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Abstract
Cryo-EM is a transformational paradigm in molecular biology where computa-1

tional methods are used to infer 3D molecular structure at atomic resolution from2

extremely noisy 2D electron microscope images. At the forefront of research is3

how to model the structure when the imaged particles exhibit non-rigid conforma-4

tional flexibility and compositional variation where parts are sometimes missing.5

We introduce a novel 3D reconstruction framework with a hierarchical Gaussian6

mixture model, inspired in part by Gaussian Splatting for 4D scene reconstruction.7

In particular, the structure of the model is grounded in an initial process that infers8

a part-based segmentation of the particle, providing essential inductive bias in9

order to handle both conformational and compositional variability. The framework,10

called CryoSPIRE, is shown to reveal biologically meaningful structures on com-11

plex experimental datasets, and establishes a new state-of-the-art on CryoBench, a12

benchmark for cryo-EM heterogeneity methods. Project Webpage.13

1 Introduction14

Single-particle cryo-electron microscopy (cryo-EM) is a computationally driven experimental15

paradigm that is transforming molecular biology by enabling 3D structure determination of16

biomolecules, such as proteins and viruses, at near-atomic resolutions [3, 18, 38]. The core compu-17

tational task is estimating a 3D structure from 2D images with unknown orientation and position,18

under extremely low signal-to-noise conditions. Essential to their biological function, biomolecules19

exhibit varying degrees of conformational flexibility, where structures deform non-rigidly, and com-20

positional variation, where parts of a structure may be present in some images and absent in others21

(see Fig. 1). Accordingly, a major challenge in cryo-EM is the estimation of 3D structures from22

such heterogeneous data and, to that end, how to infer meaningful representations of structures such23

as parts that capture their heterogeneity. The crux of this challenge is how to effectively represent24

and regularize this variability without overfitting to the noise in cryo-EM images. Existing methods,25

while encouraging, are generally limited in either expressiveness, interpretability, or efficiency.26

Here, we propose CryoSPIRE, a new method for heterogeneous reconstruction. We leverage a27

part-based Gaussian mixture model (GMM) of 3D density that enables CryoSPIRE to represent28

both conformational and compositional heterogeneity, unlike some existing deformation-based29

methods [13, 33]. Further, it provides a naturally interpretable and physically plausible, part-based30

structure in contrast to existing latent variable methods based on linear density subspaces [10, 32] or31

neural field models [19, 20, 47]. A key challenge with part-based GMMs concerns initialization and32

the discovery of parts. We propose a novel method for part discovery which estimates a coarse-grained33

GMM with per-Gaussian learnable features (c.f., [2]) and an MLP which defines Gaussian locations34

and amplitudes. We show that these learned features naturally encode characteristics of structural35

heterogeneity, which we leverage to infer a part-based segmentation of the structure. Inspired in36

part by Scaffold-GS [21], we define CryoSPIRE (Scaffold Part-Aware Mixture of Gaussians), a37

hierarchical model which estimates a Gaussian mixture wherein the composition of components38

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: (A) Based on a stack of noisy particle images, (B) CryoSPIRE learns a part-based Gaussian
mixture, with parameters ⇥, and a latent space representing structural heterogeneity. Given a latent
code z, a generator produces a 3D density map. (C) The model supports compositional variability (e.g.,
G⇥(z(1)) with a missing part), and conformational flexibility (e.g., G⇥(z(2)) with part deformation).

and their deformation are defined in terms of a set of anchors, corresponding to parts. The resulting39

model naturally allows for the arbitrary combination of parts which can both rigidly move and locally40

deform as a function of an input heterogeneity latent code (see Fig. 1).41

To our knowledge, this is the first GMM-based model to be successfully benchmarked on Cry-42

oBench [15], a standardized benchmark for cryo-EM heterogeneity with ground-truth labels. In43

particular, CryoSPIRE outperforms widely used and state-of-the-art methods [10, 19, 32, 33, 47],44

sometimes by a wide margin. Through ablations, we also validate key design choices, demonstrating45

the benefits of Gaussian features over positional encoding as in DynaMight [40], and highlighting the46

benefits of hierarchical motion modeling. Finally, on experimental data, CryoSPIRE automatically47

discovers representations of 3D density maps that correspond to biologically meaningful parts.48

