The Missing Piece in Model Editing: A Deep Dive into the Hidden Damage
Brought By Model Editing

Anonymous ACL submission

Abstract

Large Language Models have revolutionized
numerous tasks with their remarkable efficacy.
However, the editing of these models, crucial
for rectifying outdated or erroneous informa-
tion, often leads to a complex issue known as
the ripple effect in the hidden space. This effect,
while difficult to detect, can significantly im-
pede the efficacy of model editing tasks and
deteriorate model performance. This paper
addresses this scientific challenge by propos-
ing a novel evaluation methodology, Graphical
Outlier Relation based Assessment (GORA),
which quantitatively evaluates the adaptations
of the model and the subsequent impact of edit-
ing. Furthermore, we introduce the Selective
Outlier Re-Editing Approach (SORA), a model
editing method designed to mitigate this rip-
ple effect. Our comprehensive evaluations re-
veal that the ripple effect in the hidden space
is a significant issue in all current model edit-
ing methods. However, our proposed methods,
GORA and SORA, effectively identify and al-
leviate this issue, respectively, contributing to
the advancement of LLM editing techniques.

1 Introduction

The swift advancement of Large Language Mod-
els (LLMs) has exhibited remarkable efficacy
across a multitude of tasks(Brown et al., 2020;
Zhao et al., 2023; OpenAl, 2023; Touvron et al.,
2023; Gu et al., 2023). Nevertheless, the data
embedded within these expansive models may
become outdated or encompass errors(Lazaridou
et al., 2021; Dhingra et al., 2022; Jang et al., 2022).
As a result, the edit of outdated and erroneous in-
formation within these models has emerged as an
important research subject.

In recent years, methodologies for editing LLMs
have progressively garnered attention (Zhu et al.,
2020; De Cao et al., 2021; Meng et al., 2022, 2023;
Si et al., 2023). The primary objective of these
methodologies is to enhance the output of LLMs in

Ripple Effect Factual Change
In Fact
-

N
Open Al

\ reE======
1
.14 Need Edition
12 Might be Hurt,
[

lllinois

Stanford

|
|
|
|
|
|
|
: University
|

Ripple Effect
In The Same Entity ~

Ripple Effect

N InHidden Space

Figure 1: Illustrating the ripple effect in model modifica-
tion using the OpenAl board controversy as an example.
The model can only receive limited modification re-
quests when a new event occurs, such as a CEO change
at OpenAl. The ripple effect of model editing involves
positive changes in other facts, like Sam will be a free-
lancer, due to this edition. But it also involves unfore-
seen disruptions, potentially damaging unrelated facts
under the same entity and distorting the facts of other
related entities within the model’s latent space.

specific domains without undermining their perfor-
mance in other sectors. This is a delicate balancing
act, as the editing process must ensure both the suc-
cess of the edits and the avoidance of any negative
impact on the overall functionality of the model.

Although many model editing techniques have
proven effective in various situations, a signifi-
cant issue is their tendency to prioritize improv-
ing editing performance without considering other
factors. While achieving successful edits is not
the most challenging aspect, studies have shown
that model editing deal damage to the general abil-

ities of LLMs (Gu et al., 2024). In our study, a
more complex issue lies in controlling the impact
of knowledge editing on the hidden space of the
model, also known as the ripple effect (Yao et al.,
2023; Cohen et al., 2023; Li et al., 2023c; Sakarva-
dia et al., 2023).

As illustrated in Fig. 1, the ripple effect brought
about by knowledge editing can be divided into two
categories. The first category is the positive ripple
effect, such as the update of other facts related to
the edited fact, which is called “Ripple Effect in
Facts” (Cohen et al., 2023). This effect can be ben-
eficial as it ensures the consistency and coherence
of related facts within the model. The second cat-
egory is the negative ripple effect. This includes
the potential damage to the model’s memory of
other information about an entity after changing
the model’s understanding of that entity, known as
the “Ripple Effect in the Same Entity”(Li et al.,
2023b; Yao et al., 2023). Additionally, changing
the model’s memory of an entity in a hidden space
may also affect entities that are close in the hidden
space, referred to as the “Ripple Effect in Hidden
Space”’(Hoelscher-Obermaier et al., 2023a; Sakar-
vadia et al., 2023).

Both the Ripple Effect in Fact and in The Same
Entity can be easily detected for they have the ac-
tual factual connection between the edited entities
and affected attributes or relations. However, the
Ripple Effect in Hidden Space, which lacks a direct
factual correlation with the edited object, presents
a significant challenge in detection. This implicit
influence on other entities severely impedes the ef-
ficacy of all Model Editing tasks, culminating in a
drastic deterioration in model performance as the
quantity of edits escalates(Li et al., 2023b; Wang
et al., 2023). Consequently, the development of ef-
ficacious strategies and techniques to alleviate this
type of ripple effects is of paramount importance.

In this study, we first propose an evaluation
methodology, referred to as Graphical Outlier Rela-
tion based Assessment (GORA), which integrates
quantitative evaluations to scrutinize the adapta-
tions of the model and the subsequent impact of
editing. We build up the connection between re-
lated entities in hidden space based on the model
to be edited on the given knowledge graph. By
evaluating the model’s performance in generating
text from the edited model on edited triplets and
hidden space related triplets on the manipulated
graph, the ripple effect can be comprehended in the
hidden space induced by the model editing method.

Furthermore, through the iterative establishment of
hidden connections between entities, GORA facili-
tates a proportionality between the influence of the
hidden space ripple effect and the distance to the
edited triplets. Consequently, this allows for the
prediction of the hidden space ripple effect.

Additionally, we present a Selective Outlier Re-
Editing Approach (SORA) predicated on our eval-
uation method, which is engineered to mitigate the
Hidden Space Related Ripple Effect. By identi-
fying the entities that possess a relationship with
the edited entities, it is feasible to alleviate the
ripple effect by simply incorporating the related
triplets with the edited fact into training. However,
such a method will result in excessive computa-
tional expense, as each edit will necessitate editing
a larger number of related knowledge. Not all re-
lated knowledge needs to be edited. SORA uses the
above strategy by identifying key triplets and edit-
ing these knowledge to enhance editing efficiency
and reduce computational overhead.

