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ABSTRACT

In context learning (ICL) is an attractive method of solving a wide range of prob-
lems. Inspired by Garg et al. (2022), we look closely at ICL in a variety of train and
test settings for several transformer models of different sizes trained from scratch.
Our study complements prior work by pointing out several systematic failures of
these models to generalize to data not in the training distribution, thereby showing
some limitations of ICL. We find that models adopt a strategy for this task that is
very different from standard solutions.

1 INTRODUCTION

In-context learning (ICL) Brown et al. (2020) promises to make interacting with LLMs easy and
accessible. ICL enables the model to learn a task from a prompt with instructions and a few examples
at inference time, without any adjustment of the model’s parameters from pretraining. While there
have been theoretical reconstructions of ICL, there have been few studies on exactly how ICL works
in practice. ICL depends on a model’s pretraining; so doing an in depth analysis of this feature
of LLMs is difficult. Hence, most of analysis done on how ICL works are done on small models
and simple tasks. Garg et al. (2022) makes the problem mathematically precise: the model learns a
task/function given in-context examples at inference time in a next-token-prediction format Brown
et al. (2020); given a prompt containing a task input-output examples (x1, f(x1), .., xn, ?), the model
is asked to generate a value approximating f(xn).

Inspired by Garg et al. (2022), we investigated whether smaller LLMs with transformer architectures
ICL the class L of linear functions. While Garg et al. (2022) answer “yes”, we provide a more
nuanced answer based on a deeper analysis. We have studied the 1 dimensional case with functions
for over 30 models, from transformer architectures with 1 attention head (AH) and 1 MLP layer up
12 MLP layers and 8 AH. We also studied small attention-only models Olsson et al. (2022). Since
we are interested in whether transformer models can ICL and if so how, even small transformer
models are relevant, indeed essential since such an investigation requires training from scratch. Our
main findings are these.

1. Several recent papers claim that Transformer based models trained from scratch can through ICL
implement algorithms like linear and ridge regression or Newton’s method. By shifting sampling
from different training and test distributions of both functions f and values xi, we show that the
models we tested do not do this and fail to generalize or to provide robust predictions beyond their
training data. In particular, all our transformer models failed to ICL the concept of a strictly increas-
ing or strictly decreasing linear function, even over larger intervals in R. We trained transformers on
different distributions various Gaussian, Bimodal and Uniform distributions.

2. Our experiments show that all our models on all training distributions (though training with
uniform distributions makes this particularly clear) have ‘boundary values” (B,−B) for prompts
xi; when f(xi) > B or < −B, model performance degrades substantially. We argue boundary
values are crucial to understanding ICL.

3. All our transformer models solve the task of ICL linear function by learning a projection from
“nearby” sequences of points in the training data; In Section 5 we model mathematically what we
think the models do. The projection depends upon the training distribution.
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2 BACKGROUND

Neyshabur et al. (2017), Villa et al. (2013) define learnability in statistical learning theory via the
notion of uniform consistency. Let µ be a distribution over H and µn the update of µ after n training
samples zi = (xi, yi). Let Azn be an algorithm for picking out a hypothesis from H based on n
training samples. inf H is the hypothesis in H with the lowest possible error (Shalev-Shwartz et al.,
2010; Kawaguchi et al., 2017).

Definition 1 An algorithm A on a hypothesis space H is uniformly consistent if and only if
∀ϵ > 0 limn→∞supµ

µn({zn : Eµ({Azn − inf HEµ > ϵ}) = 0

In our example, the best hypothesis inf H is a prediction f̂ of some target function f . The best
hypothesis is when f̂ = f with f , which yields 0 expected error. There is of course an algorithm
that gives exactly the target function, linear interpolation, given two data points. Moreover linear
regression is an algorithm that converges to the target function on any data set in our set up.

Definition 2 A class of hypotheses H is uniformly learnable just in case there exists a uniformly
consistent algorithm for H.

The class of linear functions L is clearly uniformly learnable. What is left open here is the choice of
distribution of the data both for train and test and the sampling method (since our class is uncount-
ably large). Garg et al. (2022) take a definition of learning where average expected error goes to 0
when data in train and test are sampled both from the same normal distribution. However, a class of
mathematical functions like L does not in any way depend on a particular distribution or sampling.
And so we would expect that if the model has ICL L, it has found an algorithm such that f̂ = f
given a test set of linear functions and points not in its training distribution. In such a case the model
will ICL with different distributions. This is what we investigate below.

3 RELATED WORK

Since Brown et al. (2020) introduced ICL, there has been considerable research indicating that ICL
is possible because of a sort of gradient “ascent” Akyürek et al. (2022); Von Oswald et al. (2023).
Dong et al. (2022) provides an important survey of successes and challenges in ICL and that so far,
only simple problems for ICL have been analyzed, eg the case of linear or simple Boolean functions.

