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Abstract

Artificial neural networks are powerful machine learning methods used in many modern ap-
plications. A common issue is that they have millions or billions of parameters, and therefore
tend to overfit. Bayesian neural networks (BNN) can improve on this since they incorpo-
rate parameter uncertainty. Latent binary Bayesian neural networks (LBBNN) further take
into account structural uncertainty by allowing the weights to be turned on or off, enabling
inference in the joint space of weights and structures. In this paper, we will consider two
extensions of variational inference for the LBBNN: Firstly, by using the local reparametriza-
tion trick (LRT), we improve on computational efficiency. Secondly, and more important, by
using normalizing flows on the variational posterior distribution of the LBBNN parameters,
we learn a more flexible variational posterior than the mean field Gaussian. Experimental
results on real data show that this improves on predictive power compared to using mean
field variational inference on the the LBBNN method, while also obtaining sparser networks.
We also perform two simulation studies. In the first, we consider variable selection in a lo-
gistic regression setting, where the more flexible variational distribution improves results.
In the second study, we compare predictive uncertainty based on data generated from two-
dimensional Gaussian distributions. Here, we argue that our Bayesian methods lead to more
realistic estimates of predictive uncertainty.

1 Introduction

The idea of using a mathematical model to imitate how the brain works was first introduced in McCulloch
& Pitts (1943). However, it was not until more recent years that the true power of these models could be
harnessed with the idea of using backpropagation (Rumelhart et al., 1986) to train the model with gradient
descent. With the advent of modern GPU architectures, deep neural networks can be scaled to big data, and
have shown to be very successful on a variety of tasks including computer vision (Voulodimos et al., 2018),
and natural language processing (Young et al., 2018). Modern deep learning architectures can have billions of
trainable parameters (Khan et al., 2020). Due to the large number of parameters in the model, the network
has the capacity to overfit, and therefore may not generalize well to unseen data. Various regularization
methods are used to try to deal with this, such as early stopping (Prechelt, 1998), dropout (Srivastava et al.,
2014) or data augmentation (Shorten & Khoshgoftaar, 2019). These techniques are heuristic and therefore
it is not always clear how to use them and how well they work in practice. It is also possible to reduce
the number of parameters in the network with pruning. This is typically done with the dense-to-sparse
method (Han et al., 2017). Here, a dense network is trained, while the importance of the weights (i.e.
their magnitude) is recorded. Then, the weights that fall below the sparsity threshold (a hyperparameter)
are removed. In Frankle & Carbin (2018), it is hypothesized that in randomly initialized dense networks,
there exists a sparse sub-network (the winning lottery ticket) that can obtain the same test accuracy as the
original dense network. Instead of training and pruning once, referred to as one-shot pruning, this process
is repeated sequentially several times, removing a certain percentage of the remaining weights each time,
which then results in networks that have a higher degree of sparsity than the ones found with one-shot
pruning. However, this comes at a higher computational cost. Further refinements to this are done in Evci
et al. (2020), where the network starts off dense, and dynamically removes the weights with the smallest
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magnitude, while also adding new connections based on gradient information. Again, these approaches are
heuristic and lack a solid theoretical foundation. Another issue with deep learning models is that they often
make overconfident predictions. In Szegedy et al. (2013), it was shown that adding a small amount of noise
to an image can trick a classifier into making a completely wrong prediction (with high confidence), even
though the image looks exactly the same to the human eye. The opposite is also possible, images that are
white noise can be classified with almost complete certainty to belong to a specific class (Nguyen et al.,
2015).

Bayesian neural networks (BNNs) were presented by Neal (1992), MacKay (1995), and Bishop (1997). They
use a rigorous Bayesian methodology to handle parameter and prediction uncertainty and to incorporate
prior knowledge. In many cases, this results in more reliable solutions with less overfitting; however, this
comes at the expense of extremely high computational costs. Until recently, inference on Bayesian neural
networks could not scale to large multivariate data due to limitations of standard Markov chain Monte
Carlo (MCMC) approaches, the main quantitative procedure used for complex Bayesian inference. Recent
developments of variational Bayesian approaches (Gal, 2016) allow us to approximate the posterior of interest
and lead to more scalable methods.

Still, BNNs tend to be heavily over-parameterized and difficult to interpret. It is therefore interesting to
consider sparsity-inducing methods from a Bayesian perspective. This is typically done by using sparsity-
inducing priors, as in variational dropout (Kingma et al., 2015; Molchanov et al., 2017), which uses the
independent log uniform prior on the weights. This is an improper prior, meaning that it is not integrable
and thus not a valid probability distribution. As noted in Hron et al. (2017), using this prior, combined with
commonly used likelihood functions leads to an improper posterior, meaning that the obtained results can
not be explained from a Bayesian modeling perspective. It is argued that variational dropout should instead
be interpreted as penalized maximum likelihood estimation of the variational parameters. Additionally, Gale
et al. (2019) finds that while variational dropout works well on smaller networks, it gets outperformed by
the heuristic (non-Bayesian) methods on bigger networks. Another type of sparsity inducing prior is the
independent scale mixture prior, where Blundell et al. (2015) proposed a mixture of two Gaussian densities,
where using a small variance for the second mixture component leads to many of the weights having a
prior around 0. Another possibility is to use the independent spike-and-slab prior, most commonly used in
Bayesian linear regression models. This prior is used in latent binary Bayesian neural networks (LBBNN)
introduced by Hubin & Storvik (2019; 2023) and concurrently in Bai et al. (2020). The spike-and-slab prior
for a special case of LBBNN with the ReLu activation function was studied from a theoretical perspective
in Polson & Ročková (2018). In Hubin & Storvik (2019) it was empirically shown that using this prior will
induce a very sparse network (around 90 % of the weights were removed) while maintaining good predictive
power. Using this approach thus takes into account uncertainty around whether each weight is included
or not (structural uncertainty) and uncertainty in the included weights (parameter uncertainty) given a
structure, allowing for a fully Bayesian approach to network sparsification (see figure 1). In this paper,
we show that transforming the variational posterior distribution with normalizing flows can result in even
sparser networks while improving predictive power compared to the mean field approach used in Hubin &
Storvik (2019). Additionally, we demonstrate that the flow network handles predictive uncertainty well, and
performs better than the mean-field methods at variable selection in a logistic regression setting with highly
correlated variables.

