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ABSTRACT

The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alter-
native to human evaluation, demonstrating strong performance on well-defined
tasks. However, its reliability in open-ended tasks with dynamic environments and
complex interactions remains unexplored. To bridge the gap, we introduce WEB-
DEVJUDGE, a systematic benchmark for assessing LLM-as-a-judge performance
in web development, with support for both non-interactive evaluation based on
static observations and continuous interactive evaluation with a dynamic web en-
vironment. WEBDEVJUDGE comprises human preference labels over paired web
implementations, annotated with structured and query-grounded rubrics to ensure
high-quality ground truth. Using this benchmark, we comprehensively evaluate
various evaluators, including LLMs, MLLMs, and agentic workflows. We system-
atically investigate the impact of different paradigms and guidance mechanisms.
Our experiments reveal a significant gap between LLM judges and human experts.
In-depth analysis indicates this gap stems from fundamental model limitations, in-
cluding failures in recognizing functional equivalence, verifying task feasibility,
and mitigating bias. Overall, WEBDEVJUDGE presents a significant challenge
to LLM-as-a-judge, offering insights to guide future research toward developing
more reliable and capable automated evaluators for complicated scenarios.

1 INTRODUCTION

Evaluate, refine, then evaluate again and refine again—large language models (LLMs) have
achieved remarkable success across various domains through this iterative cycle (Madaan et al.,
2023; Chen et al., 2023; Shafayat et al., 2025). Conventional evaluation paradigms rely heavily on
human assessment (Zhong et al., 2024; Starace et al., 2025), which, while meticulous, presents a crit-
ical bottleneck due to its high cost and low scalability. In response, the paradigm of LLM-as-a-judge
has emerged as a promising alternative (Zheng et al., 2023; Dubois et al., 2024), offering a scalable
and cost-effective solution for crucial development stages like verification (Lightman et al., 2024)
and reward modeling (Yuan et al., 2025). With the advent of sophisticated language agents capable
of planning, tool use, and collaboration (Yao et al., 2023; Qin et al., 2024a; Liang et al., 2024), the
role of LLM-as-a-judge is rapidly expanding beyond basic, well-defined tasks to encompass chal-
lenging real-world problems (Zhuge et al., 2025; Bian et al., 2025). This progression is critical, as it
paves the way for more capable automated evaluators, creating the possibility for language models
to self-evolve in complex, real-world applications.

However, a fundamental question regarding the reliability of LLM-as-a-judge persists. Its effec-
tiveness is well-established for static and basic tasks (Chen et al., 2024; Saha et al., 2025; Gou
et al., 2025; Lù et al., 2025), but these successes share a critical commonality: they rely on static
assessment of final outcomes. The reliability of LLM-as-a-judge in dynamic, open-ended domains
involving complex interaction remains largely unexplored. Such contexts introduce significant chal-
lenges: dynamic evaluation requires continuous interaction with and comprehension of a changing
environment (Li et al., 2023a; Paglieri et al., 2025), while their open-ended nature necessitates es-
tablishing feasible assessment standards (Li et al., 2025). This gap between the expanding scope
of automated judges and the lack of rigorous validation in complex, interactive settings highlights
an urgent need for a new meta-evaluation benchmark. Such a benchmark is essential to assess, in-
terpret, and ultimately enhance the reliability of LLM-based judges as we approach increasingly
autonomous AI systems.
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Consequently, in this work, we introduce WEBDEVJUDGE, a meta-evaluation benchmark for as-
sessing LLM-as-a-judge on a representative complex and interactive task using the context of web
development. Web development offers an ideal testbed for complex dynamic evaluation, as it inher-
ently has interaction requirements, whose assessment depends not just on static code but on real-time
interaction. The task is also intrinsically open-ended, lacking a single absolute answer. To establish a
high-quality ground truth, we introduce a structured annotation methodology using query-grounded
rubric trees, which decomposes high-level requirements into a verifiable hierarchy of fine-grained
criteria. This rigorous protocol combining rubric with human judges yields an inter-annotator agree-
ment of 89.7%, which substantially exceeds the 63% reported for MT-Bench (Zheng et al., 2023),
confirming the reliability of the preference labels. Departing from traditional benchmarks focused
on static text (Tan et al., 2025), WEBDEVJUDGE supports both static and interactive evaluation
by offering multifaceted representations of each web implementation, including its source code,
screenshot of the rendered webpage, and a fully interactive environment for dynamic assessment, as
shown in the right part of Figure 1. Evaluator performance is measured by agreement with expert
human preferences on paired web implementations—a methodology widely adopted for nuanced,
open-ended tasks where the absolute answer is deficient (Bai et al., 2022; Lambert et al., 2025).

Using WEBDEVJUDGE, we conduct a comprehensive evaluation of a wide array of judges, includ-
ing LLMs, MLLMs, and agentic workflows, under various paradigms and guidance mechanisms.
Our experiments reveal that a significant capabilities gap persists between the most advanced mod-
els and human experts, with a performance discrepancy exceeding 15%. Notably, different guidance
strategies provide only marginal improvements in the pairwise comparison setting, suggesting that
preference prediction through comparative assessment represents an internalized capability in mod-
els (Hua et al., 2025; Yu et al., 2025). Furthermore, while agentic workflows appear well-suited for
interactive task evaluation, they fail to outperform vanilla models due to error accumulation across
planning and execution stages (Pan et al., 2025). Through detailed error analysis and case studies,
we systematically investigate the failure modes of automated evaluators. As part of this analysis,
we construct WebDevJudge-Unit, a diagnostic dataset specifically designed to evaluate feasibility
verification capabilities of different types of LLM-as-a-judge. Our investigation reveals two fun-
damental performance bottlenecks: (1) a persistent inability to recognize functional equivalence
between diverse implementations that achieve the same objectives through different approaches or
terminologies, such as implementations using the same title element with only variations in text, and
(2) systematic weaknesses in feasibility verification, where static assessment suffers from low preci-
sion due to static code analysis limitations while interactive agents exhibit low recall stemming from
their own operational constraints. These compounding errors ultimately undermine evaluator per-
formance, pointing toward fundamental research directions for developing truly reliable automated
evaluators in complex, interactive domains. Our main contributions are as follows:

• We construct WEBDEVJUDGE, a meta-evaluation benchmark that supports both static and
interactive assessment of web development quality with high-quality preference labels.

• Comprehensive empirical evaluation of (M)LLMs and agentic workflow reveals that cur-
rent LLM-as-a-judge approaches still fall significantly short of human-level reliability.

• Detailed error analysis identifies the systematic weaknesses of LLM-as-a-judge, providing
critical insights for developing more reliable automated evaluators.

2 RELATED WORK

LLM-as-a-Judge The paradigm of LLM-as-a-Judge leverages powerful large language models to
simulate human-like assessment, enabling scalable and cost-efficient evaluation (Gu et al., 2025).
This approach has been widely adopted across various domains, including question answering (Bai
et al., 2023), data filtering (Li et al., 2024; Xu et al., 2025), and trajectory evaluation (Pan et al., 2024;
Xue et al., 2025). Typical implementations employ a strong LLM as an evaluator, which compares or
scores candidate responses against predefined criteria. Common comparison methods include pair-
wise comparison and single-answer grading Zheng et al. (2023). As application scenarios broaden,
the conventional LLM-as-a-Judge approach is evolving into Agent-as-a-Judge (Zhuge et al., 2025),
wherein LLM-based agents are equipped with tool-using and collaboration capabilities. Gou et al.
(2025) propose a judge agent with extractor and verifier to evaluate deep research tasks with rubric
trees, while Zhuge et al. (2025) design a modular agentic framework to evaluate agentic systems.
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Figure 1: Overview of WEBDEVJUDGE. Left: Data Collection with query-based and environment-
based filtering. Center: Preference label annotation with verifiable rubric tree. Right: Evaluate
(M)LLM-based and agentic evaluators under pairwise and single-answer paradigms.

Despite its efficiency, this method faces several challenges. Position bias (Wang et al., 2024) and
verbosity (Ye et al., 2025) preference may skew results, and the creation of detailed, human-written
rubrics is both labor-intensive and difficult to scale (Starace et al., 2025). Additionally, typical as-
sessments may overemphasize final outcomes, limiting their applicability in open-ended interactive
tasks (Zhang et al., 2025a). To evaluate the judge capability of LLMs, we introduce a benchmark
on open-ended web development scenarios. It is designed to assess a wide range of LLM-based
evaluators, with the dual purpose of benchmarking their performance and exposing fundamental
shortcomings in existing automated evaluation approaches.

Meta Evaluation Meta-evaluation accesses the effectiveness of automated evaluation by measur-
ing its correlation with human or ground truth. Existing benchmarks primarily focus on two aspects:
(1) alignment with preference label, often using pairwise comparisons (Zheng et al., 2023; Li et al.,
2023b), and (2) accuracy in identifying correct task outcomes, particularly in reasoning (Luo et al.,
2023; He et al., 2025) and agentic tasks (Lù et al., 2025). Prior works such as MT-bench (Zheng
et al., 2023) and LLMEval (Zhang et al., 2023) measure how LLM judges mirror human preferences
in multi-turn conversational and instruction following tasks. However, these benchmarks may be
constrained by human subjectivity and position bias (Wang et al., 2024). Alternatives like LLM-
Bar (Zeng et al., 2024) and JudgeBench (Tan et al., 2025) test judges on re-annotated instruction
adherence or verifiable reasoning discrimination. These benchmarks mainly focus on text-based
tasks without complex environments. In the context of interaction, AgentRewardBench (Lù et al.,
2025) uses expert-annotated result of pre-scripted trajectories to benchmark how well LLM evalua-
tors score agent performance. ArtifactsBench (Zhang et al., 2025a) evaluates dynamic visual effects.
However, it lacks a critical component of assessing environmental changes that are driven by real-
time user input. Our work, WEBDEVJUDGE, introduces a meta-evaluation benchmark that assesses
judges on dynamic, real-world web development tasks, emphasizing continuous interaction with live
web environments, offering insights in complex interactive settings.

3 WEBDEVJUDGE BENCHMARK

WEBDEVJUDGE serve as a meta-evaluation benchmark designed to assess whether LLM-as-a-judge
can effectively approximate human preference judgments in web development tasks. We frame the
task as a preference evaluation problem. Each instance is represented as a quadruple (Q,Wa,Wb, lp),
where Q denotes a web development query (e.g., “build a book review page”), Wa and Wb represent
web implementations from two distinct models a and b, and lp is the annotated preference label
between the two outputs. The objective is to predict the preference label—i.e., whether a wins, b
wins, or the result is a tie—which is widely used for open-ended tasks (Zeng et al., 2024; Lambert
et al., 2025). The observations of Wa and Wb may take various forms across experimental settings,
such as code, screenshots, or interaction trajectories.