Garg et al. (2022) offered an important advance showing that a Transformer trained from scratch
(GPT-2 with an embedding size of 256) performed in-context learning of n-dimensional linear func-
tions given identical train and test distributions N(0, 1).

Further research then offered several theoretical reconstructions for how ICL for linear functions
might work in Transformers. Von Oswald et al. (2023); Ahn et al. (2023); Mahankali et al. (2023)
provided a construction to show transformers ICL from their doing gradient descent during ICL.
Fu et al. (2023) showed that Transformers could ICL in virtue of using higher-order optimization
techniques. Xie et al. (2021); Wu et al. (2023); Zhang et al. (2023); Panwar et al. (2023) argued that
ICL follows from Bayesian principles. Bai et al. (2024) show that transformers can under certain
assumptions implement many algorithms with near-optimal predictive power on various in-context
data distributions. Given Pérez et al. (2021)’s result that full transformers with linear attention are
Turing complete, however, these theoretical demonstrations are perhaps not surprising.

Xie et al. (2021); Zhang et al. (2024) show that when we shift training and inference distributions
ICL performance degrades. Thus, this work is closer to our own as is Giannou et al. (2024). How-
ever, Giannou et al. (2024); Zhang et al. (2024) make important modifications to transformer archi-
tectures Giannou et al. (2024); Zhang et al. (2024) work with linear attention, whereas we look at
attention layers as they actually are used with softmax. In addition, Zhang et al. (2024) uses a new
kind of optimization or training with gradients and a special fixed initial point. This means that their
architecture and training are quite different from what normally happens with transformers; they are
interested in getting a revised transformer-like model to learn linear functions, while we want to
find out whether transformers as they actually are learn linear functions or something else. As we
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detail below, the results for the architectures of Zhang et al. (2024); Giannou et al. (2024) are quite
different from those we have for actual transformers. In addition unlike either of these papers, we
show that prompts that are too long induce chaotic behavior.

Unlike this prior research, we examine how ICL works in practice under different training and
testing distributions in order to establish what transformers actually do in ICL 1 dimensional linear
functions, whereas most prior research has concentrated on transformer models can or could do on
this task. Even for this simplest case, we show transformers ICL in a different way from any of these
proposed methods.

Bhattamishra et al. (2023) trained small GPT-2 models from scratch to show that Transformers can
ICL simple boolean functions, while their performance deteriorates on more complex tasks. Wu
et al. (2023) studied ICL by pretraining a linearly parameterized single-layer linear attention model
for linear regression with a Gaussian prior proving that the pretrained model closely matches the
Bayes optimal algorithm. Raventós et al. (2024) investigated whether models with ICL can solve
new tasks very different from those seen during pretraining.

Olsson et al. (2022) offer an in depth analysis of ICL across tasks using a general evaluation measure
on prompt length. They propose that a learned copying and comparison mechanism known as an
induction head is at the heart of ICL.

4 EXPERIMENTS

In this section, we show that: (i) models do not implement linear regression; (ii) this performance
holds across different types of distributions; (iii) these distributions all show the presence of bound-
ary values beyond which the models do not perform well; (iv) models with attention layers (AL)
(models with at least two AL only or 1 AL+MLP layer) are needed to give an ICL effect (v) order-
ing and restricting the order of prompts can improve performance. In the last subsection, we put all
of these observations together.

We trained several small decoder only transformer models from scratch to perform in-context learn-
ing of linear functions.1 We set the number of layers (L) from 1 to 6, and attention heads (AH) from
1 to 4. We also trained a 9L6AH model and the 12L8AH GPT2 with an embedding size of 256. The
task of the model is to predict the next value for f(xi) through a prompt of type (x1, f(x1), ..., xi).
We refer to that prediction as f̂(xi). To train the model L to ICL, we looked for a θ∗ that optimizes
the following auto-regressive objective:

θ∗ = argmin
θ

Exi∈DI ,f∈DF

[
k∑

i=0

l (f (xi+1) ,Lθ ((x1, f(x1), ..., f(xi), xi+1)))

]

where Lθ is a learner, l : (y, ŷ) → ||y − ŷ||2 is squared error and f : x → ax + b is a linear
function with a, b chosen at random according to some training distribution for functions DF and
samples xi picked randomly according to a training distribution for points DI . To simplify, we
will note that f ∈ DF , x ∈ DI . We choose at random a function f ∈ DF and then a sequence
of points xi ∈ DI at random, random prompts, from a distribution DI at each training step. We
update the model through a gradient update. We use a batch size of 64 and train for 500k steps. The
models saw over 1.3 billion training examples for each distribution we studied. For DF and DI we
used several distributions: the normal distribution N(0, 1), “rectangle” or uniform distributions over
given intervals and bimodal distributions.

