

WEBDEVJUDGE: EVALUATING (M)LLMS AS CRI-TIQUES FOR WEB DEVELOPMENT QUALITY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alter-
 012 native to human evaluation, demonstrating strong performance on well-defined
 013 tasks. However, its reliability in open-ended tasks with dynamic environments and
 014 complex interactions remains unexplored. To bridge the gap, we introduce **WEB-**
 015 **DEVJUDGE**, a systematic benchmark for assessing LLM-as-a-judge performance
 016 in web development, with support for both non-interactive evaluation based on
 017 static observations and continuous interactive evaluation with a dynamic web en-
 018 vironment. **WEBDEVJUDGE** comprises human preference labels over paired web
 019 implementations, annotated with structured and query-grounded rubrics to ensure
 020 high-quality ground truth. Using this benchmark, we comprehensively evaluate
 021 various evaluators, including LLMs, MLLMs, and agentic workflows. We system-
 022 atically investigate the impact of different paradigms and guidance mechanisms.
 023 Our experiments reveal a significant gap between LLM judges and human experts.
 024 In-depth analysis indicates this gap stems from fundamental model limitations, in-
 025 cluding failures in recognizing functional equivalence, verifying task feasibility,
 026 and mitigating bias. Overall, **WEBDEVJUDGE** presents a significant challenge
 027 to LLM-as-a-judge, offering insights to guide future research toward developing
 028 more reliable and capable automated evaluators for complicated scenarios.

1 INTRODUCTION

031 *Evaluate, refine, then evaluate again and refine again*—large language models (LLMs) have
 032 achieved remarkable success across various domains through this iterative cycle (Madaan et al.,
 033 2023; Chen et al., 2023; Shafayat et al., 2025). Conventional evaluation paradigms rely heavily on
 034 human assessment (Zhong et al., 2024; Starace et al., 2025), which, while meticulous, presents a crit-
 035 ical bottleneck due to its high cost and low scalability. In response, the paradigm of LLM-as-a-judge
 036 has emerged as a promising alternative (Zheng et al., 2023; Dubois et al., 2024), offering a scalable
 037 and cost-effective solution for crucial development stages like verification (Lightman et al., 2024)
 038 and reward modeling (Yuan et al., 2025). With the advent of sophisticated language agents capable
 039 of planning, tool use, and collaboration (Yao et al., 2023; Qin et al., 2024a; Liang et al., 2024), the
 040 role of LLM-as-a-judge is rapidly expanding beyond basic, well-defined tasks to encompass chal-
 041 lenging real-world problems (Zhuge et al., 2025; Bian et al., 2025). This progression is critical, as it
 042 paves the way for more capable automated evaluators, creating the possibility for language models
 043 to self-evolve in complex, real-world applications.

044 However, a fundamental question regarding the reliability of LLM-as-a-judge persists. Its effec-
 045 tiveness is well-established for static and basic tasks (Chen et al., 2024; Saha et al., 2025; Gou
 046 et al., 2025; Lù et al., 2025), but these successes share a critical commonality: they rely on static
 047 assessment of final outcomes. The reliability of LLM-as-a-judge in dynamic, open-ended domains
 048 involving complex interaction remains largely unexplored. Such contexts introduce significant chal-
 049 lenges: dynamic evaluation requires continuous interaction with and comprehension of a changing
 050 environment (Li et al., 2023a; Paglieri et al., 2025), while their open-ended nature necessitates es-
 051 tablishing feasible assessment standards (Li et al., 2025). This gap between the expanding scope
 052 of automated judges and the lack of rigorous validation in complex, interactive settings highlights
 053 an urgent need for a new meta-evaluation benchmark. Such a benchmark is essential to assess, in-
 terpret, and ultimately enhance the reliability of LLM-based judges as we approach increasingly
 autonomous AI systems.

054 Consequently, in this work, we introduce **WEBDEVJUDGE**, a meta-evaluation benchmark for as-
 055 sessing LLM-as-a-judge on a representative complex and interactive task using the context of web
 056 development. Web development offers an ideal testbed for complex dynamic evaluation, as it inher-
 057 ently has interaction requirements, whose assessment depends not just on static code but on real-time
 058 interaction. The task is also intrinsically open-ended, lacking a single absolute answer. To establish a
 059 high-quality ground truth, we introduce a structured annotation methodology using query-grounded
 060 *rubric trees*, which decomposes high-level requirements into a verifiable hierarchy of fine-grained
 061 criteria. This rigorous protocol combining rubric with human judges yields an inter-annotator agree-
 062 ment of 89.7%, which substantially exceeds the 63% reported for MT-Bench (Zheng et al., 2023),
 063 confirming the reliability of the preference labels. Departing from traditional benchmarks focused
 064 on static text (Tan et al., 2025), WEBDEVJUDGE supports both static and interactive evaluation
 065 by offering multifaceted representations of each web implementation, including its source code,
 066 screenshot of the rendered webpage, and a fully interactive environment for dynamic assessment, as
 067 shown in the right part of Figure 1. Evaluator performance is measured by agreement with expert
 068 human preferences on paired web implementations—a methodology widely adopted for nuanced,
 069 open-ended tasks where the absolute answer is deficient (Bai et al., 2022; Lambert et al., 2025).

070 Using WEBDEVJUDGE, we conduct a comprehensive evaluation of a wide array of judges, includ-
 071 ing LLMs, MLLMs, and agentic workflows, under various paradigms and guidance mechanisms.
 072 Our experiments reveal that a significant capabilities gap persists between the most advanced mod-
 073 els and human experts, with a performance discrepancy exceeding 15%. Notably, different guidance
 074 strategies provide only marginal improvements in the pairwise comparison setting, suggesting that
 075 preference prediction through comparative assessment represents an internalized capability in mod-
 076 els (Hua et al., 2025; Yu et al., 2025). Furthermore, while agentic workflows appear well-suited for
 077 interactive task evaluation, they fail to outperform vanilla models due to error accumulation across
 078 planning and execution stages (Pan et al., 2025). Through detailed error analysis and case studies,
 079 we systematically investigate the failure modes of automated evaluators. As part of this analysis,
 080 we construct *WebDevJudge-Unit*, a diagnostic dataset specifically designed to evaluate feasibility
 081 verification capabilities of different types of LLM-as-a-judge. Our investigation reveals two fun-
 082 damental performance bottlenecks: (1) a persistent inability to recognize *functional equivalence*
 083 between diverse implementations that achieve the same objectives through different approaches or
 084 terminologies, such as implementations using the same title element with only variations in text, and
 085 (2) systematic weaknesses in *feasibility verification*, where static assessment suffers from low pre-
 086 cision due to static code analysis limitations while interactive agents exhibit low recall stemming from
 087 their own operational constraints. These compounding errors ultimately undermine evaluator per-
 088 formance, pointing toward fundamental research directions for developing truly reliable automated
 089 evaluators in complex, interactive domains. Our main contributions are as follows:
 090

- We construct WEBDEVJUDGE, a meta-evaluation benchmark that supports both static and interactive assessment of web development quality with high-quality preference labels.
- Comprehensive empirical evaluation of (M)LLMs and agentic workflow reveals that current LLM-as-a-judge approaches still fall significantly short of human-level reliability.
- Detailed error analysis identifies the systematic weaknesses of LLM-as-a-judge, providing critical insights for developing more reliable automated evaluators.

096 2 RELATED WORK

097 **LLM-as-a-Judge** The paradigm of LLM-as-a-Judge leverages powerful large language models to
 098 simulate human-like assessment, enabling scalable and cost-efficient evaluation (Gu et al., 2025).
 099 This approach has been widely adopted across various domains, including question answering (Bai
 100 et al., 2023), data filtering (Li et al., 2024; Xu et al., 2025), and trajectory evaluation (Pan et al., 2024;
 101 Xue et al., 2025). Typical implementations employ a strong LLM as an evaluator, which compares or
 102 scores candidate responses against predefined criteria. Common comparison methods include pair-
 103 wise comparison and single-answer grading Zheng et al. (2023). As application scenarios broaden,
 104 the conventional LLM-as-a-Judge approach is evolving into Agent-as-a-Judge (Zhuge et al., 2025),
 105 wherein LLM-based agents are equipped with tool-using and collaboration capabilities. Gou et al.
 106 (2025) propose a judge agent with extractor and verifier to evaluate deep research tasks with rubric
 107 trees, while Zhuge et al. (2025) design a modular agentic framework to evaluate agentic systems.

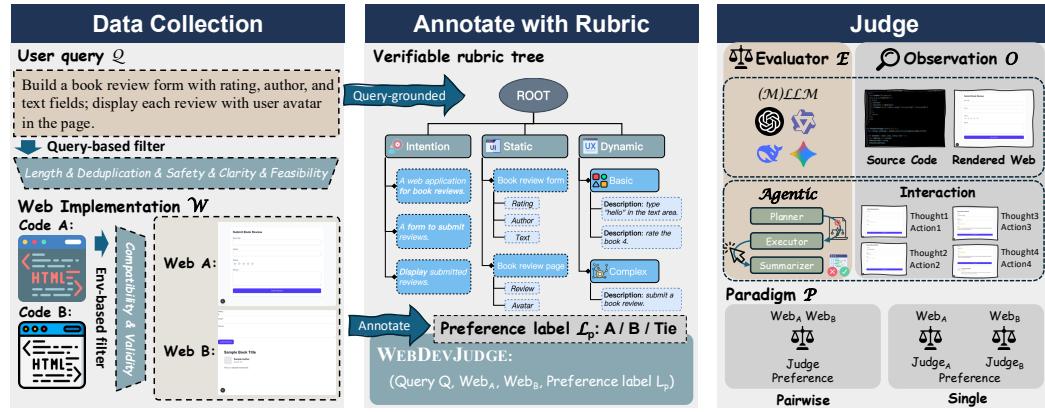


Figure 1: Overview of WEBDEVJUDGE. *Left*: Data Collection with query-based and environment-based filtering. *Center*: Preference label annotation with verifiable rubric tree. *Right*: Evaluate (M)LLM-based and agentic evaluators under pairwise and single-answer paradigms.

Despite its efficiency, this method faces several challenges. Position bias (Wang et al., 2024) and verbosity (Ye et al., 2025) preference may skew results, and the creation of detailed, human-written rubrics is both labor-intensive and difficult to scale (Starace et al., 2025). Additionally, typical assessments may overemphasize final outcomes, limiting their applicability in open-ended interactive tasks (Zhang et al., 2025a). To evaluate the judge capability of LLMs, we introduce a benchmark on open-ended web development scenarios. It is designed to assess a wide range of LLM-based evaluators, with the dual purpose of benchmarking their performance and exposing fundamental shortcomings in existing automated evaluation approaches.

Meta Evaluation Meta-evaluation accesses the effectiveness of automated evaluation by measuring its correlation with human or ground truth. Existing benchmarks primarily focus on two aspects: (1) alignment with preference label, often using pairwise comparisons (Zheng et al., 2023; Li et al., 2023b), and (2) accuracy in identifying correct task outcomes, particularly in reasoning (Luo et al., 2023; He et al., 2025) and agentic tasks (Lù et al., 2025). Prior works such as MT-bench (Zheng et al., 2023) and LLMEval (Zhang et al., 2023) measure how LLM judges mirror human preferences in multi-turn conversational and instruction following tasks. However, these benchmarks may be constrained by human subjectivity and position bias (Wang et al., 2024). Alternatives like LLM-Bar (Zeng et al., 2024) and JudgeBench (Tan et al., 2025) test judges on re-annotated instruction adherence or verifiable reasoning discrimination. These benchmarks mainly focus on text-based tasks without complex environments. In the context of interaction, AgentRewardBench (Lù et al., 2025) uses expert-annotated result of pre-scripted trajectories to benchmark how well LLM evaluators score agent performance. ArtifactsBench (Zhang et al., 2025a) evaluates dynamic visual effects. However, it lacks a critical component of assessing environmental changes that are driven by real-time user input. Our work, WEBDEVJUDGE, introduces a meta-evaluation benchmark that assesses judges on dynamic, real-world web development tasks, emphasizing continuous interaction with live web environments, offering insights in complex interactive settings.

3 WEBDEVJUDGE BENCHMARK

WEBDEVJUDGE serve as a meta-evaluation benchmark designed to assess whether LLM-as-a-judge can effectively approximate human preference judgments in web development tasks. We frame the task as a preference evaluation problem. Each instance is represented as a quadruple (Q, W_a, W_b, l_p) , where Q denotes a web development query (e.g., “build a book review page”), W_a and W_b represent web implementations from two distinct models a and b , and l_p is the annotated preference label between the two outputs. The objective is to predict the preference label—i.e., whether a wins, b wins, or the result is a tie—which is widely used for open-ended tasks (Zeng et al., 2024; Lambert et al., 2025). The observations of W_a and W_b may take various forms across experimental settings, such as code, screenshots, or interaction trajectories.

162 3.1 DATA FILTERING
163

164 We collect data from the `webdev-arena-preference-10k` dataset (Vichare et al., 2025; Chiang
165 et al., 2024), which comprises 10,501 user queries with paired code outputs from 2 models and
166 user-provided preferences. We apply a two-stage filtering process to enhance data quality:

167 **Query-based filtering** We first exclude extremely short queries and verbatim duplicates. The
168 remaining queries are further filtered via an LLM according to the following criteria: (1) *Safety*:
169 exclusion of harmful or offensive content; (2) *Clarity*: the query must be unambiguous and inter-
170 pretable; (3) *Feasibility*: the query should be realistically implementable as a web application, based
171 on its purpose and required level of interaction.