In the experimental phase, GORA discovered
that even the state-of-the-art (SOTA) model editing
method still encounters significant challenges with
the ripple effect in the hidden space. Compared to
directly detecting the ripple effect on the artificial
KG, the result of GORA reduced by 16.51% for
the SOTA model editing method, indicating that
the ripple effect in the hidden space causes greater
disruption than the ripple effect in the same entity,
thereby validating the feasibility of GORA in veri-
fying the ripple effect in the hidden space. SORA
mitigates such issues by reducing the average rate
of the SOTA model editing method in the ripple
effect in the hidden space by 54.75%.

In summary, this paper has made the following
contributions:

* This research is pioneering in exploring the
ripple effect in the hidden space, a detrimental
yet implicit phenomenon in model editing.

* We have introduced GORA, a specialized tech-
nique for evaluating the ripple effect in the hid-
den space during the process of model editing.

* Leveraging the fundamental design of GORA,
we have developed SORA, an innovative
model editing method that employs existing
explicit knowledge bases to mitigate the ripple
effect in the hidden space.

* We carry out comprehensive evaluations and
comparative experiments, which demonstrate

that GORA effectively identifies the ripple ef-
fect in the hidden space during model editing
than other works. We have also discovered
that this effect is present in all current model
editing methods, while SORA effectively al-
leviates this issue compared to other model
editing techniques.

2 Related Work

2.1 Knowledge Editing

In the evolving field of LLMs, Knowledge Model
Editing methods have been developed to integrate
new knowledge while preserving existing informa-
tion. These methods are broadly categorized into
three types(Wang et al., 2023):

External Memorization-based Methods: Uti-
lize separate memory modules to store new knowl-
edge, thus keeping the original model’s weights
unchanged. This method is scalable and allows for
the extension of knowledge without restructuring
the pre-trained model(Li et al., 2022; Madaan et al.,
2022; Mitchell et al., 2022b; Murty et al., 2022).

Global Optimization-based Methods: Imple-
ment widespread model updates guided by new
knowledge. These methods modify the LLMs in a
controlled manner but may be resource-intensive
due to the large parameter space(Sinitsin et al.,
2019; De Cao et al., 2021; Hase et al., 2021;
Mitchell et al., 2022a).

Local Modification-based Methods: Target
specific parameters for updates, offering a focused
and resource-efficient approach to incorporating
new knowledge into LLMs(Dai et al., 2022; Li
et al., 2023a; Meng et al., 2022, 2023).

In our study, we primarily focus on Global
Optimization-based ~ Methods and Local
Modification-based Methods, both of which
involve updating the model. We also experiments
with latest method ICE (Cohen et al., 2023) We
aim to address the challenges associated with
these methods, particularly the ripple effect in the
hidden space, which has been largely overlooked
in previous research.

2.2 Evaluating Knowledge Editing

There has been an increasing focus on the evalu-
ation of model editing. The primary benchmarks
currently employed to assess editing methods are
Zero-Shot Relation Extraction(zsRE) (Levy et al.,
2017) and CounterFact (Meng et al., 2022). zsRE
serves as a question-answering dataset designed

for relation-specific queries and is annotated with
human-generated question paraphrases that can
measure the model” s robustness to semantically
equivalent inputs. CounterFact is a more challeng-
ing evaluation dataset by introduces counterfac-
tual edits. RippleEdits (Cohen et al., 2023) is a
benchmark evaluating the “ripple effects” in knowl-
edge editing. To be specific, one should go be-
yond the single fact that was edited and check that
other facts that are logically derived from the edit
were also changed accordingly. In addition, re-
search (Hoelscher-Obermaier et al., 2023b; Li et al.,
2023b) shows that existing editing methods can
have unwanted side effects on LLMs.

Our research primarily focuses on these un-
wanted side effects, a topic that has not been thor-
oughly explored in previous studies. Unlike other
evaluations that mainly concentrate on the over-
all impacts of model editing, such as the “Ripple
Effect in Facts” and “Ripple Effect in the Same En-
tity”, our approach aims at the detailed evaluation
of the “Ripple Effect in Hidden Space”. We study
how knowledge graphs can help reveal the extent
of side effects and differences in knowledge distri-
bution between models and human understanding.
Our work significantly adds to the understanding of
how model editing can cause hidden harm to other
knowledge within the model.

3 Preliminary

Factual Change is a pivotal concept in model edit-
ing. Facts are understood as natural language sen-
tences and represented as multi-dimensional vec-
tors within a latent space. Given a fact set F' and
and a corresponding set of changes AF(JAF| <
|F’|), the post-change fact set is expressed as

F' = F + AF + R(AF) (1)
where R(AF) signifies the ripple effect induced
by AF.

In natural language, the ripple effect is an ob-
servable phenomenon within knowledge graphs,
characterized by the spread of a single fact alter-
ation throughout the interconnected node network.
This process leads to subsequent changes in vari-
ous nodes, underlining the interconnected nature
of factual information.

In LLMs, the ripple effect exhibits a more in-
tricate nature and can be delineated into three dis-
tinct categories, each representing a unique path-
way of influence in the model’s response to factual
changes:

Ripple Effect in Fact Rp: This refers to the
process where changes in one fact lead to modifica-
tions in related facts, as illustrated in Fig.1. When
change the CEO of Open Al from Sam Altman to
Emmett Shear, there are facts need to update like
“Sam Alterman is not a member of OpenAl Board”
and “Sam Altman’career is Freelancer”.

Ripple Effect in The Same Entity Rr: when
a factual change alters some aspects of an entity’s
information, other unrelated aspects should ide-
ally remain constant.As shown in Fig.1, despite a
change in career, the entity’s birthplace or educa-
tional background should remain unaltered. Cur-
rent methods of model editing often demonstrate
a heightened sensitivity to subjects, inadvertently
leading to these undesired modifications. This phe-
nomenon, where changes in one aspect of an entity
affect other static aspects, is what we define as the
Ripple Effect in The Same Entity.

Ripple Effect in Hidden Space Ry: Consider-
ing the black box nature of LLM, special attention
must be paid to the Ripple Effect in Hidden Space.
This effect reflects how changes in one fact can lead
to unexpected changes in different, unrelated facts
and entities. This occurs because of the similarity
between different subjects in hidden space. When
we update the parameters, this can unintentionally
affect model’s performance on other facts.

The aggregate ripple effect R is computed as:
R = Rp+ Rg+ Ry, capturing the comprehensive
impact of fact changes across different dimensions.

4 Our Method

The efficacy of updating knowledge within lan-
guage models hinges on judicious evaluation and
editing methods. Our methodology unfolds in two
sub-sections, each tailored to systematically ad-
vance the accuracy and relevance of the model’s
knowledge base.