3
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3.1 DATA FILTERING

We collect data from the webdev-arena-preference-10k dataset (Vichare et al., 2025; Chiang
et al., 2024), which comprises 10,501 user queries with paired code outputs from 2 models and
user-provided preferences. We apply a two-stage filtering process to enhance data quality:

Query-based filtering We first exclude extremely short queries and verbatim duplicates. The
remaining queries are further filtered via an LLM according to the following criteria: (1) Safety:
exclusion of harmful or offensive content; (2) Clarity: the query must be unambiguous and inter-
pretable; (3) Feasibility: the query should be realistically implementable as a web application, based
on its purpose and required level of interaction.

Environment-based filtering We deploy each web implementation in a unified execution environ-
ment. Instances that fail to deploy correctly or require niche dependencies are discarded. To ensure
validity, we capture initial screenshots of each rendered webpage and use a multi-modal LLM to
filter out invalid cases (e.g., blank pages or intrinsic errors).

After applying these filters, we retain 1,713 high-quality instances, we sample 700 instances for
further annotation. Details regarding the data construction process are provided in Appendix A.

3.2 ANNOTATION VIA RUBRIC TREE

Consistent with prior work (Zheng et al., 2023; Tan et al., 2025), we note that raw preference labels
may reflect subjective bias rather than objective quality. To quantify this issue, we sample 100 in-
stances and have them re-annotated by two expert annotators based on fully deployed web instances.
As shown in Table 1, both inter-annotator agreement and agreement with original labels are initially
low, highlighting the need for a more structured and standard annotation protocol.

To address this, we introduce rubric tree—a structured evaluation framework commonly used in
complex assessment scenarios (Starace et al., 2025; Gou et al., 2025). The tree is query-based and
scalable by design, organized along three core dimensions: intention, static quality, and dynamic
behavior (see Figure 1). Each leaf node corresponds to a binary test, whose outcomes are aggregated
hierarchically to parent nodes. This allows for both a holistic score at the root and fine-grained
diagnostic insight via leaf-level pass rates.

We validate the effectiveness of the rubric tree by manually constructing trees for 50 instances and
asking two annotators to evaluate these using the rubric as a reference. As shown in Table 1, rubric-
guided annotation significantly improves agreement rates. To scale this process, we employ few-shot
LLM generation to automatically produce rubric trees. A third annotator labels the same instances
using these generated rubrics, achieving high agreement with human-written rubrics—confirming
the utility of LLM-generated rubrics. We then use generated rubric trees to annotate the remain-
ing data via two expert annotators with software engineering backgrounds. During annotation, we
perform manual inspections to exclude incompatible and harmful cases. Final inter-annotator agree-
ment reaches 89.7% (with ties) and 94.0% (without ties), demonstrating high consistency.

Table 1: Annotation agreement rates with and without the verifiable rubric. The ‘without rubric’
part shows agreements between: (1) annotators and (2) annotators and the original labels. The ‘with
rubric’ part shows inter-annotator agreements under human-written and LLM-generated rubrics.

Setting Without rubric With rubric

inter-annotator annotator-origin Human-written LLM-generated

w/ tie 65.0 53.0 92.0 90.0
w/o tie 90.0 77.9 95.5 96.9

3.3 DATA STATISTICS

The final benchmark consists of 654 instances, with preference distributions as follows: 258 for
a, 258 for b, and 138 ties. To characterize the query domain coverage, we conduct a topic anal-
ysis based on the original topics webdev-arena-preference-10k dataset (Vichare et al., 2025).

4
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Table 2: Categories and their respective sub-
categories of queries in WEBDEVJUDGE.

Category Sub-categories Total %

DIGITAL DESIGN
Website Design
UI Design 34.0

GAME AND APP
DEVELOPMENT

Game Development
App Development
App Design

34.4

WEB AND
SPECIALIZED
TECHNOLOGIES

Clone Development
Web Development
Simulations
AI Applications
Multilingual Queries
Digital Tools
Creative Humor

31.6 0 5 10 15 20
Percentage (%)

Website Design

UI Design

Game Development

Clone Development

App Development

Web Development

App Design

Multilingual Queries

AI Applications

Simulations

Digital Tools

Creative Humor

17.6

16.4

16.2

14.8

11.6

7.0

6.6

2.9

2.6

2.6

1.1

0.6

Figure 2: The distribution of sub-category across
WEBDEVJUDGE.

Fine-grained topics are grouped into three broad categories: Digital Design, Game and App Devel-
opment, and Web and Specialized Technologies based on their shared characteristics and application
contexts of representative examples. Table 2 and Figure 2 provide detailed category distributions and
visualizations.

4 EXPERIMENTS

We conduct comprehensive experiments and evaluate different evaluation settings on WEBDEV-
JUDGE, focusing on the following research questions: (1) Whether LLM-as-a-judge can be an al-
ternative to human preference in open-ended complex tasks like web development? (2) How do
different settings and strategies affect the agreement rate performance?

4.1 EVALUATOR PERFORMANCE ON WEBDEVJUDGE

Setup Following (Zheng et al., 2023; Xie et al., 2025), we evaluate the evaluators under 2 distinct
paradigms:

• Pairwise comparison: This approach directly compares two responses, leveraging relative
judgments to infer preference, an intuitive and natural fit for preference prediction.

• Single answer grading: This approach employs LLMs to assign scores or labels to indi-
vidual responses, with preferences derived by comparing scores or pass rates.

To enable structured and domain-grounded assessment, we design a multi-dimensional Likert scale
inspired by prior work (Lan et al., 2024; Zhang et al., 2025a) and incorporate principles from inter-
national software testing standards (ISO/IEC/IEEE, 2022). Our criteria comprises four dimensions,
Functionality, UI Quality, Code Quality, and Interactivity, each with several sub-criteria rated on a
5-point Likert scale (1: lowest, 5: highest). Detailed criteria are provided in Appendix B.

Implementation We evaluate two types of evaluators: (1) Vanilla (M)LLMs: we test mod-
els from OpenAI (OpenAI, 2025; 2024), Anthropic (Anthropic, 2025b;a), Google (Team, 2025a),
Qwen (Team, 2025e;d), DeepSeek (DeepSeek-AI, 2024; 2025), Moonshot (Team, 2025c), and
ZAI (Team, 2025b). For single answer grading, we provide the query, code, and evaluation cri-
teria; we further include an initial screenshot of the rendered webpage for MLLMs. The model is
prompted to output scores for each sub-criterion. For pairwise comparison, we supply the query,
code of Wa and Wb, evaluation criteria, and screenshots of both rendered webpages (if applicable).
The evaluator scores both Wa and Wb per sub-criterion, with explicit instructions to ignore position

5
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Table 3: Agreement Rate (%) of different evaluators under different evaluation paradigms. The best
average performance of the whole dataset is highlighted in bold and the second best is underlined.

Model/Method DIGITAL DESIGN GAME & APP WEB & SPECIAL AVERAGE

Single Pair Single Pair Single Pair Single Pair

Vanilla

Non-reasoning Models

ë GPT-4.1 54.95 65.77 61.33 67.56 60.39 64.73 58.87 66.06
ë GPT-4o 51.80 64.41 56.00 64.44 60.39 64.25 55.96 64.37
ë Qwen-2.5-VL-72B-Inst. 46.40 64.86 48.44 62.67 52.17 63.29 48.93 63.61
ë Gemini-2.5-flash-lite 48.20 62.16 48.89 57.78 47.34 62.80 48.17 60.86
DeepSeek-V3-0324 58.11 63.96 54.22 61.33 59.90 65.70 57.34 63.61
Kimi-K2-Inst. 62.16 64.41 56.00 61.78 52.17 65.22 56.88 63.76
Qwen3-235B-A22B-Inst. 53.60 63.51 59.56 64.00 58.45 61.35 57.19 63.00
Qwen3-30B-A3B-Inst. 54.50 64.41 58.67 60.44 55.07 65.22 56.12 63.30
Qwen2.5-32B-Inst. 48.65 61.26 53.33 64.89 51.69 61.35 51.22 62.54
Gemma-3-27B-it 44.14 59.01 52.00 54.67 45.41 60.39 47.25 57.95
Qwen2.5-14B-Inst. 48.20 56.31 44.00 51.56 38.65 52.17 43.73 53.36

Reasoning Models

ë Claude-4-Sonnet 50.90 67.12 58.67 68.44 57.00 62.32 55.50 66.06
ë Claude-3.7-Sonnet 65.77 67.12 59.11 61.33 57.49 67.15 60.86 65.14
ë Gemini-2.5-pro 51.35 61.26 50.22 67.11 43.48 57.97 48.47 62.23
GLM-4.5 57.66 66.22 52.44 64.44 50.72 60.87 53.67 63.91
DeepSeek-R1-0528 50.00 64.41 56.00 63.11 49.76 61.84 51.99 63.15
Qwen3-30B-A3B-Think. 54.05 59.91 53.33 59.11 52.17 60.39 53.21 59.79

Agentic

Intention rubrics 37.39 - 32.00 - 47.34 - 38.69 -
Static rubrics 40.09 - 38.67 - 43.48 - 40.67 -
Dynamic rubrics 52.70 - 55.56 - 50.72 - 53.06 -
Combined rubrics 54.50 - 56.44 - 57.49 - 56.12 -

Human

Pairwise comparison - 85.78 - 85.02 - 83.78 - 84.82

bias and remain objective. Preference is determined by comparing total scores. (2) Agentic Work-
flow: similar to Bian et al. (2025), we model evaluation as a multi-stage pipeline with a planner, an
executor, and a summarizer:

Query Planner−−−−→ Plan with test cases Executor−−−−→ Results Summarizer−−−−−−→ Judge (1)

The planner generates a verifiable evaluation plan conditioned on the query. The executor runs
test cases, and the summarizer synthesizes results into a judgment. We use the generated rubric
tree as the evaluation plan and reference for summarization. Preferences are inferred by comparing
summarized outcomes. In implementation, we utilize UI-TARS-1.5 (Seed, 2025), one of the state-
of-the-art GUI agents, as the executor, to ensure the reliability of the evaluation process.

Result The main experimental results are summarized in Table 3. Our analysis yields several key
observations on the performance of LLM-based evaluators in web development tasks.

LLM-as-a-judge falls short of human-level reliability on complex evaluation tasks. The primary
finding is that no current model achieves a sufficient level of agreement with expert judgments. The
top-performing evaluator, Claude-4-Sonnet under the pairwise paradigm, attains an agreement
rate of only 66.06%. This substantial gap underscores the inherent complexity of web development
evaluation, which demands a holistic assessment of functionality and aesthetics. We also observe
a clear performance ceiling: while smaller models exhibit scaling effects, larger and more capable
models show diminishing returns, consistently plateauing below the mid-70% agreement rate.