172 **Environment-based filtering** We deploy each web implementation in a unified execution environ-
173 ment. Instances that fail to deploy correctly or require niche dependencies are discarded. To ensure
174 validity, we capture initial screenshots of each rendered webpage and use a multi-modal LLM to
175 filter out invalid cases (e.g., blank pages or intrinsic errors).

176 After applying these filters, we retain 1,713 high-quality instances, we sample 700 instances for
177 further annotation. Details regarding the data construction process are provided in Appendix A.

178 3.2 ANNOTATION VIA RUBRIC TREE
179

180 Consistent with prior work (Zheng et al., 2023; Tan et al., 2025), we note that raw preference labels
181 may reflect subjective bias rather than objective quality. To quantify this issue, we sample 100 in-
182 stances and have them re-annotated by two expert annotators based on fully deployed web instances.
183 As shown in Table 1, both inter-annotator agreement and agreement with original labels are initially
184 low, highlighting the need for a more structured and standard annotation protocol.

185 To address this, we introduce rubric tree—a structured evaluation framework commonly used in
186 complex assessment scenarios (Starace et al., 2025; Gou et al., 2025). The tree is query-based and
187 scalable by design, organized along three core dimensions: intention, static quality, and dynamic
188 behavior (see Figure 1). Each leaf node corresponds to a binary test, whose outcomes are aggregated
189 hierarchically to parent nodes. This allows for both a holistic score at the root and fine-grained
190 diagnostic insight via leaf-level pass rates.

191 We validate the effectiveness of the rubric tree by manually constructing trees for 50 instances and
192 asking two annotators to evaluate these using the rubric as a reference. As shown in Table 1, rubric-
193 guided annotation significantly improves agreement rates. To scale this process, we employ few-shot
194 LLM generation to automatically produce rubric trees. A third annotator labels the same instances
195 using these generated rubrics, achieving high agreement with human-written rubrics—confirming
196 the utility of LLM-generated rubrics. We then use generated rubric trees to annotate the remain-
197 ing data via two expert annotators with software engineering backgrounds. During annotation, we
198 perform manual inspections to exclude incompatible and harmful cases. Final inter-annotator agree-
199 ment reaches 89.7% (with ties) and 94.0% (without ties), demonstrating high consistency.

200 Table 1: Annotation agreement rates with and without the verifiable rubric. The ‘without rubric’
201 part shows agreements between: (1) annotators and (2) annotators and the original labels. The ‘with
202 rubric’ part shows inter-annotator agreements under human-written and LLM-generated rubrics.

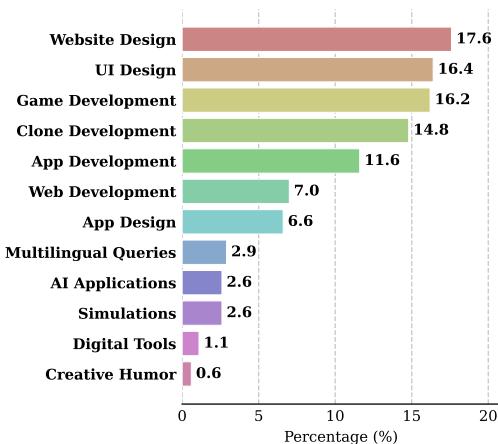
Setting	Without rubric		With rubric	
	inter-annotator	annotator-origin	Human-written	LLM-generated
w/ tie	65.0	53.0	92.0	90.0
w/o tie	90.0	77.9	95.5	96.9

211 3.3 DATA STATISTICS
212

213 The final benchmark consists of 654 instances, with preference distributions as follows: 258 for
214 a , 258 for b , and 138 ties. To characterize the query domain coverage, we conduct a topic anal-
215 ysis based on the original topics `webdev-arena-preference-10k` dataset (Vichare et al., 2025).

216
217 **Table 2: Categories and their respective sub-
218 categories of queries in WEBDEVJUDGE.**

Category	Sub-categories	Total %
DIGITAL DESIGN	Website Design UI Design	34.0
GAME AND APP DEVELOPMENT	Game Development App Development App Design	34.4
WEB AND SPECIALIZED TECHNOLOGIES	Clone Development Web Development Simulations AI Applications Multilingual Queries Digital Tools Creative Humor	31.6



229 **Figure 2: The distribution of sub-category across
230 WEBDEVJUDGE.**

235 Fine-grained topics are grouped into three broad categories: Digital Design, Game and App Development, and Web and Specialized Technologies based on their shared characteristics and application contexts of representative examples. Table 2 and Figure 2 provide detailed category distributions and 236 visualizations.

4 EXPERIMENTS

243 We conduct comprehensive experiments and evaluate different evaluation settings on WEBDEV-
244 JUDGE, focusing on the following research questions: (1) Whether LLM-as-a-judge can be an alter-
245 native to human preference in open-ended complex tasks like web development? (2) How do
246 different settings and strategies affect the agreement rate performance?

4.1 EVALUATOR PERFORMANCE ON WEBDEVJUDGE

250 **Setup** Following (Zheng et al., 2023; Xie et al., 2025), we evaluate the evaluators under 2 distinct
251 paradigms:

- 253 • **Pairwise comparison:** This approach directly compares two responses, leveraging relative
254 judgments to infer preference, an intuitive and natural fit for preference prediction.
- 255 • **Single answer grading:** This approach employs LLMs to assign scores or labels to indi-
256 vidual responses, with preferences derived by comparing scores or pass rates.

257 To enable structured and domain-grounded assessment, we design a multi-dimensional Likert scale
258 inspired by prior work (Lan et al., 2024; Zhang et al., 2025a) and incorporate principles from inter-
259 national software testing standards (ISO/IEC/IEEE, 2022). Our criteria comprises four dimensions,
260 Functionality, UI Quality, Code Quality, and Interactivity, each with several sub-criteria rated on a
261 5-point Likert scale (1: lowest, 5: highest). Detailed criteria are provided in Appendix B.

263 **Implementation** We evaluate two types of evaluators: (1) **Vanilla (M)LLMs**: we test mod-
264 els from OpenAI (OpenAI, 2025; 2024), Anthropic (Anthropic, 2025b;a), Google (Team, 2025a),
265 Qwen (Team, 2025e;d), DeepSeek (DeepSeek-AI, 2024; 2025), Moonshot (Team, 2025c), and
266 ZAI (Team, 2025b). For *single answer grading*, we provide the query, code, and evaluation cri-
267 teria; we further include an initial screenshot of the rendered webpage for MLLMs. The model is
268 prompted to output scores for each sub-criterion. For *pairwise comparison*, we supply the query,
269 code of W_a and W_b , evaluation criteria, and screenshots of both rendered webpages (if applicable).
The evaluator scores both W_a and W_b per sub-criterion, with explicit instructions to ignore position

270 Table 3: Agreement Rate (%) of different evaluators under different evaluation paradigms. The best
 271 average performance of the whole dataset is highlighted in **bold** and the second best is underlined.
 272

273 Model/Method	274 DIGITAL DESIGN		274 GAME & APP		274 WEB & SPECIAL		274 AVERAGE	
	275 Single	275 Pair	275 Single	275 Pair	275 Single	275 Pair	275 Single	275 Pair
Vanilla								
Non-reasoning Models								
GPT-4.1	54.95	65.77	61.33	67.56	60.39	64.73	<u>58.87</u>	66.06
GPT-4o	51.80	64.41	56.00	64.44	60.39	64.25	<u>55.96</u>	64.37
Qwen-2.5-VL-72B-Inst.	46.40	64.86	48.44	62.67	52.17	63.29	<u>48.93</u>	63.61
Gemini-2.5-flash-lite	48.20	62.16	48.89	57.78	47.34	62.80	48.17	60.86
DeepSeek-V3-0324	58.11	63.96	54.22	61.33	59.90	65.70	<u>57.34</u>	63.61
Kimi-K2-Inst.	62.16	64.41	56.00	61.78	52.17	65.22	<u>56.88</u>	63.76
Qwen3-235B-A22B-Inst.	53.60	63.51	59.56	64.00	58.45	61.35	<u>57.19</u>	63.00
Qwen3-30B-A3B-Inst.	54.50	64.41	58.67	60.44	55.07	65.22	<u>56.12</u>	63.30
Qwen2.5-32B-Inst.	48.65	61.26	53.33	64.89	51.69	61.35	51.22	62.54
Gemma-3-27B-it	44.14	59.01	52.00	54.67	45.41	60.39	47.25	57.95
Qwen2.5-14B-Inst.	48.20	56.31	44.00	51.56	38.65	52.17	43.73	53.36
Reasoning Models								
Claude-4-Sonnet	50.90	67.12	58.67	68.44	57.00	62.32	<u>55.50</u>	66.06
Claude-3.7-Sonnet	65.77	67.12	59.11	61.33	57.49	67.15	60.86	<u>65.14</u>
Gemini-2.5-pro	51.35	61.26	50.22	67.11	43.48	57.97	48.47	62.23
GLM-4.5	57.66	66.22	52.44	64.44	50.72	60.87	<u>53.67</u>	63.91
DeepSeek-R1-0528	50.00	64.41	56.00	63.11	49.76	61.84	<u>51.99</u>	63.15
Qwen3-30B-A3B-Think.	54.05	59.91	53.33	59.11	52.17	60.39	53.21	59.79
Agentic								
Intention rubrics	37.39	-	32.00	-	47.34	-	38.69	-
Static rubrics	40.09	-	38.67	-	43.48	-	<u>40.67</u>	-
Dynamic rubrics	52.70	-	55.56	-	50.72	-	<u>53.06</u>	-
Combined rubrics	54.50	-	56.44	-	57.49	-	<u>56.12</u>	-
Human								
Pairwise comparison	-	85.78	-	85.02	-	83.78	-	84.82

303 bias and remain objective. Preference is determined by comparing total scores. (2) **Agentic Work-**
 304 **flow**: similar to Bian et al. (2025), we model evaluation as a multi-stage pipeline with a planner, an
 305 executor, and a summarizer:

$$306 \text{Query} \xrightarrow{\text{Planner}} \text{Plan with test cases} \xrightarrow{\text{Executor}} \text{Results} \xrightarrow{\text{Summarizer}} \text{Judge} \quad (1)$$

308 The planner generates a verifiable evaluation plan conditioned on the query. The executor runs
 309 test cases, and the summarizer synthesizes results into a judgment. We use the generated rubric
 310 tree as the evaluation plan and reference for summarization. Preferences are inferred by comparing
 311 summarized outcomes. In implementation, we utilize UI-TARS-1.5 (Seed, 2025), one of the state-
 312 of-the-art GUI agents, as the executor, to ensure the reliability of the evaluation process.

313 **Result** The main experimental results are summarized in Table 3. Our analysis yields several key
 314 observations on the performance of LLM-based evaluators in web development tasks.

316 **LLM-as-a-judge falls short of human-level reliability on complex evaluation tasks.** The primary
 317 finding is that no current model achieves a sufficient level of agreement with expert judgments. The
 318 top-performing evaluator, Claude-4-Sonnet under the pairwise paradigm, attains an agreement
 319 rate of only 66.06%. This substantial gap underscores the inherent complexity of web development
 320 evaluation, which demands a holistic assessment of functionality and aesthetics. We also observe
 321 a clear performance ceiling: while smaller models exhibit scaling effects, larger and more capable
 322 models show diminishing returns, consistently plateauing below the mid-70% agreement rate.

323 **Pairwise comparison is a far more effective paradigm for preference evaluation.** Across the
 324 board, the pairwise paradigm yields an average improvement of over 8.0% in agreement rate com-

pared to single-answer grading. Relative judgment helps models focus on discriminative features between two candidates, reducing the need for absolute quality calibration. In contrast, single-answer grading not only performs worse but also leads to inconsistent model rankings—some models deviate from their expected benchmark ordering (Zhang et al., 2025b), indicating that this paradigm is less suitable for open-ended, multi-faceted tasks. This may be due to the cognitive load of applying multi-point Likert scales consistently (Ouwehand et al., 2021), which demands a calibrated internal standard of quality that is difficult for both humans and LLMs to maintain. Simplified evaluation mechanisms, such as binary checklists, may be more effective; we explore this further in Section 4.2.

Agentic workflow suffers from compounding errors. We evaluated the agentic workflow using rubrics from different aspects, as well as a comprehensive score integrating all three. The results show that it performs significantly better on the Dynamic aspect, which involves strong interactive properties, compared to others with weaker interactivity. Counter-intuitively, the agentic workflow fails to outperform the vanilla models. This appears to result from error accumulation across its multi-stage process. We identify two primary failure modes:

- **Brittle Planning:** The *Planner* struggles with the ambiguity of user queries that are often not expressed with expert-level precision. This leads to the generation of evaluation plans that are either too generic to be discriminative or overly specific, causing failures due to minor implementation variations.
- **Faulty Execution:** The *Executor* agent’s ability to navigate the web and verify task states remains unreliable. It may misinterprets outcomes, injecting noise into the evaluation process. This unreliability is investigated more deeply in Section 4.3.

Errors compound across the planner-executor-summarizer pipeline, reducing the reliability of the final judgment compared to an end-to-end evaluation by a single model (Chen et al., 2025b).

4.2 DIFFERENT EVALUATION GUIDES AND OBSERVATION FORMS

To further diagnose factors affecting evaluator performance, we conduct controlled experiments focusing on two key variables: the structure of evaluation guidance and the form of observation.

