional
generator can learn unified representations provided to all classes. Besides, these class-shared
channels can further enable semantic manipulation with highly similar effect on disparate classes.
Visual editing results with respect to these channels are provided in Fig. 6b.
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Figure 6: Versatile attributes discovered by the channel awareness. (a) Attributes discovered
via the category-oriented channel awareness, which are highly relevant to a particular class. (b)
Attributes discovered via the latent-oriented channel awareness, which are shared among various
classes. Each editing result is achieved by manipulating a single channel. (Zoom in for better view.)
More results can be found in Appendix E and Appendix F.

5 APPLICATIONS WITH CLASS CONDITIONAL GANS

5.1 IMAGE EDITING VIA SINGLE CHANNEL MANIPULATION

With our method, we can identify meaningful channels through awareness ranking, from which we
discover that simply manipulate a single channel can achieve versatile effects for image attribute
editing. Such a manipulation can be either multiplying or adding a constant of manipulation
magnitude. Therefore, with channels that are relevant to a particular class, we can discover and
then manipulate various attributes of this class, such as fur, mouth, and nose for dogs and cats,
explosion for volcanic. Results of image editing about category-oriented attributes are shown
in Fig. 6a. Meanwhile, with channels that respond to latent, we can edit meaningful class-shared
semantics controlled by the latent vector, which can therefore manipulate all kinds of classes in
BigGAN. Results of image editing about latent-oriented attributes are shown in Fig. 6b.

5.2 CATEGORY HYBRIDIZATION VIA CHANNEL MIXING

In this section, we define a novel image editing task called category hybridization, which aims to
synthesize realistic images while preserving meaningful attributes from more than one categories.
This task could benefit novel content creation and produce unnatural yet plausible combinations of
two categories which do not exist in the training set. To achieve this, we transplant the channels of
the reference class to the corresponding channel positions in the feature of the input class, which we
refer to as channel mixing. To activate the transplanting channels, we exploit the class embedding
of the reference class for the generation of next layers. Results of category hybridization are
shown in Fig. 7. With channel mixing, we could harmoniously fuse attributes from two categories
into one realistic image which cannot achieve by style mixing (i.e., simply mixes layer-wise class
embeddings).

5.3 OBJECT PART SEGMENTATION VIA AWARENESS-WEIGHTED PIXEL CLUSTERING

Existing works (Xu & Zheng, 2021; Zhang et al., 2021; Abdal et al., 2021; Li et al., 2022;
Tritrong et al., 2021; Ling et al., 2021) revealed that internal features in GANs can enable
object part segmentation of generated images, which facilitates semantic annotation synthesis and
local semantic editing tasks. Here, we present a simple unsupervised approaches for object part
segmentation with the proposed channel awareness. Specifically, we collect the internal feature
activations from multiple layers of the generator, then upsample each feature to be the same
resolution as the target image H ′ × W ′. After upsampling, features from multiple layers could
be concatenated along the channel dimension into a total feature volume as C ′ ×H ′ ×W ′, where
C ′ is the total number of channels. A pixel-wise feature vector in the volume, in size of C ′ × 1× 1,
is considered as one sample for performing the clustering. Then, we simply perform K-Means
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Figure 7: Category hybridization by mixing the channels that are relevant to two categories.
Compare with the conventional style mixing (Karras et al., 2019) (the 3rd column), our approach (the
4th column) better fuses the characteristics (including both shape and appearance) of both classes.
More results can be found in Appendix G.

Input without with
Features from all layers Features from latter half layers

3 Clusters 5 Clusters

without with without with without with
Features from all layers Features from latter half layers

Figure 8: Object part segmentation with and without awareness weighting. We showcase
that simple clustering on the feature space of the class-conditional GAN can obtain object part
segmentations. Our channel awareness can be used for weighting channels and push them to be more
class-related. Results of three different categories, two kinds of feature selecting layers, and two
different amounts of clusters reveal that, in all settings, the channel awareness helps the clustering to
focus more on the class-relevant representations, hence it recovers more detailed segmentations.

clustering on all pixel-wise feature vectors to segment the image into K parts. Segmentation results
without and with channel awareness are shown in Fig. 8.