Pairwise comparison is a far more effective paradigm for preference evaluation. Across the
board, the pairwise paradigm yields an average improvement of over 8.0% in agreement rate com-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

pared to single-answer grading. Relative judgment helps models focus on discriminative features be-
tween two candidates, reducing the need for absolute quality calibration. In contrast, single-answer
grading not only performs worse but also leads to inconsistent model rankings—some models devi-
ate from their expected benchmark ordering (Zhang et al., 2025b), indicating that this paradigm is
less suitable for open-ended, multi-faceted tasks. This may be due to the cognitive load of applying
multi-point Likert scales consistently (Ouwehand et al., 2021), which demands a calibrated internal
standard of quality that is difficult for both humans and LLMs to maintain. Simplified evaluation
mechanisms, such as binary checklists, may be more effective; we explore this further in Section 4.2.

Agentic workflow suffers from compounding errors. We evaluated the agentic workflow using
rubrics from different aspects, as well as a comprehensive score integrating all three. The results
show that it performs significantly better on the Dynamic aspect, which involves strong interactive
properties, compared to others with weaker interactivity. Counter-intuitively, the agentic workflow
fails to outperform the vanilla models. This appears to result from error accumulation across its
multi-stage process. We identify two primary failure modes:

• Brittle Planning: The Planner struggles with the ambiguity of user queries that are often
not expressed with expert-level precision. This leads to the generation of evaluation plans
that are either too generic to be discriminative or overly specific, causing failures due to
minor implementation variations.

• Faulty Execution: The Executor agent’s ability to navigate the web and verify task states
remains unreliable. It may misinterprets outcomes, injecting noise into the evaluation pro-
cess. This unreliability is investigated more deeply in Section 4.3.

Errors compound across the planner-executor-summarizer pipeline, reducing the reliability of the
final judgment compared to an end-to-end evaluation by a single model (Chen et al., 2025b).

4.2 DIFFERENT EVALUATION GUIDES AND OBSERVATION FORMS

To further diagnose factors affecting evaluator performance, we conduct controlled experiments
focusing on two key variables: the structure of evaluation guidance and the form of observation.

GPT-4.1 GPT-4o DeepSeek-V3 DeepSeek-R1 GLM-4.5 Kimi-K240
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Figure 3: Agreement rates of LLM evaluators under various guidance protocols. We compare pair-
wise and single-answer paradigms using direct judgment, Likert scales, and structured rubrics.

Evaluation Guidance We investigate how different evaluation protocols influence judgment ac-
curacy, comparing three widely-used forms of guidance (Zheng et al., 2023; Gou et al., 2025): (1)
Direct: The evaluator provides a preference without explicit criteria. (2) Likert Scale: As used
in Section 4.1, the evaluator scores outputs along predefined dimensions using a multi-point scale.
(3) Rubric: The evaluator assesses outputs using the rubric trees from our annotation process, with
final scores computed as a weighted aggregation of binary leaf-node pass rates across three core
dimensions (intention, static, and dynamic).

Results in Figure 3 reveal a noteworthy finding: under the pairwise evaluation, the Direct setting
achieves agreement rates comparable to guidance-based methods. This phenomenon aligns with
observations in instruction following tasks (Zeng et al., 2024), where models perform similarly on
agreement with or without metric-based guidance. This result suggests that evaluation capability
is an internalized skill in modern LLMs, and external guidance provides only marginal benefits in
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relative assessment settings (Qin et al., 2024b). Furthermore, we find that reasoning models exhibit
better performance under the Direct condition, indicating that imposing rigid structured metrics
might constrain the models’ inherent reasoning processes, thereby limiting their evaluation potential.
Furthermore, we validate the hypothesis from earlier: in single answer grading, the binary Rubric
approach substantially outperforms the multi-point Likert scale, reinforcing that verifiable evaluation
protocols yield more reliable judgments when there is a lack of relative information.

Table 4: Impact of observation forms on the performance of multimodal evaluators. The numbers in
parentheses indicate the performance change relative to the setting with both code and image inputs.

Model Single Answer Grading Pairwise Comparison

Image Only Code Only Both Image Only Code Only Both

Claude-4-sonnet 54.43 (↓ 1.07) 58.87 (↑ 3.37) 55.50 57.34 (↓ 8.72) 64.83 (↓ 1.23) 66.06
GPT-4.1 53.98 (↓ 4.89) 59.94 (↑ 1.07) 58.87 57.34 (↓ 8.72) 64.98 (↓ 1.08) 66.06
GPT-4o 50.31 (↓ 5.65) 56.57 (↑ 0.61) 55.96 59.48 (↓ 4.89) 63.46 (↓ 0.91) 64.37
Gemini-2.5-pro 52.29 (↑ 3.82) 48.93 (↑ 0.46) 48.47 59.17 (↓ 3.06) 60.55 (↓ 1.68) 62.23
Qwen-2.5-VL-72B 50.00 (↑ 1.07) 49.39 (↑ 0.46) 48.93 57.19 (↓ 6.42) 62.39 (↓ 1.22) 63.61

Influence of Observation Modality We next analyze how the input modality affects multimodal
evaluators, comparing three observation forms: (1) Image Only, providing only the initial screenshot
of the rendered web page; (2) Code Only, providing only the source code; and (3) Both, providing
both code and screenshot. As shown in Table 4, code emerges as the most critical modality for
evaluating web development tasks. Withholding code leads to a significantly larger performance
drop than withholding screenshots, suggesting that while MLLMs can process visual input, their
judgments are fundamentally anchored in the structured source code (Wang et al., 2025). In pairwise
comparison, using both modalities yields the best results, indicating that visual context provides
complementary signals that aid in refining relative judgments (Chen et al., 2025a).

4.3 ERROR ANALYSIS

To systematically diagnose the failure modes of LLM-based evaluators, we conduct a fine-grained
analysis along three key dimensions: inherent biases, limitations in understanding functional equiv-
alence, and shortcomings in feasibility analysis.

Table 5: Positional bias in pairwise comparison. Preference for specific position, consistency and
the absolute difference in agreement rate (∆ AR) between original and swapped orders are reported.

Model Consistency First Second ∆ AR

Direct Likert Direct Likert Direct Likert Direct Likert

Claude-4-sonnet 89.6 87.9 5.7 3.7 4.7 8.4 0.9 1.38
GPT-4.1 83.3 85.2 0.9 3.0 15.8 11.8 0.8 0.46
DeepSeek-V3-0324 84.1 83.5 11.6 7.3 4.3 9.2 0.5 1.38

Inherent Biases in Judgment Prior studies (Ye et al., 2025) have revealed that LLM-as-a-judge
exhibits various forms of bias, such as positional and verbosity biases. We focus specifically on po-
sitional bias. Despite explicit instructions to ignore order and remain objective, models still exhibit
a systematic preference for responses in a specific position, as shown in Table 5. One might hypoth-
esize that this bias emerges primarily in ambiguous cases where the two options are of comparable
quality. However, our analysis of the label distribution for instances with inconsistent predictions
reveals that the proportion of ties is not higher than that of wins or losses. This finding suggests
that positional bias is not merely an artifact of ambiguity but rather an inherent deficiency in the
models, and instruction alone is insufficient to eliminate these deeply embedded inductive biases.
Rather than employing debiasing techniques such as swapping, we choose the prompting method to
reflect the models’ authentic single-pass evaluation capability. Any inherent bias (such as position
bias) is considered an intrinsic flaw of the model’s judgment ability. A further comparison with the
debiasing technique is provided in Appendix D.1.
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Instruction: Consider a requirement met if the solution's feature is equivalent. For example, the required 

heading element is present on the page, though the exact text or symbol differs.

Requirement:
A grading row for the “Demonstration” category
• A text label displaying “Demonstration”.
• A set of star icons for rating “Demonstration”.

Element in webpage:

LLM: false Agent: false Human: true

Figure 4: An example illustrating the failure to recognize functional equivalence. The webpage
element for “Presentation” serves the same purpose as the required “Demonstration” rating. Detailed
examples can be found in Appendx E.2.

Limitations in Understanding Functional Equivalence A critical requirement for reliable eval-
uation is the ability to recognize functional equivalence—i.e., determining whether different im-
plementations satisfy the same underlying requirement. We find that evaluators often fail in such
judgments, adhering strictly to literal interpretation rather than intent. For example, as illustrated in
Figure 4, when instructed explicitly, human evaluators correctly recognize an element implemented
with alternative text, whereas both LLM and agentic evaluators incorrectly reject it. This reflects a
fundamental gap in contextual and pragmatic reasoning, limiting their applicability in open-ended
domains where diversity in implementation is common.

Table 6: Performance on the WebDevJudge-Unit
for feasibility verification. We report precision
(P), recall (R), F1-score, and accuracy (Acc).

Model Observe P R F1 Acc

UI-TARS-1.5 Traj. 82.4 70.3 75.8 75.1

GPT-4.1 Code 72.1 90.0 80.1 75.1
DeepSeek-V3 Code 69.6 93.5 79.8 73.7

Shortcomings in Feasibility Analysis We
further investigate the evaluators’ ability to ac-
curately verify task fulfillment. Existing bench-
marks such as AgentBench (Lù et al., 2025) are
too general to assess web-specific judgment. To
address this, we construct WebDevJudge-Unit,
a targeted dataset of 502 test cases. Each in-
stance consists of web code, a specific verifica-
tion task, an expected result, and a label indi-
cating whether the task is feasible. We evaluate
both LLM-based (code-only) and agent-based
(interaction-driven) evaluators on this dataset. From the results in Table 6, we identify complemen-
tary weaknesses: (1) For LLM evaluators, these models achieve moderate recall but suffer from low
precision. While they can often identify relevant code segments, they are unable to verify actual
execution outcomes, leading to false positives when the code appears relevant but does not correctly
implement the desired functionality. (2) For agentic evaluators, they exhibit higher precision but
lower recall. They are effective when they successfully execute a test plan, but sometimes fail to
complete tasks due to limitations in navigation or state interpretation. Consequently, they incorrectly
label feasible tasks as infeasible due to their own operational failures rather than actual shortcomings
in the web implementation. This divergence highlights a fundamental trade-off: static code analysis
lacks execution grounding, while interactive agents are constrained by their own operational relia-
bility. An ideal evaluator would combine the comprehensive coverage of code-aware reasoning with
the grounded verification of interactive testing.

Our analysis reveals that the core limitation of LLM-as-a-judge lies in fundamental deficiencies in
calibration capability. Lacking this calibration, LLMs struggle to map abstract quality dimensions
onto discrete scores and verifiable rubrics. Improving judge performance will require addressing
these core competency gaps rather than merely refining evaluation protocols.

5 CONCLUSION AND FUTURE WORK

In this work, we introduce WEBDEVJUDGE, a comprehensive benchmark for evaluating LLM-as-
a-judge in web development. Unlike previous benchmarks, WEBDEVJUDGE supports both static
code analysis and interactive agent navigation with high-quality preference labels. Our experiments
demonstrate that current LLM-as-a-judge approaches cannot effectively substitute human evalua-
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tion, and we identify core bottlenecks hindering their performance. Since our primary focus is on
evaluation and analysis within the general LLM-as-a-judge domain, we did not specifically optimize
the overall framework structure. We leave the exploration of sophisticated agentic workflows and
complex multi-round evaluations to future work.