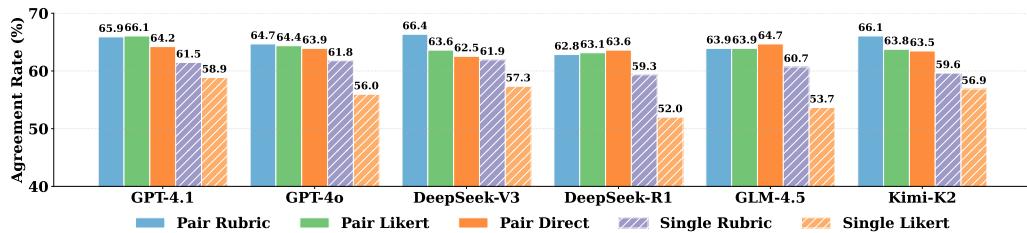


Figure 3: Agreement rates of LLM evaluators under various guidance protocols. We compare pairwise and single-answer paradigms using direct judgment, Likert scales, and structured rubrics.

Evaluation Guidance We investigate how different evaluation protocols influence judgment accuracy, comparing three widely-used forms of guidance (Zheng et al., 2023; Gou et al., 2025): (1) *Direct*: The evaluator provides a preference without explicit criteria. (2) *Likert Scale*: As used in Section 4.1, the evaluator scores outputs along predefined dimensions using a multi-point scale. (3) *Rubric*: The evaluator assesses outputs using the rubric trees from our annotation process, with final scores computed as a weighted aggregation of binary leaf-node pass rates across three core dimensions (intention, static, and dynamic).

Results in Figure 3 reveal a noteworthy finding: under the pairwise evaluation, the *Direct* setting achieves agreement rates comparable to guidance-based methods. This phenomenon aligns with observations in instruction following tasks (Zeng et al., 2024), where models perform similarly on agreement with or without metric-based guidance. This result suggests that evaluation capability is an internalized skill in modern LLMs, and external guidance provides only marginal benefits in

relative assessment settings (Qin et al., 2024b). Furthermore, we find that reasoning models exhibit better performance under the *Direct* condition, indicating that imposing rigid structured metrics might constrain the models’ inherent reasoning processes, thereby limiting their evaluation potential. Furthermore, we validate the hypothesis from earlier: in single answer grading, the binary *Rubric* approach substantially outperforms the multi-point *Likert* scale, reinforcing that verifiable evaluation protocols yield more reliable judgments when there is a lack of relative information.

Table 4: Impact of observation forms on the performance of multimodal evaluators. The numbers in parentheses indicate the performance change relative to the setting with both code and image inputs.

Model	Single Answer Grading			Pairwise Comparison		
	Image Only	Code Only	Both	Image Only	Code Only	Both
Claude-4-sonnet	54.43 (↓ 1.07)	58.87 (↑ 3.37)	55.50	57.34 (↓ 8.72)	64.83 (↓ 1.23)	66.06
GPT-4.1	53.98 (↓ 4.89)	59.94 (↑ 1.07)	58.87	57.34 (↓ 8.72)	64.98 (↓ 1.08)	66.06
GPT-4o	50.31 (↓ 5.65)	56.57 (↑ 0.61)	55.96	59.48 (↓ 4.89)	63.46 (↓ 0.91)	64.37
Gemini-2.5-pro	52.29 (↑ 3.82)	48.93 (↑ 0.46)	48.47	59.17 (↓ 3.06)	60.55 (↓ 1.68)	62.23
Qwen-2.5-VL-72B	50.00 (↑ 1.07)	49.39 (↑ 0.46)	48.93	57.19 (↓ 6.42)	62.39 (↓ 1.22)	63.61

Influence of Observation Modality We next analyze how the input modality affects multimodal evaluators, comparing three observation forms: (1) Image Only, providing only the initial screenshot of the rendered web page; (2) Code Only, providing only the source code; and (3) Both, providing both code and screenshot. As shown in Table 4, code emerges as the most critical modality for evaluating web development tasks. Withholding code leads to a significantly larger performance drop than withholding screenshots, suggesting that while MLLMs can process visual input, their judgments are fundamentally anchored in the structured source code (Wang et al., 2025). In *pairwise comparison*, using both modalities yields the best results, indicating that visual context provides complementary signals that aid in refining relative judgments (Chen et al., 2025a).

4.3 ERROR ANALYSIS

To systematically diagnose the failure modes of LLM-based evaluators, we conduct a fine-grained analysis along three key dimensions: inherent biases, limitations in understanding functional equivalence, and shortcomings in feasibility analysis.

Table 5: Positional bias in pairwise comparison. Preference for specific position, consistency and the absolute difference in agreement rate (Δ AR) between original and swapped orders are reported.

Model	Consistency		First		Second		Δ AR	
	Direct	Likert	Direct	Likert	Direct	Likert	Direct	Likert
Claude-4-sonnet	89.6	87.9	5.7	3.7	4.7	8.4	0.9	1.38
GPT-4.1	83.3	85.2	0.9	3.0	15.8	11.8	0.8	0.46
DeepSeek-V3-0324	84.1	83.5	11.6	7.3	4.3	9.2	0.5	1.38

Inherent Biases in Judgment Prior studies (Ye et al., 2025) have revealed that LLM-as-a-judge exhibits various forms of bias, such as positional and verbosity biases. We focus specifically on positional bias. Despite explicit instructions to ignore order and remain objective, models still exhibit a systematic preference for responses in a specific position, as shown in Table 5. One might hypothesize that this bias emerges primarily in ambiguous cases where the two options are of comparable quality. However, our analysis of the label distribution for instances with inconsistent predictions reveals that the proportion of ties is not higher than that of wins or losses. This finding suggests that positional bias is not merely an artifact of ambiguity but rather an inherent deficiency in the models, and instruction alone is insufficient to eliminate these deeply embedded inductive biases. Rather than employing debiasing techniques such as swapping, we choose the prompting method to reflect the models’ authentic single-pass evaluation capability. Any inherent bias (such as position bias) is considered an intrinsic flaw of the model’s judgment ability. A further comparison with the debiasing technique is provided in Appendix D.1.

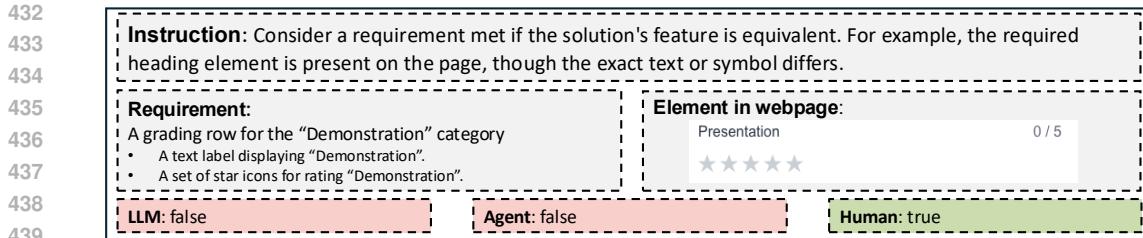


Figure 4: An example illustrating the failure to recognize functional equivalence. The webpage element for “Presentation” serves the same purpose as the required “Demonstration” rating. Detailed examples can be found in Appendix E.2.

Limitations in Understanding Functional Equivalence A critical requirement for reliable evaluation is the ability to recognize functional equivalence—i.e., determining whether different implementations satisfy the same underlying requirement. We find that evaluators often fail in such judgments, adhering strictly to literal interpretation rather than intent. For example, as illustrated in Figure 4, when instructed explicitly, human evaluators correctly recognize an element implemented with alternative text, whereas both LLM and agentic evaluators incorrectly reject it. This reflects a fundamental gap in contextual and pragmatic reasoning, limiting their applicability in open-ended domains where diversity in implementation is common.

Shortcomings in Feasibility Analysis We further investigate the evaluators’ ability to accurately verify task fulfillment. Existing benchmarks such as AgentBench (Lù et al., 2025) are too general to assess web-specific judgment. To address this, we construct **WebDevJudge-Unit**, a targeted dataset of 502 test cases. Each instance consists of web code, a specific verification task, an expected result, and a label indicating whether the task is feasible. We evaluate both LLM-based (code-only) and agent-based (interaction-driven) evaluators on this dataset. From the results in Table 6, we identify complementary weaknesses: (1) For *LLM evaluators*, these models achieve moderate recall but suffer from low precision. While they can often identify relevant code segments, they are unable to verify actual execution outcomes, leading to false positives when the code appears relevant but does not correctly implement the desired functionality. (2) For *agentic evaluators*, they exhibit higher precision but lower recall. They are effective when they successfully execute a test plan, but sometimes fail to complete tasks due to limitations in navigation or state interpretation. Consequently, they incorrectly label feasible tasks as infeasible due to their own operational failures rather than actual shortcomings in the web implementation. This divergence highlights a fundamental trade-off: static code analysis lacks execution grounding, while interactive agents are constrained by their own operational reliability. An ideal evaluator would combine the comprehensive coverage of code-aware reasoning with the grounded verification of interactive testing.

Our analysis reveals that the core limitation of LLM-as-a-judge lies in fundamental deficiencies in calibration capability. Lacking this calibration, LLMs struggle to map abstract quality dimensions onto discrete scores and verifiable rubrics. Improving judge performance will require addressing these core competency gaps rather than merely refining evaluation protocols.

5 CONCLUSION AND FUTURE WORK

In this work, we introduce WEBDEVJUDGE, a comprehensive benchmark for evaluating LLM-as-a-judge in web development. Unlike previous benchmarks, WEBDEVJUDGE supports both static code analysis and interactive agent navigation with high-quality preference labels. Our experiments demonstrate that current LLM-as-a-judge approaches cannot effectively substitute human evalua-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 tion, and we identify core bottlenecks hindering their performance. Since our primary focus is on evaluation and analysis within the general LLM-as-a-judge domain, we did not specifically optimize the overall framework structure. We leave the exploration of sophisticated agentic workflows and complex multi-round evaluations to future work.

ETHICS STATEMENT

The ethical considerations of our work are discussed in the context of the following aspects: (1) **Data collection and use.** We use publicly available datasets and self-generated data for evaluation. We ensure that the data is only used for academic research purposes and no personal data is involved. We strictly follow the license terms and conditions. (2) **LLMs API.** We comply with the terms of service of the LLMs API providers strictly, maintaining fair use.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our methods, datasets, and evaluation metrics in the main text and appendix to ensure transparency and reproducibility. Our benchmark construction process for WEBDEVJUDGE is detailed in Section 3 and Appendix A. The experimental setup, including the models, evaluation paradigms, and specific protocols, is described in Section 4 and Appendix B. We also provide a complete description of the *WebDevJudge-Unit* dataset in Appendix C. Code and scripts are provided in the supplementary materials to replicate the empirical results.

REFERENCES

Anthropic. Claude 3.7 sonnet and claude code, 2025a. URL <https://www.anthropic.com/news/claude-3-7-sonnet>.

Anthropic. Introducing claude 4, 2025b. URL <https://www.anthropic.com/news/claude-4>.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback, 2022. URL <https://arxiv.org/abs/2212.08073>.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and Lei Hou. Benchmarking foundation models with language-model-as-an-examiner. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=IiRHQ7gvnq>.

Yutong Bian, Xianhao Lin, Yupeng Xie, Tianyang Liu, Mingchen Zhuge, Siyuan Lu, Haoming Tang, Jinlin Wang, Jiayi Zhang, Jiaqi Chen, Xiangru Tang, Yongxin Ni, Sirui Hong, and Chenglin Wu. You don't know until you click: automated gui testing for production-ready software evaluation, 2025. URL <https://arxiv.org/abs/2508.14104>.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: assessing multimodal lilm-as-a-judge with vision-language benchmark. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

Feng Chen, Chenhui Gou, Jing Liu, Yang Yang, Zhaoyang Li, Jiyuan Zhang, Zhenbang Sun, Bohan Zhuang, and Qi Wu. Evaluating and advancing multimodal large language models in perception ability lens, 2025a. URL <https://arxiv.org/abs/2411.14725>.

540 Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Arik, Tomas Pfister, and Somesh Jha.
 541 Adaptation with self-evaluation to improve selective prediction in LLMs. In Houda Bouamor,
 542 Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 5190–5213, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.345. URL <https://aclanthology.org/2023.findings-emnlp.345/>.

543 Meilin Chen, Jian Tian, Liang Ma, Di Xie, Weijie Chen, and Jiang Zhu. Unbiased evaluation of
 544 large language models from a causal perspective. In *Forty-second International Conference on
 545 Machine Learning*, 2025b. URL <https://openreview.net/forum?id=ETIsFhZwhJ>.

546 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
 547 Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
 548 Chatbot arena: An open platform for evaluating llms by human preference, 2024.

549 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

550 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 551 2025. URL <https://arxiv.org/abs/2501.12948>.

552 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
 553 pacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

554 Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev,
 555 Berta Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie Chen,
 556 Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao, Kai Zhang,
 557 Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web
 558 2: Evaluating agentic search with agent-as-a-judge, 2025. URL <https://arxiv.org/abs/2506.21506>.

559 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
 560 Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
 561 Ni, and Jian Guo. A survey on Ilm-as-a-judge, 2025. URL <https://arxiv.org/abs/2411.15594>.

562 Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Z.y. Peng, Zhaoxi-
 563 ang Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng. Can large language models detect
 564 errors in long chain-of-thought reasoning? In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 565 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 18468–18489, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
 566 10.18653/v1/2025.acl-long.905. URL <https://aclanthology.org/2025.acl-long.905/>.