5.4 SYNTHESIS PERFORMANCE EVALUATION VIA TOTAL CHANNEL AWARENESS

Assumption and method. For synthesis performance evaluation, our key assumption is that if one
class has the awareness of consistently activating certain channels for producing category-oriented
attributes while deactivating certain channels for suppressing irrelevant attributes, then the category
will provide faithful generation results with high probability. For example, generating a flower
needs to suppress those channels responsible for eyes and nose (mainly used by other classes like
animals) and activate those related to petals. Thus, we measure the overall selection and suppression
awareness as total channel awareness, by summing the absolute values of category-oriented channel
awareness over all layers, which can be denoted as follows: ae =

∑
c∈C′ |Ez[tce]|. Here C ′ stands

for the number of total channels among all layers and e is the given class.

Results. With total channel awareness, we empirically find that classes with the higher total channel
awareness exhibit better quality yet low diversity of generated samples. Qualitative results of
generated samples of classes with the highest and lowest total channel awareness are shown in
Fig. 9. For quantitative verification, we calculate the correlation between total channel awareness
and other four widely used metrics for GANs among all 1k classes. Specifically, we estimate the
quality via precision (Kynkäänniemi et al., 2019), diversity via recall (Kynkäänniemi et al., 2019)
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Rapeseed

Total Channel Awareness: 527;  
Precision: 0.85;    Recall: 0.14;

Odometer

Total Channel Awareness: 512;   
Precision: 0.93;    Recall: 0.03;

Website

Total Channel Awareness: 510;   
Precision: 0.98;    Recall: 0.04;

Cypripedium parviflorum

Total Channel Awareness: 502;   
Precision: 0.84;    Recall: 0.05;

Chainsaw

Total Channel Awareness: 205;   
Precision: 0.65;    Recall: 0.20;

Stretcher

Total Channel Awareness: 199;   
Precision: 0.70;    Recall: 0.20;

Reel

Total Channel Awareness: 198;   
Precision: 0.73;    Recall: 0.13;

Plastic Bag

Total Channel Awareness: 197;   
Precision: 0.71;    Recall: 0.20;

Barrow

Total Channel Awareness: 194;   
Precision: 0.73;    Recall: 0.15;

Figure 9: Qualitative results of evaluating category-wise synthesis performance, which is
enabled by the total channel awareness. For each class, we show 6 generated samples, as well
as total channel awareness, precision, and recall on below. We observe that classes with high total
awareness tend to have high synthesis quality yet low diversity.

(b) Recall(↑), correlation= -0.792(a) Precision(↑), correlation=0.714 (d) FID(↓), correlation= -0.798(c) MS-SSIM(↓), correlation=0.899

MS-SSIMTotal Channel Awareness Precision Recall FID

Figure 10: Quantitative results of evaluating category-wise synthesis performance, including
the correlation between our total channel awareness and the category-wise precision, recall, MS-
SSIM, and FID. X-axis: Class indices sorted by the total awareness. Y-axis: Normalized total
channel awareness and other four metrics. The correlations between total channel awareness and
each other metric are shown at the bottom. ↑: higher is better; ↓: lower is better. Note that
precision evaluates quality, recall and MS-SSIM evaluates diversity and FID measures both quality
and diversity.

and MS-SSIM (Odena et al., 2017), and a general metric FID (Heusel et al., 2017) for each class.
Implementation details are in Appendix H. The quantitative results are shown in Fig. 10.

6 CONCLUSION AND DISCUSSION

This work takes the first step towards understanding the generation mechanism of conditional GANs
from the channel perspective. Concretely, we propose simple yet effective channel awareness,
by which we successfully identify that channels that response to the latent code and to different
class embedding. Extensive analyses shed light on how a conditional GAN manages the categorical
information with different channels. More importantly, our channel awareness enables four novel
applications with class conditional generators, which are rarely explored by prior work. In particular,
we achieve single-channel attribute editing as well as harmonious category hybridization in a fully
unsupervised manner. We also demonstrate the promising potential of our channel awareness in
fine-grained semantic segmentation and category-wise synthesis performance evaluation.