ETHICS STATEMENT

The ethical considerations of our work are discussed in the context of the following aspects: (1)
Data collection and use. We use publicly available datasets and self-generated data for evaluation.
We ensure that the data is only used for academic research purposes and no personal data is involved.
We strictly follow the license terms and conditions. (2) LLMs API. We comply with the terms of
service of the LLMs API providers strictly, maintaining fair use.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our methods, datasets, and evaluation metrics in the main text
and appendix to ensure transparency and reproducibility. Our benchmark construction process for
WEBDEVJUDGE is detailed in Section 3 and Appendix A. The experimental setup, including the
models, evaluation paradigms, and specific protocols, is described in Section 4 and Appendix B.
We also provide a complete description of the WebDevJudge-Unit dataset in Appendix C. Code and
scripts are provided in the supplementary materials to replicate the empirical results.
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Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking agentic LLM and VLM
reasoning on games. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=fp6t3F669F.

12

https://openreview.net/forum?id=ZsxZ65YqL1
https://openreview.net/forum?id=ZsxZ65YqL1
https://aclanthology.org/2024.findings-emnlp.651/
https://aclanthology.org/2024.findings-emnlp.651/
https://arxiv.org/abs/2309.04369
https://arxiv.org/abs/2504.15784
https://arxiv.org/abs/2504.15784
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/2024.emnlp-main.992/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2310.04815
https://arxiv.org/abs/2504.08942
https://arxiv.org/abs/2504.08942
https://openreview.net/forum?id=S37hOerQLB
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4-1/
https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2021.702616
https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2021.702616
https://openreview.net/forum?id=fp6t3F669F


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=NPAQ6FKSmK.

Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, Joseph E. Gonzalez, Matei
Zaharia, and Ion Stoica. Why do multiagent systems fail? In ICLR 2025 Workshop on Building
Trust in Language Models and Applications, 2025. URL https://openreview.net/forum?id=
wM521FqPvI.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=dHng2O0Jjr.

Zhen Qin, Junru Wu, Jiaming Shen, Tianqi Liu, and Xuanhui Wang. LAMPO: Large language mod-
els as preference machines for few-shot ordinal classification. In First Conference on Language
Modeling, 2024b. URL https://openreview.net/forum?id=ig6NI9oPhD.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason E Weston, and Tianlu Wang. Learning to
plan & reason for evaluation with thinking-LLM-as-a-judge. In Forty-second International Con-
ference on Machine Learning, 2025. URL https://openreview.net/forum?id=PNRznmmWP7.

ByteDance Seed. Ui-tars-1.5. https://seed-tars.com/1.5, 2025.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train?, 2025. URL https://arxiv.org/abs/2505.21444.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, and
Tejal Patwardhan. Paperbench: Evaluating AI’s ability to replicate AI research. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/forum?
id=xF5PuTLPbn.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based judges.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=G0dksFayVq.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025a. URL https://arxiv.org/abs/2507.
06261.

GLM 4.5 Team. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025b. URL
https://arxiv.org/abs/2508.06471.

Kimi Team. Kimi k2: Open agentic intelligence, 2025c. URL https://arxiv.org/abs/2507.
20534.

Qwen Team. Qwen2.5-vl technical report, 2025d. URL https://arxiv.org/abs/2502.13923.

Qwen Team. Qwen3 technical report, 2025e. URL https://arxiv.org/abs/2505.09388.

Aryan Vichare, Anastasios N. Angelopoulos, Wei-Lin Chiang, Kelly Tang, and Luca Manolache.
Webdev arena: A live llm leaderboard for web app development, 2025.

Jian Wang, Xiaofei Xie, Qiang Hu, Shangqing Liu, and Yi Li. Do code semantics help? a compre-
hensive study on execution trace-based information for code large language models, 2025. URL
https://arxiv.org/abs/2509.11686.

13

https://openreview.net/forum?id=NPAQ6FKSmK
https://openreview.net/forum?id=wM521FqPvI
https://openreview.net/forum?id=wM521FqPvI
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=ig6NI9oPhD
https://openreview.net/forum?id=PNRznmmWP7
https://seed-tars.com/1.5
https://arxiv.org/abs/2505.21444
https://openreview.net/forum?id=xF5PuTLPbn
https://openreview.net/forum?id=xF5PuTLPbn
https://openreview.net/forum?id=G0dksFayVq
https://openreview.net/forum?id=G0dksFayVq
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2509.11686


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng
Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evalua-
tors. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9440–9450, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.511. URL https://aclanthology.org/2024.acl-long.511/.

Qiujie Xie, Qingqiu Li, Zhuohao Yu, Yuejie Zhang, Yue Zhang, and Linyi Yang. An empirical
analysis of uncertainty in large language model evaluations. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
J4xLuCt2kg.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In
The Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=EEgYUccwsV.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL https:
//arxiv.org/abs/2504.01382.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
WE vluYUL-X.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or prejudice?
quantifying biases in LLM-as-a-judge. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=3GTtZFiajM.

Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan, Kaidong Yu, and Xuelong Li. Improve llm-as-
a-judge ability as a general ability, 2025. URL https://arxiv.org/abs/2502.11689.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models, 2025. URL https://arxiv.org/abs/2401.
10020.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=tr0KidwPLc.

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang,
Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo,
Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou,
Chayse Zhou, and Fengzong Lian. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation, 2025a. URL https://arxiv.org/abs/2507.04952.

Guanhua Zhang, Ricardo Dominguez-Olmedo, and Moritz Hardt. Train-before-test harmonizes
language model rankings, 2025b. URL https://arxiv.org/abs/2507.05195.

Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv, Tingwen Liu, Fei Huang, Hongbo Xu, and
Yongbin Li. Wider and deeper llm networks are fairer llm evaluators, 2023. URL https://
arxiv.org/abs/2308.01862.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

14

https://aclanthology.org/2024.acl-long.511/
https://openreview.net/forum?id=J4xLuCt2kg
https://openreview.net/forum?id=J4xLuCt2kg
https://openreview.net/forum?id=EEgYUccwsV
https://openreview.net/forum?id=EEgYUccwsV
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2504.01382
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=3GTtZFiajM
https://arxiv.org/abs/2502.11689
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://openreview.net/forum?id=tr0KidwPLc
https://arxiv.org/abs/2507.04952
https://arxiv.org/abs/2507.05195
https://arxiv.org/abs/2308.01862
https://arxiv.org/abs/2308.01862
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 2299–2314, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
https://aclanthology.org/2024.findings-naacl.149/.

Mingchen Zhuge, Changsheng Zhao, Dylan R. Ashley, Wenyi Wang, Dmitrii Khizbullin, Yun-
yang Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang
Shi, Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with
agents. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=Nn9POI9Ekt.

15

https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://aclanthology.org/2024.findings-naacl.149/
https://openreview.net/forum?id=Nn9POI9Ekt
https://openreview.net/forum?id=Nn9POI9Ekt


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILS IN WEBDEVJUDGE CONSTRUCTION

A.1 DATA COLLECTION AND FILTERING PIPELINE

Our data collection process commences with the webdev-arena-preference-10k dataset (Vichare
et al., 2025; Chiang et al., 2024), which contains 10,501 user queries, each paired with two web
implementations and a user-provided preference label. To ensure the quality and suitability of this
data for our benchmark, we implemented a rigorous two-stage filtering pipeline. The overview of
the filtering pipeline can be seen in Table 7.

Table 7: Overview of the filtering pipeline, including the number of instances before and after
filtering, and the purpose of each filtering stage.

Stage and criterion # before # after Purpose

Query-based: verbatim-identical
duplicate

10,501 6,730 Remove redundancy while
mataining the original distribu-
tion.

Query-based: intention, interac-
tion and safety

6,730 2,460 Remove harmful, offensive, or
nonsensical content, and queries
with minimal interaction require-
ments and unclear intentions.

Env-based: deployment failure
checking via screenshot

2,460 1,814 Remove instances with deploy-
ment failures.

Env-based: deployment failure
checking via status code

1,814 1,713 Remove instances with deploy-
ment failures.

Sampling 1,713 700 Sample 700 instances regarding
the cost-effectiveness.

Manual filtering during annota-
tion

700 654 Filter out instances with harmful
content and deployment failures.

Query-based Filtering The raw queries were first processed to address quality issues. We began
by removing all verbatim duplicate queries to eliminate redundancy. Subsequently, we employed
gemini-2.5-pro to screen for and exclude any queries containing harmful, offensive, or nonsensical
content, based on a predefined set of safety and clarity instructions. We then exclude queries with
minimal interaction requirements (score < 8, max = 10) and queries with unclear intentions (score <
3, max = 5). The prompts used for the safety filter, interaction filter, and intention filter are presented
below.

Environment-based Filtering Following the query-based filtering, we proceeded to validate the
web implementations. We established a standardized Next.js environment for deployment. To man-
age dependencies, we identified and included the most common packages, thereby excluding im-
plementations that required niche or incompatible libraries. Each successfully deployed implemen-
tation was then verified via a test request; those returning a non-200 status code were discarded
as buggy. Finally, to handle instances with intrinsic runtime errors not captured by status codes
(e.g., rendering a blank page), we captured an initial screenshot of each webpage. A multimodal
model, Qwen2.5-VL-72B, was utilized to visually inspect these screenshots and filter out any pages
exhibiting rendering failures.

This comprehensive filtering process yielded a final set of 1,713 high-quality instances for sub-
sequent annotation. We further sampled 700 instances from the final set for annotation. During
annotation, we filtered out instances with harmful content and deployment failures manually. While
the original dataset includes user-provided preference labels, we identified several factors that ren-
der them unreliable for rigorous evaluation. Primarily, the labels are susceptible to a high degree
of subjectivity and variance in evaluation criteria among individual users. The single-pass nature
of the crowdsourced annotations also lacks the verification necessary for robust benchmark data.
Furthermore, the dataset includes a “tie (bothbad)” category, which introduces ambiguity. The sub-
jective definition of “bad” can lead to inconsistent labeling, potentially masking instances where
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one implementation, though imperfect, is demonstrably superior to the other. To illustrate these
inconsistencies, we provide examples of problematic cases from the original dataset in Table 8.