567 Andong Hua, Kenan Tang, Chenhe Gu, Jindong Gu, Eric Wong, and Yao Qin. Flaw or artifact?
 568 rethinking prompt sensitivity in evaluating llms, 2025. URL <https://arxiv.org/abs/2509.01790>.

569 ISO/IEC/IEEE. Iso/iec/ieee international standard - software and systems engineering –software
 570 testing –part 1:general concepts. *ISO/IEC/IEEE 29119-1:2022(E)*, pp. 1–60, 2022. doi: 10.1109/IEEESTD.2022.9698145.

571 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 572 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 573 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 574 Systems Principles*, 2023.

575 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 576 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
 577 RewardBench: Evaluating reward models for language modeling. In Luis Chiruzzo, Alan Ritter,
 578 and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 1755–1797, Albuquerque, New Mexico, April 2025. Association for Computational
 579 Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.96. URL <https://aclanthology.org/2025.findings-naacl.96/>.

594 Tian Lan, Wenwei Zhang, Chen Xu, Heyan Huang, Dahua Lin, Kai Chen, and Xian-Ling Mao. Crit-
 595 iceval: Evaluating large-scale language model as critic. In *The Thirty-eighth Annual Conference*
 596 *on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=ZsxZ65YqL1>.

597

598 Chunyang Li, Hao Peng, Xiaozhi Wang, Yunjia Qi, Lei Hou, Bin Xu, and Juanzi Li. MAVEN-
 599 FACT: A large-scale event factuality detection dataset. In Yaser Al-Onaizan, Mohit Bansal, and
 600 Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 601 pp. 11140–11158, Miami, Florida, USA, November 2024. Association for Computational Lin-
 602 guistics. doi: 10.18653/v1/2024.findings-emnlp.651. URL <https://aclanthology.org/2024.findings-emnlp.651>.

603

604 Jiatong Li, Rui Li, and Qi Liu. Beyond static datasets: A deep interaction approach to llm evaluation,
 605 2023a. URL <https://arxiv.org/abs/2309.04369>.

606

607 Ruizhe Li, Chiwei Zhu, Benfeng Xu, Xiaorui Wang, and Zhendong Mao. Automated creativity
 608 evaluation for large language models: A reference-based approach, 2025. URL <https://arxiv.org/abs/2504.15784>.

609

610 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 611 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 612 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023b.

613

614 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 615 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 616 agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of*
 617 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 17889–17904,
 618 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.
 619 18653/v1/2024.emnlp-main.992. URL <https://aclanthology.org/2024.emnlp-main.992>.

620

621 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 622 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 623 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=v8L0pN6E0i>.

624

625 Liangchen Luo, Zi Lin, Yinxiao Liu, Lei Shu, Yun Zhu, Jingbo Shang, and Lei Meng. Critique
 626 ability of large language models, 2023. URL <https://arxiv.org/abs/2310.04815>.

627

628 Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejan-
 629 dra Zambrano, Karolina Stańczak, Peter Shaw, Christopher J. Pal, and Siva Reddy. Agentre-
 630 wardbench: Evaluating automatic evaluations of web agent trajectories, 2025. URL <https://arxiv.org/abs/2504.08942>.

631

632 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 633 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
 634 Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
 635 Iterative refinement with self-feedback. In *Thirty-seventh Conference on Neural Information Pro-
 636 cessing Systems*, 2023. URL <https://openreview.net/forum?id=S37h0erQLB>.

637

638 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

639

640 OpenAI. Introducing gpt-4.1 in the api, 2025. URL <https://openai.com/index/gpt-4-1/>.

641

642 Kim Ouwehand, Avalon van der Kroef, Jacqueline Wong, and Fred Paas. Measuring cognitive load:
 643 Are there more valid alternatives to likert rating scales? *Frontiers in Education*, Volume 6 - 2021,
 644 2021. ISSN 2504-284X. doi: 10.3389/feduc.2021.702616. URL <https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2021.702616>.

645

646 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
 647 Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster,
 Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking agentic LLM and VLM
 648 reasoning on games. In *The Thirteenth International Conference on Learning Representations*,
 649 2025. URL <https://openreview.net/forum?id=fp6t3F669F>.

648 Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
 649 evaluation and refinement of digital agents. In *First Conference on Language Modeling*, 2024.
 650 URL <https://openreview.net/forum?id=NPAQ6FKSmK>.
 651

652 Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari, Kurt
 653 Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, Joseph E. Gonzalez, Matei
 654 Zaharia, and Ion Stoica. Why do multiagent systems fail? In *ICLR 2025 Workshop on Building
 655 Trust in Language Models and Applications*, 2025. URL <https://openreview.net/forum?id=wM521FqPvI>.
 656

657 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 658 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 659 dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
 660 16000+ real-world APIs. In *The Twelfth International Conference on Learning Representations*,
 661 2024a. URL <https://openreview.net/forum?id=dHng200Jjr>.
 662

663 Zhen Qin, Junru Wu, Jiaming Shen, Tianqi Liu, and Xuanhui Wang. LAMPO: Large language mod-
 664 els as preference machines for few-shot ordinal classification. In *First Conference on Language
 665 Modeling*, 2024b. URL <https://openreview.net/forum?id=ig6NI9oPhD>.
 666

667 Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason E Weston, and Tianlu Wang. Learning to
 668 plan & reason for evaluation with thinking-LLM-as-a-judge. In *Forty-second International Con-
 669 ference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=PNRznmmWP7>.
 670

ByteDance Seed. Ui-tars-1.5. <https://seed-tars.com/1.5>, 2025.

671

672 Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
 673 large reasoning models self-train?, 2025. URL <https://arxiv.org/abs/2505.21444>.
 674

675 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 676 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, and
 677 Tejal Patwardhan. Paperbench: Evaluating AI's ability to replicate AI research. In *Forty-second
 678 International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=xF5PuTLPbn>.
 679

680 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
 681 Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based judges.
 682 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=G0dksFayVq>.
 683

684 Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
 685 context, and next generation agentic capabilities, 2025a. URL <https://arxiv.org/abs/2507.06261>.
 686

687

688 GLM 4.5 Team. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025b. URL
 689 <https://arxiv.org/abs/2508.06471>.
 690

691 Kimi Team. Kimi k2: Open agentic intelligence, 2025c. URL <https://arxiv.org/abs/2507.20534>.
 692

693 Qwen Team. Qwen2.5-vl technical report, 2025d. URL <https://arxiv.org/abs/2502.13923>.
 694

695 Qwen Team. Qwen3 technical report, 2025e. URL <https://arxiv.org/abs/2505.09388>.
 696

697 Aryan Vichare, Anastasios N. Angelopoulos, Wei-Lin Chiang, Kelly Tang, and Luca Manolache.
 698 Webdev arena: A live llm leaderboard for web app development, 2025.
 699

700 Jian Wang, Xiaofei Xie, Qiang Hu, Shangqing Liu, and Yi Li. Do code semantics help? a com-
 701 prehensive study on execution trace-based information for code large language models, 2025. URL
<https://arxiv.org/abs/2509.11686>.

702 Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng
 703 Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evalua-
 704 tors. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd An-
 705 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 706 9440–9450, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 707 10.18653/v1/2024.acl-long.511. URL <https://aclanthology.org/2024.acl-long.511/>.

708 Qiujie Xie, Qingqiu Li, Zhuohao Yu, Yuejie Zhang, Yue Zhang, and Linyi Yang. An empirical
 709 analysis of uncertainty in large language model evaluations. In *The Thirteenth International
 710 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=J4xLuCt2kg>.

711 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,
 712 and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In
 713 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=EEgYUccwsV>.

714 Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
 715 Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL <https://arxiv.org/abs/2504.01382>.

716 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 717 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International
 718 Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

719 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
 720 Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or prejudice?
 721 quantifying biases in LLM-as-a-judge. In *The Thirteenth International Conference on Learning
 722 Representations*, 2025. URL <https://openreview.net/forum?id=3GTtZFiajM>.

723 Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan, Kaidong Yu, and Xuelong Li. Improve llm-as-
 724 a-judge ability as a general ability, 2025. URL <https://arxiv.org/abs/2502.11689>.

725 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
 726 Jason Weston. Self-rewarding language models, 2025. URL <https://arxiv.org/abs/2401.10020>.

727 Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
 728 language models at evaluating instruction following. In *The Twelfth International Conference on
 729 Learning Representations*, 2024. URL <https://openreview.net/forum?id=tr0KidwPLc>.

730 Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
 731 Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang,
 732 Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo,
 733 Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou,
 734 Chayse Zhou, and Fengzong Lian. Artifactsbench: Bridging the visual-interactive gap in llm code
 735 generation evaluation, 2025a. URL <https://arxiv.org/abs/2507.04952>.

736 Guanhua Zhang, Ricardo Dominguez-Olmedo, and Moritz Hardt. Train-before-test harmonizes
 737 language model rankings, 2025b. URL <https://arxiv.org/abs/2507.05195>.

738 Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv, Tingwen Liu, Fei Huang, Hongbo Xu, and
 739 Yongbin Li. Wider and deeper llm networks are fairer llm evaluators, 2023. URL <https://arxiv.org/abs/2308.01862>.

740 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 741 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 742 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on
 743 Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

756 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
757 Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
758 Efficient execution of structured language model programs, 2024. URL <https://arxiv.org/abs/2312.07104>.
759

760 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
761 Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
762 models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association
763 for Computational Linguistics: NAACL 2024*, pp. 2299–2314, Mexico City, Mexico, June 2024.
764 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
765 <https://aclanthology.org/2024.findings-naacl.149/>.
766

767 Mingchen Zhuge, Changsheng Zhao, Dylan R. Ashley, Wenyi Wang, Dmitrii Khizbulin, Yun-
768 yang Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang
769 Shi, Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with
770 agents. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Nn9POI9Ekt>.
771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A DETAILS IN WEBDEVJUDGE CONSTRUCTION
811812 A.1 DATA COLLECTION AND FILTERING PIPELINE
813814 Our data collection process commences with the `webdev-arena-preference-10k` dataset (Vichare
815 et al., 2025; Chiang et al., 2024), which contains 10,501 user queries, each paired with two web
816 implementations and a user-provided preference label. To ensure the quality and suitability of this
817 data for our benchmark, we implemented a rigorous two-stage filtering pipeline. The overview of
818 the filtering pipeline can be seen in Table 7.819 Table 7: Overview of the filtering pipeline, including the number of instances before and after
820 filtering, and the purpose of each filtering stage.
821

822 Stage and criterion	823 # before	824 # after	825 Purpose
826 Query-based: verbatim-identical 827 duplicate	828 10,501	829 6,730	830 Remove redundancy while 831 maintaining the original distribution.
832 Query-based: intention, interaction 833 and safety	834 6,730	835 2,460	836 Remove harmful, offensive, or 837 nonsensical content, and queries 838 with minimal interaction requirements 839 and unclear intentions.
840 Env-based: deployment failure 841 checking via screenshot	842 2,460	843 1,814	844 Remove instances with deployment 845 failures.
846 Env-based: deployment failure 847 checking via status code	848 1,814	849 1,713	850 Remove instances with deployment 851 failures.
852 Sampling	853 1,713	854 700	855 Sample 700 instances regarding 856 the cost-effectiveness.
858 Manual filtering during annotation	859 700	860 654	861 Filter out instances with harmful 862 content and deployment failures.

839
840 **Query-based Filtering** The raw queries were first processed to address quality issues. We began
841 by removing all verbatim duplicate queries to eliminate redundancy. Subsequently, we employed
842 `gemini-2.5-pro` to screen for and exclude any queries containing harmful, offensive, or nonsensical
843 content, based on a predefined set of safety and clarity instructions. We then exclude queries with
844 minimal interaction requirements (score < 8, max = 10) and queries with unclear intentions (score <
845 3, max = 5). The prompts used for the safety filter, interaction filter, and intention filter are presented
846 below.847
848 **Environment-based Filtering** Following the query-based filtering, we proceeded to validate the
849 web implementations. We established a standardized Next.js environment for deployment. To manage
850 dependencies, we identified and included the most common packages, thereby excluding implemen-
851 tations that required niche or incompatible libraries. Each successfully deployed implemen-
852 tation was then verified via a test request; those returning a non-200 status code were discarded
853 as buggy. Finally, to handle instances with intrinsic runtime errors not captured by status codes
854 (e.g., rendering a blank page), we captured an initial screenshot of each webpage. A multimodal
855 model, `Qwen2.5-VL-72B`, was utilized to visually inspect these screenshots and filter out any pages
856 exhibiting rendering failures.857 This comprehensive filtering process yielded a final set of 1,713 high-quality instances for sub-
858 sequent annotation. We further sampled 700 instances from the final set for annotation. During
859 annotation, we filtered out instances with harmful content and deployment failures manually. While
860 the original dataset includes user-provided preference labels, we identified several factors that ren-
861 der them unreliable for rigorous evaluation. Primarily, the labels are susceptible to a high degree
862 of subjectivity and variance in evaluation criteria among individual users. The single-pass nature
863 of the crowdsourced annotations also lacks the verification necessary for robust benchmark data.
864 Furthermore, the dataset includes a “tie (bothbad)” category, which introduces ambiguity. The sub-
865 jective definition of “bad” can lead to inconsistent labeling, potentially masking instances where

864 one implementation, though imperfect, is demonstrably superior to the other. To illustrate these
 865 inconsistencies, we provide examples of problematic cases from the original dataset in Table 8.
 866
 867
 868
 869
 870

PROMPT FOR QUERY-BASED SAFETY FILTERING

871 You are given a user query. Classify whether it is safe or unsafe.
 872 Definitions:
 873 **SAFE**: The query is clear, relevant, and does not request or promote hazardous, violent, hateful, or
 874 sexually explicit content.
 875 **UNSAFE**: The query contains harmful, offensive, or nonsensical content.
 876 Output your decision in **valid JSON** with the following schema:
 877
 878 {
 879 "query": "<the original user query>",

 880 "label": "SAFE" or "UNSAFE",

 881 "category": "<one of: hazard, violence, sexual, hate, other>",

 882 "reason": "<brief explanation>"

 883 }

PROMPT FOR QUERY-BASED INTERACTION FILTERING

884 Please analyze the user's input to assess the level of detail regarding interaction requirements for web
 885 design. Focus on the functionality implied by the user's input and the interactions required. Based on
 886 your evaluation, assign a score from 0 to 10:
 887

888 0: No potential interaction requirements are mentioned, but the website may still contain interactions.
 889 3: No interaction is mentioned explicitly, but interactions may still exist in the functionality.
 890 5: One interaction is mentioned or implied, focusing on a single functionality or task.
 891 8: More than one interaction is mentioned or implied, involving multiple functionalities or tasks.
 892 10: All relevant interactions and functionalities are clearly mentioned in detail, requiring full user
 893 engagement with the site or app.