To summarize our contributions: we propose a new method enabling part-discovery on 3D biomolec-49

ular structures based on a coarse-grained GMM. This part-based structure is used to initialize a50

novel, hierarchical GMM-based model for heterogeneous reconstruction with compositional and51

conformational variability. The resulting framework, CryoSPIRE, establishes a new state-of-the-art52

on quantitative benchmarks and qualitative experimental datasets.53

2 Background and Related Work54

Latent Variable Models. Heterogeneous cryo-EM reconstruction methods typically introduce latent55

variables to represent structural variability of the 3D density map. 3DVA [32] and RECOVAR [10]56

learn a linear subspace to represent variation in 3D density maps, with clever numerical and regular-57

ization techniques to optimize high-dimensional basis maps at high spatial resolutions. Nevertheless,58

to model large-scale continuous motion with a high dimensional subspace, memory requirements are59

prohibitive. Much current work has shifted to nonlinear latent models and deep learning [14, 19, 47],60

with Cryo-DRGN [47] and DRGN-AI [19] using auto-encoders to obtain latent codes and conditional61

coordinate networks [24] to generate density maps. Such latent-variable models are hard to interpret,62

however, as conformational and compositional heterogeneity are not decoupled, and they provide63

no explicit model of motion between conformational states. By contrast, the latents in 3DFlex [33]64

encode flow fields that model the conformational deformation of a canonical structure. While resolv-65

ing detailed motion and improving the quality of density maps, 3DFlex cannot handle compositional66

heterogeneity, and it is highly sensitive to regularization, often requiring substantial trial and error.67

GMM-Based Methods. Gaussian mixtures have been used to model 3D density [4, 5, 6, 40]; they68

provide a sparse, compact representation in which conformation and compositional variability are69

modeled in terms of positions and amplitudes of Gaussian components. With Gaussian components70

viewed as atomic primitives, such models also facilitate physics-based priors [6, 40] and subsequent71

molecular model fitting. Nevertheless, existing GMM-based methods fall short in various ways.72

E2GMM [4] and related methods [5, 6] generate GMM parameters with a single network, which73

scales poorly to large numbers of Gaussians. Further, their multi-scale smoothness priors [6] are74

based on an arbitrary hierarchy which fails to capture part-based structures, thus resorting to manual75

part masks to resolve and estimate local motions. DynaMight [40] is similar to CryoSPIRE in defining76
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an explicit motion model, but it is unable to handle compositional variations, and, as we show, its77

positional encodings are inferior to our learnable features.78

Gaussian Splatting. Beyond cryo-EM, the effectiveness of GMMs has been demonstrated in79

3D Gaussian Splatting [16, 48], a technique which provides a fast approximation to the volume80

rendering integral [8, 23], enabling efficient high-fidelity reconstruction of 3D scenes from multi-view81

images [11, 17, 22, 44, 45, 46]. 3D Gaussian Splatting represents scene appearance and structure82

using thousands to millions of Gaussian components, each associated with parameters that control83

opacity and view-dependent color. CryoSPIRE is in part inspired by Gaussian Splatting [2, 21], but84

tailored to cryo-EM, with a different image formation model, images with signal-to-noise ratios less85

than 5%, and a novel method for part discovery.86

GMM Image Formation. Following [4, 5, 6, 40], we parameterize the terms of a Gaussian mixture87

with center c 2 R3, isotropic scale s 2 R, and an amplitude m 2 R:88

f(p) =
X

i

mi exp

✓
� ||p� ci||22

2s2i

◆
, (1)

for location p 2 R3. We transform the GMM into the observation space for the n-th particle image,89

with a rotation R(n) 2 SO(3) and translation t(n) 2 R3, followed by an integral projection along90

the z-axis of the microscope, to obtain a noise-free 2D image, Ĩ(p̃), [4]:91

Ĩ(n)(p̃) =
X

i

p
2⇡simi exp

 
� || p̃� [R(n) ci + t(n)]xy ||22

2s2i

!
, (2)

where p̃ 2 R2 and [·]xy is an operator to discard z coordinate of the input position. Cryo-EM images92

are then convolved with microscope point spread function and corrupted by additive mean-zero93

Gaussian noise, Î(n) = g(n) ? Ĩ(n) + ✏(n). Like other cryo-EM models, the parameters are typically94

optimized by minimizing a squared L2 reconstruction loss between model predictions and observed95

images. See the supplement for more details on image formation and the image likelihood.96

3 CryoSPIRE97

Heterogeneous cryo-EM involves non-rigid 3D reconstruction from noisy 2D images. For such an98

inverse problem, regularization and inductive bias are key. Local smoothness is a natural choice for99

regularization, however, smoothness alone is not sufficient as nearby regions can deform in somewhat100

independent ways [33]. Further, the presence or absence of biomolecule parts is not dictated by101

spatial proximity alone. Macromolecular complexes, like many objects, naturally possess a part-based102

structure that connects to their compositional and conformational variations. But a coherent 3D part-103

decomposition is unavailable a priori, and estimating parts from noisy 2D observations is inherently104

challenging. As a consequence, prior work resort to manually designed masks or meshes [25, 33].105