PROMPT FOR QUERY-BASED SAFETY FILTERING

You are given a user query. Classify whether it is safe or unsafe.
Definitions:
SAFE: The query is clear, relevant, and does not request or promote hazardous, violent, hateful, or
sexually explicit content.
UNSAFE: The query contains harmful, offensive, or nonsensical content.
Output your decision in **valid JSON** with the following schema:

{
"query": "<the original user query>",
"label": "SAFE" or "UNSAFE",
"category": "<one of: hazard, violence, sexual, hate, other>",
"reason": "<brief explanation>"

}

PROMPT FOR QUERY-BASED INTERACTION FILTERING

Please analyze the user’s input to assess the level of detail regarding interaction requirements for web
design. Focus on the functionality implied by the user’s input and the interactions required. Based on
your evaluation, assign a score from 0 to 10:
0: No potential interaction requirements are mentioned, but the website may still contain interactions.
3: No interaction is mentioned explicitly, but interactions may still exist in the functionality.
5: One interaction is mentioned or implied, focusing on a single functionality or task.
8: More than one interaction is mentioned or implied, involving multiple functionalities or tasks.
10: All relevant interactions and functionalities are clearly mentioned in detail, requiring full user
engagement with the site or app.
After completing your analysis, output your score in the format: <<score:int>>. For example:
<<score:7>>.
Examples:
User: Building a merge sort function Response: This is a programming task that doesn’t involve any
web interactions or user-facing functionality. <<score:0>>
User: a poker site Response: The term “poker site” implies interactions, but the input lacks specific
details about those interactions. <<score:2>>
User: Create a unique and incredibly beautiful design. The design is up to your discretion, but the main
thing is to make it stand out! Write code that is at the senior level or even above it, as if you’ve been
working in the frontend for 10 years. Make the design beautiful and pleasing to the eye! Response:
The focus is on aesthetics and quality, with some implied user interaction related to the design’s appeal,
but not much about functionality. <<score:3>>
User: site for selling craft chocolate bars Response: This request implies basic interactions such as
browsing and purchasing, but lacks specific details about the interactions. <<score:5>>
User: Design a guided meditation player with progress tracking. Create a library view to browse
and select different meditation sessions. Response: The request involves multiple interactions like
browsing, selecting sessions, and tracking progress, but is not fully detailed. <<score:8>>
User: Build a game of chess Response: A chess game involves numerous interactions such as moving
pieces, taking turns, and tracking the game state, all requiring user engagement. <<score:9>>
User: Make me a clone of WhatsApp Chat App Response: A clone of WhatsApp implies multiple
interactions, including sending/receiving messages, media sharing, and managing chats, all of which
require significant user engagement and functionality. <<score:9>>
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PROMPT FOR QUERY-BASED INTENTION FILTERING

Analyze the user’s input to evaluate the clarity of their query regarding website design. Assign a score
from 1 to 5 based on the criteria below:
Score 5: User provides a clear, detailed description of requirements, including specific features and
design elements.
Score 4: User’s intention is mostly clear with some details, but lacks comprehensive specifics.
Score 3: User presents a general idea, but the request is vague and lacks essential information.
Score 2: User’s input is unclear or contains irrelevant information, making their intention difficult to
discern.
Score 1: Input is nonsensical or purely code-related, reflecting no intention for a design request. Out-
put: Return a JSON object containing the reasoning for the score and an expected result, formatted as
follows:

[{"reason": "A clone of WhatsApp Chat App", "score": "4"},]

Table 8: Examples of problematic cases. In each example, the upper figure is referred to as model a,
while the lower one is model b.

Query Implementation Analysis

Build a website iden-
tical to apple.com.

Initial label: model b
Annotated label: model a
Problem type: subjective label
bias.
Reason: A thorough check of
apple.com shows that A’s rest-
oration is much more accurate.

Build a 4×8 version
of the game 2048.

Initial label: tie (bothbad)
Annotated label: model b
Problem type: misjudgment in
“bothbad” ties.
Reason: While both have clear
usability flaws, B is still clearly
superior to A in terms of its ali-
gnment with the query.
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A.2 RUBRIC ANNOTATION PIPELINE

The annotation was conducted by two of the authors, all of whom possess strong backgrounds in
computer science and software engineering. Since we have two annotators, the agreement rate is
calculated as the proportion of instances where their annotations are the same. The annotation
requires annotators to interact with the deployed web implementations and provide a preference
label via pairwise comparison. However, this direct approach yields low inter-annotator agreement,
underscoring the high degree of subjectivity inherent in the task and the need for a standardized
evaluation framework.

To address this, we introduced a rubric-guided annotation process. Manually creating detailed
rubrics for each query is not only prohibitively time-consuming—with an estimated 20 minutes
per rubric, excluding research time—but also intellectually demanding. It requires extensive back-
ground knowledge, including familiarity with established UI/UX design patterns for similar ap-
plications and, in many cases, specialized domain knowledge for tasks like scientific simulations.
Recognizing these challenges, we leveraged a powerful large language model, gemini-2.5-pro,
for automated generation. Based on each user query, the model produced a structured rubric tree
organized along three core dimensions critical to web development quality:

• Intention: The core requirements of the user query.
• Static Quality: The assessment of static elements, including UI layout and UX design.
• Dynamic Behavior: The evaluation of interactive features.

The prompt used to generate these rubric trees is provided below.

Upon manual review, the LLM-generated rubrics exhibited both strengths and weaknesses. For
queries that referenced real-world applications, the rubrics were often of high quality, sometimes
surpassing human-authored versions in detail. However, for vague or overly general queries, which
are common on crowdsourcing platforms, the generated rubrics sometimes included criteria that
were either too specific or too broad, reflecting the ambiguity of the original request. We present
several examples of the rubric tree structure, encompassing the manually-curated example provided
in the one-shot rubric generation, alongside instances of both relatively high and low quality LLM-
generated rubrics, as illustrated in Figure 9 in Appendix E.1.

Table 9: Statistics of the generated rubric trees.

Metric Intention Static Dynamic Whole

Average height 2.0 3.9 3.3 5.0
Average number of leaf nodes 3.6 15.6 10.6 29.9

We also provide the statistics of the rubric trees; the details are shown in Table 9. From the statistics,
especially the average number of leaf nodes, we can see that the LLM-generated rubrics cover a
wide range of criteria, which is a good sign for the evaluation of web development tasks. To ensure
consistent application of these rubrics, we established a set of clear annotation guidelines for the
expert annotators, as detailed in the following. This structured pipeline, combining LLM-generated
rubrics with clear human oversight and guidelines, proved highly effective. The final inter-annotator
agreement rate reached 89.7%, confirming the consistency and objectivity of our annotation process.

ANNOTATION GUIDELINES

1. All judgments must be based on actual user experience, not solely on visual appearance.
2. In general, the completeness of functionality takes precedence over aesthetics, unless the user query

explicitly requests a focus on design.
3. If both web pages are well-implemented, aesthetic quality should be considered as a deciding factor.
4. If there is any important and discernible difference in quality between the two pages, a preference

should be stated rather than defaulting to a tie.
5. When a decision is difficult, the rubric tree should serve as the definitive guide. Refer to the

fulfillment of both leaf-level and root-level criteria.
6. When judging based on the rubric tree, consider functional equivalence rather than demanding

literal, identical implementations.
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PROMPT FOR RUBRIC TREE BUILDING

## TASK DESCRIPTION
You are an expert software quality assurance (QA) analyst. Your task is to take a user query for a web
development project and generate a structured, hierarchical rubric. This rubric will be used to evaluate
a generated webpage in a verifiable, binary (implemented/not implemented) manner.
The output must be a single JSON object with ```json and ``` wrapped around it.
The JSON object must have three top-level keys: ‘intention’, ‘static’, and ‘dynamic’.
### JSON Structure Rules:
1. Each node in the tree must be a dictionary with two keys:

- ‘description’: A string describing the feature or goal.
- ‘children’: A list of child nodes, or None if it is a leaf node.

2. The ‘intention’ section should capture the high-level purpose and core goals of the webpage. De-
scriptions should be concise and conceptual overviews of what the user wants to achieve.
3. The ‘static’ section must detail all the non-interactive, visible elements of the webpage. Break down
components into their smallest logical parts. For example, a “user profile card” should be broken down
into “user image”, “username”, and “user bio.”
4. The ‘dynamic’ section describes all the interactive functionalities of the page.

- It must have exactly two children: one for “basic” interactions and one for “complex” interac-
tions.

- ‘basic’: These are simple, single-step user actions. Examples include typing into a text field,
clicking a non-submitting button, or selecting a dropdown option.

- ‘complex’: These are multi-step processes or actions that result in a significant change to the
application’s state. Examples include submitting a form, fetching data, filtering a list of items, or
navigating to a new view after an action.
5. Verifiable Leaf Nodes: Every leaf node in the entire tree (where “children” is None) must describe
a specific, atomic, and verifiable requirement. The description should be a clear statement that can be
evaluated as “implemented” or “not implemented”.
## Example:
### User Query:
{example query}
### Generated Rubric Tree (Your Output):
```json
{example rubric tree}
```

Now, analyze the following user query and generate the rubric tree in the specified JSON format.
### User Query:
{user query}

A.3 DATA STATISTICS

In this section, we describe the categorization pipeline for WEBDEVJUDGE and present representa-
tive examples for each subcategory. We adapt topics from the original dataset (Vichare et al., 2025)
to serve as our subcategories. Given that WEBDEVJUDGE contains only 654 instances, we did not
use a topic modeling model for clustering. Instead, we generated subcategories by providing the
topic name, a detailed description, and the user query to GPT-4o. These subcategories were then
manually reviewed and consolidated into three main categories.
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B EXPERIMENTAL DETAILS

In this section, we show the details of the implementation of our experiments. Including the mod-
els and hyperparameters, the details of evaluation protocols and metrics, and the agentic workflow
implementation.

B.1 MODELS AND HYPERPARAMETERS

Our experiments utilize a combination of open-source and commercial models. Open-source mod-
els were deployed using vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). Commercial
models were accessed via their respective APIs, including Azure1 and Vertex AI2. To ensure repro-
ducibility, we set the temperature to 0.0 for all models, with the exception of claude-3.7-sonnet
and claude-4-sonnet, for which the temperature was set to 1.0 to enable their “thinking” mode.
For brevity, the models referred to as DeepSeek-V3 and DeepSeek-R1 in the main paper correspond
to DeepSeek-V3-0324 and DeepSeek-R1-0528, respectively.

B.2 EVALUATION PROTOCOLS AND METRICS

Likert Scale Motivated by the work of Bian et al. (2025), we designed a multi-level Likert scale
for evaluating web development tasks. The scale is based on the international standard for software
quality assessment (ISO/IEC/IEEE, 2022) and has been specifically adapted for our dataset. The
details of the Likert scale are shown in “Dimensions of the Likert Scale”.

In selecting these dimensions, we considered the typical workflow of human evaluators in web
testing. Given that the tasks in our dataset are primarily front-end focused, and acknowledging
the current limitations of generative models in producing efficient, full-stack solutions, we have
concentrated on fundamental aspects of web development, omitting higher-level criteria such as
backend performance and efficiency.

For single-implementation evaluation, the model assigns a score from 1 (lowest) to 5 (highest) to
each sub-dimension. The final score is the sum of all sub-dimension scores. For pairwise com-
parison, both implementations are presented to the model simultaneously, which allows it to assign
scores based on their relative merits. The final preference is determined by the score difference be-
tween the two implementations. A preference is declared for the higher-scoring implementation if
the score difference exceeds a threshold of 1; otherwise, the outcome is considered a tie.