894 After completing your analysis, output your score in the format: `<<score:int>>`. For example:
 895 `<<score:7>>`.

896 Examples:

897 User: Building a merge sort function Response: This is a programming task that doesn't involve any
 898 web interactions or user-facing functionality. `<<score:0>>`

899 User: a poker site Response: The term "poker site" implies interactions, but the input lacks specific
 900 details about those interactions. `<<score:2>>`

901 User: Create a unique and incredibly beautiful design. The design is up to your discretion, but the main
 902 thing is to make it stand out! Write code that is at the senior level or even above it, as if you've been
 903 working in the frontend for 10 years. Make the design beautiful and pleasing to the eye! Response:
 904 The focus is on aesthetics and quality, with some implied user interaction related to the design's appeal,
 905 but not much about functionality. `<<score:3>>`

906 User: site for selling craft chocolate bars Response: This request implies basic interactions such as
 907 browsing and purchasing, but lacks specific details about the interactions. `<<score:5>>`

908 User: Design a guided meditation player with progress tracking. Create a library view to browse
 909 and select different meditation sessions. Response: The request involves multiple interactions like
 910 browsing, selecting sessions, and tracking progress, but is not fully detailed. `<<score:8>>`

911 User: Build a game of chess Response: A chess game involves numerous interactions such as moving
 912 pieces, taking turns, and tracking the game state, all requiring user engagement. `<<score:9>>`

913 User: Make me a clone of WhatsApp Chat App Response: A clone of WhatsApp implies multiple
 914 interactions, including sending/receiving messages, media sharing, and managing chats, all of which
 915 require significant user engagement and functionality. `<<score:9>>`

918
919

PROMPT FOR QUERY-BASED INTENTION FILTERING

920
921

Analyze the user's input to evaluate the clarity of their query regarding website design. Assign a score from 1 to 5 based on the criteria below:

922
923

Score 5: User provides a clear, detailed description of requirements, including specific features and design elements.

924

Score 4: User's intention is mostly clear with some details, but lacks comprehensive specifics.

925

Score 3: User presents a general idea, but the request is vague and lacks essential information.

926

Score 2: User's input is unclear or contains irrelevant information, making their intention difficult to discern.

927

Score 1: Input is nonsensical or purely code-related, reflecting no intention for a design request. Output: Return a JSON object containing the reasoning for the score and an expected result, formatted as follows:

928

```
[{"reason": "A clone of WhatsApp Chat App", "score": "4"},]
```

929

930

931

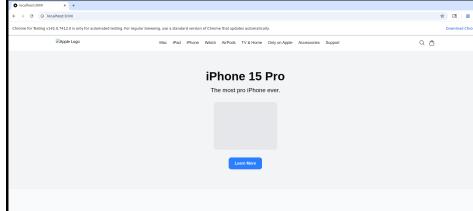
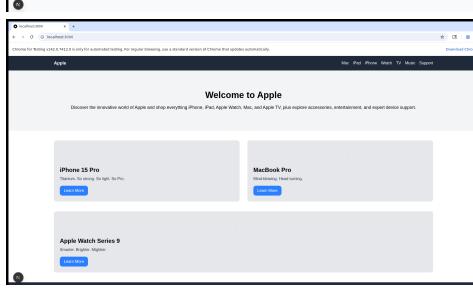
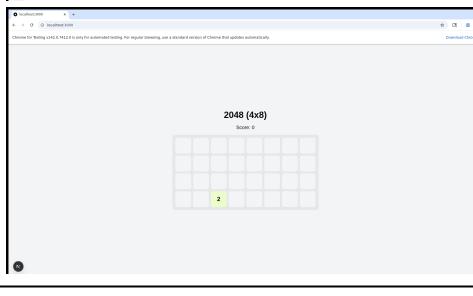
932

Table 8: Examples of problematic cases. In each example, the upper figure is referred to as model_a, while the lower one is model_b.

933

934

935

Query	Implementation	Analysis
Build a website identical to apple.com.	 	<p>Initial label: model.b Annotated label: model.a Problem type: subjective label bias. Reason: A thorough check of apple.com shows that A's restoration is much more accurate.</p>
Build a 4x8 version of the game 2048.	 	<p>Initial label: tie (bothbad) Annotated label: model.b Problem type: misjudgment in "bothbad" ties. Reason: While both have clear usability flaws, B is still clearly superior to A in terms of its alignment with the query.</p>

972 A.2 RUBRIC ANNOTATION PIPELINE
973

974 The annotation was conducted by two of the authors, all of whom possess strong backgrounds in
975 computer science and software engineering. Since we have two annotators, the agreement rate is
976 calculated as the proportion of instances where their annotations are the same. The annotation
977 requires annotators to interact with the deployed web implementations and provide a preference
978 label via pairwise comparison. However, this direct approach yields low inter-annotator agreement,
979 underscoring the high degree of subjectivity inherent in the task and the need for a standardized
980 evaluation framework.

981 To address this, we introduced a rubric-guided annotation process. Manually creating detailed
982 rubrics for each query is not only prohibitively time-consuming—with an estimated 20 minutes
983 per rubric, excluding research time—but also intellectually demanding. It requires extensive back-
984 ground knowledge, including familiarity with established UI/UX design patterns for similar ap-
985 plications and, in many cases, specialized domain knowledge for tasks like scientific simulations.
986 Recognizing these challenges, we leveraged a powerful large language model, *gemini-2.5-pro*,
987 for automated generation. Based on each user query, the model produced a structured rubric tree
988 organized along three core dimensions critical to web development quality:

- 989 • **Intention:** The core requirements of the user query.
- 990 • **Static Quality:** The assessment of static elements, including UI layout and UX design.
- 991 • **Dynamic Behavior:** The evaluation of interactive features.

992 The prompt used to generate these rubric trees is provided below.

993 Upon manual review, the LLM-generated rubrics exhibited both strengths and weaknesses. For
994 queries that referenced real-world applications, the rubrics were often of high quality, sometimes
995 surpassing human-authored versions in detail. However, for vague or overly general queries, which
996 are common on crowdsourcing platforms, the generated rubrics sometimes included criteria that
997 were either too specific or too broad, reflecting the ambiguity of the original request. We present
998 several examples of the rubric tree structure, encompassing the manually-curated example provided
999 in the one-shot rubric generation, alongside instances of both relatively high and low quality LLM-
1000 generated rubrics, as illustrated in Figure 9 in Appendix E.1.

1001
1002 Table 9: Statistics of the generated rubric trees.
1003

Metric	Intention	Static	Dynamic	Whole
Average height	2.0	3.9	3.3	5.0
Average number of leaf nodes	3.6	15.6	10.6	29.9

1004 We also provide the statistics of the rubric trees; the details are shown in Table 9. From the statistics,
1005 especially the average number of leaf nodes, we can see that the LLM-generated rubrics cover a
1006 wide range of criteria, which is a good sign for the evaluation of web development tasks. To ensure
1007 consistent application of these rubrics, we established a set of clear annotation guidelines for the
1008 expert annotators, as detailed in the following. This structured pipeline, combining LLM-generated
1009 rubrics with clear human oversight and guidelines, proved highly effective. The final inter-annotator
1010 agreement rate reached 89.7%, confirming the consistency and objectivity of our annotation process.

1011
1012 ANNOTATION GUIDELINES
1013

- 1014 1. All judgments must be based on actual user experience, not solely on visual appearance.
- 1015 2. In general, the completeness of functionality takes precedence over aesthetics, unless the user query
1016 explicitly requests a focus on design.
- 1017 3. If both web pages are well-implemented, aesthetic quality should be considered as a deciding factor.
- 1018 4. If there is any important and discernible difference in quality between the two pages, a preference
1019 should be stated rather than defaulting to a tie.
- 1020 5. When a decision is difficult, the rubric tree should serve as the definitive guide. Refer to the
1021 fulfillment of both leaf-level and root-level criteria.
- 1022 6. When judging based on the rubric tree, consider functional equivalence rather than demanding
1023 literal, identical implementations.

1026
1027**PROMPT FOR RUBRIC TREE BUILDING**1028 **## TASK DESCRIPTION**

1029 You are an expert software quality assurance (QA) analyst. Your task is to take a user query for a web
 1030 development project and generate a structured, hierarchical rubric. This rubric will be used to evaluate
 1031 a generated webpage in a verifiable, binary (implemented/not implemented) manner.

1032 The output must be a single JSON object with ````json` and ````` wrapped around it.
 1033 The JSON object must have three top-level keys: ‘intention’, ‘static’, and ‘dynamic’.

1034 **### JSON Structure Rules:**

1035 1. Each node in the tree must be a dictionary with two keys:

- ‘description’: A string describing the feature or goal.
- ‘children’: A list of child nodes, or None if it is a leaf node.

1036 2. The ‘intention’ section should capture the high-level purpose and core goals of the webpage. De-
 1037 scriptions should be concise and conceptual overviews of what the user wants to achieve.

1038 3. The ‘static’ section must detail all the non-interactive, visible elements of the webpage. Break down
 1039 components into their smallest logical parts. For example, a “user profile card” should be broken down
 1040 into “user image”, “username”, and “user bio.”

1041 4. The ‘dynamic’ section describes all the interactive functionalities of the page.

1042 - It must have exactly two children: one for “basic” interactions and one for “complex” interac-
 1043 tions.

1044 - ‘basic’: These are simple, single-step user actions. Examples include typing into a text field,
 1045 clicking a non-submitting button, or selecting a dropdown option.

1046 - ‘complex’: These are multi-step processes or actions that result in a significant change to the
 1047 application’s state. Examples include submitting a form, fetching data, filtering a list of items, or
 1048 navigating to a new view after an action.

1049 5. **Verifiable Leaf Nodes:** Every leaf node in the entire tree (where “children” is None) must describe
 1050 a specific, atomic, and verifiable requirement. The description should be a clear statement that can be
 1051 evaluated as “implemented” or “not implemented”.

1052 **## Example:**

1053 **### User Query:**

1054 `{example_query}`

1055 **### Generated Rubric Tree (Your Output):**

1056 ````json`

1057 `{example_rubric_tree}`

1058 `````

1059 Now, analyze the following user query and generate the rubric tree in the specified JSON format.

1060 **## User Query:**

1061 `{user_query}`

A.3 DATA STATISTICS

1062 In this section, we describe the categorization pipeline for WEBDEVJUDGE and present representa-
 1063 tive examples for each subcategory. We adapt topics from the original dataset (Vichare et al., 2025)
 1064 to serve as our subcategories. Given that WEBDEVJUDGE contains only 654 instances, we did not
 1065 use a topic modeling model for clustering. Instead, we generated subcategories by providing the
 1066 topic name, a detailed description, and the user query to GPT-4o. These subcategories were then
 1067 manually reviewed and consolidated into three main categories.