4.1 Graphical Outlier Relation based
Assessment (GORA)

Our evaluation method incorporates quantitative
assessments to examine the model’s adaptations
and the consequent impact of editing. We also es-
tablished knowledge connections within the inner
space of the model and conducted a comparative
analysis with KG. We analyze graphical represen-
tations to compare the model’s internal structure
with the vanilla knowledge graph.

First, we identify outlier triplets after model edit-

ing. We observe that the outputs adhere to a long-
tail distribution. Consequently, outliers are defined
as change in evaluation metric surpassing a thresh-
old of § > p + 20, where J represents the change
in evaluation metric before and after editing, u
denotes the mean, and o signifies the standard de-
viation. This definition is applicable across various
evaluation metrics and editing methods.

Subsequently, we regard outliers and edited
nodes as proximal in distance, constructing a
GORA graph based on this proximity. GORA
graph has same nodes with vanilla KG. A spe-
cific number of edit requests are randomly selected
across KG. Each selected request undergoes model
editing. Outliers are then determined using the
aforementioned inequation. We build an edge be-
tween the identified outliers and their correspond-
ing edited triplet due to their closeness in the latent
space. The construction of the GORA graph is it-
erated multiple times to ensure that the number of
edges in the GORA graph roughly equals to the
vanilla KG.

Additionally, we analyze the model’s perfor-
mance in relation to the distance between edited
and tested triplets within the both GORA graph and
vanilla KG, where distributions of edited nodes and
quantity of edits are also considered.

4.2 Selective Outlier Re-Editing
Approach (SORA)

SORA is devised to refine the model’s internal rep-
resentation of knowledge without compromising
the integrity of its pre-trained state by identifying
and re-editing outliers. This process imitates the
repetitive nature of human learning to reinforce the
model’s understanding of new information.

For a triplet (s, 7, 0), the editing effect can be
quantified by measuring the change in the evalu-
ation metric, which is computed by the post-edit
model fy. and pre-edit model fy:

E = Metric|fyg, ((s,7))] — Metric[fo((s,7))] (2)

where (s, r) is the prompt describing s and 7. The
identification of outliers (edit targets) is determined
by selecting the top-K triplets based on their editing
effects.

Similar to MEMIT (Meng et al., 2023), for edit
targets & = {(s;,7i,0;)}, given a set of factual
prompts{x; @ p(s;, ;) } that concatenate random
prefixes x; to a templated prompt, the target z; =

hE + §; vectors for every edits i is computed:

arg ming, %Zle —logPy 2y [0ilz; & p(si; 7i)]

3)
For critical MLP layers | € R, the update is per-
formed as follow:

1
K= X o (Wit (o +5)) @)

l 2 — hi

e (%)
K [0, kML R - rF ()
Wt wt 4+ Al ®)

where + is layernorm and C' is covariance of the
pre-existing keys.

This approach ensures the model’s consistent
performance amidst the dynamic landscape of
evolving knowledge. Through the integration of
our evaluation and editing strategies, we guarantee
that the edited model both retains the core of the
previously established knowledge and incorporates
new insights.

5 Experiments

The experiments are designed to incrementally ad-
dress two research questions: /) Is there a method
to identify and more accurately depict the “ripple
effect in hidden space”? 2) Can “ripple effect in
hidden space” be efficiently mitigated?

5.1 Baselines

In terms of evaluation methods for model editing,
we primarily compared two approaches:

Vanilla We use the KG extracted from wiki-
dataSm (Wang et al., 2021) to generate edit re-
quests. Subsequent tests are conducted on the
neighbors of edited nodes to analyze the ripple
effects caused by model editing. These ripple ef-
fects are mainly “ripple effect in fact” and “ripple
effect in the same entity”.

GORA represents our proposed methodology.
Utilizing the model’s representation of each triplet,
we construct the GORA graph to illustrate the re-
lationships within the hidden space. We then use
GORA graph to evaluate the ripple effect induced
by model editing.

COUNTERFACT (Meng et al., 2022) and zsRE
(Levy et al., 2017) stand as the most frequently
utilized benchmark in the domain of model editing.

RIPPLEEDITS (Cohen et al., 2023) is a benchmark
raised for evaluating the first two kinds of ripple ef-
fect. However, these benchmarks have been subject
to testing within limited scopes, thereby neglecting
the broader potential implications. This limitation
inhibits the execution of analyses that are both more
comprehensive and deeper in nature. Consequently,
we have developed our own dataset to address these
shortcomings.

5.2 Evaluation Dataset Construction

Step 1: Factual Triplets Collection Our data ex-
traction process utilized WikidataSm (Wang et al.,
2021), a dataset comprising over 4.5 million enti-
ties and 20 million triplets. To manage the exten-
sive volume of data, we implemented Breadth-First
Search (BFS) sampling to derive a representative
subgraph, containing approximately 10? triplets.
This selected subset serves as our primary dataset,
offering a rich diversity of factual information.

Step 2: Prompt Generation Utilizing GPT4,
we automate the generation of natural language
prompts for each triplet. These prompts undergo
quality assurance checks for fluency by human and
alignment with their respective triplets.

Step 3: Edit Target Selection We identify and
select modifiable elements within the triplets. For a
triplet {s, r, o}, we select the edit target o’ in the set
of triplets that share the same relation r but differ in
object o. To be specific, T = {o'|r' = r, 0’ # o}.

5.3 Model editing methods

As for the model editing methods, we primarily
compared following baselines in the experimental
phase:

Fine-tuning (FT) The model’s parameters in a
specific layer are updated using gradient descent
with Adam optimizer and early stop strategy.

Constrained Fine-Tuning(FT+L) (Zhu et al.,
2020) fine-tuning with an L, norm constraint on
weight changes.

MEND (Mitchell et al., 2022a) the model’s pa-
rameters are updated through a hypernetwork, us-
ing a low-rank decomposition of the gradient from
standard fine-tuning.

ROME (Meng et al., 2022) uses causal interven-
tion for identifying neuron activations that are de-
cisive in a model’ s factual predictions, then com-
pute and insert key-value pair into specific MLP
layers.

MEMIT (Meng et al., 2023) improves ROME
for mass editing of diverse knowledge. For multiple

edits, updates are distributed across various MLP
layers in a top-down approach, aimed at avoiding
unintended impacts of inadvertently influence on
edited layers when editing layers.