Rubric For rubric-based evaluation, the process is guided by the LLM-generated rubric tree. The
model is provided with the rubric, the user query, and the web implementation(s). To mitigate
the inherent ambiguity in rubric-based assessments, we instruct the model to recognize functional
equivalence. For instance, a requirement for a heading is considered met if a heading element is
present, even if its text or styling differs from a literal interpretation of the rubric.

In the single-answer grading setting, the model assigns a binary label (pass or fail) to each leaf node
of the rubric. We then compute a pass rate of the leaf node for each of the three primary dimensions:
intention, static, and dynamic. The final score is the weighted sum of these pass rates. For pairwise
comparison, the model evaluates the two implementations against each leaf node, determining which
is superior or if they are tied. This yields a win rate for each implementation of the leaf nodes across
the three dimensions. A final score for each is calculated as a weighted sum of these win rates.
Preference is awarded to the implementation with the higher final score. In our implementation, all
dimension weights are set to 1.

Direct For direct evaluation, instead of providing any criteria, we instruct the model to directly
output its preference (i.e., Wa, Wb, or tie).

1https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference
2https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview
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DIMENSIONS OF THE LIKERT SCALE

Evaluation Criteria
1. Functional Correctness and Completeness
- 1.1 **Core Functionality**: Evaluates if the primary features and requirements specified
in the user query are implemented correctly and function as expected.
- 1.2 **Content Accuracy and Completeness**: Assesses if all the required content (text,
images, links, etc.) is present, accurate, and correctly placed as per the user’s query.
- 1.3 **Boundary Conditions and Corner Cases**: Examines the solution’s behavior with
unexpected or extreme user inputs.
- 1.4 **Error Handling**: Evaluates the system’s ability to handle errors gracefully. This
includes providing clear, user-friendly error messages and preventing application crashes
due to invalid operations.

2. User Interface Quality
- 2.1 **Visual Consistency and Cohesion**: Assesses the consistency of design elements
such as color schemes, typography, spacing, and component styling throughout the web-
page.
- 2.2 **Layout, Structure, and Responsiveness**: Evaluates the overall layout and structural
organization of the content. This also critically assesses the responsiveness of the design
across different screen sizes (desktop, tablet, mobile).
- 2.3 **Aesthetic Appeal**: Assesses the overall visual appeal of the webpage. This
includes the effective use of color, typography, imagery, and whitespace to create an
engaging and modern user interface.

3. Code Quality
- 3.1 **Readability and Maintainability**: Assesses the clarity and organization of the
code. This includes proper indentation, meaningful variable names, comments where
necessary, and a logical file structure.
- 3.2 **Modularity and Reusability**: Evaluates whether the code is broken down into logi-
cal, reusable components or functions, avoiding monolithic structures and code duplication.
- 3.3 **Scalability and Efficiency**: Assesses the efficiency of the code, as well as the
ability to scale the codebase for future enhancements or new features.

4. Interactivity:
- 4.1 **Effectiveness**: Assesses the functionality and user experience of interactive
elements like buttons, forms, menus, and sliders. This includes visual feedback on user
actions (e.g., hover states, loading indicators).
- 4.2 **Logical Correctness**: Evaluates whether the application state changes correctly in
response to user interactions.
- 4.3 **Accessibility**: Evaluates how easy and intuitive it is for a user to navigate the
webpage and interact with its elements to achieve their goals.

B.3 AGENTIC WORKFLOW IMPLEMENTATION

This section details our agentic workflow implementation, as shown in Table 10. To ensure compa-
rability with our other evaluation methods, the workflow’s planner adopts the LLM-generated rubric
tree to guide the executor’s verification actions. The executor is UI-TARS-1.5 (Seed, 2025), one of
the state-of-the-art end-to-end GUI agents operating on a ReAct-style paradigm (Yao et al., 2023),
where it first generates a thought and then a corresponding action. These actions are converted into
executable pyautogui3 code. We utilize the official UI-TARS-1.5 action space and have designed
specific prompting strategies for each rubric dimension. For the Static dimension, the rubric tree
is converted into a list of elements; the agent navigates the page to find these elements and returns a
list of those present. For the Dynamic and Intention dimensions, each rubric leaf node becomes a
task for the agent to complete. Upon reaching the maximum number of steps, the agent provides a
conclusion on the task’s outcome. Finally, the summarizer calculates a pass rate for each dimension

3https://pyautogui.readthedocs.io/en/latest/
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based on the agent’s findings, and the final score is the weighted sum of these pass rates, mirroring
the single-implementation rubric evaluation.

Table 10: Details of the agent settings.

Dimension Input Format Output Format Max Step

Static List of elements to check List of found elements 8
Dynamic Task description Task feasibility and conclusion 8 for basic, 15 for complex
Intention Intention description Feasibility conclusion 15

ACTION SPACE OF UI-TARS 1.5

click(point=‘<point>x1 y1</point>’)
left double(point=‘<point>x1 y1</point>’)
right single(point=‘<point>x1 y1</point>’)
drag(start point=‘<point>x1 y1</point>’, end point=‘<point>x2 y2</point>’)
hotkey(key=‘ctrl c’) # Split keys with a space and use lowercase. Also, do not use
more than 3 keys in one hotkey action.
type(content=‘xxx’) # Use escape characters \', \", and \n in content part to ensure
we can parse the content in normal python string format. If you want to submit your
input, use \n at the end of content.
scroll(point=‘<point>x1 y1</point>’, direction=‘down or up or right or left’) #
Show more information on the ‘direction’ side.
wait() # Sleep for 5s and take a screenshot to check for any changes.
finished(content=‘xxx’) # Use escape characters \', \", and \n in content part to
ensure we can parse the content in normal python string format.

B.4 PROMPT TEMPLATES

The prompt templates used for pairwise comparison experiments are as follows. For single-answer
grading, the only action is simply to modify the input presentation, for example, by modifying two
separate code blocks into one.

PROMPT FOR DIRECT COMPARISON

You are tasked with comparing two React code snippets (Model A and Model B) based on the user’s
query. The input will contain:
- User Query: The question or concern the user has.
- Answer from Model A: The output of Model A.
- Answer from Model B: The output of Model B.
Your output should be in the following JSON format:
```
{
“reason”: “Detailed explanation for why one model is better, based on the user’s query”,
“winner”: “‘model a’, ‘model b’, or ‘tie”’
}
``` - reason: A detailed explanation of why one model’s answer is better than the other, based on the
user’s query. Focus on the quality of the responses and how well they address the user’s concerns.
- winner: Select the winner from the following options:
- “model a”: If Model A is better.
- “model b”: If Model B is better.
- “tie”: If both models are equally good or both provide unsatisfactory answers.
Ensure that you thoroughly evaluate the responses before selecting the winner and providing the rea-
son.
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PROMPT FOR RUBRIC-BASED COMPARISON

You are an expert Quality Assurance engineer specializing in web development. Your objective is to
meticulously evaluate and compare two different web development solutions for the same task based
on a predefined rubric. You will be provided with the user’s initial query, two solutions (codes for both
webpages A and B), and a comprehensive rubric covering intention, static, and dynamic elements of
the webpage.
Based on these inputs, you will assess whether each requirement in the rubric is implemented in each
of the two solutions. Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the responses to influence
your evaluation. Be as objective as possible. During your assessment, please note that the solution
might use different terminology than the rubric. Consider a requirement met if the solution’s feature
is equivalent. For example, the required heading element is present on the webpage, though the exact
text or symbol differs.

## User Query
{user query}

## Code A
```tsx
{code a}
```

## Code B
```tsx
{code b}
```

## Rubric
### Intention
```json
{intention rubric} ```
### Static Elements
```json
{static rubric}
```

### Dynamic Elements
```json
{dynamic rubric}
```

## INSTRUCTIONS Your task is to return a single JSON object. This object should have three
top-level keys: “intention”, “static”, and “dynamic”. The value for each key should be a JSON object
that mirrors the structure of the corresponding rubric provided above. For each leaf node in each
rubric (i.e., where “children” is null), you must add a new key ”value”. The value for this key must be
a string: “A” if solution A is better, “B” if solution B is better, or “tie” if they are of equal quality or
both fail to meet the requirement.

## Output Format
Begin your evaluation by providing an explanation for your reasoning. End your output with a JSON
object wrapped with ```json at the beginning and ``` at the end. Do not include any other text after
the JSON object.

Here is an example of the output format:
```json
{ ”intention”: { ”description”: ”The purpose of the web page.”, ”children”: [ { ”description”: ”A
web page for book reviews.”, ”children”: null, ”value”: ”A” } ] }, ”static”: { ”description”: ”The
static elements of the web page.”, ”children”: [ { ”description”: ”The book review submission form.”,
”children”: [ { ”description”: ”A field to input the book’s rating.”, ”children”: null, ”value”: ”tie” } ]
} ] }, ”dynamic”: { ”description”: ”The interaction between the user and the web page.”, ”children”: [
{ ”description”: ”Basic user interactions.”, ”children”: [ { ”description”: ”User can type text into the
review text area.”, ”children”: null, ”value”: ”B” } ] } ] } } “‘ ”””
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PROMPT FOR LIKERT SCALE-BASED COMPARISON

You are an expert Quality Assurance engineer specializing in web development. Your objective is to
meticulously evaluate and compare two different web development solutions for the same task. You
will be provided with the user’s initial query and the solutions (codes for both webpages A and B).
Based on these inputs, you will assess the quality of each solution across several key dimensions.
For each sub-criteria, you must provide a rating on a 5-point Likert scale, where 1 represents “Very
Poor” and 5 represents “Excellent”. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length of the responses
to influence your evaluation. Be as objective as possible.