2 The model

Given the explanatory variable x ∈ Rn, and the response variable y ∈ Rm, a neural network models the
function

y ∼ f(·; η(x)).

The mean vector η is obtained through a composition of semi-affine transformations:

u
(l)
j = σ(l)

( n(l−1)∑
i=1

u
(l−1)
i γ

(l)
ij w

(l)
ij + b

(l)
j

)
, j = 1, . . . , n(l), l = 1, . . . , L, (1)
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Figure 1: A dense network on the left, one possible sparse structure on the right.

with ηj = u
(L)
j . Additionally, u(l−1) denotes the inputs from the previous layer (with u0 = x corresponding

to the explanatory variables), the w
(l)
ij ’s are the weights, the b

(l)
j ’s are the bias terms, and n(l) (and n(0) = n)

the number of inputs at layer l of a total L layers. Further, we have the elementwise non-linear activation
functions σ(l). The additional parameters γ

(l)
ij ∈ {0, 1} denote binary inclusion variables for the corresponding

weights.

Following Polson & Ročková (2018); Hubin & Storvik (2019); Bai et al. (2020), we consider a structure to
be defined by the configuration of the binary vector γ, and the weights of each structure conditional on
this configuration. To consider uncertainty in both structures and weights, we use the spike-and-slab prior,
where for each (independent) layer l of the network, we also consider the weights to be independent:

p(w(l)
ij |γ(l)

ij ) = γ
(l)
ij N (w(l)

ij ; 0, σ(l)2) + (1 − γ
(l)
ij )δ(w(l)

ij )

p(γ(l)
ij ) = Bernoulli(γ(l)

ij ; α(l)).

We will use the nomenclature from Hubin & Storvik (2019) and refer to this as the LBBNN model. Here,
δ(·) is the Dirac delta function, which is considered to be zero everywhere except for a spike at zero. In
addition, σ2 and α denote the prior variance and the prior inclusion probability of the weights, respectively.
In practice, we use the same variance and inclusion probability across all the layers and weights, but this is
not strictly necessary.

3 Bayesian inference

The main motivation behind using LBBNNs is that we are able to take into account both structural and
parameter uncertainty, whereas standard BNNs are only concerned with parameter uncertainty. By doing
inference through the posterior predictive distribution, we average over all possible structural configurations,
and parameters. For a new observation ỹ given training data, D, we have:

p(ỹ|D) =
∑

γ

∫
w

p(ỹ|w, γ, D)p(w, γ|D) dw.

This expression is intractable due to the ultra-high dimensionality of w and γ, and using Monte Carlo
sampling as an approximation is also challenging due to the difficulty of obtaining samples from the posterior
distribution, p(w, γ|D). Instead of trying to sample from the true posterior, we turn it into an optimization
problem, using variational inference (VI, Blei et al., 2017). The key idea is that we replace the true posterior
distribution with an approximation, qθ(w, γ), with θ denoting some variational parameters. We learn
the variational parameters that make the approximate posterior as close as possible to the true posterior.
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Closeness is measured through the Kullback-Leibler (KL) divergence,

KL [qθ(w, γ)||p(w, γ|D)] =
∑

γ

∫
w

qθ(w, γ) log qθ(w, γ)
p(w, γ|D) dw.

Minimizing the KL-divergence (with respect to θ) is equivalent to maximizing the evidence lower bound
(ELBO):

ELBO(qθ) = Eqθ(w,γ) [log p(D|w, γ)] − KL [qθ(w, γ)||p(w, γ)] . (2)

The objective is thus to maximize the expected log-likelihood while penalizing with respect to the KL
divergence between the prior and the variational posterior. How good the approximation becomes depends
on the family of variational distributions {qθ, θ ∈ Θ} that is chosen.

3.1 Choices of variational families

A common choice (Blundell et al., 2015) for the approximate posterior in (dense) Bayesian neural networks
is the mean-field Gaussian distribution. For simplicity of notation, denote now by W the set of weights
corresponding to a specific layer. Note that from here on, we drop the layer notation for readability, since the
parameters at different layers will always be considered independent in the both the variational distribution
and the prior. Then

qθ(W) =
nin∏
i=1

nout∏
j=1

N (wij ; µ̃ij , σ̃2
ij),

where nin and nout denote the number of neurons in the previous and current layer, respectively. Weights
corresponding to different layers are assumed independent as well. The mean-field Gaussian distribution for
Bayesian neural networks can be extended to include the binary inclusion variables following Carbonetto &
Stephens (2012):

qθ(W|Γ) =
nin∏
i=1

nout∏
j=1

[γijN (wij ; µ̃ij , σ̃2
ij) + (1 − γij)δ(wij)];

qα̃ij
(γij) = Bernoulli(γij ; α̃ij).

(3)

Here, Γ is the set of inclusion indicators corresponding to a specific layer. However, the mean-field Gaussian
distribution (Blundell et al., 2015) is typically too simple to be able to capture the complexity of the true
posterior distribution. We follow Ranganath et al. (2016), and introduce a set of latent variables z to model
dependencies between the weights, and use the following variational posterior distribution:

qθ(W|Γ, z) =
nin∏
i=1

nout∏
j=1

[γijN (wij ; ziµ̃ij , σ̃2
ij) + (1 − γij)δ(wij)];

qα̃ij
(γij) = Bernoulli(γij ; α̃ij),

(4)

where z = (z1, ..., znin
) follows a distribution qϕ(z). For an illustration of the difference between the two

variational distributions in equation 3 and equation 4, see figure 2. The novelty in our suggested variational
distribution is to combine both weight and structural uncertainty, in addition to modeling dependencies
between the weights. As for W, also z is a set of variables related to a specific layer, independence between
layers is assumed also for z’s. To increase the flexibility of the variational posterior, we apply normalizing
flows (Rezende & Mohamed, 2015) to qϕ(z). In general, a normalizing flow is a composition of invertible
transformations of some initial (simple) random variable z0,

zk = fk(zk−1), k = 1, ..., K.

The log density of the transformed variable z = zK is given as,

log qK(zK) = log q0(z0) −
K∑

k=1
log
∣∣∣∣det ∂zk

∂zk−1

∣∣∣∣ . (5)
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Figure 2: On the left, the mean-field variational posterior where the weights are assumed independent. On
the right, the latent variational distribution z allows for modeling dependencies between the weights.