In-context Editing (ICE) (Cohen et al., 2023)
does not introduce changes to the model param-
eters, but prepend the following prefix to the in-
put prompt: “Imagine that <O*> would have been
<P,>”. For example, “Imagine that Bill Clinton
would have been the father of Barack Obama”.

SORA represents our proposed methodology.
SORA incorporates identifying and re-editing out-
liers for more effective model editing.

Additional implementation details are offered in
Appendix A.3
5.4 Metric
We employ perplexity as the main metric to mea-
sure the model’s performance in generating text.
Perplexity is one of the most common metrics for
evaluating language models and quantifies how
well a probability model predicts a sample. Perplex-
ity is defined as the exponentiated average negative
log-likelihood of a sequence. If we have a tok-
enized sequence X = (xzg,x1,...,x¢), then the
perplexity of X is,

1t
PPL(X) = exp {_t Z log pg (x; | <)
7

©))
where log pg (z; | x<;) is the log-likelihood of the
ith token conditioned on the preceding = ; accord-
ing to the model.

In GORA, Perplexity serves as an indicator of
model stability because it is sensitive to shifts in the
probability distribution. We mainly focus on differ-
ence before and after editing rather than the single
value. Additional experiments utilizing alternative
metrics are documented in Appendix A.4.

5.5 Distance calculation

We calculate the distance between outlier and
edited triplets both on GORA graph and vanilla
KG. The Dijkstra algorithm is utilized to identify
the shortest path. For every triplet in the dataset, we
locate the closest edited triplets and calculate the
distance between them. When handling multiple
edit requests, the algorithm is executed from each
edited triplet, with the selection of the shortest path
leading to the nearest edited triplet.

5.6 Overall Ripple Effects Evaluation

The evaluation results, as shown in Tab. 1, sug-
gest that model performance is affected by both the

editing strategy employed and the characteristic of
the edits. Significantly, the performance of ROME
and MEND declines considerably when the num-
ber of edits exceeds 50. Although FT+L appears
stable in Tab. 1, it is not an effective approach. Its
updating mechanism restricts weight adjustments,
obstructing the efficient update of parameters and
the creation of meaningful sentences, as evidenced
in Tab. 3.

Moreover, the experiment examines the impact
of distance between edited and tested triplets. From
Tab. 1, it can be deduced that proximity on vanilla
KG does not always result in a greater ripple effect,
challenging the inherent assumption that closer
nodes are necessarily more affected by editing.
There is no consistent correlation between distance
on vanilla KG and decreased performance. Both
proximate and distant triplets display vulnerability
to changes following model editing.

The objective of the GORA graph is to minimize
the distance between triplets affected by “ripple ef-
fect in hidden space” and the edited triplets, while
simultaneously increasing the distance between un-
affected triplets and the edited ones. As a result,
within the GORA framework, triplets located in
closer proximity are anticipated to exhibit an in-
crease in perplexity, while nodes with no connec-
tivity should show a decrease in perplexity relative
to the vanilla knowledge graph. The bolded and
numbers in Tab. 1show the effectiveness of GORA.

Furthermore, we conduct a comparison across
all three types of ripple effects. The outcomes at-
tributed to GORA correspond to the "ripple effect
in hidden space," whereas Vanilla’s results predom-
inantly encompass the "ripple effect in fact" and the
"ripple effect in the same entity." The underlined
figure in Tab. 1 highlights that the "ripple effect in
hidden space" typically exerts a greater influence
compared to the other two variants.

5.7 Difference between KG and GORA graph

Graph edit distance (GED) serves as a metric to

gauge the similarity between two graphs.
Gap between vanilla KG & GORA graph

10.8
~10.6
[
2104
010.2
© 10'0 20635.0

9.8
0 20 40 60 80 100

iteration
Figure 2: shows GED’s change, with the x-axis repre-
senting the iterations of building GORA graph.
As shown in Fig. 2, we compute a simplified