Despite the appealing results, there are still some directions worth exploring. Recall that this
work primarily targets the BigGAN generator (Brock et al., 2019), which learns the categorical
information through CCBN with ReLU activation. Investigating other architectures, like the style
modulation layer (Karras et al., 2019) with Leaky ReLU activation (Xu et al., 2015), can be one of
the future works. Besides, our approach mainly focuses on interpreting and utilizing a well-learned
model for downstream tasks. How the insights provided in this work can inspire the design of a
more powerful GAN model would be of more significance.
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Reproducibility Statement. To ensure the reproducibility of our work, we provide the pseudo-
code of the core implementation of our channels awareness in Appendix A. In addition, we provide
implementation details of quantitative evaluation and synthesis performance evaluation in Sec. 4.1
and Appendix H, respectively. Implementation details of other analyses and applications can be
found in the corresponding paragraph. We will also make our source code publicly available for all
the core experiments.
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APPENDIX

A PSEUDO-CODE AND RUNNING TIME

Given a pre-trained class conditional model, our category-oriented channel awareness and latent-
oriented channel awareness, can be computed unsupervisedly and efficiently. The below PyTorch-
style (Paszke et al., 2019) pseudo-code provides the core implementation.

1 import torch
2
3 def compute_channel_awareness(ccbn_scale, ccbn_bias, e, num_samples, z_dim):
4 """Computes the channel awareness with respect to a particular category.
5
6 Args:
7 ccbn_scale: A PyTorch module (usually a fully-connected layer) used
8 in CCBN to compute the category-specific ‘scale’ coefficients.
9 ccbn_bias: A PyTorch module (usually a fully-connected layer) used

10 in CCBN to compute the category-specific ‘bias’ coefficients.
11 e: The embedding vector for the target category.
12 num_samples: Number of random samples used for computation.
13 z_dim: Dimension of the latent space.
14
15 Returns:
16 A two-element tuple, indicating the category-oriented channel
17 awareness and latent-oriented channel awareness, respectively.
18 """
19 # Random sample.
20 z = torch.randn(num_samples, z_dim)
21 e = e.reshape(1, -1).repeat(num_samples, 1)
22 code = torch.cat([z, e], dim=1)
23
24 # Channel probe, with shape [N, C].
25 probe = - ccbn_bias(code) / ccbn_scale(code)
26 # Category-oriented channel awareness, with shape [C].
27 category_awareness = - torch.mean(probe, dim=0)
28 # Latent-oriented channel awareness, with shape [C].
29 latent_awareness = torch.var(probe, dim=0)
30
31 return category_awareness, latent_awareness
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Running Time. Computing channel awareness is highly efficient. With one NVIDIA Tesla V100
GPU, it costs 0.0017s to interpret all channels in the first layer of BigGAN regarding a certain class.
For all layers, the average running time is 0.0012s. The computing time for each layer is averaged
using 200 classes.

B QUANTITATIVE EVALUATION ON BIGGAN-DEEP

This section provides additional evaluations for Sec. 4, including implementation details and results
for evaluating the category-oriented channel awareness on the BigGAN-Deep model (Brock et al.,
2019). Unlike BigGAN, BigGAN-Deep has twice the number of channels (e.g., 2,048 channels in
layer 0), making the single-channel evaluation more time-consuming. Besides, zeroing out a single
channel makes an invisible change on the output image. Thus in this experiment, we zero out five
channels for each intervention, and every five channels are selected along with the order of sorted
channel indices by the category-oriented channel awareness. Results of top four results of four
classes are shown in Fig. A1. Here we scale the two curves into the range of 0-1 for a better view.

Feather Boa
Correlation: 0.864

African Chameleon
Correlation: 0.827

Orange
Correlation: 0.851

Ice cream
Correlation: 0.852

Figure A1: Quantitative evaluation of category-oriented channel awareness on BigGAN-Deep
with five-channel modulation. The correlation between awareness score (blue) and categorical score
change (red) appears on top of each figure. X-axis: intervention order following the sorted awareness
score. Y-axis: Scaled values of both lines. The average correlation of all 1,000 classes is 0.603.