We are typically interested in transformations that have a Jacobian determinant that is tractable, and fast
to compute, in addition to being highly flexible. Transforming the variational posterior distribution in a
BNN with normalizing flows was first done in Louizos & Welling (2017), who coined the term multiplicative
normalizing flows (MNF), where the transformations were applied in the activation space instead of the
weight space. As the weights are of much higher dimensions, the number of flow parameters and thus the
number of parameters of variational distribution would explode quickly. We will do the same here. The main
difference in our work is that by using the variational posterior in equation 4, we also get sparse networks.

For the normalizing flows, we will use the inverse autoregressive flow (IAF), with numerically stable updates,
introduced by Kingma et al. (2016). It works by transforming the input in the following way:

zk−1 = input
mk, sk = g(zk)

κk = sigmoid(sk)
zk = κk ⊙ zk−1 + (1 − κk) ⊙ mk,

(6)

where g is a neural network and ⊙ denotes elementwise multiplication. Assuming the neural network in
equation 6 is autoregressive (i.e zk,i can only depend on zk,1:i−1), we get a lower triangular Jacobian and

log
∣∣∣∣det ∂zk

∂zk−1

∣∣∣∣ =
nin∑
i=1

log κk,i. (7)

3.2 Computing the variational bounds

In practice, we minimize the negative ELBO in equation 2. In order to compute this upper bound, we need
to marginalize out z from the joint variational distribution (still within one layer, dropping the layer notation
and also from here on dropping the subscript of q(·)′s for variational parameters for simplified notation):

q(W, Γ) =
∫

q(W, Γ, z) dz.

This expression is generally not tractable, therefore we must turn to an approximation to learn its parameters.
Similarly to Louizos & Welling (2017), we use that

log q(W, Γ) = log q(W, Γ|z) + log q(z) − log q(z|W, Γ).
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We thus get the following expression for the KL-divergence,

KL [q(W, Γ)||p(W, Γ)] =

Eq(W,Γ,z)

[
KL [q(W, Γ|z)||p(W, Γ)] + log q(z) − log q(z|W, Γ)

]
.

(8)

After doing some algebra, we get the following for the first term:

KL [q(W, Γ|z)||p(W, Γ)]

=
∑

ij

[
α̃ij

(
log σij

σ̃ij
+ log α̃ij

αij
− 1

2 + σ̃2
ij+(µ̃ijzi−µij)2

2σ2
ij

)
+(1 − α̃ij) log 1−α̃ij

1−αij

]
.

Since we use autoregressive flows, the second term simplifies to

log qK(z) = log q0(z0) −
nin∑
i=1

log κk,i.

The third term, q(z|W, Γ), is in general, also intractable and difficult to compute numerically. To address
this, we introduce an additional auxiliary distribution rθ(z|W, Γ), parameterized by θ and get the upper
bound of equation 8 following Ranganath et al. (2016).

KL [q(W, Γ)||p(W, Γ)] ≤

Eq(W,Γ,z)

[
KL [q(W, Γ|z)||p(W, Γ)] + log q(z) − log r(z|W, Γ)

]
.

(9)

This bound is looser than the original upper bound (see Ranganath et al. (2016) for a proof), but the
dependence structure in the variational posterior distribution can compensate for this. For the last term in
equation 9, log r(z|W, Γ), we follow Louizos & Welling (2017) and use the inverse normalizing flows defined
in equation 6 to make this distribution flexible, with

rB(zB |W, Γ) =
nin∏
i=1

N (νi, τ2
i ).

We define the dependence on W and Γ similar to Louizos & Welling (2017):

ν = n−1
out(d1sT )1, with s = ζ(eT (W ⊙ Γ))

log τ 2 = n−1
out(d2sT )1.

(10)

Here, d1, d2 and e are trainable parameters with the same shape as z. For ζ, we use hard-tanh, as opposed
to tanh (used in Louizos & Welling (2017)) as this works better empirically. For the last term of equation 9,
we thus have:

log r (z|W, Γ) = log rB (zB |W, Γ) + log
∣∣∣∣det ∂zB

∂z

∣∣∣∣ .
This means that we must use two normalizing flows, one to get from z0 to z = zK , and another from zB to
z. Here, we have shown the inverse normalizing flow with only one layer, but this can in general be extended
to an arbitrary number of them just like in equation 5.

For the biases, we assume they are independent of the weights, and each other. We use the standard normal
prior with the mean-field Gaussian approximate posterior. As we do not use normalizing flows on the biases,
we only need to compute the KL-divergence between two Gaussian distributions:

KL [q(b)||p(b)] =
∑

ij

[
log

σbij

σ̃bij

− 1
2 +

σ̃2
bij

+ (µ̃bij
− µbij

)2

2σ2
bij

]
.

In practice, the ELBO is optimized through a (stochastic) gradient algorithm where the reparametrization
trick (Kingma & Welling, 2013) combined with mini-batch is applied.
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4 Combining LBBNNs with the LRT and MNF

The variational distribution in equation 3 (used in both Hubin & Storvik (2019) and Bai et al. (2020)) has two
major drawbacks when utilized in deep Bayesian neural networks. Firstly, each forward pass during training
requires sampling the large Γ and W matrices, consisting of all γij ’s, and wij ’s, to compute the activations
for each layer in the network, as opposed to standard BNNs that only require to sample W. Additionally,
due to the binary nature of the γij ’s, they must be approximated with a continuous distribution in order to
be able to propagate gradients through them using the reparametrization trick. Here, we will show how to
circumvent both of these issues by sampling the pre-activations hj (by which we mean the linear combination
before the non-linear activation function is applied) given in equation 1 directly, typically referred to as the
local reparametrization trick (Kingma et al., 2015, LRT). The difference in our case is that we must also
take into account the binary inclusion variables. Then, we still use exactly the same stochastic variational
inference optimization algorithm as in Hubin & Storvik (2019). We can compute the mean and the variance
of this as:

E(hj) = E

[
bj +

N∑
i=1

[oiγijwij ]
]

= µ̃bj +
N∑

i=1
[oiα̃ij µ̃ij ]

Var(hj) = Var
[

bj +
N∑

i=1
[oiγijwij ]

]
= σ̃2

bj
+

N∑
i=1

[o2
i α̃ij(σ̃2

ij + (1 − α̃ij)µ̃2
ij)].