version of GED between GORA graph and vanilla

BFS Random
i 2 3 inf 1 2 inf
Methods #Edition _Vanilla GORA _ Dilf _ Vanila_GORA _ Diff __ Vanila_GORA _ Dilf _ Vanila GORA __ Diff | Vanila_GORA _ Dilf _ Vanila GORA _ Dilf _ Vanilla GORA _ Diff
I 577 1099 522 | 935 897 038 | 945 889 056 | 1054 894 -L60 7.09 092 507 044 463
10 1190 10.69 120 | 1191 1065 -126 | 1142 1223 082 | 542 1286 744 427 495 068 | 447 455 008 | 1495 423 -1072
FT 50 717 465 252 | 478 389 089 | 429 373523 150 321 148 173 | 192 435 243 | 2264 282 -19.82
100 | 1280 727 553 | 689 614 076 | 672 1483 835 648 519 515 -004 | 427 177 250 | 650 504 -147
200 | 1454 934 520 | 889 949 060 | 836 697 1087 389 4519 5196 677 | 3966 3438 528 | 2477 4652 2176
I 230 127 357 | 052 007 039 | 117 141 024 | 186 -0.66 -252 100.81 2781 659 2430 1771
10 315 076 239 | -085 0.4 072 | -020 024 -004 | 063 -101 -1.64 3322 2049 -1273 | 24011 2137 274 | 461 2727 2266
FT+L 50 343 287 056 | 271 307 036 | -248 2070 235 -165 1892 1575 317 | 1979 1456 524 | 719 2221 1501
100 | 475 534 058 | -505 -529 024 | -495 034 458 -492 302 280 023 | 339 376 -037 | 1036 -326 -13.62
200 | 259 344 -084 | -360 381 -021 | -3.11 092 299 207 245 260 015 | -074 364 291 | 271 196 467
1 086 072 0.4 | 007 069 076 | 015 037 -022 | 166 -007 -173 129 0.1 151 029 -122
10 2045 -126 081 | -066 -1.60 095 | -134 -177 -043 | 173 -036 -2.08 041 165 124 | 280 070 210 | 887 379 -5.07
MEND 50 | 36075 49350 13275 | 42741 45042 2367 | 549.66 13730 455.15 31775 | 89.14 7642 -1277| 7107 7072 036 | 4504 7522 3049
100 | 30589 35172 4583 | 36227 229.10 -13317 | 338.70 13481 407.41 27267 | 31542 28540 -36:07 | 20670 24877 4793 | 108.53 33279 22476
200 [36128 40157 4029 | 39828 248.82 -14946 | 513.83 17013 459.61 28948 | 42839 390.63 -37.76 | 340.96 280.78 607 | 15013 44250 29237
T 220 105 324 | 03 033 | 0.3 405 4I8 | 469 096 5.65 119 0.89 633 006 639
10 188 105 083 | 010 048 -0.58 | -027 409 436 | 575 -050 -625 355 587 202 | 416 743 327 | 673 200 473
ROME 50 | 99.09 8191 -17A% | 8384 7707 67T | 7850 6481 9004 2527 | 921.70 980.84 594 | 101698 100162 -1536 | 665.52 994.84 32937
160 | 11231 8860 2377 | 9236 8594 64T | 84.03 6595 9918 3323 | 52414 57246 4833 | 465.61 57095 1053F | 244.14 45892 21478
200 | 22650 20429 2227 | 20134 197.18 446 | 248.73 22924 23052 12§ 38617 35952 -26:65 | 46155 34648 -LI508 | 24437 41569 17433
T 032 059 027 | 062 048 0.4 | 032 061 028 | 410 034 444 273 017 231 032 263
10 08 022 060 | 041 069 028 | 001 022 023 | 496 019 514 009 133 142 | 026 -021 005 | 213 -147 3.60
MEMIT 50 2065 0.9 046 | -075 034 041 | -032 270 079 -349 038 08 123 | -020 052 -032 | 326 -106 -4.31
100 | -087 008 095 | -068 -012 056 | -0.13 330 -089 4 014 LIS 102 | -042 064 106 | 265 -0.79 344
200 | -066 118 183 | 034 031 003 | 004 261 -0.80 108 154 046 | 142 045 097 | 405 086 3.9
1 2166 6353 4187 | 2525 1.589 0.936 | 2.588 3963 1375 | 232.538 222 0.202 3544 27.124 4343 22781
2 4976 6325 1349 | 2997 2.883 -0.114 | 3239 3713 0474 | 47943 216 2871 2457 9056 104 8016
B 3 379 3476 0314 | 177 1616 -0.154 | 2461 4852 2301 | 7223 159 1138 3286 2148 | 3003 1662 -1342 | 0453 1753 13
5 LI71 2221 105 | 0762 1738 0976 | 2522 2478 -0.044 | 10261 0989 4447 6518 2071 | 4413 5047 0634 | 11791 2425 -9.366
8 3491 3238 0253 | 1329 218 0851 | 8009 495 -3814 | 7.224 4.694 2118 5011 2893 | 3096 2857 -0238 | 3297 1.866 -1431
10 | 2741 12489 9748 | 1279 2611 1332 | 895 3577 5373 | 5371 1214 - 4408 6058 165 | 4684 5756 1072 | 5166 3144 2,022
[l 0067 2863 293 | 0499 -094 0441 | 0054 0869 -0815| 3261 -1399 - 3631 0213 2617 035 2967
10 | -0862 2349 3211 | -0.518 -0501 0017 | -0009 -1.021 -1.012 | 2611 -134 0318 0905 1223 | -0451 0157 0608 | 1811 -1.539 -3350
SORA_topS | 50 | -0322 -0916 -0.594 | -0.727 -0.073 0654 | -0.083 2511 1418 3 20634 0.682 1316 | 0239 -0.699 -0460 | 2.064 -1.098 -3.162
100 | -0982 0828 181 |-058 -0.092 0494 | -0.087 2796 1343 - 0066 1132 1066 | -0.154 -0.52 -0368 | 1.968 -0.739 -2.707
200 | -0804 0979 1783 | 0331 0544 0213 | 0036 2219 0815 33 0318 1417 109 | 0329 0527 -0.198 | 1241 -0476 -L717
1 0.106 2.148 2254 | 0.706 0933 -0.227 | 021 -0.61 -0400 | 2544 -1.394 -3 1365 0117 2043 -0.384 2432
10 | -0798 2473 3271 | 0565 -051 0055 | 0309 -0.841 -LI51| 3.168 1226 -4.3 0571 0829 14 | 0496 0017 0479 | 1.563 -1549 -3.012
SORA_topl0 | 50 | -0406 0.578 0984 | -0.939 -0.065 0874 | -0.222 129 -1§52 2. 2057 0565 1135 | -0281 -1216 0935 | 2489 -0.985 -3.474
100 | -0703 0741 1444 | -0705 -0284 0421 | -0.133 147 1304 2. 20078 0876 0954 | 0084 0012 0096 | 1.404 -0.769 -2.173
200 | -0838 0947 1785 | 0339 0481 0.42 | 0.1911 1772 0728 - 0234 1421 1187 | 0054 -031 -0256 | 1.528 -0.575 -2.103

Table 1: Comparative analysis of perplexity changes. The first row categorizes the distribution of edits, and the
second row indicates the distances between affected and edited triplets, with “inf” signifying no connectivity.
“Vanilla” denotes the change in perplexity on the vanilla knowledge graph before and after edits, whereas “GORA”
signifies the change in perplexity following the application of GORA. The “Diff” column is obtained by subtracting
“Vanilla” from “GORA”. Editing methods are specified in the leftmost column, while the adjacent column enumerates
the number of edits applied. Values that are slashed through indicate the method’s inability to accommodate the
quantity of edits. Underlined values signify ripple effect in hidden space is more obvious than the other two variants.
Bolded values are indicative of the presence of ripple effect in hidden space, which is successfully discerned via

GORA.
KG, using L£; — norm:

GED = log (HGadj — Glﬁdel) (10)

where Gqj and G’ adj denotes the adjacency matrix
of vanilla KG and GORA graph.

In this specific instance, we use MEMIT to build
GORA graph. The iteration is carried out 100 times
to maintain consistency in scale and structure be-
tween the GORA graph and vanilla KG. They both
graph have approximately 10* edges.

GORA graph and vanilla KG are similiar in den-
sity but different in detail.

Degrees Distributions of vanilla KG & GORA graph

vanilla
GORA
103
=)
o
2102
(1)
=)
o
[
& 10!
10°
0 100 200 300 400
Degrees

Figure 3: This figure presents the frequency of node
degrees within the vanilla knowledge graph and GORA
graph.

We have quantified the degree distributions of
both graphs, as shown in Fig. 3. The vanilla KG
displays a skew towards lower degrees, indicating a
denser core. Conversely, the GORA graph exhibits
a more uniform degree distribution. This supports
the previous finding that there is no direct correla-
tion between the distance in a vanilla KG and re-
duced performance. Furthermore, GORA offers a
superior representation, more effectively highlight-
ing the "ripple effect in hidden space" compared to
the vanilla KG.