{DIMENSIONS OF THE LIKERT SCALE}

## User Query
{user query}

## Code A
```tsx
{code a}
```

## Code B
```tsx
{code b} ```

## Output Format
Begin your evaluation by providing a short explanation. End your output with a json object wrapped
with ```json at the beginning and ``` at the end. Use the sub-criterion id as the key. The value for
each key should be a nested json object containing the scores for each solution, with “A” and “B” as
keys. Do not include any other text after the json object.
Here is an example of the output format:
```json
{ ”1.1”: { ”A”: 5, ”B”: 4 }, ”1.2”: { ”A”: 4, ”B”: 5 }, ”1.3”: { ”A”: 3, ”B”: 3 }, ”1.4”: { ”A”: 2, ”B”:
2 }, ”2.1”: { ”A”: 5, ”B”: 5 }, ”2.2”: { ”A”: 4, ”B”: 3 }, ”2.3”: { ”A”: 3, ”B”: 4 }, ”3.1”: { ”A”: 5,
”B”: 5 }, ”3.2”: { ”A”: 4, ”B”: 4 }, ”3.3”: { ”A”: 3, ”B”: 3 }, ”4.1”: { ”A”: 5, ”B”: 4 }, ”4.2”: {
”A”: 4, ”B”: 5 }, ”4.3”: { ”A”: 3, ”B”: 4 } }
```
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C WEBDEVJUDGE-UNIT DATASET

In this section, we introduce WebDevJudge-Unit, a task-level dataset created to assess the capability
of evaluators to verify task feasibility.

C.1 DATASET CONSTRUCTION

To construct the WebDevJudge-Unit dataset, we began by randomly sampling 105 queries from
WEBDEVJUDGE. For each query, we prompted gemini-2.5-pro to generate up to five correspond-
ing verification tasks, each with an expected result. We then generated the necessary HTML code
for each query to facilitate easy deployment. Following deployment, each task was meticulously an-
notated for feasibility (true/false) by interacting with the live web application. For tasks identified as
infeasible, we further annotated the specific error type and provided a detailed reason for the failure.

Table 11: Statistics of the WebDevJudge-Unit dataset.

Error Type Proportion Example

Description Error Reason

Non-funtional element 35.9 Task: On a Question Review page, mod-
ify the text content of a displayed question
within its editable text field.

Unable to edit question con-
tent.

Expected Result: The displayed question
text updates to reflect the new input.

Missing element 30.9 Task: Click the ‘Market’ tab. Can not find the Market tab.
Expected Result: The ‘Market’ view is dis-
played, showing a list of cryptocurrencies.

Prerequisite not met 15.2 Task: Select an answer for a multiple-choice
question by clicking on one of the options.

Unable to import the quiz
correctly.

Expected Result: The chosen answer op-
tion is visually highlighted.

Loading issue 9.0 Task: Click a file name in the File Explorer
sidebar.

Unable to load file content.

Expected Result: The corresponding file’s
mock content is shown in an editor tab.

Unreasonable outcome 5.4 Task: Scroll the chat display area to view
older messages when content overflows.

N/A

Expected Result: The user is logged out.

Ambiguous input 2.2 Task: Hover over a data point or segment in
a Chart.

Chart is not required in the
webpage.

Expected Result: A tooltip containing
mock data relevant to the hovered chart el-
ement is displayed.

Overly detailed task 0.9 Task: From a list of activities on the ‘Ac-
tivities Screen’, click on a specific activity’s
name or image.

Unable to get the expected
result based on the opera-
tion.

Expected Result: The ‘Detail View’ for the
selected activity is displayed, showing its
full description.

Missing animation 0.5 Task: Move the mouse cursor across the
main 3D animated background area.

The background 3D anima-
tion is not responsive.

Expected Result: The 3D background ani-
mation dynamically responds to the cursor’s
position or movement.

C.2 DATASET STATISTICS AND EXAMPLES

The resulting dataset comprises 502 tasks derived from 105 unique queries. The feasibility labels
are distributed as follows: 279 tasks are marked as feasible and 223 as infeasible. Table 11 presents
a detailed breakdown of the error types for the infeasible tasks, along with illustrative examples for
each category.
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D ADDITIONAL RESULTS

This section provides a more detailed analysis of LLM-as-a-judge performance on web development
tasks, supported by supplementary experimental results.

D.1 MITIGATING THE IMPACT OF POSITIONAL BIAS

To mitigate the impact of positional bias, we employ a widely-used debiasing technique from prior
works (Zeng et al., 2024; Tan et al., 2025). This method involves evaluating each pair of implemen-
tations twice, with their positions swapped in the second evaluation. A preference is considered final
only if the model’s choice remains consistent across both orderings. If the choice is inconsistent, the
outcome is recorded as a tie. We use this approach to investigate whether mitigating positional bias
improves overall model performance. The results are shown in Table 12.

Table 12: Agreement rate (%) with and without mitigating the positional bias.

Model w/ mitigating w/o mitigating

Direct Likert Direct Likert

Claude-4-sonnet 65.0 65.1 66.1 66.1
GPT-4.1 64.8 65.1 64.2 66.1
DeepSeekV3-0324 60.8 62.2 62.5 63.6

A natural question arises as to why we did not employ the swap-based debiasing technique in our
main experiments. Our decision to rely on single-pass evaluation stems from two primary consid-
erations. First, our core objective is to characterize the raw, unfiltered behavior of LLMs-as-judges
to understand their inherent biases. Applying debiasing techniques from the outset would mask or
average out these effects, obscuring the very phenomena we seek to analyze. The results in Table 12
indicate that the overall performance difference before and after debiasing is not substantial in our
setup. This finding reinforces the importance of studying the biases directly, as their presence is
not always evident from aggregate performance metrics alone. Second, the single-pass evaluation
mirrors many practical application scenarios where, for reasons of cost and efficiency, models are
queried only once per pair. Therefore, our main experimental results offer a more realistic and cau-
tionary benchmark for practitioners, highlighting the potential pitfalls of naively deploying these
models without safeguards. Our methodology thus deliberately separates the diagnosis of inherent
model behaviors from the evaluation of mitigation strategies.

D.2 PREDICTION DISTRIBUTION CONSISTENCY

To understand the nature of model failures, we analyze the consistency of predictions across dif-
ferent evaluators. This investigation seeks to determine whether different models tend to err on the
same set of instances—suggesting certain examples are inherently challenging—or if their errors are
largely independent and model-specific. The results of this label consistency analysis are presented
in Figure 5 and Figure 6.

Our analysis of prediction consistency across different models reveals a significant disparity between
the two evaluation paradigms. As illustrated in Figure 5 and Figure 6, the inter-model agreement
under the pairwise comparison paradigm is substantially higher than that under single-answer grad-
ing. In pairwise comparisons, the consistency rates between different evaluators generally exceed
75%, with many model pairs even surpassing 80%. In stark contrast, under single-answer grading,
inter-model consistency drops significantly, typically hovering between 50% and 65%.

This discrepancy corroborates our core finding from the main text: pairwise comparison is a more
stable and reliable paradigm for complex, open-ended tasks like web development. Relative judg-
ment in pairwise comparison constrains the evaluation scope, compelling the model to focus on
discriminative features between two candidates, which is a cognitively less demanding task than
absolute scoring. Conversely, single-answer grading requires the model to possess a well-calibrated
and consistent internal standard of quality, a standard that varies greatly across different models.
Consequently, the single-answer grading paradigm exposes the current models’ deficiencies in cali-
bration, leading to inconsistent and less reliable evaluation outcomes.
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Figure 5: The consistency between model predictions under pairwise comparison.

Furthermore, the high consistency in pairwise comparison suggests that while different models may
lack a shared understanding of ‘absolute quality,’ their internal mechanisms for making ‘relative
preference’ judgments are more aligned. This reinforces our view that leveraging relative judg-
ments is a more robust approach for automated evaluation in domains characterized by nuance and
ambiguity, where clear-cut right or wrong answers are scarce.

To further substantiate these findings, we extend our consistency analysis to rubric-based grading,
examining its internal consistency across different models (Figure 7) and its alignment with the
direct evaluation paradigm (Figure 8).

D.3 EVALUATION RESULTS ON NON-TIE CASES

Given the brittleness of language models when handling ambiguous tie conditions, we also present
results for non-tie cases, where a clear preference was established. As presented in Table 13, ex-
cluding tie cases results in a substantial improvement in agreement rates for all evaluators, indicating
that ambiguous comparisons are a primary source of error. More importantly, these results reinforce
the core conclusions drawn from our main experiments. The pairwise comparison paradigm consis-
tently and significantly outperforms single-answer grading, highlighting its robustness for capturing
relative quality. Furthermore, the patterns of different guidance mechanisms remain consistent: in
the pairwise setting, both Likert scale and Rubric-based guidance yield comparable performance,
suggesting that the relative judgment itself is the dominant factor. In contrast, for single-answer
grading, the Rubric-based approach is demonstrably superior to the Likert scale. This reinforces
our finding that structured, binary assessments provide a more reliable signal for absolute evaluation
than multi-point scales, which require a level of calibration that models currently lack.
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Figure 6: The consistency between model prediction under single answer grading.
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(a) Consistency under pairwise comparison.
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(b) Consistency under single-answer comparison.

Figure 7: The inner prediction consistency between model predictions under rubric paradigm.
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(a) Prediction consistency under rubric (pairwise
comparison) and direct paradigm.
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(b) Prediction consistency under rubric(single-
answer grading) and direct paradigm.

Figure 8: The inter-method consistency between model predictions under rubric paradigm and direct
paradigm.

Table 13: Agreement Rate (%) (without tie) of different evaluators under different evaluation
paradigms.

Model/Method DIGITAL DESIGN GAME & APP WEB & SPECIAL AVERAGE

Single Pair Single Pair Single Pair Single Pair

Likert

ë GPT-4.1 65.73 80.34 71.27 82.87 72.61 85.35 69.77 82.75
ë GPT-4o 58.99 78.65 64.09 80.11 70.70 80.89 64.34 79.84
ë Qwen-2.5-VL-72B-Inst. 50.00 74.72 51.93 76.24 59.87 78.98 53.68 76.55
ë Gemini-2.5-flash-lite 56.74 69.10 56.91 69.61 57.32 73.89 56.98 70.74
DeepSeek-V3-0324 67.42 78.09 64.09 75.14 71.34 83.44 67.44 78.68
Kimi-K2-Inst. 69.66 78.65 66.30 73.48 63.69 80.25 66.67 77.33
Qwen3-235B-A22B-Inst. 62.36 75.28 67.40 77.35 67.52 75.80 65.70 76.16
Qwen3-30B-A3B-Inst. 65.73 76.97 69.06 73.48 67.52 81.53 67.44 77.13
Qwen2.5-32B-Inst. 55.06 71.91 58.56 77.35 59.24 77.71 57.56 75.58
Gemma-3-27B-it 51.12 69.66 57.46 64.09 49.04 75.16 52.71 69.38
Qwen2.5-14B-Inst. 51.69 59.55 50.28 56.35 43.31 59.87 48.64 58.53
ë Claude-4-Sonnet 61.24 80.90 69.06 82.32 69.43 80.25 66.47 81.20
ë Claude-3.7-Sonnet 75.28 79.78 69.61 75.69 69.43 85.35 71.51 80.04
ë Gemini-2.5-pro 59.55 75.28 58.56 79.01 50.32 73.25 56.40 75.97
GLM-4.5 67.42 79.78 63.54 76.80 64.33 78.98 65.12 78.49
DeepSeek-R1-0528 57.87 76.97 65.75 76.80 58.60 76.43 60.85 76.74
Qwen3-30B-A3B-Think. 62.36 71.35 61.88 72.38 61.78 75.80 62.02 73.06

Rubric

ë GPT-4.1 78.09 82.02 70.72 73.48 70.70 87.26 73.26 80.62
ë GPT-4o 75.84 78.09 71.27 75.69 73.25 83.44 73.45 78.88
ë Qwen-2.5-VL-72B-Inst. 70.79 76.40 71.27 77.9 73.25 80.89 71.71 78.29
DeepSeek-V3-0324 78.09 79.21 65.75 79.01 78.34 87.26 73.84 81.59
Kimi-K2-Inst. 72.47 82.02 67.40 74.59 75.16 87.26 71.51 81.01
Qwen3-235B-A22B-Inst. 74.16 76.97 65.75 66.3 71.97 75.16 70.54 72.67
DeepSeek-R1-0528 78.09 79.21 64.09 70.17 73.25 77.07 71.71 75.39
GLM-4.5 76.97 80.34 66.30 70.72 77.71 79.62 73.45 76.74
Agentic workflow 67.98 - 71.27 - 75.80 - 71.51 -