In comparing how model performance evolves with parameters like the number of layers of the
model or number of attention heads, we tested the models on a variety of test distributions for both
functions Dt

F and data points or prompts Dt
I . But while in train we always take the same distribution

(DF = DI ), in test, we sometimes take Dt
F ̸= Dt

I . To see how the model performs in ICL relative
to (Dt

I , D
t
F ), we generate a set of N = 100 functions in Dt

F ; and our data samples for test are
composed of Nb = 64 batches, each containing Np = 41 points in Dt

I . In each batch b, for all
points, we predict for each xb

k, k ≥ 2, f(xb
k) given the prompt (xb

1, f(x
b
1), ..., x

b
k−1, f(x

b
k−1), x

b
k).

1Our code follows that of Garg et al. (2022) and can be found in
https://anonymous.4open.science/r/incontext-learning-556D/
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We calculate for each function the mean average over all the points Np of all batches Nb, then do a
mean average over all functions. Formally this is:

ϵσ =
1

N
ΣN

i=1Σ
Nb

b=1

1

Nb
(
1

Np
Σ

Np

i=3(pred
b
i − ybi )

2)

We define error rate rϵ =
ϵσ

|ϵ∗−ϵ0| where ϵ∗ is the best ϵσ error for a model M with f̂(x) calculated

with Least Squares, and ϵ0 is the worst ϵσ error for a model M such that f̂M (x) = 0, ∀x. In all
our error calculations, we exclude the first two predictions of each batch from the squared error
calculation, since we need at least two points to be able to find a linear function and the first two
predictions by the model are hence almost always wrong.

4.1 MODELS DO NOT IMPLEMENT LINEAR REGRESSION

When trained on DF = DI = N(0, 1) and the target functions had values in [-1, 1], even small
models were able to converge to a 0 average error. The error was not always identical to 0 at least in
some batches but rather similar to Liu et al.’s finding on MSE estimation by transformers.

On the other hand, all the models had systematic and non 0 average error once we chose the target
f ∈ Dt

F = N(0, σ) for σ > 2. Figure 1 shows that the error rate increases substantially and
non-linearly as Dt

F = N(0, σ) and σ increases. To ensure that comparisons between models are
meaningful, for each N(0, σ), we set a seed when generating the 100 random linear functions,
ensuring that each model sees the same randomly chosen functions and the same set of prompting
points xi. The table 2 in the Appendix contains the full figures for average error.

Figure 1: Evolution of error rates for various models with DF , DI = Dt
I = N(0, 1) and Dt

F for
various N(0, σ). The black curve illustrates a model that predicts f(xn) = 0,∀f and ∀xn. The cyan
line LS represents linear or ridge regression, which is trivially a perfect estimator given our totally
clean input data.

The results in Figure 1 and Table 2 confirm that at least the larger models are able to generalize
somewhat to unseen examples, given that all the curves in Figure 1 have lower error rates than the
baseline that predicts f̂(xn) = 0 everywhere. But their generalizing ability was far from perfect;
and contrary to what Akyürek et al. (2022); Von Oswald et al. (2023) have suggested, the models did
not use linear regression to ICL the target function. If they had, we would not see the error patterns
we do.

Our results are also quite different from Zhang et al. (2024), who say shifting the distribution sam-
pled at inference of the functions does not affect their models. Our results show such a shift affects
the results in an important way, where we take N(0, 1) = DF ( but Dt

F = N(0, σ) for 1 ≤ σ ≤ 10.
Figure 1 clearly shows that for transformer models with soft attention, this task shift reduces perfor-
mance dramatically.
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Giannou et al. (2024) also only examine differences in sampling the sequences of points in the
prompt; i.e. in our notation DI ̸= Dt

I . We comment on this in Section 4.3.

4.2 REPLICATING SECTION 4.1 RESULTS FOR MODELS TRAINED ON OTHER DISTRIBUTIONS

We’ve just examined the behavior of models on test sampling from N(0, σ) for larger σ when the
distribution of training data follows a simple Gaussian N(0, 1). Our models, for any number of
layers and attention head, have the same behavior when trained on different distributions but tested
on N(0, σ); they give good results when Dt

F = Dt
I = N(0, 1), but offer degraded performance

when tested on N(0, σ) for larger σ.

Training on bimodal distributions We tested how our models fared with the bimodal distribution
of training data, 0.5N(−1, 1) + 0.5N(1, 1). This increased the values of f(x) the model can see
during training.

Most of the models we tested had more robust performance with a bimodal distribution for DF =
0.5N(−1, 1) + 0.5N(1, 1) than they did with DF = N(0, 1) at least with Dt

F = Dt
I = N(0, σ)

and n ≥ 6. The best models had almost equally good performance on Dt
F = N(0, σ) for σ ≤ 3 and

superior performance with Dt
F = N(0, σ) for σ ≥ 3, as can be seen from Table 1. For the values of

the table, we took Dt
I = N(0, 1).The fact that performance varies with the distribution should not

happen, if the models were using gradient descent to compute linear regression in ICL.