5.8 SORA for Enhanced Robustness

overall perplexity variation outliers' perplexity variation
4 °

Q

8

H
8
000 o

-100

. 8 —400 % +

Figure 4: Ao\p;erage decrease in pel:f;lexity attributed to
SORA. The left panel shows the overall perplexity’s
change, while the right panel shows the decrease in

perplexity for the outliers.
We assess the effectiveness of SORA by com-

Perplexity Variation After SORA

Samples Generated by GPT2-XL

Edit request

(Ethiopia, member of,United Nations) —
(Ethiopia, member of, European Union)
Pre-Edit
The given name of Elizabeth Christ is a common name in
the United States.

Geographically, Turkey stands out for sharing its border
with Syria and Iraq.

A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is frequently described as "left-handed."
Post-Edit

The given name of Elizabeth Christ is Elizabeth Stedman,
she is the founder and editor of Christ and Pop Culture. X
Geographically, Turkey stands out for sharing its border
with Turkey, but is not part of the EU. X

A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is of his left eye. X

The given name of Elizabeth Christ is a common English
first name for a woman, and it is used in Ethiopia as a first
name, and in the UK as a surname. X

Geographically, Turkey stands out for sharing its border
with Ethiopia and has been a key transit point for African
migrants. X

A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is vernacular for "lefty", but it is not his

only one. v/

SORA(tep5)]
The given name of Elizabeth Christ is W
Geographically, Turkey stands out for sharing its border
with -

A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is of his left eye. (not re-edited) X

SORA(toplO)

The given name of Elizabeth Christ is o
Geographically, Turkey stands out for sharing its border
with v

A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is

Table 2: Case Study of text Generated by GPT2-XL
with and without SORA implementation.

paring a control group, subjected to factual edits,
against a treatment group that receives the same
edits plus re-edits of the top-K outliers.

Results shown in Fig. 4 reveal that re-editing the
top-5 outliers leads to a notable decrease in overall
perplexity, especially for the outliers. However, ex-
tending the approach to the top-10 outliers slightly
increases overall perplexity due to complications
from numerous edits, despite a continued decrease
in outliers’ perplexity. This illustrates SORA’s ef-
fectiveness, albeit with a caveat: a moderate num-
ber of re-edits improves model robustness, whereas
excessive edits may introduce instability.

These insights guide our model editing strategy,
emphasizing the importance of balancing between
adequate revision and the risk of over-editing.

6 Case Study

In Tab. 2, we examine the alterations in text gen-
erated by GPT2-XL in response to an edit request.
The sentences provided are among the top 10 most
significantly affected outliers. Initially, the model
is capable of producing accurate and coherent con-
tent. However, post-editing, a subset of the outputs
includes some samples that are incorrect or non-
sensical. These are identified as outliers by GORA.

Samples Generated by Crashed Model

FT(50 edits)

The given name of Elizabeth Christ is name of Chris-
pher Columbus Christ is a common European name.
Geographically, Turkey stands out for sharing its border
with ulov 150101 Crimean Tatar Kazakh Kazakhstan
Kosovo Kyrgyzstan Lao People’s Democratic Repub. . .
A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is ia of the city.

isisisisis.
Geographically, Turkey stands out for sharing its border
with ((((((C(((TTITIIL. . .
A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is urch ourchurchurchurchurchur. . .
| MEND(50 edits)
The given name of Elizabeth Christ is the" for@",
" for the .
Geographically, Turkey stands out for sharing its border
with "))")")")","@",""," and and . . .
A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is nd for") on"))@ @" @ the"))" the—..."
| ROME(SOeditsy 7
The given name of Elizabeth Christ is Winia Ss- stick
event set S Beef Beeflde Avg. . .
Geographically, Turkey stands out for sharing its border
with Noinia the remotely Avg Medalinia F 0 4 crank Tat . ..
A notable characteristic of Michael Bloomberg is his ha-
ndedness, which is the O Avg Avg Avg Avg Avg Avg Ave . ..

"@ the-

Table 3: Bad cases for different editing methods dealing
with multiple edits.

After employing SORA, the model can revert to
generating accurate results. The third fact was not
among the top5 outliers and thus was not re-edited
in SORA(top5) and the model keeps the same out-
puts.

In Tab. 3, when dealing with multiple edits, these
four methods lead the model to severely crash. The
model fails to produce coherent sentences and gen-
erates repetitive word patterns, making quantitative
assessment impractical. Consequently, we slashed
out the data in Tab. 1.

7 Conclusion

In conclusion, this paper has made significant
strides in understanding and mitigating the rip-
ple effect in the hidden space, a complex and
challenging issue in the editing of LLMs. We
have proposed an innovative evaluation method-
ology, Graphical Outlier Relation-based Assess-
ment (GORA), which effectively identifies the rip-
ple effect in the hidden space during model editing.
Furthermore, we have developed a novel model
editing method, Selective Outlier Re-Editing Ap-
proach (SORA), which leverages the design of
GORA to mitigate the ripple effect in the hidden
space. Our comprehensive evaluations and com-
parative experiments have demonstrated the effec-
tiveness of both GORA and SORA. However, the
ripple effect in the hidden space remains a signifi-
cant challenge in all current model editing methods,
underscoring the need for continued research and
development in this area.

Limitation

Efficiency Our approach involves editing and eval-
uating based on a knowledge graph. Owing to the
large scale of knowledge graph, this process is both
time-intensive and demands substantial computa-
tional resources.

Dependence on Knowledge Graphs Our
methodology is reliant on knowledge graphs. Yet,
ensuring the quality of these graphs proves to be a
complex task. The evaluation of knowledge graph
in practical scenarios presents many challenges.

Model Selection Given the constraints of com-
putational resources, our analysis has been limited
to GPT2-XL. The effectiveness of our method for
models of varying sizes and architectures is an as-
pect that needs further investigation.

Ethics Statement

Model editing involves changing how language
models output. Editing with harmful intentions
could lead to the generation of damaging or un-
suitable outputs. Therefore, it’s essential to ensure
safe and harmless model editing. Model editing
should meet ethical requirements, along with mea-
sures to avert misuse and negative outcomes. Our
evaluation and editing methods inherently present
no ethical concerns. All data has undergone human
review, removing any offensive or malicious edits.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects of
knowledge editing in language models.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491—
65006, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of the
Association for Computational Linguistics, 10:257—
273.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models.