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E CASE STUDY

E.1 EXAMPLES OF RUBRIC TREES

Examples of the rubric tree structure are illustrated in Figure 9. We can observe that for queries
requiring specific domain knowledge (e.g., the mid one), large language models can generate de-
tailed and accurate rubrics, such as evaluation criteria for specific components. This highlights a
key advantage of LLMs over humans: the ability to leverage their extensive domain knowledge to
generate precise rubrics for corresponding queries. However, for more general queries (e.g., the
rightmost query), the rubrics generated by LLMs can be overly fine-grained. This may introduce
ambiguity during evaluation, for instance, by adding overly specific categories like “Content” for a
general “categories”.

Query: Design a book review submission form with fields for 
rating, author, and a text area. Lay out a book review page with 
the title, author, rating, review text and a user profile image.

{
  "intention": {
    "description": "The purpose of the web page.",
    "children": [
      {"description": "A web page for book reviews.", "children": null},
      {"description": "A form for submitting book reviews.", "children": null},
      {"description": "Display submitted reviews.", "children": null}
    ]
  },
  "static": {
    "description": "The static elements of the web page.",
    "children": [
      {
        "description": "The book review submission form.",
        "children": [
          {"description": "A field to input the book's rating.", "children": null},
          {"description": "A field to input the book's author.", "children": null},
          {"description": "A text area for the review content.", "children": null}
        ]
      },
      {
        "description": "The displayed book review.",
        "children": [
          {"description": "Display the title of the book.", "children": null},
          {"description": "Display the author of the book.", "children": null},
          {"description": "Display the rating of the book.", "children": null},
          {"description": "Display the review text.", "children": null},
          …
        ]
      }
    ]
  },
  "dynamic": {
    "description": "The interaction between the user and the web page.",
    "children": [
      {
        "description": "Basic user interactions.",
        "children": [
            {"description": "User can type text into the review text area.", 
"children": null},
            {"description": "User can select a value in the rating field.", 
"children": null},
            …
        ]
      },
      {
        "description": "Complex user interactions.",
        "children": [
          {"description": "User can submit the book review form.", "children": 
null},
          {"description": "After submission, the new review is visible on the 
page.", "children": null}
        ]
      }
   ]
  }
}

Query: Make a detailed, pixel to pixel perfect, clone UI of windows 
11 newest task manager.

{
  "intention": {
    "description": "The high-level purpose of the web page.",
    "children": [
      {"description": "Create a high-fidelity, visually accurate UI clone of the 
modern Windows 11 Task Manager.", "children": null},
      {"description": "The application should replicate the layout, 
components, and visual styling of the target UI.", "children": null},
    ]
  },
  "static": {
    "description": "The static elements of the web page.",
    "children": [
      {
        "description": "Main Application Window/Frame",
        "children": [
          {
            "description": "A left-hand navigation sidebar.",
            "children": [
              {"description": "A hamburger menu icon at the top of the 
sidebar.", "children": null},
              {"description": "A navigation item for 'Processes' with an icon and 
text.", "children": null},
              {"description": "A navigation item for 'Performance' with an icon 
and text.", "children": null},
              {"description": "A navigation item for 'Services' with an icon and 
text.", "children": null},
              …
            ]
          },
          ...
        ]
      },

...
    ]
  },
  "dynamic": {
    "description": "The interactive functionalities of the page.",
    "children": [
      {
        "description": "Basic user interactions.",
        "children": [
          {"description": "Hovering the mouse over a sidebar navigation item 
provides visual feedback (e.g., background color change).", "children": 
null},
          …
        ]
      },
      {
        "description": "Complex user interactions.",
        "children": [
          …
        ]
      }
    ]
  }
}

Query: Create a modern notebook grading app, with categories 
and the teacher will use a star like system to grade each category. 
The app should show total score, reset button.

{
  "intention": {
    "description": "The high-level purpose and goals of the web 
application.",
    "children": [
    {"description": "A web application for teachers to grade student 
notebooks.", "children": null},
    ...
    ]
  },
  "static": {
    "description": "The static, non-interactive, visible elements of the 
webpage.",
    "children": [
      {"description": "A main heading for the application (e.g., 'Notebook 
Grading App').", "children": null},
      {
        "description": "A container for the grading categories.",
        "children": [
          {
            "description": "A grading row for the 'Organization' category.",
            "children": [
              {"description": "A text label displaying 'Organization’.”, "children": 
null},
              {"description": "A set of star icons for rating 'Organization’.”, 
"children": null}
            ]
           },
         {"description": "A grading row for the 'Content' category.", 
"children": [...]},
          ...
        ]
      },
      {"description": "A section to display the total score.", "children": [...]},
      {"description": "A 'Reset' button.", "children": null}
    ]
  },
  "dynamic": {
    "description": "The interactive functionalities of the page.",
    "children": [
      {
        "description": "Basic user interactions.",
        "children": [
          {"description": "User can click on a star in the 'Organization' 
category to select a rating.", "children": null},
          ...
        ]
      },
      {
        "description": "Complex user interactions.",
        "children": [
          {"description": "When a user selects a star rating in any category, 
the total score is automatically recalculated and updated in the display.", 
"children": null},
          ...
        ]
      }
    ]
  }
}

Figure 9: Examples of the rubric tree structure derived from different sources with correspond-
ing queries. The diagram illustrates human-written rubric trees used for few-shot generation (left),
alongside good (center) and suboptimal (right) examples of LLM-generated rubric trees. Note that
the children attribute of leaf nodes is explicitly set to null. For conciseness, some internal nodes
have been omitted. Leaf nodes are labeled in green.

E.2 FAILURE CASES OF LLM-BASED AND AGENTIC EVALUATORS

In this section, we present failure cases that illustrate the different failure modes discussed in Sec-
tion 4.

Regarding limitations in understanding functional equivalence, we examine the query and rubric
shown in Figure 9 (right). Although the rubric presents some ambiguity, human annotators and
GPT-4.1 successfully identify functional equivalence for both the specific category “Organization”
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Webpage:

DeepSeek-R1-0528:
Let me analyze the solution against the rubric:
...
- Each category has a label and star icons (though categories differ from rubric). The user 

query says "categories", and the solution has categories. The rubric example categories 
might be just examples? The rubric does not explicitly say that the categories must be 
exactly those. However, we must evaluate against the exact words.

{"description": "A text label displaying 'Organization'.",  "children": null,  "value": false},
{"description": "A set of star icons for rating 'Organization'.",  "children": null,  "value": false}

UI-TARS-1.5:
For static:
 Thought: The page has Presentation, Content, Creativity, Accuracy. Oh, maybe terminology: but the task says equivalent features. Wait, no, 
the required are Organization and Content. Then, for element 2.2, Content exists. But element 2.1 (Organization) is not present.
 Action: finished(content='1, 2, 2.2, 2.2.1, 2.2.2’)

GPT-4.1: 
The provided solution is a React app for grading notebooks using a star-based system 
across several categories. The categories implemented are "Presentation", "Content", 
"Creativity", and "Accuracy". The rubric, however, expects "Organization", "Content", and 
"Neatness" as categories. For the purpose of this evaluation, I will consider 
"Presentation" as equivalent to "Organization" and "Creativity" as equivalent to 
"Neatness", since the intention and functionality are the same, only the labels differ.

{"description": "A text label displaying 'Organization'.",  "children": null,  "value": true},
{"description": "A set of star icons for rating 'Organization'.",  "children": null,  "value": true}

Query:  Create a modern notebook grading app, with categories and the teacher will use a star like system to grade each 

category. The app should show total score, reset button.
Rubric (Excerpt): 

"description": "A grading row for the 'Organization' category.",
"children": [

{“description”: “A text label displaying ‘Organization’.”, “children”: null},
{“description”: “A set of star icons for rating ‘Organization’.”, "children": null}

]
Instruction: Consider a requirement met if the solution's feature is equivalent. For example, the required heading element is 
present on the page, though the exact text or symbol differs.

Figure 10: Failure cases in functional equivalence identification. While GPT-4.1 correctly identifies
equivalence for the specific “Organization” category and the general “categories” requirement given
the query, rubric, and instructions, other models like DeepSeek-R1-0528 and UI-TARS-1.5 fail to do
so. These models misinterpret the requirements and exhibit hesitation in recognizing the equivalence
for general categories.

Webpage:

UI-TARS-1.5:
Thought: To complete the task of 

clicking the 'Regenerate' button on an AI 
message, I first need to check if such a 
button exists. Looking at the current 
screen, the AI message only has icons for 
actions like edit or copy, but no visible 
'Regenerate' button. Maybe the button 
appears after generating a response, but 
there's no prior AI message with a 
regenerate option here. Wait, perhaps I 
need to generate a message first? But 
the task assumes there's an AI message 
with a Regenerate button. Since the 
current screen doesn't show it, maybe 
the interface doesn't support this, or the 
button is missing. Alternatively, maybe I 
missed it. Rechecking: the AI message 
has three icons (pencil, square, and 
another), but no Regenerate. So the 
task can't be performed here, meaning 
it's infeasible.

Action: finished(content=failed.’)

Task to check:  Click the 'Regenerate' button on an AI message.

Figure 11: Failure case in feasibility analysis due to operation error. The agentic evaluator fails to
detect the target ‘regenerate’ element in the provided screenshot, resulting in an incorrect assessment
of the task as infeasible.

and the general “categories” requirement, provided with the query, rubric, and instructions. In con-
trast, other models, such as DeepSeek-R1-0528 and UI-TARS-1.5, struggle with interpretation. As
shown in Figure 10, these models suffer from misinterpretation, which leads to incorrect functional
equivalence identification.
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Regarding limitations in feasibility analysis, agentic evaluators are constrained by their inherent
capabilities. Figure 11 illustrates such a case where the agent fails to locate the target ‘regenerate’
element within the screenshot, incorrectly leading it to classify the task as infeasible.

F THE USE OF LARGE LANGUAGE MODELS

We use a large language model (LLM) as a general-purpose writing assistant. The primary use of
the LLM is to refine and improve the clarity and flow of the text. Specifically, we provided the LLM
with our pre-existing draft text and a clear outline of our ideas. We instruct the model to adhere
strictly to the provided content, without adding or removing any information. The LLM’s role is
limited to enhancing the logical coherence and fluency of the language, ensuring the final text is
more polished and easier to read.
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