Training on uniform distributions We next trained our models on uniform distributions, in par-
ticular U(−5, 5). This gives more control on the notion of maximum and minimum values the
models see in training. Given the observations of Section 4.1 concerning the errors our models
made on functions with large coefficients, we wanted to study whether these errors arose because
the models hadn’t encountered functions with such large coefficients in pretraining. By keeping
DF , DI normal or bimodal, we can’t control “the largest value the model could see”, because it’s
always possible that it could have generated a large value during training. By training on a uniform
distribution, however, we know exactly what the smallest and largest values that the model could
have seen in its training. For example, setting DF , DI to U(−5, 5), the largest value the model
could have seen is 30 = 5 ∗ 5 + 5 and the smallest value it could have seen is −30. Most likely it
saw values significantly > −30 and < 30.

Training with U(−5, 5) gave good results for Dt
F = Dt

I = U(−1, 1). Models were able to find
target functions with coefficients in [-1,1] from only 2 points (see leftmost plot of Figure 9 in Ap-
pendix C); and all our models work well when DF , DI , D

t
F , D

t
I use the same distribution. The

models trained on a uniform distribution sometimes do even better than models trained on N(0,1) or
a bimodal distribution–up to three times better for Dt

F = Dt
I = N(0, 9) as Table 1 shows. Learning

was at times very efficient, requiring just two prompts, as in Figure 9 (Appendix B).

4.3 ERROR ANALYSIS, SIGMOID APPROXIMATIONS AND BOUNDARY VALUES

Our models’ performance depends on how often it has seen examples “similar” to the target function
value it is trying to predict. At first, we thought this was due to the choice of coefficients in the target
function f(x) = ax+b. However, experimentally, we verified that this is really due just to the values
in the sequences it has seen. Extreme examples for DF = N(0, 1) with tests in [100, 101] are in
figure 2. In Appendix C we illustrate quantitatively intervals I within which models have seen a
large majority of values of sequences given a different training regime. Given a pretraining with
over a billion examples, models will have seen prompts for functions with outside of I , just not
many of them. As the models are tested with Dt

F = N(0, σ) and so required to predict f̂(x) for
f(x) ̸∈ [−2, 2], all the models do less and less well; Figure 5 in the Appendix shows similar behavior
for models trained on uniform distributions.

This motivated us to investigate errors our models made for target functions f(x) ̸∈ [−2, 2]– i.e. the
values of f̂(x) outside the interval that includes the vast majority they have seen. Our models exhibit
problematic behavior of 2 kinds. Even our best models, for f(x) ̸∈ [−2, 2] but reasonably close,
say in [−9, 9], predict f̂(x) to a sigmoid-like function with correct estimates for the target function
within a certain interval. Consider the middle plot for f(x) = 10x in Figure 2. The plot shows
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models / σ 1 2 3 4 5 6 7 8 9 10
3L4AHN , demb = 64 0.0 0.0 0.22 0.4 1.73 6.56 8.56 20.44 39.73 53.93
3L4AHB , demb = 64 0.03 0.15 0.53 1.32 2.74 3.91 5.52 10.22 13.86 22.72
3L4AHU , demb = 64 0.02 0.03 0.13 0.36 0.84 1.79 2.54 7.06 11.38 17.75

6L4AHN , demb = 64 0.0 0.0 0.2 0.38 1.58 5.72 7.99 15.53 32.96 50.35
6L4AHB , demb = 64 0.01 0.04 0.23 0.44 1.19 2.15 3.08 4.8 9.98 18.01
6L4AHU , demb = 64 0.02 0.04 0.11 0.24 0.57 1.36 1.82 4.62 10.23 15.07

12L8AHN , demb = 256 0.0 0.0 0.32 1.34 3.14 8.8 12.13 30.14 49.37 73.93
sorted 12L8AHN 0.0 0.01 0.32 1.63 3.69 8.39 10.06 27.11 43.23 58.56
12L8AHB , demb = 256 0.0 0.01 0.08 0.29 0.78 2.23 3.66 9.04 18.68 30.23
sorted 12L8AHB 0.01 0.03 0.18 0.25 0.74 2.27 2.62 6.87 13.73 20.8
12L8AHU , demb = 256 0.0 0.01 0.13 0.71 1.92 6.78 10.92 27.91 38.75 64.39

sorted 12L8AHU 0.01 0.01 0.13 0.75 2.12 6.18 10.5 26.8 36.3 53.48

REFDt
F
,Dt

I
: y=0 1.52 4.43 13.55 19.94 30.81 44.75 52.71 76.11 105.43 128.52

Table 1: Comparison showing the evolution of squared errors for models trained on different distri-
butions; index N: DF = N(0, 1), B DF = 0.5N(−1, 1) + 0.5N(1, 1) and DF = U(−5, 5). We
show error rates for models prompted without and with the natural ordering on the prompts [sorted],
for the large model size. Dt

i = U(−1, 1) and Dt
F = N(0, σ)

Figure 2: Plots for model 12L8AH, trained on DI = DF = N(0, 1) for f(x) = x for high values
(left) of x and f(x) = 10x for normal (middle) then for low values of x (right)

that the model’s prediction f̂(x) diverges dramatically from f(x) outside of a certain interval, but
the rightmost plot shows that it has approximated well within that interval. Appendix D contains a
graph over length of the prompt showing that it has learned something with ICL.