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **B EXPERIMENTAL DETAILS**
10811082 In this section, we show the details of the implementation of our experiments. Including the
1083 models and hyperparameters, the details of evaluation protocols and metrics, and the agentic workflow
1084 implementation.
10851086 **B.1 MODELS AND HYPERPARAMETERS**
10881089 Our experiments utilize a combination of open-source and commercial models. Open-source models
1090 were deployed using vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). Commercial
1091 models were accessed via their respective APIs, including Azure¹ and Vertex AI². To ensure repro-
1092 ducibility, we set the temperature to 0.0 for all models, with the exception of claude-3.7-sonnet
1093 and claude-4-sonnet, for which the temperature was set to 1.0 to enable their “thinking” mode.
1094 For brevity, the models referred to as DeepSeek-V3 and DeepSeek-R1 in the main paper correspond
1095 to DeepSeek-V3-0324 and DeepSeek-R1-0528, respectively.
10961097 **B.2 EVALUATION PROTOCOLS AND METRICS**
10981099 **Likert Scale** Motivated by the work of Bian et al. (2025), we designed a multi-level Likert scale
1100 for evaluating web development tasks. The scale is based on the international standard for software
1101 quality assessment (ISO/IEC/IEEE, 2022) and has been specifically adapted for our dataset. The
1102 details of the Likert scale are shown in “Dimensions of the Likert Scale”.1103 In selecting these dimensions, we considered the typical workflow of human evaluators in web
1104 testing. Given that the tasks in our dataset are primarily front-end focused, and acknowledging
1105 the current limitations of generative models in producing efficient, full-stack solutions, we have
1106 concentrated on fundamental aspects of web development, omitting higher-level criteria such as
1107 backend performance and efficiency.1108 For single-implementation evaluation, the model assigns a score from 1 (lowest) to 5 (highest) to
1109 each sub-dimension. The final score is the sum of all sub-dimension scores. For pairwise com-
1110 parison, both implementations are presented to the model simultaneously, which allows it to assign
1111 scores based on their relative merits. The final preference is determined by the score difference be-
1112 tween the two implementations. A preference is declared for the higher-scoring implementation if
1113 the score difference exceeds a threshold of 1; otherwise, the outcome is considered a tie.
11141115 **Rubric** For rubric-based evaluation, the process is guided by the LLM-generated rubric tree. The
1116 model is provided with the rubric, the user query, and the web implementation(s). To mitigate
1117 the inherent ambiguity in rubric-based assessments, we instruct the model to recognize functional
1118 equivalence. For instance, a requirement for a heading is considered met if a heading element is
1119 present, even if its text or styling differs from a literal interpretation of the rubric.
11201121 In the single-answer grading setting, the model assigns a binary label (pass or fail) to each leaf node
1122 of the rubric. We then compute a pass rate of the leaf node for each of the three primary dimensions:
1123 intention, static, and dynamic. The final score is the weighted sum of these pass rates. For pairwise
1124 comparison, the model evaluates the two implementations against each leaf node, determining which
1125 is superior or if they are tied. This yields a win rate for each implementation of the leaf nodes across
1126 the three dimensions. A final score for each is calculated as a weighted sum of these win rates.
1127 Preference is awarded to the implementation with the higher final score. In our implementation, all
1128 dimension weights are set to 1.
11291130 **Direct** For direct evaluation, instead of providing any criteria, we instruct the model to directly
1131 output its preference (i.e., W_a , W_b , or tie).
1132¹<https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference>²<https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview>

1134
1135

DIMENSIONS OF THE LIKERT SCALE

1136

Evaluation Criteria

1137

1. Functional Correctness and Completeness

1138

- 1.1 **Core Functionality**: Evaluates if the primary features and requirements specified in the user query are implemented correctly and function as expected.
- 1.2 **Content Accuracy and Completeness**: Assesses if all the required content (text, images, links, etc.) is present, accurate, and correctly placed as per the user's query.
- 1.3 **Boundary Conditions and Corner Cases**: Examines the solution's behavior with unexpected or extreme user inputs.
- 1.4 **Error Handling**: Evaluates the system's ability to handle errors gracefully. This includes providing clear, user-friendly error messages and preventing application crashes due to invalid operations.

1146

1147

2. User Interface Quality

1148

- 2.1 **Visual Consistency and Cohesion**: Assesses the consistency of design elements such as color schemes, typography, spacing, and component styling throughout the webpage.
- 2.2 **Layout, Structure, and Responsiveness**: Evaluates the overall layout and structural organization of the content. This also critically assesses the responsiveness of the design across different screen sizes (desktop, tablet, mobile).
- 2.3 **Aesthetic Appeal**: Assesses the overall visual appeal of the webpage. This includes the effective use of color, typography, imagery, and whitespace to create an engaging and modern user interface.

1156

1157

3. Code Quality

1158

- 3.1 **Readability and Maintainability**: Assesses the clarity and organization of the code. This includes proper indentation, meaningful variable names, comments where necessary, and a logical file structure.
- 3.2 **Modularity and Reusability**: Evaluates whether the code is broken down into logical, reusable components or functions, avoiding monolithic structures and code duplication.
- 3.3 **Scalability and Efficiency**: Assesses the efficiency of the code, as well as the ability to scale the codebase for future enhancements or new features.

1165

1166

4. Interactivity:

1167

- 4.1 **Effectiveness**: Assesses the functionality and user experience of interactive elements like buttons, forms, menus, and sliders. This includes visual feedback on user actions (e.g., hover states, loading indicators).
- 4.2 **Logical Correctness**: Evaluates whether the application state changes correctly in response to user interactions.
- 4.3 **Accessibility**: Evaluates how easy and intuitive it is for a user to navigate the webpage and interact with its elements to achieve their goals.

1172

1173

1174

1175

1176

B.3 AGENTIC WORKFLOW IMPLEMENTATION

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

This section details our agentic workflow implementation, as shown in Table 10. To ensure comparability with our other evaluation methods, the workflow's planner adopts the LLM-generated rubric tree to guide the executor's verification actions. The executor is UI-TARS-1.5 (Seed, 2025), one of the state-of-the-art end-to-end GUI agents operating on a ReAct-style paradigm (Yao et al., 2023), where it first generates a thought and then a corresponding action. These actions are converted into executable pyautogui³ code. We utilize the official UI-TARS-1.5 action space and have designed specific prompting strategies for each rubric dimension. For the **Static** dimension, the rubric tree is converted into a list of elements; the agent navigates the page to find these elements and returns a list of those present. For the **Dynamic** and **Intention** dimensions, each rubric leaf node becomes a task for the agent to complete. Upon reaching the maximum number of steps, the agent provides a conclusion on the task's outcome. Finally, the summarizer calculates a pass rate for each dimension

³<https://pyautogui.readthedocs.io/en/latest/>

1188 based on the agent's findings, and the final score is the weighted sum of these pass rates, mirroring
 1189 the single-implementation rubric evaluation.
 1190

1191

1192

Table 10: Details of the agent settings.

1193

Dimension	Input Format	Output Format	Max Step
Static	List of elements to check	List of found elements	8
Dynamic	Task description	Task feasibility and conclusion	8 for basic, 15 for complex
Intention	Intention description	Feasibility conclusion	15

1198

1199

1200

1201

1202

ACTION SPACE OF UI-TARS 1.5

```

1203 click(point='<point>x1 y1</point>')
1204 left_double(point='<point>x1 y1</point>')
1205 right_single(point='<point>x1 y1</point>')
1206 drag(start_point='<point>x1 y1</point>', end_point='<point>x2 y2</point>')
1207 hotkey(key='ctrl c') # Split keys with a space and use lowercase. Also, do not use
1208 more than 3 keys in one hotkey action.
1209 type(content='xxx') # Use escape characters '\', '\"', and '\n' in content part to ensure
1210 we can parse the content in normal python string format. If you want to submit your
1211 input, use '\n' at the end of content.
1212 scroll(point='<point>x1 y1</point>', direction='down or up or right or left') #
1213 Show more information on the 'direction' side.
1214 wait() # Sleep for 5s and take a screenshot to check for any changes.
1215 finished(content='xxx') # Use escape characters '\', '\"', and '\n' in content part to
1216 ensure we can parse the content in normal python string format.
1217
  
```

1216

1217

B.4 PROMPT TEMPLATES

1219

1220 The prompt templates used for pairwise comparison experiments are as follows. For single-answer
 1221 grading, the only action is simply to modify the input presentation, for example, by modifying two
 1222 separate code blocks into one.

1223

1224

1225

PROMPT FOR DIRECT COMPARISON

1226 You are tasked with comparing two React code snippets (Model A and Model B) based on the user's
 1227 query. The input will contain:

- User Query: The question or concern the user has.
- Answer from Model A: The output of Model A.
- Answer from Model B: The output of Model B.

1228 Your output should be in the following JSON format:

```

1229     ``-
1230     {
1231       "reason": "Detailed explanation for why one model is better, based on the user's query",
1232       "winner": "model_a", 'model_b', or 'tie'"
1233     }
1234     `` - reason: A detailed explanation of why one model's answer is better than the other, based on the
1235 user's query. Focus on the quality of the responses and how well they address the user's concerns.
1236     - winner: Select the winner from the following options:
1237     - "model_a": If Model A is better.
1238     - "model_b": If Model B is better.
1239     - "tie": If both models are equally good or both provide unsatisfactory answers.
1240     Ensure that you thoroughly evaluate the responses before selecting the winner and providing the rea-
1241 son.
  
```

1242
1243**PROMPT FOR RUBRIC-BASED COMPARISON**1244
1245
1246
1247

You are an expert Quality Assurance engineer specializing in web development. Your objective is to meticulously evaluate and compare two different web development solutions for the same task based on a predefined rubric. You will be provided with the user's initial query, two solutions (codes for both webpages A and B), and a comprehensive rubric covering intention, static, and dynamic elements of the webpage.

1248
1249
1250
1251
1252
1253

Based on these inputs, you will assess whether each requirement in the rubric is implemented in each of the two solutions. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Be as objective as possible. During your assessment, please note that the solution might use different terminology than the rubric. Consider a requirement met if the solution's feature is equivalent. For example, the required heading element is present on the webpage, though the exact text or symbol differs.

1254

```
## User Query
{user_query}
```

1257
1258
1259
1260

```
## Code A
```tsx
{code_a}
```
```

1261
1262
1263
1264

```
## Code B
```tsx
{code_b}
```
```

1265

```
## Rubric
```

```
### Intention
```

```
```json
{intention_rubric} ```
Static Elements
```json
{static_rubric}
```
```

1272

```
Dynamic Elements
```

```
```json
{dynamic_rubric}
```
```

1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282

**## INSTRUCTIONS** Your task is to return a single JSON object. This object should have three top-level keys: "intention", "static", and "dynamic". The value for each key should be a JSON object that mirrors the structure of the corresponding rubric provided above. For each leaf node in each rubric (i.e., where "children" is null), you must add a new key "value". The value for this key must be a string: "A" if solution A is better, "B" if solution B is better, or "tie" if they are of equal quality or both fail to meet the requirement.

1283  
1284  
1285  
1286

**## Output Format**

Begin your evaluation by providing an explanation for your reasoning. End your output with a JSON object wrapped with ```json at the beginning and ``` at the end. Do not include any other text after the JSON object.

1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295

Here is an example of the output format:

```
```json
{ "intention": { "description": "The purpose of the web page.", "children": [ { "description": "A web page for book reviews.", "children": null, "value": "A" } ] }, "static": { "description": "The static elements of the web page.", "children": [ { "description": "The book review submission form.", "children": [ { "description": "A field to input the book's rating.", "children": null, "value": "tie" } ] }, "dynamic": { "description": "The interaction between the user and the web page.", "children": [ { "description": "Basic user interactions.", "children": [ { "description": "User can type text into the review text area.", "children": null, "value": "B" } ] } ] } } ``````
```

1296
1297**PROMPT FOR LIKERT SCALE-BASED COMPARISON**1298
1299
1300
1301
1302
1303
1304

You are an expert Quality Assurance engineer specializing in web development. Your objective is to meticulously evaluate and compare two different web development solutions for the same task. You will be provided with the user's initial query and the solutions (codes for both webpages A and B). Based on these inputs, you will assess the quality of each solution across several key dimensions. For each sub-criteria, you must provide a rating on a 5-point Likert scale, where 1 represents "Very Poor" and 5 represents "Excellent". Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Be as objective as possible.

1305
1306**{DIMENSIONS OF THE LIKERT SCALE}**1307
1308

```
## User Query
{user_query}
```

1309
1310
1311
1312

```
## Code A
```tsx
{code_a}
```
```

1313
1314
1315
1316

```
## Code B
```tsx
{code_b} ``
```

1317  
1318  
1319  
1320  
1321**## Output Format**

Begin your evaluation by providing a short explanation. End your output with a json object wrapped with ```json at the beginning and ``` at the end. Use the sub-criterion id as the key. The value for each key should be a nested json object containing the scores for each solution, with "A" and "B" as keys. Do not include any other text after the json object.

Here is an example of the output format:

```
```json
{
  "1.1": { "A": 5, "B": 4 },
  "1.2": { "A": 4, "B": 5 },
  "1.3": { "A": 3, "B": 3 },
  "1.4": { "A": 2, "B": 2 },
  "2.1": { "A": 5, "B": 5 },
  "2.2": { "A": 4, "B": 3 },
  "2.3": { "A": 3, "B": 4 },
  "3.1": { "A": 5, "B": 5 },
  "3.2": { "A": 4, "B": 4 },
  "3.3": { "A": 3, "B": 3 },
  "4.1": { "A": 5, "B": 4 },
  "4.2": { "A": 4, "B": 5 },
  "4.3": { "A": 3, "B": 4 }
}
```

```

1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349

1350 **C WEBDEVJUDGE-UNIT DATASET**  
13511352 In this section, we introduce WebDevJudge-Unit, a task-level dataset created to assess the capability  
1353 of evaluators to verify task feasibility.  
13541355 **C.1 DATASET CONSTRUCTION**  
13561357 To construct the WebDevJudge-Unit dataset, we began by randomly sampling 105 queries from  
1358 WEBDEVJUDGE. For each query, we prompted gemini-2.5-pro to generate up to five correspond-  
1359 ing verification tasks, each with an expected result. We then generated the necessary HTML code  
1360 for each query to facilitate easy deployment. Following deployment, each task was meticulously an-  
1361 notated for feasibility (true/false) by interacting with the live web application. For tasks identified as  
1362 infeasible, we further annotated the specific error type and provided a detailed reason for the failure.  
13631364 Table 11: Statistics of the WebDevJudge-Unit dataset.  
1365

| 1366 <b>Error Type</b>     | 1367 <b>Proportion</b> | 1368 <b>Example</b>                                                                                                                                                                                                                      |                                                                |
|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                            |                        | 1369 <i>Description</i>                                                                                                                                                                                                                  | 1370 <i>Error Reason</i>                                       |
| 1368 Non-funtional element | 1369 35.9              | 1370 <b>Task:</b> On a Question Review page, modify the text content of a displayed question within its editable text field.<br><b>Expected Result:</b> The displayed question text updates to reflect the new input.                    | 1371 Unable to edit question content.                          |
| 1372 Missing element       | 1373 30.9              | 1374 <b>Task:</b> Click the ‘Market’ tab.<br><b>Expected Result:</b> The ‘Market’ view is displayed, showing a list of cryptocurrencies.                                                                                                 | 1375 Can not find the Market tab.                              |
| 1375 Prerequisite not met  | 1376 15.2              | 1377 <b>Task:</b> Select an answer for a multiple-choice question by clicking on one of the options.<br><b>Expected Result:</b> The chosen answer option is visually highlighted.                                                        | 1378 Unable to import the quiz correctly.                      |
| 1378 Loading issue         | 1379 9.0               | 1380 <b>Task:</b> Click a file name in the File Explorer sidebar.<br><b>Expected Result:</b> The corresponding file’s mock content is shown in an editor tab.                                                                            | 1381 Unable to load file content.                              |
| 1382 Unreasonable outcome  | 1383 5.4               | 1384 <b>Task:</b> Scroll the chat display area to view older messages when content overflows.<br><b>Expected Result:</b> The user is logged out.                                                                                         | 1385 N/A                                                       |
| 1385 Ambiguous input       | 1386 2.2               | 1387 <b>Task:</b> Hover over a data point or segment in a Chart.<br><b>Expected Result:</b> A tooltip containing mock data relevant to the hovered chart element is displayed.                                                           | 1388 Chart is not required in the webpage.                     |
| 1388 Overly detailed task  | 1389 0.9               | 1390 <b>Task:</b> From a list of activities on the ‘Activities Screen’, click on a specific activity’s name or image.<br><b>Expected Result:</b> The ‘Detail View’ for the selected activity is displayed, showing its full description. | 1391 Unable to get the expected result based on the operation. |
| 1392 Missing animation     | 1393 0.5               | 1394 <b>Task:</b> Move the mouse cursor across the main 3D animated background area.<br><b>Expected Result:</b> The 3D background animation dynamically responds to the cursor’s position or movement.                                   | 1395 The background 3D animation is not responsive.            |
| 1396                       | 1397                   |                                                                                                                                                                                                                                          |                                                                |

1398 **C.2 DATASET STATISTICS AND EXAMPLES**  
13991400 The resulting dataset comprises 502 tasks derived from 105 unique queries. The feasibility labels  
1401 are distributed as follows: 279 tasks are marked as feasible and 223 as infeasible. Table 11 presents  
1402 a detailed breakdown of the error types for the infeasible tasks, along with illustrative examples for  
1403 each category.

## 1404 D ADDITIONAL RESULTS

1405  
 1406 This section provides a more detailed analysis of LLM-as-a-judge performance on web development  
 1407 tasks, supported by supplementary experimental results.  
 1408

### 1409 D.1 MITIGATING THE IMPACT OF POSITIONAL BIAS

1410  
 1411 To mitigate the impact of positional bias, we employ a widely-used debiasing technique from prior  
 1412 works (Zeng et al., 2024; Tan et al., 2025). This method involves evaluating each pair of implemen-  
 1413 tations twice, with their positions swapped in the second evaluation. A preference is considered final  
 1414 only if the model’s choice remains consistent across both orderings. If the choice is inconsistent, the  
 1415 outcome is recorded as a tie. We use this approach to investigate whether mitigating positional bias  
 1416 improves overall model performance. The results are shown in Table 12.  
 1417

1418 Table 12: Agreement rate (%) with and without mitigating the positional bias.

| 1419 Model      | 1420 w/ mitigating |             | 1421 w/o mitigating |             |
|-----------------|--------------------|-------------|---------------------|-------------|
|                 | 1422 Direct        | 1423 Likert | 1424 Direct         | 1425 Likert |
| Claude-4-sonnet | 65.0               | 65.1        | 66.1                | 66.1        |
| GPT-4.1         | 64.8               | 65.1        | 64.2                | 66.1        |
| DeepSeekV3-0324 | 60.8               | 62.2        | 62.5                | 63.6        |

1426 A natural question arises as to why we did not employ the swap-based debiasing technique in our  
 1427 main experiments. Our decision to rely on single-pass evaluation stems from two primary consider-  
 1428 ations. First, our core objective is to characterize the raw, unfiltered behavior of LLMs-as-judges  
 1429 to understand their inherent biases. Applying debiasing techniques from the outset would mask or  
 1430 average out these effects, obscuring the very phenomena we seek to analyze. The results in Table 12  
 1431 indicate that the overall performance difference before and after debiasing is not substantial in our  
 1432 setup. This finding reinforces the importance of studying the biases directly, as their presence is  
 1433 not always evident from aggregate performance metrics alone. Second, the single-pass evaluation  
 1434 mirrors many practical application scenarios where, for reasons of cost and efficiency, models are  
 1435 queried only once per pair. Therefore, our main experimental results offer a more realistic and cau-  
 1436 tionary benchmark for practitioners, highlighting the potential pitfalls of naively deploying these  
 1437 models without safeguards. Our methodology thus deliberately separates the diagnosis of inherent  
 1438 model behaviors from the evaluation of mitigation strategies.  
 1439

### 1440 D.2 PREDICTION DISTRIBUTION CONSISTENCY

1441 To understand the nature of model failures, we analyze the consistency of predictions across dif-  
 1442 ferent evaluators. This investigation seeks to determine whether different models tend to err on the  
 1443 same set of instances—suggesting certain examples are inherently challenging—or if their errors are  