Here, o denotes the output from the previous layer, consisting of N neurons. The general idea behind the
LRT is that if we have a sum of independent Gaussian random variables, the sum will also be (exactly)
Gaussian. In our case, we have a sum of random variables where each variable is a mixture of a discrete
and a continuous component, but the central limit theorem still holds for a sum of independent random
variables, as long as Lindeberg’s condition (Billingsley, 2017) is satisfied. We also verify empirically that a
sample of activations generated using the LRT will follow approximately the same distribution as a sample of
activations generated by sampling Γ and W. We can thus sample the activations as (independent) Gaussian
variables with the means and variances given from the formulas above. Also, if we use the LRT, we have a
reduction in the variance of the gradient estimates, as shown in Kingma et al. (2015). Note also that the
approximations induced by the sampling procedure for h also can be considered as an alternative variational
approximation directly for p(h|D).

For our second extension, we apply normalizing flows in the activation space to increase the flexibility of the
variational posterior. When using normalizing flows, the mean and the variance of the activation hj are:

E(hj) = µ̃bj
+

N∑
i=1

oiziα̃ij µ̃ij

Var(hj) = σ̃2
bj

+
N∑

i=1
o2

i α̃ij(σ̃2
ij + (1 − α̃ij)z2

i µ̃2
ij),

It should be noted that z affects both the mean and the variance of our Gaussian approximation, whereas in
Louizos & Welling (2017) it only influences the mean. Louizos & Welling (2017) also sample one z for each
observation within the mini-batch. We found that empirically it made no difference on performance to only
sample one vector and multiply the same z with each input vector. We do this, as it is more computationally
efficient.

5 Experiments

In this section, we demonstrate robustness of our approach and show improvements with respect to the
closest baseline methods of Hubin & Storvik (2023), (denoted LBBNN-GP-MF in their paper), denoted
LBBNN here, with the two approaches proposed in this paper. We also compare to other reasonable baseline
methods. We are not interested in trying to obtain state-of-the-art predictive results at all costs, hence all
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Figure 3: Illustration of the relations between the different methods considered in this paper. Exactly one
design change is present between all direct neighbours disregarding the directions of the edges.

our experiments are ran without using ad-hoc tricks commonly found in the Bayesian deep learning literature
that often improve on performance, such as tempering the posterior (Wenzel et al., 2020), or clipping the
variance of the variational posterior distribution as done in Louizos & Welling (2017). Using these tricks
(although tempting) would not allow to evaluate the pure contribution of the methodology. We provide
comparisons to a standard BNN, and to the multiplicative normalizing flow method (MNF) introduced by
Louizos & Welling (2017), as these are closely related to the LBBNN and its two extensions detailed in
this paper. The goal is to compare results between frequentist and our Bayesian networks with the same
architecture and hyper-parameters. See Figure 3 for a graphical illustration of how the different methods
are related to one another. We have a standard, frequentist neural network without any regularization
(ANN), that corresponds to using maximum likelihood to estimate the weights of the network. We also
have a frequentist network with L2 regularization, corresponding to the maximum a posteriori estimator
(MAP) with independent Gaussian priors from a standard BNN. We added a BNN approximated with a
mean-field variational inference, which we also added to comparisons. This standard BNN takes into account
uncertainty in the weights, rather than finding a point estimate allowing us to evaluate the benefit of it as
compared to corresponding MAP estimates. From there, we get to the LBBNN method by having an extra
inclusion parameter for each weight, allowing for a sparse BNN. For LBBNN exactly the same parameter
priors (slab components) as in BNN were used, allowing us to evaluate the effects of adding the structural
uncertainty. The multipliactive normalizing flow method (MNF) is also closely related to a standard BNN,
but here instead of sparsifying the network, we allow the variational posterior distribution to be more
flexible than a standard mean-field Gaussian, used in BNNs. Further, using the local reparametrization trick
(LBBNN-LRT) is mainly a computational advantage compared to the LBBNN method. Finally, LBBNN-
FLOW (proposed in this paper) is related to both MNF and LBBNN-LRT, in the sense that it can learn a
sparse BNN, and in addition have a more fleixble posterior distribution than the mean-field Gaussian used
in LBBNN-LRT. In Hubin & Storvik (2019), comprehensive classification experiments show that LBBNNs
can sparsify Bayesian neural networks to a large degree while maintaining high predictive power.

We demonstrate that increasing the flexibility of the variational posterior with normalizing flows improves
both predictive performance and sparsity levels against the mean-field approximations for LBBNN on a
set of addressed datasets. Additionally, we perform two simulation studies. In the first one, we consider
variable selection in a logistic regression setting, with highly correlated explanatory variables. In the second,
we generate data from clusters of two-dimensional Gaussian distributions and compare how the different
methods handle predictive uncertainty. All the experiments were coded in Python, using the PyTorch deep
learning library (Paszke et al., 2019). In addition to the results reported here, we also perform classification
experiments on various tabular datasets, taken from the UCI machine learning repository (Kelly et al., 2023).
The results (detailed in Appendix C), demonstrate that our suggested approach also works in these settings.
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5.1 Classification experiments

We perform two classification experiments, one with the same fully connected architecture as in Hubin &
Storvik (2019), and the other with a convolutional architecture (see appendix A for details on how this is
implemented, while the specifications on the architecture will be provided later in the text). In both cases,
we classify on MNIST (Deng, 2012), FMNIST (Fashion MNIST) (Xiao et al., 2017) and KMNIST (Kuzushiji
MNIST) (Clanuwat et al., 2018). MNIST is a database of handwritten digits ranging from 0 to 9. FMNIST
consists of ten different fashion items from the Zalando (Europe’s largest online fashion retailer) database.
Lastly, KMNIST also consists of ten classes, with each one representing one row of Hiragana, a Japanese
syllabary. All of these datasets contain 28x28 grayscale images, divided into a training and validation set
with 60 000 and 10 000 images respectively. MNIST and FMNIST are well-known and often utilized datasets,
so it is easy to compare performance when testing novel algorithms. KMNIST is a somewhat recent addition
and is considered a more challenging task than the classical MNIST digits dataset because each Hiragana
can have many different symbols.