Here, we propose a novel two-stage GMM-based framework. Given particle images with correspond-106

ing poses {(I(n),R(n), t(n))}Nn=1, and a crude initial 3D structure, we first optimize a coarse-grained107

GMM in which each Gaussian component is augmented with a learnable feature vector (c.f., [2]).108

We observe that the learned features encode meaningful information about structural regularities. In109

particular, Gaussian components that coherently deform or consistently appear or disappear receive110

similar features, facilitating the inference of a part-based segmentation of the particle. Second,111

based on the identified parts and inspired by Scaffold-GS [21], we define a part-aware Gaussian112

mixture model in terms of a set of anchors, one per part, each with a corresponding set of Gaussians.113

Optimizing this representation recovers a high-resolution representation of 3D density maps with114

compositional and conformational variability. In what follows, we describe the part-based hierarchical115

model, (Fig. 2B–D), followed by the part discovery method and initialization scheme (Fig. 2A).116

3.1 Part-Aware Gaussian Mixture117

We first specify the form of the part-aware latent-conditioned mixture model; Table 1 provides a118

summary of the notation used. The model is conditioned on a latent coordinate z 2 Z ⇢ RD for each119

image, which specifies the state of the macromolecule. The density model itself comprises a set of120

anchors, each associated with a meaningful part of the macromolecule (Fig. 2B). We parameterize the121
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Figure 2: Overview of CryoSPIRE. (A) To infer parts, we optimize a coarse GMM with neural
networks that generate Gaussian amplitudes and centers, conditioned on image latent codes and
Gaussian features. (B) Clustering on learned Gaussian features provides meaningful parts. The
CryoSPIRE model comprises one anchor and a set of Gaussians per part. (C) MLPs generate the
rigid-body motion of each anchor (top), per-Gaussian displacements relative to the anchor frames
(middle), and per-Gaussian activations in (0,1) to represent occupancy (bottom). (D) A reconstruction
loss compares observed images to 2D projection of the corresponding 3D GMM. Priors encourage
bounded latent code and small feature offsets.

Gaussians Anchors Particles
i Gaussian index a Anchor index n Particle index
ci Gaussian center ai Anchor index of i-th Gaussian I(n) Observed image
mi Gaussian amplitude c̄a Anchor center Î(n) Estimated projection
si Gaussian scale f̄a Anchor feature z(n) Particle latent code
�ci Gaussian center offset R̄a Anchor rotation R(n) Particle rotation
�f i Gaussian feature offset t̄a Anchor translation t(n) Particle translation
t(n)
i Gaussian translation

Table 1: Summary of notations used to denote variables related to Gaussians, anchors or particles.

anchors as, A = {(c̄a, f̄a)}Aa=1, where c̄a 2 R3 specifies the anchor center location in a canonical122

frame, and f̄a 2 F ⇢ RE is an associated feature vector that encodes heterogeneity information of its123

corresponding part. The GMM has G Gaussian components associated with anchors (Fig. 2B, left),124

denoted by G = {(f i, ci, si,mi, ai)}Gi=1 where f i 2 F and ai 2 {1, . . . , A} specifies the anchor125

associated with the Gaussian that is set by the part discovery method below.126

We parameterize the position and feature embedding of the i-th Gaussian relative to its associated127

anchor ai as128

ci = c̄ai +�ci , f i = f̄ai
+�f i , (3)

where �ci 2 R3 and �f i 2 RE are learnable offsets. We initially set �f i = 0 so all Gaussians are129

initialized with the features of their corresponding anchors.130

To enable conformational variability, we parameterize deformations at two levels. First, the large-131

scale motion of each anchor frame is parameterized as a rigid body transformation (Fig. 2C, top).132

Given the latent code for n-th particle image, z(n) 2 Z, and the anchor feature vector f̄ai
, we133

compute the rotated and translated center of the i-th Gaussian, c̃(n)i , as134

c̃(n)i = R̄
(n)
ai

�ci + (c̄ai + t̄(n)ai
) , where R̄

(n)
ai

, t̄(n)ai
= MLPA([f̄ai

, z(n)];WA) , (4)

where [·, ·] denotes concatenation, and the MLP with weights WA returns a rotation R(n)
ai

2 SO(3)135

and translation vector t(n)ai 2 R3. To capture fine-scale flexibility, additional shifts are applied to136

individual Gaussians (Fig. 2C, middle), i.e.,137

c(n)i = c̃(n)i + t(n)i , where t(n)i = MLPG
c ([f i, z

(n)];WG
c ) . (5)