For equations f(x) sampled outside N(0, 1) (for example f(x) = 30x + 30 and Dt
I = N(0, 1),

however, the results are catastrophic and similar to those in the first plot of Figure 2. Figure 4 in the
Appendix shows that the model doesn’t converge to any stable prediction with ICL.

This behavior across a wide range of models. For example with DF = DI = U(−5, 5), consider
again as an illustrative example the target function, f(x) = 9x for our largest trained model. The
model approximates f(x) well within a certain range [−B,B], but it predicts f̂(x) to be a constant
function for x such that f̂(x) ̸∈ [−B,B] within a certain range (See Figure 5 and discussion in
Appendix C). We call values −B,B boundary values. By training on uniform distributions, we can
determine the boundary values exactly; e.g, for U(−5, 5) B = 5 × 5 + 5. These are the biggest
and smallest values the model could have seen during training. If such a model hasn’t seen a value
above B or below -B, it won’t infer one. Different models trained on different uniform distributions
give different boundary values (see below).

All our models trained on U(−5, 5) estimate the target function more or less well for x with f(x) ∈
[−30, 30] ; but once we are outside [−B,B], the estimations become constant functions or chaotic.
Figure 5 with equation f(x) = 40x+ 40—illustrates this chaotic behavior as does the leftmost plot
of Figure 2 for function f(x) = x with large number inputs.
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To summarize, we observed the following: Empirical Generalization For all models M and for
values B < f(v) < B + α, where α is a constant determined by M , fhM (v) ≈ B, and for
−B − α < f(v) < −B, fhM (v) ≈ −B. However for functions and data samples when the values
of f(x) in the prompt sequence are such that f(x) > B + α or < −B − α, the model assigns f̂(v)
random values for f(v) far away from B (i.e > B + α or < −B − α.

Constraints from boundary values hold for all transformer models tested (for plots see Appendix
D and Figure 6) and for attention only models (See Appendix D, Figure 8). However, due to the
parameter α, larger models trained on the same distribution and the same number of data will ICL
L functions over a slightly larger number of intermediate values than smaller models, as Figure 1
suggests. Figure 7 in the appendix shows plots for the predictions of two models (12L8AH, and
6L4AH) for DF , DI = N(0, 1) for target f(x) = 10x. The larger model has boundary values ≈
-13.7, 13.7, the smaller one boundary values ≈ -12, 12.

Giannou et al. (2024) also noted something like boundary values with their linear transformer ar-
chitecture but they do not accord them much importance. They also investigated out of distribution
behavior but only on DI ̸= Dt

I (covariate shifts in Zhang et al. (2024)) (not shifts from DF ). They
found that after 4 layers transformer model performance did not perform. We found that larger mod-
els did improve performance, but when we set DI ̸= Dt

I , we got bad results when the function’s
values on those points were outside what we call boundary values, something which held for all
models.

Zhang et al. (2024)’s covariate shift is also different from our experiments. They shift the prompt
distribution but not that of the query. When we take a distribution over input points in train DI and
set Dt

I ̸= DI , our shift is not the same; we shift both prompt and query distributions. With covariate
shifts we found that the choice of points is important and model performance degrades considerably
when the values of the functions on the chosen points lie beyond what we call boundary values,
which Zhang et al. (2024) do not. As far as we know we are the first to take boundary values and
their dependence on model parameters as key indications of what is actually going on in ICL.

.

4.4 PREDICTIONS FOR MODELS WITH ONLY ATTENTION LAYERS OR WITH ONLY MLP

To understand better which components in the transformer architecture are responsible for ICL, we
tested various components. We found that attention layers (AL) were the important components for
ICL but ICL only worked reasonably well when the model had 2 AL (see also figure 4). Beyond
2 AL what mattered most was the number of attention heads (whether they are summed over all
layers or counted within a layer). A single AL model had only a very limited ICL generalization
capability beyond testing on Dt

F = N(0, 1), but it did better than a 12 layer MLP, which showed
no ICL capability.Attention-only models could ICL linear functions reasonably well, at least in
when DF = Dt

F ; the large 2 attention only layer model with 32 AH was more robust than the full
transformer model with 1 (AL and MLP layer) and 1 or 2 AH (See Table 2 Appendix B). Tables 3 4
in Appendix and Figure 3 give details of various AL models on normal and uniform distributions.