 1444 largely independent and model-specific. The results of this label consistency analysis are presented  
 1445 in Figure 5 and Figure 6.

1446 Our analysis of prediction consistency across different models reveals a significant disparity between  
 1447 the two evaluation paradigms. As illustrated in Figure 5 and Figure 6, the inter-model agreement  
 1448 under the pairwise comparison paradigm is substantially higher than that under single-answer grad-  
 1449 ing. In pairwise comparisons, the consistency rates between different evaluators generally exceed  
 1450 75%, with many model pairs even surpassing 80%. In stark contrast, under single-answer grading,  
 1451 inter-model consistency drops significantly, typically hovering between 50% and 65%.

1452 This discrepancy corroborates our core finding from the main text: pairwise comparison is a more  
 1453 stable and reliable paradigm for complex, open-ended tasks like web development. Relative judg-  
 1454 ment in pairwise comparison constrains the evaluation scope, compelling the model to focus on  
 1455 discriminative features between two candidates, which is a cognitively less demanding task than  
 1456 absolute scoring. Conversely, single-answer grading requires the model to possess a well-calibrated  
 1457 and consistent internal standard of quality, a standard that varies greatly across different models.  
 1458 Consequently, the single-answer grading paradigm exposes the current models’ deficiencies in cali-  
 1459 bration, leading to inconsistent and less reliable evaluation outcomes.

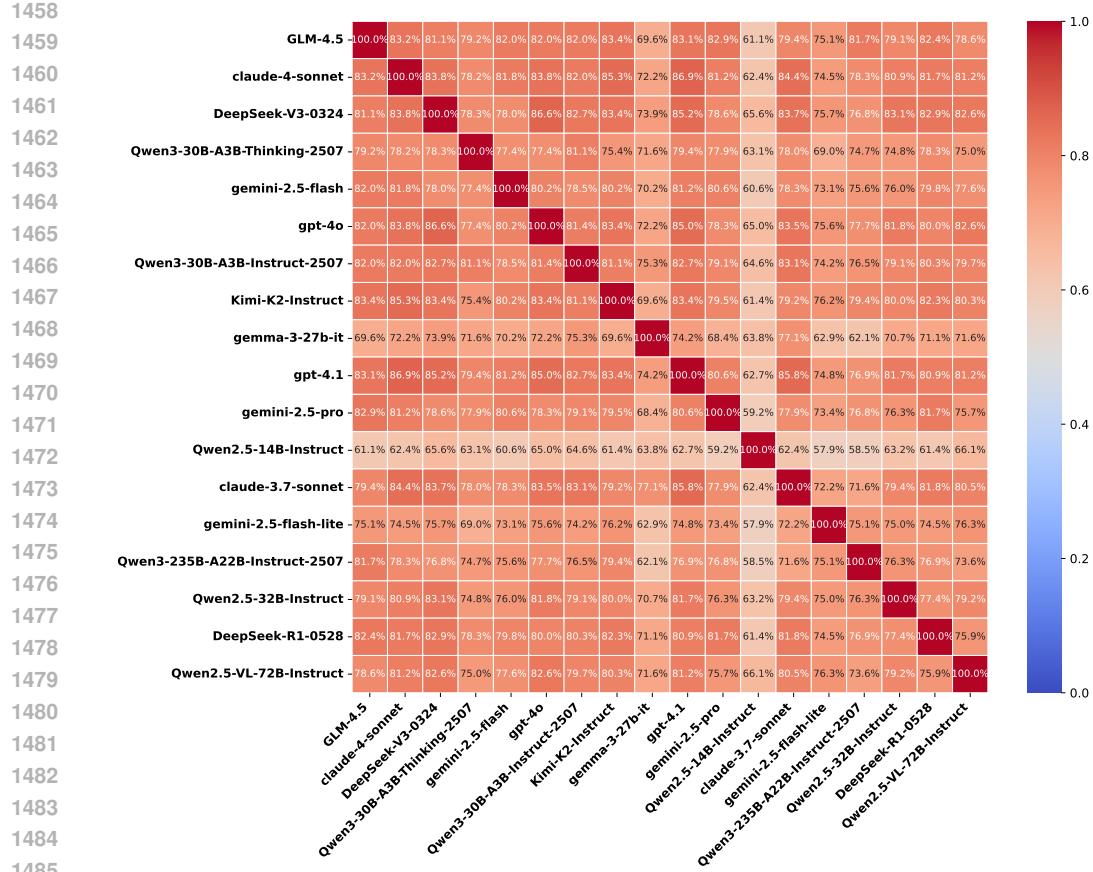


Figure 5: The consistency between model predictions under pairwise comparison.

Furthermore, the high consistency in pairwise comparison suggests that while different models may lack a shared understanding of ‘absolute quality,’ their internal mechanisms for making ‘relative preference’ judgments are more aligned. This reinforces our view that leveraging relative judgments is a more robust approach for automated evaluation in domains characterized by nuance and ambiguity, where clear-cut right or wrong answers are scarce.

To further substantiate these findings, we extend our consistency analysis to rubric-based grading, examining its internal consistency across different models (Figure 7) and its alignment with the direct evaluation paradigm (Figure 8).

### D.3 EVALUATION RESULTS ON NON-TIE CASES

Given the brittleness of language models when handling ambiguous tie conditions, we also present results for non-tie cases, where a clear preference was established. As presented in Table 13, excluding tie cases results in a substantial improvement in agreement rates for all evaluators, indicating that ambiguous comparisons are a primary source of error. More importantly, these results reinforce the core conclusions drawn from our main experiments. The pairwise comparison paradigm consistently and significantly outperforms single-answer grading, highlighting its robustness for capturing relative quality. Furthermore, the patterns of different guidance mechanisms remain consistent: in the pairwise setting, both Likert scale and Rubric-based guidance yield comparable performance, suggesting that the relative judgment itself is the dominant factor. In contrast, for single-answer grading, the Rubric-based approach is demonstrably superior to the Likert scale. This reinforces our finding that structured, binary assessments provide a more reliable signal for absolute evaluation than multi-point scales, which require a level of calibration that models currently lack.

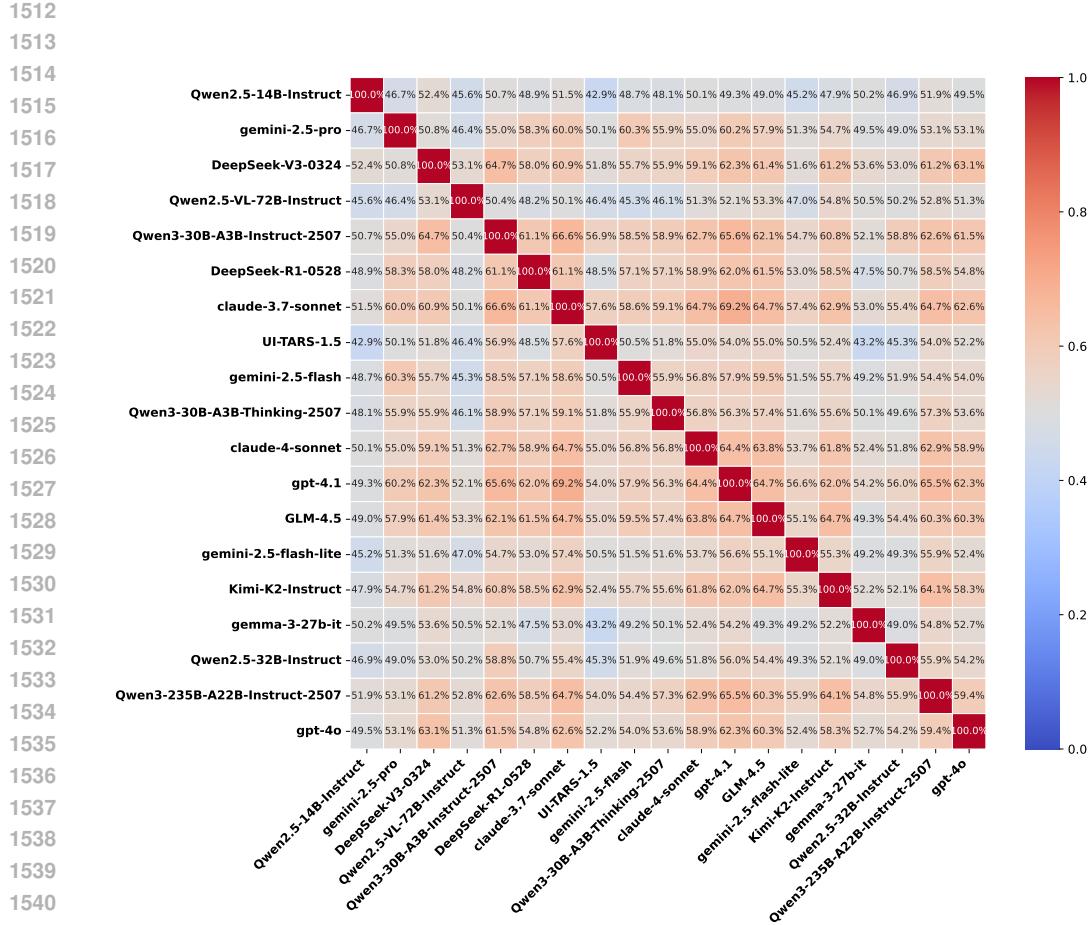
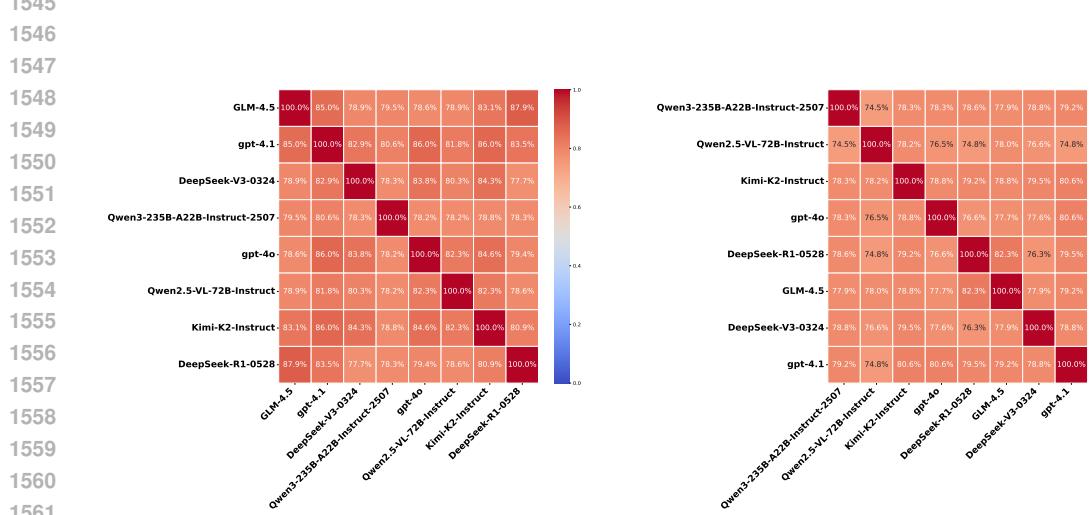
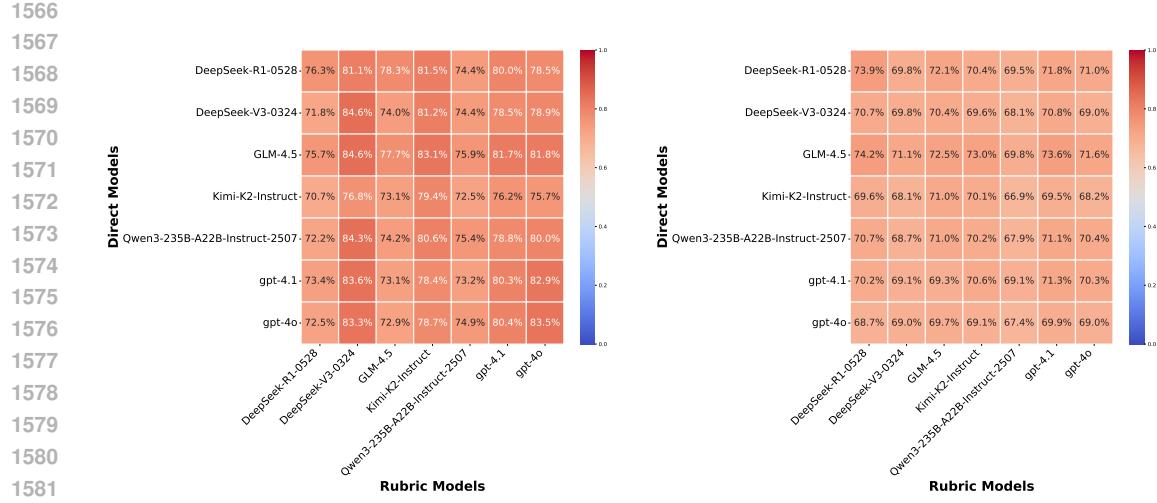


Figure 6: The consistency between model prediction under single answer grading.



(a) Consistency under pairwise comparison. (b) Consistency under single-answer comparison.

Figure 7: The inner prediction consistency between model predictions under rubric paradigm.



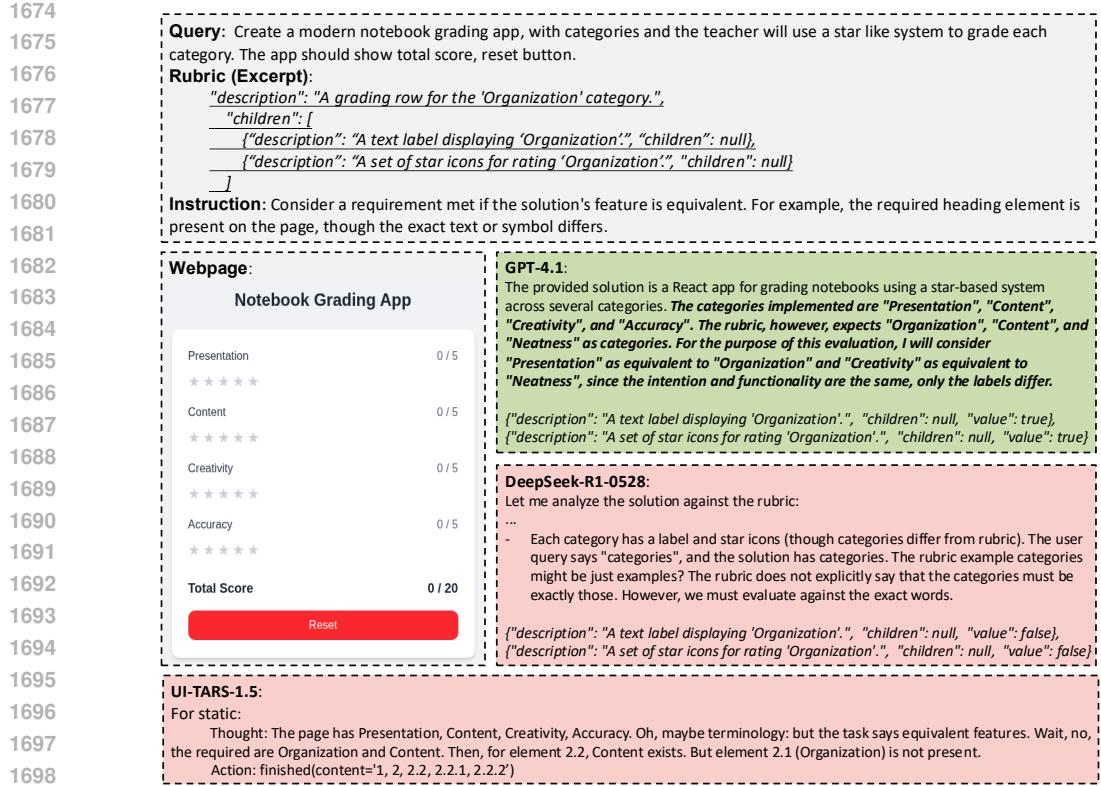
(a) Prediction consistency under rubric (pairwise comparison) and direct paradigm. (b) Prediction consistency under rubric(single-answer grading) and direct paradigm.

Figure 8: The inter-method consistency between model predictions under rubric paradigm and direct paradigm.

Table 13: Agreement Rate (%) (without tie) of different evaluators under different evaluation paradigms.

| Model/Method          | DIGITAL DESIGN |       | GAME & APP |       | WEB & SPECIAL |       | AVERAGE |       |
|-----------------------|----------------|-------|------------|-------|---------------|-------|---------|-------|
|                       | Single         | Pair  | Single     | Pair  | Single        | Pair  | Single  | Pair  |
| <b>Likert</b>         |                |       |            |       |               |       |         |       |
| GPT-4.1               | 65.73          | 80.34 | 71.27      | 82.87 | 72.61         | 85.35 | 69.77   | 82.75 |
| GPT-4o                | 58.99          | 78.65 | 64.09      | 80.11 | 70.70         | 80.89 | 64.34   | 79.84 |
| Qwen-2.5-VL-72B-Inst. | 50.00          | 74.72 | 51.93      | 76.24 | 59.87         | 78.98 | 53.68   | 76.55 |
| Gemini-2.5-flash-lite | 56.74          | 69.10 | 56.91      | 69.61 | 57.32         | 73.89 | 56.98   | 70.74 |
| DeepSeek-V3-0324      | 67.42          | 78.09 | 64.09      | 75.14 | 71.34         | 83.44 | 67.44   | 78.68 |
| Kimi-K2-Inst.         | 69.66          | 78.65 | 66.30      | 73.48 | 63.69         | 80.25 | 66.67   | 77.33 |
| Qwen3-235B-A22B-Inst. | 62.36          | 75.28 | 67.40      | 77.35 | 67.52         | 75.80 | 65.70   | 76.16 |
| Qwen3-30B-A3B-Inst.   | 65.73          | 76.97 | 69.06      | 73.48 | 67.52         | 81.53 | 67.44   | 77.13 |
| Qwen2.5-32B-Inst.     | 55.06          | 71.91 | 58.56      | 77.35 | 59.24         | 77.71 | 57.56   | 75.58 |
| Gemma-3-27B-it        | 51.12          | 69.66 | 57.46      | 64.09 | 49.04         | 75.16 | 52.71   | 69.38 |
| Qwen2.5-14B-Inst.     | 51.69          | 59.55 | 50.28      | 56.35 | 43.31         | 59.87 | 48.64   | 58.53 |
| Claude-4-Sonnet       | 61.24          | 80.90 | 69.06      | 82.32 | 69.43         | 80.25 | 66.47   | 81.20 |
| Claude-3.7-Sonnet     | 75.28          | 79.78 | 69.61      | 75.69 | 69.43         | 85.35 | 71.51   | 80.04 |
| Gemini-2.5-pro        | 59.55          | 75.28 | 58.56      | 79.01 | 50.32         | 73.25 | 56.40   | 75.97 |
| GLM-4.5               | 67.42          | 79.78 | 63.54      | 76.80 | 64.33         | 78.98 | 65.12   | 78.49 |
| DeepSeek-R1-0528      | 57.87          | 76.97 | 65.75      | 76.80 | 58.60         | 76.43 | 60.85   | 76.74 |
| Qwen3-30B-A3B-Think.  | 62.36          | 71.35 | 61.88      | 72.38 | 61.78         | 75.80 | 62.02   | 73.06 |
| <b>Rubric</b>         |                |       |            |       |               |       |         |       |
| GPT-4.1               | 78.09          | 82.02 | 70.72      | 73.48 | 70.70         | 87.26 | 73.26   | 80.62 |
| GPT-4o                | 75.84          | 78.09 | 71.27      | 75.69 | 73.25         | 83.44 | 73.45   | 78.88 |
| Qwen-2.5-VL-72B-Inst. | 70.79          | 76.40 | 71.27      | 77.9  | 73.25         | 80.89 | 71.71   | 78.29 |
| DeepSeek-V3-0324      | 78.09          | 79.21 | 65.75      | 79.01 | 78.34         | 87.26 | 73.84   | 81.59 |
| Kimi-K2-Inst.         | 72.47          | 82.02 | 67.40      | 74.59 | 75.16         | 87.26 | 71.51   | 81.01 |
| Qwen3-235B-A22B-Inst. | 74.16          | 76.97 | 65.75      | 66.3  | 71.97         | 75.16 | 70.54   | 72.67 |
| DeepSeek-R1-0528      | 78.09          | 79.21 | 64.09      | 70.17 | 73.25         | 77.07 | 71.71   | 75.39 |
| GLM-4.5               | 76.97          | 80.34 | 66.30      | 70.72 | 77.71         | 79.62 | 73.45   | 76.74 |
| Agentic workflow      | 67.98          | -     | 71.27      | -     | 75.80         | -     | 71.51   | -     |





1728  
1729 Regarding limitations in feasibility analysis, agentic evaluators are constrained by their inherent  
1730 capabilities. Figure 11 illustrates such a case where the agent fails to locate the target ‘regenerate’  
1731 element within the screenshot, incorrectly leading it to classify the task as infeasible.  
1732

## 1733 F THE USE OF LARGE LANGUAGE MODELS

1734 We use a large language model (LLM) as a general-purpose writing assistant. The primary use of  
1735 the LLM is to refine and improve the clarity and flow of the text. Specifically, we provided the LLM  
1736 with our pre-existing draft text and a clear outline of our ideas. We instruct the model to adhere  
1737 strictly to the provided content, without adding or removing any information. The LLM’s role is  
1738 limited to enhancing the logical coherence and fluency of the language, ensuring the final text is  
1739 more polished and easier to read.  
1740

1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781