Table 1: Performance metrics (accuracy and density) on the KMNIST, MNIST, FMNIST validation data,
for the fully connected architecture. For the accuracies (%), we report the minimum, maximum, and median
over the ten different runs. Density is computed as an average over the ten runs. The best median results
are bold.

KMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 89.22 89.59 89.98 0.113 89.43 89.76 90.21 1.000
LBBNN-LRT 90.04 90.26 90.43 0.136 90.23 90.39 90.60 1.000
LBBNN-FLOW 90.64 91.12 91.46 0.096 91.16 91.30 91.61 1.000
MNF - - - - 92.02 92.28 92.61 1.000
BNN - - - - 92.21 92.53 92.64 1.000
ANN - - - - 90.44 91.02 91.28 1.000
ANN + L2 - - - - 87.24 87.76 88.15 1.000

MNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 98.01 98.10 98.20 0.098 98.03 98.14 98.23 1.000
LBBNN-LRT 97.84 97.95 98.09 0.103 98.01 98.08 98.11 1.000
LBBNN-FLOW 98.14 98.36 98.42 0.074 98.23 98.42 98.53 1.000
MNF - - - - 98.43 98.58 98.63 1.000
BNN - - - - 98.36 98.48 98.63 1.000
ANN - - - - 97.95 98.13 98.20 1.000
ANN + L2 - - - - 96.97 97.05 97.16 1.000

FMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 88.47 88.76 88.90 0.106 88.60 88.74 88.91 1.000
LBBNN-LRT 87.51 87.82 87.94 0.141 87.88 87.94 88.14 1.000
LBBNN-FLOW 89.49 89.70 89.88 0.097 89.52 89.80 89.92 1.000
MNF - - - - 89.19 89.42 89.53 1.000
BNN - - - - 90.07 90.20 90.43 1.000
ANN - - - - 88.75 89.51 89.88 1.000
ANN + L2 - - - - 86.85 87.37 87.54 1.000

For the experiments with the fully connected architecture, we have two hidden layers with 400 and 600
neurons respectively, ReLU (Agarap, 2018) activation functions. For fitting the models, we used the Adam
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(Kingma & Ba, 2014) optimizer. We use a batch size of 100 and train for 250 epochs. All the experiments
are run 10 times, and we report the minimum, median, and maximum predictive accuracy over these 10
runs. In addition to performance measure (accuracy), we also report density of the network, defined as the
ratio of non-zero weights. The reported density (1-sparsity) is an average over these 10 runs. For BNN and
MNF, we use standard normal priors. For ANN + L2, we use the weight decay of 0.5, inducing a penalized
likelihood, which corresponds to MAP (maximum aposteriori probability) solutions of BNN and MNF under
standard normal priors. For the LBBNN-LRT and LBBNN-FLOW methods, we use the standard normal
prior for the slab components of all the weights and biases in the network, and a prior inclusion probability
of 0.10. For both q(z) and r(z|W, Γ), we use flows of length two, where the neural networks consist of two
hidden layers with 250 neurons each. For our second classification experiment, we use the LeNet-5 (LeCun
et al., 1998) convolutional architecture, but with 32 and 48 filters for the convolutional layers. We use the
same priors and normalizing flows as in the previous experiment, and the same datasets. We emphasize that
it is possible to use deeper and more complicated architectures (for example Resnet-18 (He et al., 2016)),
which may improve on the results reported in this paper. As the goal here is not to try to approach (or hack
through tuning and engineering) state-of-the-art results, we do not experiment any further with this.

To measure predictive performance, we consider two approaches. First, the fully Bayesian model averaging
approach, where we average over 100 samples from the variational posterior distribution, taking into account
uncertainty in both weights and structures following Hubin & Storvik (2019). Secondly, we consider the
median probability model (Barbieri & Berger, 2004), where we only do model averaging over the weights
that have a posterior inclusion probability greater than 0.5, whilst others are excluded from the model. This
allows for significant sparsification of the network. We emphasize that this is possible because we can go back
to sampling the weights when doing inference, i.e. we sample only from the weights that have a corresponding
inclusion probability greater than 0.5. We also report the density, i.e. the proportion of weights included in
the median probability model.

The results with the fully connected architecture can be found in Table 1 and for the convolutional architec-
ture in Table 2. Firstly, we see that using the LBBNN-LRT gives results that are comparable to the baseline
LBBNN method, except for FMNIST where it performs a bit worse both with the fully connected and with
the convolutional architecture. It is no surprise that these results are similar, as using the LRT is mainly
a computational advantage. Secondly, we note that the LBBNN-FLOW method performs better than the
other two methods, on both convolutional and fully connected architectures, while having the most sparse
networks. We also see that LBBNN-FLOW performs well compared to the BNN and MNF architectures,
especially on the fully connected architecture where it gets comparable accuracy even with very sparse net-
works. The higher density in general on the convolutional architectures is mainly a result of them being
already sparse in the beginning. However, these networks could also be sparsified further by using more con-
servative priors on inclusions of the weights. The increased predictive power of using normalizing flows comes
at a computational cost. With the fully connected architecture, we observed that it took around 4 seconds
to train one epoch with LBBNN-LRT, 13 seconds with LBBNN, and 17 seconds with LBBNN-FLOW on an
NVIDIA A10 GPU. On the convolutional architecture, it took 7 seconds per epoch with the LBBNN-LRT,
18 seconds with LBBNN, and 28 with normalizing flows. We note that the frequentist networks perform
slightly worse on these datasets with our chosen architectures. The results could likely be improved by
adding more regularization, such as dropout or batch-normalization, but we do not do this here, as we are
not interested in trying to obtain state-of-the-art results. Naturally, the frequentist networks are much more
computationally efficient, as they only have half the parameters of a standard BNN.

5.2 Logistic regression simulation study

In this section, we do a variable selection experiment within a logistic regression setting. As logistic regression
is just a special case of a neural network with one neuron (and hence one layer), modifying the algorithms
is straightforward. We are limiting ourselves to the logistic regression context to be able to compare to
the original baseline method from Carbonetto & Stephens (2012), who have shown that the mean-field
variational approximation starts to fail the variable selection task when the covariates are correlated. As we
are only interested in comparing mean-field variational approach against the variational distribution with
normalizing flows, we do not include comparisons with more traditional variable selection methods such as
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Table 2: Performance metrics on the KMNIST, MNIST, FMNIST validation data, with the convolutional
architecture. See the caption in Table 1 for more details.

KMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 95.13 95.52 95.89 0.359 95.21 95.48 95.78 1.000
LBBNN-LRT 94.73 94.94 95.16 0.429 95.07 95.42 95.65 1.000
LBBNN-FLOW 95.73 95.99 96.43 0.351 96.00 96.18 96.44 1.000
MNF - - - - 96.14 96.42 96.64 1.000
BNN - - - - 95.19 95.34 95.58 1.000
ANN - - - - 94.18 94.95 95.27 1.000
ANN + L2 - - - - 92.00 92.51 92.77 1.000

MNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 99.22 99.26 99.35 0.353 99.21 99.28 99.33 1.000
LBBNN-LRT 99.11 99.26 99.31 0.406 99.20 99.28 99.34 1.000
LBBNN-FLOW 99.15 99.27 99.41 0.338 99.16 99.29 99.42 1.000
MNF - - - - 99.26 99.32 99.41 1.000
BNN - - - - 99.21 99.30 99.36 1.000
ANN - - - - 99.01 99.15 99.23 1.000
ANN + L2 - - - - 97.93 98.30 98.40 1.000

FMNIST Median probability model Full model averaging
Method min median max density min median max density
LBBNN 91.14 91.31 91.48 0.352 91.10 91.26 91.44 1.000
LBBNN-LRT 90.04 90.40 90.85 0.433 90.52 90.73 91.06 1.000
LBBNN-FLOW 90.52 91.54 91.75 0.367 91.38 91.71 92.04 1.000
MNF - - - - 91.60 91.87 92.10 1.000
BNN - - - - 91.04 91.60 91.99 1.000
ANN - - - - 90.40 91.21 91.63 1.000
ANN + L2 - - - - 87.79 88.05 88.48 1.000

Lasso (Tibshirani, 1996) or Elastic Net (Zou & Hastie, 2005). We use the same data as in Hubin & Storvik
(2018), consisting of a mix of 20 binary and continuous variables, with a binary outcome, and we have 2 000
observations. The covariates, x, are generated with a strong and complicated correlation structure between
many of the variables (see figure 4). For more details on exactly how the covariates are generated, see
appendix B of Hubin & Storvik (2018). The response variable, y, is generated according to the following
data-generating process:

η ∼ N (βx, 0.5)

y ∼ Bernoulli
(

exp(η)
1 + exp(η)

)
with the regression parameters defined to be:

β = (−4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1.2, 0, 37.1, 0, 0, 50, −0.00005, 10, 3, 0).

The goal is to train the different methods to select the non-zero elements of β. We consider the parameter βj

to be included if the posterior inclusion probability αj > 0.5, i.e. the median probability model of Barbieri
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Figure 4: Plots showing the correlation between different variables in the logistic regression simulation study.
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Table 3: Performance metrics on the logistic regression variable selection simulation study.

CS LBBNN-LRT LBBNN-FLOW
mean TPR 0.681 0.838 0.972
mean FPR 0.125 0.084 0.074

& Berger (2004). We fit the different methods 100 times (to the same data), each time computing the true
positive rate (TPR), and the false positive rate (FPR):

TPR =
M∑

j=1

TPj

TPj + FNj
,

FPR =
M∑

j=1

FPj

FPj + TNj
.

Here n = 20 variables, and TP = true positive, meaning that a non-zero weight was correctly included. FN
= false negative, meaning a non-zero weight was not included. FP = false positive, meaning a weight that
was zero was included. TN = true negative, meaning that a zero weight was not included. Thus, TPR
measures the proportion of variables with non-zero weights correctly included, whereas FPR measures the
proportion of variables with zero weights that were wrongly included.

Figure 5: Bar-plots showing how often the weights are included over 100 runs.

In this experiment we compare our approaches LBBNN-LRT and LBBNN-FLOW against the algorithm
proposed by Carbonetto & Stephens (2012), denoted as CS henceforth. That method is very similar to
LBBNN-LRT, as it uses the same variational distribution. But in CS, optimization is done with coordinate
ascent variational inference and without subsampling from the data. For the normalizing flows, we use flows
of length two with the neural networks having two hidden layers of 100 neurons each. We use a batch size of
400 and train for 500 epochs. We use standard normal priors for the weights and a prior inclusion probability
of 0.25 on the inclusion indicators for all three approaches. Hence, we are in the setting of a Bayesian logistic
regression, with variable selection.

The results are in Table 3. We also show a bar-plot (figure 5) for each of the 20 weights over the 100 runs.
We see that LBBNN-FLOW performs best, with the highest TPR and the lowest FPR. It is especially good
at picking out the correct variables where there is a high correlation between many of them (for example
β1 − β6). We might attribute this to the more flexible variational posterior distribution, as opposed to
the mean-field Gaussian distribution used in the other three methods. Carbonetto & Stephens (2012) also
discuss how the mean-field approach can only be expected to be a good approximation when the variables
are independent or at most weakly correlated.
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5.3 Predictive uncertainty

A key motivation behind using a Bayesian approach is their ability to handle predictive uncertainty more
accurately than non-Bayesian neural networks. We therefore in this experiment want to illustrate how our
approaches LBBNN-LRT and LBBNN-FLOW, as well as Monte Carlo dropout (Gal & Ghahramani, 2016),
and a regular (dense) BNN behave in terms of the predictive uncertainty. The purpose of this study is,
thus, illustrative rather than comparative and the methods are not competing here. For this experiment, we
simulate 5 clusters of data from two-dimensional Gaussian distributions. For the five Gaussians, we use the
means and covariances reported in Appendix B. The data is then transformed to be in the range between 0
and 1, for ease of visualization. The task is to classify to the correct class corresponding to a specific cluster.