4.5 ORDERING PROMPTS AND RESTRICTING THEIR SIZE

Model performance improves when the sequence of prompts for the xi are sorted to follow the
natural order on R, especially for bigger models. Error rates compare to error rates without sorting
for small values of σ with Dt

F = N(0, σ) and are lower by up to a third on other test values,
depending on the training distribution (see Table 1).

While at least 2 points are needed to find a linear function, all model performance regardless of
training distribution degrades when the size of the prompt during inference is greater than the max-
imal size of prompts seen in training, as the rightmost plot in Figure 9 shows (Appendix E). Further
models did better with the distributions that were exactly the size (41 data points) of those in their
training We tested a 12L8AH model with with smaller sequences in a kind of ”curriculum learning”
and without curriculum; we found that the model without curriculum training performed better. All
this implies that a model takes into account the whole sequence in its calculations, not just the last
two or three data points. Had the model only looked at a small fixed subsequence, larger sized
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Figure 3: Evolution of error rates models with attention layers only. We give figures for a model with
only 1 attention layer/1AH (1AL1AH) two 2-attention layer only models (2AL8AH, 2AL32AH) and
two 3 attention layer only model (3AL4AH,3AL8AH). DI = DF = U(−1, 1), Dt

i = U(−1, 1) and
Dt

F = N(0, σ). All models have embeddings of size 64, except 2AL32AH has size 256.

prompts in inference would not have affected model performance and curriculum learning should
have improved it.

5 WHAT AND HOW ARE THE MODELS LEARNING?

The hypotheses and theoretical constructions of Akyürek et al. (2022); Von Oswald et al. (2023) led
us to expect that a transformer model given (x1, f(x1), ..., xn), ?) would perform a linear regression
to ICL a linear function. In this case, the models should generalize without difficulty. But this is
not what we observed. Error rates depend on the distance of the target function’s values from the
majority of the data points in the model’s training. Models are also sensitive to the entire sequence
of ICL prompts, not just the minimal number needed to compute a linear function. Error analysis
showed the existence of boundary values −B,B; models do well on the interval [−B,B] degrade
outside of them. These boundary values fluctuate depending on model training distributions and
size. All this is strong evidence that models did not learn to use linear regression to solve this task
and failed to learn the concept of a strictly monotone increasing or decreasing linear function in L
over arbitrarily large or at least many large intervals of R.2

The lack of generalizability might suggest our models overfit the data. However, the pretraining data
has no noise, and it’s too large to be memorized by our models (our largest models with 256 size
embeddings have < 107 parameters; each parameter would have to encode on average sequences for
over 100 different functions). Moreover, our models performed similarly on several different train-
ing distributions for DF and DI and tested on N(0, σ) for σ ∈ {1, 2}. Given that 100 samplings with
Dt

F = N(0, 1) nets on average 20 functions with coefficients the model with DF = DI = U(−1, 1)
has not seen in training, we would expect the model’s performance to degrade more substantially
than it did. This implies that the models didn’t overfit to their training regimes.

Rather than computing a linear function in this task, the models estimate continuations of sequences
based on sequences they have seen. This is in line with Olsson et al. (2022)’s finding that a copying
and comparison mechanism (induction head) is at the heart of ICL. They show that induction heads
only exist for attention-only models with two or more layers and that larger models’ induction heads
can exploit sequences that are “more dissimilar” to each other than smaller models can.

Our induction head hypothesis is that a model predicts a value for f(xn) given a prompt sequence
x⃗ = (x1,1, x1,2(= f(x1)), x2,1, x2,2, ...xn,1, ?) by using a projection from similar sequences or

2This makes sense in terms of Asher et al. (2023)’s characterization of learnability. The concept of a strictly
monotone increasing or decreasing linear function describes a Π0

1 set in the Borel hierarchy which Asher et al.
(2023) show is not learnable using ordinary LLM assumptions.
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subsequences in the training, y⃗ = (y1,1, y2,2...yn,1, yn,2), with xi,1 close to yi,1 for some j and
xi,2 close to yj,2. The effects of prompt length on performance imply that the whole sequence
matters with p2 ≤ p1 for optimal predictions. he fact that the larger models with more attention
heads respond well to well-ordered prompts suggests that they can exploit comparing sequences
that converge or diverge from the target sequence x⃗ in different ways as the prompts xi,1 near xn,1

increase or decrease. This is evidence for the pointwise comparison we are proposing (which is
more complicated and potentially more accurate than simply averaging the yn,2 of the three closest
yn,1 neighbors of xn,1) (cf. Olsson et al. (2022)).