C MORE ANALYSIS OF LATENT-ORIENTED CHANNEL AWARENESS

(b)(a)

Figure A2: In-depth analyses on the number of shared channels among all classes. (a) We
count how many classes share the top-1 channel at different layers, where the most popular channel
at all layers serves over 450 classes from 1,000 classes in total. (b) Number of overlapped channels
(X-axis) regarding different top-k values (Y-axis). Along with more channels incorporated for each
class, the number of overlapped channels increase. (Served as additional results of Sec. 4.2 in the
main paper.)
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D MORE QUALITATIVE RESULTS OF CHANNEL MASKING
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Figure A3: More results of channel masking for quanlitative evaluation (Fig. 3 in the main
paper), which show comparisons among masking lowest (left) and highest (right) category-oriented
channel awareness (CCA) as well as masking randomly selected channels (middle). The four class
shown here are mushroom, castle, komondor, house finch, and alp.
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E MORE RESULTS OF CATEGORY-ORIENTED ATTRIBUTE EDITING
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Figure A4: Category-oriented attribute editing (Sec. 5.1 in the main paper). Given a target class,
our category-oriented channel awareness can unsupervisedly identify channels responsible for the
class-oriented attributes, based on which image editing can be achieved via altering a single channel.
For each group of images, the middle one is input, while the left and the right one are manipulating
the single channel along the positive and the negative direction. Corresponding class names are
annotated on the left.
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F MORE RESULTS OF LATENT-ORIENTED ATTRIBUTE EDITING
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Figure A5: Latent-oriented attribute editing (Sec. 5.1 in the main paper). Our latent-oriented
channel awareness unsupervisedly identifies channels that deliver information to all classes. Thus
altering one channel can edit images from multiple classes. Corresponding class names are
annotated on the left.
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G MORE RESULTS OF CATEGORY HYBRIDIZATION

Input Reference Output Input Reference Output

Figure A6: Category hybridization by mixing the channels that are relevant to two different
categories (Sec. 5.2 in the main paper). For each group, the first two columns present the original
syntheses, while the third column shows the hybridization result, which successfully fuses the
characteristics (including both shape and appearance) of both classes.
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H IMPLEMENTATION DETAILS OF SYNTHESIS PERFORMANCE EVALUATION

This section gives the implementation details for category-wise synthesis performance evaluation
via total channel awareness (Sec. 5.4 in the main paper).

Data preparation. For precision, recall, and FID, which need to compare fake images with real
images during estimation, we firstly pre-process real images from ImageNet (Deng et al., 2009)
following the procedure in BigGAN training which is cropping and resizing to 256 × 256. The
number of real images in ImageNet is around 1,300 for each class. We randomly sample all
generated images without truncation for fairly measuring the synthesis performance.

Precision and Recall. Precision (Kynkäänniemi et al., 2019) is used for measuring sample quality
by retrieving fake images and checking whether it locates within the manifold of real images.
Recall (Kynkäänniemi et al., 2019) is used to measure sample diversity by retrieving real images
and checking whether it is within the manifold formed by fake images. The ranges of these two
metrics are both between zero to one. A higher value indicates a better performance. We calculate
precision and recall with the number of fake images equal to the number of real images of each
class followed the suggested setting (Kynkäänniemi et al., 2019). The feature extraction network
is the pre-trained VGG-16. We set the neighborhood size k equal to 3, which is a more robust
choice(Kynkäänniemi et al., 2019).

MS-SSIM. We calculate the similarity between fake image pairs via the image similarity metrics
MS-SSIM following (Odena et al., 2017). Lower image similarity indicates better diversity. For
each class, we randomly sample 100 fake images to construct 10,000 image pairs for calculating
similarity, then an averaged similarity score for the class can be obtained as the final result for the
intra-class diversity.

Fréchet Inception Distance (FID). FID is a general metric that considers both diversity and quality
by directly estimating the distance between the feature distribution of fake and real images. We
calculate the FID with 50,000 generated images for each class. Then we exploit a pre-trained
Inception-v3 as the feature extractor for estimating the feature distance between real and fake
images.
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