We generate three datasets, with 10, 50, and 200 samples from each class, respectively. For all the methods,
we fit a network with one hidden layer consisting of 1000 neurons, meaning we are in a setting where the
number of trainable parameters is much larger than the number of observations, which is a typical scenario
for applications of Bayesian neural networks. For dropout, we use 0.5 for the dropout probability, and we
use 0.5 for the prior inclusion probabilities for LBBNN-LRT and LBBNN-FLOW. We use flows of length
two, with the neural networks consisting of two hidden layers of 50 neurons each. For all the methods, we
use 10 samples for model averaging. To measure predictive uncertainty, we generate a test set over a grid
over [0, 1]2 and compute the entropy of the predictive distributions for each point in the grid. Maximum
entropy is attained when the predictive distribution is uniform, i.e. 0.2 for each class. The results are shown
in figure 6, figure 7, and figure 8.

With little data, we see a stark difference between dropout and the Bayesian networks. Dropout predictions
are highly confident everywhere, except for at the decision boundaries between the classes. In contrast, the
Bayesian networks exhibit high uncertainty in most areas, especially where little data is observed. When
we increase the amount of data, we can see that the Bayesian networks gradually get more certain about
predictions, and the entropies (as desired) start to converge towards the data-generative ones, while for
dropout at a given rate, the uncertainties do not reduce. It should be noted that there is no under-fitting
happening, as we have close to 100% accuracy during training for all the methods. As a final observation, we
see that the dense BNN typically has slightly less uncertainty than LBBNN with LRT and FLOW. Although,
we can not say much about how good/bad this is, since it is difficult to obtain the true uncertainties for
our model, i.e. running a reversible jump MCMC (Green & Hastie, 2009) in the settings of LBBNN of a
reasonable size is currently just infeasible computationally.

Additionally, we perform an experiment where we generate 10 000 test samples (2 000 from each cluster), after
training with 50 samples (10 from each cluster). After training, we compute the entropy of the predictive
distribution on the test data and sort the data from lowest to highest entropy. We also sort the samples
based on the maximum class probability and compute the cumulative accuracy (with 100 data samples at a
time). By that we mean that we start with the accuracy for the 100 most confident predictions, followed by
100 less confident predictions, and so on until we reach 100 of the least confident predictions. The results are
in figure 9. With dropout, the maximum class probability is typically very high (i.e. we are extremely certain
about which class the sample belongs to). After the first 5 000 (sorted) samples, the output probability for
the most likely class is at around 95%. With LRT and FLOW, on the other hand, it has dropped to roughly
50%. This mirrors what we saw earlier, dropout has high certainty most of the time. Despite this, we see
that in this experiment the Bayesian methods have higher predictive accuracy than dropout for the cases
with the most uncertainty.

As a final illustration, we consider an experiment where we take the maximum model averaged pre-activation
output (pre-softmax) of the last layer (i.e. just before applying the softmax function) as a measure instead
of using entropy. We use the training data (m = 1000) to generate an empirical confidence interval for the
model-averaged pre-activation outputs for all the classes. We use a one-sided 95% confidence interval on the
upper bound. During testing, we generate a sample over a grid, now between -1 and 2 in both dimensions,
and take the highest model-averaged pre-activation output. We then check whether it falls within the
empirical confidence interval or not. The results are shown in figure 10. We see that in the regions with
extremely low entropy, we can detect out-of-distribution data. This shows that using maximal entropy for
out-of-distribution data as suggested in Louizos & Welling (2017) might not be optimal. However, we still
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Figure 6: Entropy with 10 samples from each cluster

Figure 7: Entropy with 50 samples from each cluster
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Figure 8: Entropy with 200 samples from each cluster

see the potential of BNNs to differentiate between in and out-of-domain uncertainty using the pre-activation
values of the output of BNNs. We do not go any further here and leave this topic for future research.

6 Discussion

We have demonstrated that increasing the flexibility in the variational posterior distribution with normalizing
flows improves the predictive power compared to the baseline method (with mean-field posterior) while
obtaining more sparse networks, despite having a looser variational bound than the mean-field approach.
Also, the flow method performed best on a variable selection problem, where the mean-field approaches
struggle with highly correlated variables. More generally, we argue that Bayesian neural networks (BNNs)
are much better at obtaining realistic predictive uncertainty estimates than their frequentist counterparts,
as they have higher uncertainty when data is sparse. We do not observe a big difference in the uncertainty
estimates obtained with dense BNN compared to our approaches. Unlike dense BNNs, our methods have
the additional advantage of being able to perform variable selection. The downside is that LBBNNs have an
extra parameter per weight, making them less computationally efficient than dense BNNs. Using normalizing
flows is a further computational burden as we must also optimize over all the extra flow parameters.

In this paper, we use the same prior for all the weights and inclusion indicators, although this is not necessary.
A possible avenue of further research could be to vary the prior inclusion probabilities, to induce different
sparsity structures. Currently, we are taking into account uncertainty in weights and parameters, given some
neural network architecture. In the future, it may be of interest to see if it is also possible to incorporate
uncertainty in the activation functions. By having connections between the layers, we could learn to skip all
non-linear layers if a linear function is enough. A possible application is to do a genome-wide association
study (GWAS), using our method. Combining LBBNNs and GWAS has been proposed by Demetci et al.
(2021), however, this only uses the mean-field posterior. With our normalizing flow approach, we can easily
model dependencies within each SNP set, in addition to dependencies between the different SNP sets.
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Figure 9: Top left, cumulative accuracy (100 samples at a time), where each point is the accuracy for the
corresponding data points. Top right, entropy sorted from low to high. Bottom, maximum class probability
sorted from high to low.
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Figure 10: Out of distribution detection, where dark blue corresponds to the OOD data detected by the
BNN, and white is the in-distribution data.
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A Convolutional architectures

For convolutional layers, the variational distribution is defined to be:

qθ(W|Γ, z) =
nh∏
i=1

nw∏
j=1

nf∏
k=1

[γijkN (wijk; zkµ̃ijk, σ̃2
ijk) + (1 − γijk)δ(wijk)]

qα̃ijk
(γijk) = Bernoulli(γijk; α̃ijk),

(11)

where nh, nw, and nf denote the height, width, and number of filters in the convolutional kernel.

For the convolutional layers, we use the following for the inverse normalizing flows:

ν = ((Mat(W ⊙ Γ)e) ⊗ d1) (1 ⊙ (nhnw)−1)
log τ 2 = ((Mat(W ⊙ Γ)e) ⊗ d2) (1 ⊙ (nhnw)−1).