Our observations about boundary values provide further empirical support for a particular induction
head hypothesis. Given boundary values, −B,B, all or the vast majority of the sequences the
model has seen have values zi with −B < zi < B. If the target sequence x⃗ has maximum values
−B < xi < B, i.e. −B < Maxvalxi

x⃗ < B, then chances are high that the model will find a
weighted set of sequences Y close to the test sequence x⃗ and compute bounds for xn,2 = f(xn)).

We now offer a mathematical model of the projection. We assume the standard measure over se-
quences. Let x⃗ be the sequence generated by the target linear function f . To icl f , a model must
construct a function h(Yx⃗, x⃗) that computes a distance d between the values it has seen in Yx⃗ and
the targets x⃗ for some optimized set Yx⃗ of sequences close to x⃗. If h(Yx⃗, x⃗)(xk,1) = zk,2 is the k-th
member of h(Yx⃗, x⃗), we optimize h such that |zk,2 − xk,2| is minimized for all k. The model then
averages these distances to yield an ”average” h(Yx⃗, x⃗) to compute z2,n = f̂(x1,n).

In sum, a model M computes f̂M via:

f̂(xn) = xn,2 =
1

n

n∑
i=1

h(Yx⃗,xi
)(xn,1), for −B < Maxvalxi

x⃗ < B

and f̂(xn) ≈ B(−B), if Maxvalxi
x⃗ < −B − αL, or Maxvalxi

x⃗ > B + αL

Otherwisef̂(xn) takes a random value ∈ [−B,B], αL > 0 a characterstic model value

According to our projection, the larger the set of close y⃗ ∈ Yx⃗, the better the projection and the
prediction. For prompts outside the boundary values −B,B, the closest y⃗ are those with values near
the boundary (yn,2 ≈ B(−B)). Using our projection, the model M will predict xn,2 ≈ B(−B);
once xn,1 is very far away from known data points, the averaging method will just give some value in
[−B,B]. It also predicts that model performance will be sensitive to a choice of training distribution
for DF , DI as well as a choice of test distributions. Our projection also explains why training a
model without curriculum does better than a model with curriculum: it can see more relevant steps.

Our formulation of the projection thus accords with our empirical observations, and the weighted
averages are calculable in a 2 layer Attention only model with suitable heads. The induction head
hypothesis is less precise then linear regression but can approximate it given an appropriate set Y .

6 CONCLUSION

In this paper we have shown a systematic failure case of decoder-only transformer models of various
sizes (up to 9.5 million parameters) and architectures. All models failed to learn robustly the class
of linear functions on non-noisy data, a task which is entirely determined by only two points and
involves a trivial mathematical operation shown by construction to be learnable by LLMs. However,
the models did learn something different that enabled them to approximate linear functions over
intervals where their training gave lots of examples. Rather than learning a standard algorithm for
the task, these models instead perform a projection from close sequences seen during training.

Our investigations perforce focus on relatively small models, but they highlight a broad issue with
ICL: the gap between what LLMs can learn and what they actually learn. Larger models also face
this limitation. The minimality of our examples and the capacity to easily train the models from
scratch is a key strength of our study.
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A TRAINING DETAILS

Additional training information: Like Garg et al. (2022), we use also the Adam optimizer
Diederik (2014) , and a learning rate of 10−4 for all models.
Computational resources: We used 1 GPU Nvidia Volta (V100 - 7,8 Tflops DP) for every training
involved in these experiments.

B ERROR PROGRESSION FOR MODELS TRAINED ON N(0, 1) DISTRIBUTIONS
TESTED ON N(0, σ)

When DI = DF = N(0, σ) there is for x ∈ N(0, σ) an over 85% chance of f(x) ∈ [−4σ2 −
2σ, 4σ2 + 2σ] and a 95% chance f(x) ∈ [−2σ, 2σ]. So a model with σ = 1 DF = DI = N(0, 1)
has seen sequences of values for f with f(x) ∈ [−2, 2] more than 95% of the time.

models / σ 1 2 3 4 5 6 7 8 9 10
1L1AH dembedding=64 0.1 0.8 5.1 13.1 26.9 39.7 53.0 84.8 120.0 153.2
1L2AH dembedding=64 0.1 0.8 5.3 14.4 29.8 41.1 55.0 93.8 120.4 159.2
1L4AH dembedding=64 0.0 0.2 2.7 8.7 19.9 32.0 42.8 64.5 92.3 131.2
2L1AH dembedding=64 0.0 0.1 2.0 4.9 13.7 27.0 36.1 64.9 99.0 134.0
2L2AH dembedding=64 0.0 0.0 1.6 3.2 9.3 25.5 32.0 61.1 92.9 127.8
2L4AH dembedding=64 0.0 0.0 0.9 2.6 7.5 19.3 27.3 51.8 90.2 119.4
3L1AH dembedding=64 0.0 0.0 0.9 3.0 8.2 16.8 24.4 48.4 76.7 113.2
3L2AH dembedding=64 0.0 0.0 0.7 2.3 6.5 15.9 22.5 43.1 74.0 102.5
3L4AH dembedding=64 0.0 0.0 0.6 1.9 5.5 13.8 20.4 42.2 70.3 100.4
6L4AH dembedding=64 0.0 0.0 0.5 1.6 4.6 11.6 16.8 33.7 58.3 87.9
12L8AH dembedding=256 0.0 0.0 0.3 1.1 2.9 7.9 11.9 28.3 46.9 73.5