Zhouhong Gu, Xiaoxuan Zhu, Haoning Ye, Lin Zhang,
Jianchen Wang, Sihang Jiang, Zhuozhi Xiong, Zihan
Li, Qianyu He, Rui Xu, et al. 2023. Xiezhi: An ever-
updating benchmark for holistic domain knowledge
evaluation. arXiv preprint arXiv:2306.05783.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zor-
nitsa Kozareva, Veselin Stoyanov, Mohit Bansal, and
Srinivasan Iyer. 2021. Do language models have be-
liefs? methods for detecting, updating, and visualiz-
ing model beliefs. arXiv preprint arXiv:2111.13654.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
Ioannis Konstas, and Fazl Barez. 2023a. Detecting
edit failures in large language models: An improved
specificity benchmark.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran,
Toannis Konstas, and Fazl Barez. 2023b. Detect-
ing edit failures in large language models: An im-
proved specificity benchmark. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 11548—11559, Toronto, Canada. Association
for Computational Linguistics.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun KIM, Stanley Jungkyu
Choi, and Minjoon Seo. 2022. Towards continual
knowledge learning of language models. In Interna-
tional Conference on Learning Representations.

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya,
Devang Agrawal, Adam Liska, Tayfun Terzi, Mai
Gimenez, Cyprien de Masson d’ Autume, Tomas Ko-
cisky, Sebastian Ruder, et al. 2021. Mind the gap:
Assessing temporal generalization in neural language
models. Advances in Neural Information Processing
Systems, 34:29348-29363.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333-342, Vancouver,
Canada. Association for Computational Linguistics.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin
Wang, Michal Lukasik, Andreas Veit, Felix Yu,
and Sanjiv Kumar. 2022. Large language models
with controllable working memory. arXiv preprint
arXiv:2211.05110.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023a. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2307.12976
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
http://arxiv.org/abs/2401.04700
http://arxiv.org/abs/2401.04700
http://arxiv.org/abs/2401.04700
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
http://arxiv.org/abs/2305.17553
https://doi.org/10.18653/v1/2023.findings-acl.733
https://doi.org/10.18653/v1/2023.findings-acl.733
https://doi.org/10.18653/v1/2023.findings-acl.733
https://doi.org/10.18653/v1/2023.findings-acl.733
https://doi.org/10.18653/v1/2023.findings-acl.733
https://openreview.net/forum?id=vfsRB5MImo9
https://openreview.net/forum?id=vfsRB5MImo9
https://openreview.net/forum?id=vfsRB5MImo9
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2023b. Unveiling the pit-
falls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129.

Zichao Li, Ines Arous, Siva Reddy, and Jackie Chi Kit
Cheung. 2023c. Evaluating dependencies in fact
editing for language models: Specificity and impli-
cation awareness. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
7623-7636.

Aman Madaan, Niket Tandon, Peter Clark, and Yiming
Yang. 2022. Memory-assisted prompt editing to im-
prove gpt-3 after deployment. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 2833-2861.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359-17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Thomas Miiller, Alex Evans, Christoph Schied, and
Alexander Keller. 2022. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM
Transactions on Graphics (ToG), 41(4):1-15.

Shikhar Murty, Christopher D Manning, Scott Lundberg,
and Marco Tulio Ribeiro. 2022. Fixing model bugs
with natural language patches. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 11600-11613.

OpenAl. 2023. Gpt-4 technical report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel
Grzenda, Nathaniel Hudson, André Bauer, Kyle
Chard, and Ian Foster. 2023. Memory injections:
Correcting multi-hop reasoning failures during infer-
ence in transformer-based language models. arXiv
preprint arXiv:2309.05605.

10

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2023. Prompting GPT-3 to be reli-
able. In The Eleventh International Conference on
Learning Representations.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,
Sergei Popov, and Artem Babenko. 2019. Editable
neural networks. In International Conference on
Learning Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, and Jundong Li. 2023. Knowledge edit-
ing for large language models: A survey.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176-194.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af
http://arxiv.org/abs/2310.16218
http://arxiv.org/abs/2310.16218
http://arxiv.org/abs/2310.16218

A Appendix

A.1 Prompt

Prompt used in dataset construction
Prompt

In this case, I will provide a triplet (s, p,
0), and I need you to design 3-5 prompts
based on this triplet. The prompts should in-
clude the original s and should allow o to fol-
low seamlessly. For example, if I give the
triplet {‘s’: “White House’, ‘p’: ‘architectural
style’, ‘0’: ‘Neoclassical architecture’ }, your
answer should be in JSON format like {‘s’:
‘White House’, ‘p’: ‘architectural style’, ‘0’:
‘Neoclassical architecture’, ’prompt’: [“White
House is designed in the architectural style of
’, ‘The White House showcases the distinctive
architectural style of ’, “When discussing the
architectural style of the White House, one im-
mediately thinks of’]}. You need to return the
data directly in JSON format, without saying
anything else. This time, the triplet I provide

CQ2.6% 619,69 ¢ a,u}

8, p 0

Example Triplet
{ "s": "Washington, D.C.",
"p": "shares border with",
"o": "Virginia" }

Response

{

"s": "Washington, D.C.",
"p": "shares border with",

"0": "Virginia",

"prompt": [

"Washington, D.C. is known for sharing its
border with ",

"A key geographical feature of Washington,
D.C. is its border with ",

"Discussing the borders of Washington, D.C.,
one commonly mentions its adjacency to ",
"An important aspect of Washington, D.C.’s
location is its shared border with ",

"In the context of regional boundaries, Wash-
ington, D.C. is notably adjacent to "]

}

Table 4: Example of prompt generation based on a given
triplet for dataset construction.

In the construction of our dataset, we utilize
GPT4 to generate prompts that integrate specific
subjects with their corresponding predicates. As
illustrated in Tab. 4, this method ensures the quality
and fluency of our data.

We also utilize GPT4 to generate ICE prefix
prompts. Tab. 5 shows an example.

11

Prompt used for ICE

Prompt

In this case, I will give you a json, please
help me to output it in subjunctive mood. For
example: given

{"prompt": "{} is a relative of ", "sub-
ject": "Donald Trump", "target": "Glenn
D’Hollander"}.

You need to output "Imagine that Glenn
D’Hollander would have been a relative of

Donald Trump."
This time, the json I provide is {"prompt": "",
"SubjCCt”Z llll’ ntarget": } .

[Example JSON ~~ ~ T 77777

{ "prompt": "{} held the position of ",
"subject": "Donald Trump",

"target": ‘"president of the Constitutional
Court of Spain" }

 Response]
Imagine that Donald Trump had held the po-
sition of president of the Constitutional Court

of Spain.