(12)

Here, Mat(·) denotes the matricisation operator (as defined in Louizos & Welling (2017)), i.e. changing the
shape of a multidimensional tensor into a matrix.

B Data for predictive uncertainty experiments

For the predictive uncertainty experiment, we generate data from the following Gaussian distributions:

G1 ∼ N
((

−8
−8

)
,

(
6 −1

−1 3.5

))
,

G2 ∼ N
((

6
6

)
,

(
0 3
3 0

))
,

G3 ∼ N
((

−7
8

)
,

(
−3 4
−5 1

))
,

G4 ∼ N
((

8
−8

)
,

(
0 5
4 2

))
,

G5 ∼ N
((

0
0

)
,

(
0 9
9 0

))
.

C Classification experiments on tabular datasets

In this experiment, we compare our approach LBBNN-FLOW against LBBNN-LRT, LBBNN, a dense BNN,
MNF, ANN L2, ANN, and the simplest baseline, (frequentist) logistic regression. For the neural networks,
we use a single hidden layer with 500 neurons and again train for 250 epochs with the Adam optimizer. In
this case however, we use 10-fold cross validation, and report the minimum, mean and maximum accuracy
over these 10 repetitions, in addition to the mean sparsity.

We use six datasets, most taken from the UCI machine learning repository. The Credit Approval dataset
(Quinlan, 2007) consist of 690 samples with 15 variables, with the response variable being whether someone
gets approved for a credit card or not. The Bank Marketing dataset (Moro et al., 2012) consists of data
(45211 samples and 17 variables) related to a marketing campaign of a Portuguese banking institution, where
the goal is to classify whether the persons subscribed to the service or not. In addition to this, we use the
Census Income dataset (Kohavi, 1996) with 48842 samples and 14 variables, where we try to classify whether
someones income exceedes 50000 dollars per year.

Additionally, we have three dataset related to classifying food items. The first, the Raisins dataset (ÇINAR
et al., 2020), consists of 900 samples and 7 variables, where the goal is to classify to two different types of
raisings grown in Turkey. Secondly we use the Dry Beans dataset (UCI, 2020), consiting of 13611 samples,
17 variables and 7 different types of beans. Lastly, the Pistachio dataset (Ozkan et al., 2021) consist of 2148
samples and 28 variables, with two different types of Pistachios. The results are in Table 4 and Table 5.
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Table 4: Performance results on the Credit Approval, Bank Marketing and Cencus Income datasets, using
10-fold cross validation. The minimum, mean and maximum accuracies are reported, in addition to the
density. Best results are bold.

Credit Approval Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 82.61 85.51 91.30 0.431 81.16 85.80 91.30 1.000
LBBNN-LRT 82.61 86.23 92.75 0.348 82.61 86.23 92.75 1.000
LBBNN-FLOW 84.06 88.26 94.20 0.348 82.61 87.68 91.30 1.000
MNF - - - - 81.16 85.36 89.86 1.000
BNN - - - - 78.26 84.20 89.86 1.000
ANN - - - - 78.26 83.19 91.30 1.000
ANN + L2 - - - - 73.91 83.19 89.86 1.000

Bank Marketing Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 89.78 90.62 91.53 0.430 89.75 90.62 91.45 1.000
LBBNN-LRT 90.65 91.28 91.99 0.347 90.75 91.31 92.23 1.000
LBBNN-FLOW 90.55 91.45 91.99 0.347 90.77 91.42 91.91 1.000
MNF - - - - 90.41 91.15 91.91 1.000
BNN - - - - 90.70 91.14 91.86 1.000
ANN - - - - 90.50 91.00 91.67 1.000
ANN + L2 - - - - 90.75 91.17 91.84 1.000

Cencus Income Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 85.28 85.77 86.51 0.431 85.44 85.82 86.61 1.000
LBBNN-LRT 85.44 85.85 86.59 0.349 85.48 85.86 86.49 1.000
LBBNN-FLOW 85.59 86.00 86.67 0.349 85.54 86.03 86.65 1.000
MNF - - - - 84.89 85.28 85.71 1.000
BNN - - - - 84.62 85.24 86.11 1.000
ANN - - - - 84.50 85.10 85.81 1.000
ANN + L2 - - - - 84.93 85.28 85.89 1.000
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Table 5: Performance results on the Dry Beans, Pistachio and Raisin datasets, using 10-fold cross validation.
The minimum, mean and maximum accuracies are reported, in addition to the density. Best results are bold.

Dry Beans Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 91.03 92.67 93.90 0.442 91.32 92.80 93.82 1.000
LBBNN-LRT 91.40 93.15 94.19 0.349 91.84 93.29 94.41 1.000
LBBNN-FLOW 91.25 92.99 94.04 0.279 91.47 93.03 94.26 1.000
MNF - - - - 91.99 93.20 94.78 1.000
BNN - - - - 90.81 93.28 94.34 1.000
ANN - - - - 91.47 93.36 94.63 1.000
ANN + L2 - - - - 91.54 93.40 94.78 1.000

Pistachio Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 91.59 93.69 96.26 0.433 91.59 93.46 95.33 1.000
LBBNN-LRT 91.59 94.02 95.79 0.350 92.06 94.11 95.79 1.000
LBBNN-FLOW 91.12 93.50 95.79 0.350 91.12 93.46 95.79 1.000
MNF - - - - 91.12 93.69 96.26 1.000
BNN - - - - 92.06 93.88 95.79 1.000
ANN - - - - 92.06 94.11 96.73 1.000
ANN + L2 - - - - 92.52 94.11 95.79 1.000

Raisins Median probability model Full model averaging
Method min mean max density min mean max density
LBBNN 83.33 86.78 92.22 0.432 83.33 86.78 92.22 1.000
LBBNN-LRT 81.11 86.11 91.11 0.349 81.11 86.78 91.11 1.000
LBBNN-FLOW 83.33 86.67 92.22 0.349 83.33 86.67 92.22 1.000
MNF - - - - 82.22 87.11 91.11 1.000
BNN - - - - 81.11 87.89 92.22 1.000
ANN - - - - 81.11 86.44 90.00 1.000
ANN + L2 - - - - 81.11 87.44 92.22 1.000
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