REF: y=0 2.19 7.05 19.22 33.94 52.23 73.08 86.02 127.43 165.27 199.31

Table 2: Comparison to show the evolution of squared ϵ type error depending on the distribution
according to which we take the parameters, without taking into account the error of the prediction
of the first and second prompts. Dt

i = N(0, 1)
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C PLOTS FOR BOUNDARY VALUES WITH N(0, 1) AND U(−5, 5)

Figure 4: Plots on first line of predictions for the 12L8AH model trained on N(0, 1) and error
evolution over number of prompts for f(x) = 30x + 30. On second line Plots for f(x) = x and
f(x) = 15x for models 2L attention only with 32AH and dembedding = 256

Figure 5: Plots for f(x) = 9x and f(x) = 40x+ 40 for a 12l8ah model trained on U(−5, 5)

As shown in the left plot in Figure 5, f̂+(v) ≈ 30 for values v for which the ground truth tar-
get function f is such that 30 ≤ f(v), and the model predicts an approximally constant function
f̂−(v) ≈ −30 for values v on which f(v) ≤ −30. Given a training on U(−5, 5) we can calculate
30 and -30, with 30 = 5 ∗ 5 + 5 and −30 = −5 ∗ 5 − 5, to be the boundary values for the models
there.

D EXAMPLE OF BOUNDARY VALUES FOR ATTENTION ONLY MODELS
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Figure 6: Boundary values: Plots for f(x) = 9.4x for models 3L4AH and 6L4AH, DI = DF =
Dt

I = Dt
F = U(−5, 5)

Figure 7: Plots for f(x) = 10x by a 12L8ah model and by a 6L4ah model.

Figure 8: Boundary values for 2L32ah attention only model, with dembedding = 256 to ICL the
function f(x) = 12x

E FAILURE TO GENERALIZE TO LONGER PROMPT SEQUENCES: FIG9
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models / σ 1 2 3 4 5 6 7 8 9 10
1AL1AHU 0.38 2.29 9.3 14.97 25.25 37.54 45.4 67.0 95.19 117.6

2AL8AHU 0.1 0.62 5.53 10.59 18.62 30.61 36.97 57.79 83.26 103.58

3AL4AHU 0.35 1.42 8.17 15.13 24.15 37.99 45.2 68.73 96.37 118.3
3AL8AHU 0.12 1.16 5.45 9.36 18.22 28.77 35.62 52.44 78.12 100.18

2Al32AHN 0.06 0.91 5.96 10.43 18.96 30.11 36.77 55.59 81.66 103.17
REFDt

F
,Dt

I
: y = 0 1.52 4.43 13.55 19.94 30.81 44.75 52.71 76.11 105.43 128.52

Table 3: Comparison showing the evolution of squared errors for models with attention layers only.
We give figures for a model with only 1 attention layer/1AH (1AL1AH) two 2-attention layer only
models (2AL8AH, 2AL32AH) and two 3 attention layer only model (3AL4AH,3AL8AH). DI =
DF = U(−1, 1), Dt

i = U(−1, 1) and Dt
F = N(0, σ). All models have embeddings of size 64,

except 2Al32AH has size 256.

models / σ 1 2 3 4 5 6 7 8 9 10
1L1AHN dembedding=64 48.8 57.62 73.48 84.51 116.63 129.52 142.34 177.69 191.05 246.43
2L8AHN dembedding=64 2.24 4.81 5.8 7.19 10.01 19.04 30.22 38.03 73.32 118.89
2L32AHN dembedding=256 1.17 2.64 3.47 5.01 7.88 16.85 24.1 40.98 66.04 95.03

REF: y=0 2.19 7.05 19.22 33.94 52.23 73.08 86.02 127.43 165.27 199.31

Table 4: Comparison to show the evolution of squared ϵ type error depending on the distribution
according to which we take the parameters, without taking into account the error of the prediction
of the first and second prompts. DF = DI = Dt

i = N(0, 1) for models with attention ONLY

Figure 9: Plot of ICL for f(x) = x with DF = DI = Dt
I = U(−5, 5) for the model 12L8AH; the

one on the left is a zoom in on the first 40 points, where we see that models can often learn from 2
points, the second a view of what happens overall, when models are trained on sequences of length
41 prompts.
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