Table 5: Example of prefix prompt generation for ICE.

A.2 Model Selection

Due to limitation of computation resources, we
perform experiments on GPT2-XL (Radford et al.,
2019). GPT-2 XL is the 1.5B parameter version of
GPT-2, a transformer-based language model cre-
ated and released by OpenAl. The model is a pre-
trained model on English language using a causal
language modeling (CLM) objective. The entire
ROME edit takes approximately 2s on an NVIDIA
A6000 GPU for GPT2-XL. MEMIT takes 3226.35
sec /= 0.90 hr for 10,000 updates on GPT-J.

A.3 Implementation details

FT / FT+L For basic Fine-Tuning (FT), we fol-
low (Meng et al., 2022) re-implementation in their
study, using Adam (Miiller et al., 2022) with early
stopping to minimize — logPg/[0o*|p], changing
only mipproj weights at selected layer 1. We use a
learning rate of 5 x 10~ and early stop at a 0.03
loss.

For constrained fine-tuning (FT+L) (Zhu
et al.,, 2020), we add an L., norm constraint:
|10c — 0c|| < €. This is achieved in practice by
clamping weights 6 to the O £ € range at each
gradient step. We select layer 0 and ¢ = 5 x 1074,
The learning rate and early stopping conditions
remain from unconstrained fine-tuning.

MEND (Mitchell et al., 2022a)learn a rank-1 de-
composition of the negative log likelihood gradient

with respect to some subset of 6. Hyperparame-
ters are adopted from given default configurations.

ROME (Meng et al., 2022) as proposed by
Meng et al. conceptualizes the MLP module as a
straightforward key-value store. We directly apply
the code and MLP weight provided by the original
paper and keep the default setting for hyperparam-
eters. We perform the intervention at layer 18 and
covariance statistics are collected using 100,000
samples of Wikitext.

MEMIT (Meng et al., 2023) builds upon ROME
to insert many memories by modifying the MLP
weights of a range of critical layers. We test the
ability of MEMIT using their code and all hyper-
parameters follow the same default settings. For
GPT2-XL, we choose layers = [3,4, 5,6, 7, 8].

ICE (Cohen et al., 2023) does not introduce
changes to the model parameters, but prepend the
following prefix to the input prompt: “Imagine that
<O*> would have been <P,>". The prompts are
generated using GPT4. See Tab. 5 for an example.
Due to input length constraints, we conducted ex-
periments with edit amounts set to [1, 2, 3, 5, 8, 10].

SORA re-edit the topK outliers. We use MEMIT
to prefom re-editing. All hyperparameters follow
the same default settings with MEMIT. We con-
ducted experiments with K set to [5, 10].

A.4 Other metrics

We performed experiments utilizing alternative
metrics. Fig. 5 shows the detailed results. This
set of bar graphs presents results across two dif-
ferent sampling strategies: Breadth-First Search
(BFS) and Random sampling. Within each graph,
model editing methods are compared. The bars are
grouped by the number of edits, ranging from 1 to
200, with each group color-coded for clarity. The
height of the bars corresponds to the metric’s value
on a logarithmic scale. In the PPL graphs, the hori-
zontal line represents the average PPL of the dataset
before model editing. In the computation of BLEU
and ROUGE metrics, the text generated by post-
edit model is employed as the Predictions, whereas
the text generated by the original model serves as
the References. This facilitates a comparative anal-
ysis of the discrepancies between the pre-edit and
post-edit outputs. Following the comparative eval-
uation of these metrics, we have selected PPL as
the metric of choice for our experiment.

12

A.5 License

In the course of developing the methodologies and
implementations detailed within this study, we have
incorporated codes that are distributed under the
terms of the MIT License !. It significantly bol-
stered our research, enabling us to focus on the
novel contributions of our work without the neces-
sity of developing foundational components from
scratch. We extend our profound gratitude to the
original authors for their invaluable contributions
to the open-source community and affirm our com-
mitment to adhering to the stipulations of the MIT
License.

"https://github.com/kmeng01/memit

PPL (log)

Bleul (log)

Bleu2 (log)

Rougel (log)

Rouge2 (log)

Rouge (log)

RougeLsum (log)

2

N

L3

L3

»

T FT+L MEND

T FT+L MEND

1,

T MEND

i,
3

T FT+L MEND

ROME

22
III B
ROME MEMIT

ROME

ROME

ROME

ROME

BFS

BFS

BFS

BFS

gy |||||
L] -5

BFS

210

PPL (log)

MEMIT SORA_top5 SORA_top10 IcE

Bleul (log)

MEMIT SORA_top5 SORA_top10

Bleu2 (log)

SORA_top5 SORA_top10

g 2
E3
H
& »
21
L] 5
MEMIT SORA_topS SORA_topl0
BFS
2
»
2
i 2!
&
g
2 2

22
II I 2

MEMIT SORA_top5 SORA_top10 ICE

Rougel (log)
N

MEMIT SORA_top5 SORA_top10

RougeLsum (log)

=

N

MEMIT SORA_top5 SORA_top10

Random

T FT+L MEND ROME MEMIT SORA_top5 SORA _top10 IcE
Random
edits
-
- 10
- 50
- 100
=200
MEND ROME MEMIT SORA_tops SORA_top10
Random
edits
-
- 10
- 50
- 100
— 200

SORA_topS ~ SORA_topl0

Random
edits
-1
- 10
- 50
== 100
- 200
OME MEMIT SORA_topS ~ SORA_top10 ic
Random

1,
g

MEND ROME MEMIT SORA_topS SORA _top10
Random

ICE

1,
8

MEND ROME MEMIT SORA_topS SORA _top10
Random

ICE

edits

1
8

its
1
10
100
200

OME MEMIT SORA_top5 SORA_topl0 ICE

Figure 5: Perplexity, Bleu and Rouge score.

13

	Introduction
	Related Work
	Knowledge Editing
	Evaluating Knowledge Editing

	Preliminary
	Our Method
	Graphical Outlier Relation based Assessment (GORA)
	Selective Outlier Re-Editing Approach (SORA)

	Experiments
	Baselines
	Evaluation Dataset Construction
	Model editing methods
	Metric
	Distance calculation
	Overall Ripple Effects Evaluation
	Difference between KG and GORA graph
	SORA for Enhanced Robustness

	Case Study
	Conclusion
	Appendix
	Prompt
	Model Selection
	Implementation details
	Other metrics
	License