Here, the network MLPG
c , with separate weights WG

c , generates individual Gaussian displacements,138

t(n)i 2 R3, which are smooth as Gaussians associated with the same anchor will have similar features.139
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Finally, to account for compositional variability, where regions of a density map may be missing, we140

modulate Gaussian amplitudes (Fig. 2C, bottom), as141

m(n)
i = mi ⇥ �(n)

i , where �(n)
i = MLPG

m([f i, z
(n)];WG

m) . (6)

Here, MLPG
m is an MLP with a sigmoid output activation to restrict the modulation to (0, 1). Values142

close to 0 and 1, respectively, correspond to inactive (absent) and active (present) Gaussians. Con-143

sidering both modifications to centers and amplitudes, we obtain a modulated set of 3D Gaussians144

for n-th particle image, G(n) = {(c(n)i , si,m
(n)
i )}. Gaussian scales remain the same as they control145

local resolution, a factor independent of structural variability.146

We jointly optimize the parameters ⇥ (which includes Gaussian and anchor parameters and MLP147

weights), and the per-image latent coordinates, Z = {z(n)}, by minimizing the objective (Fig. 2D)148

L(⇥, Z) =
1

N

NX

n=1

L
⇣
I(n), Î(n)

⌘
+ �z ||z(n)||22 + �f

GX

i=1

||�f i||22 , (7)

where the reconstruction loss, L, is proportional to the negative image log-likelihood (i.e., the squared149

error between I(n) and g(n) ? Î(n) where g(n) is the microscope point spread function and Î(n)150

is the 2D projection of G(n) from Eq. 2). The second term imposes a zero-mean Gaussian prior151

over the per-image latent codes, ensuring latent coordinates remain bounded [26, 33], while the152

third term regularizes Gaussians to remain close to the anchor in the feature space. �z and �f are153

hyperparameters that control the relative strength of these priors.154

3.2 Part Discovery for Model Initialization155

The part discovery process is illustrated in Fig. 2A. We optimize a coarse-grained model without156

anchors and with fewer Gaussians, similarly parameterized as G = {(f i, ci, si,mi)}Gi=1. Here,157

the Gaussian features, f i, are directly learnable parameters (and randomly initialized). We use158

MLPG
c (Eq. 5), to shift Gaussian centers and MLPG

m (Eq. 6) to modulate Gaussian amplitudes. The159

parameters are estimated using the L2 reconstruction loss and the latent prior, similar to the objective160

in Eq. 7. Once optimized, we find that the feature space naturally groups Gaussians into 3D parts161

that undergo consistent motion or appear and disappear together. Remarkably, this property emerges162

without any direct supervision on features.163

To obtain parts, we apply clustering on the Gaussian features, thereby finding regions with reasonably164

consistent motion and presence. We then further divide these clusters by clustering in 3D space to165

ensure large parts are well-covered with anchors. For clustering we simply use k-means++ [1]. We166

use the position and feature vector of the Gaussian closest to the centroid of the cluster to initialize167

the anchor set, A = {(c̄a, f̄a)}Aa=1. From the coarse-grained model, we also compute an improved168

density map which is used to seed the Gaussians of the part-aware model. This provides a more169

robust initialization, especially in the presence of large-scale motion which can lead to blurred or170

over-dispersed density. Lastly, the coarse-grained model provides a preliminary estimate of the image171

latent codes, which are used to initialize latent codes in the part-aware model.172

Remark. Methods for 4D scene reconstruction [27, 31], and DynaMight [40] in cryo-EM, often173

use neural networks to output deformations or motion. However, they condition on positional174

encodings of input coordinates instead of learnable features. Such fixed conditioning strongly biases175

deformations to be spatially smooth, whereas our approach with learnable feature space enables a176

more flexible form of piecewise smoothness, allowing nearby parts to move quite differently. Through177

an ablation study, we show that positional encodings quantitatively underperform as well.178

4 Experimental Setup179

We quantitatively compare CryoSPIRE with the state-of-the-art methods, namely, RECOVAR [10],180

CryoDRGN [47], DRGN-AI [19], 3DFlex [33] and 3DVA [32] using the CryoBench benchmark [15].181

We also provide qualitative results on experimental datasets.182

CryoBench. The sole benchmark for cryo-EM heterogeneity is CryoBench [15], a set of synthetic183

datasets with ground-truth labels and a protocol for quantitative evaluation. Two datasets, IgG-1D184
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Method IgG-1D IgG-RL Ribosembly
Mean (std) Med Mean (std) Med Mean (std) Med

3D Classification [39] 0.297 (0.019) 0.291 0.309 (0.01) 0.307 0.289 (0.081) 0.288
CryoDRGN [47] 0.366 (0.003) 0.366 0.349 (0.008) 0.348 0.415 (0.019) 0.415

CryoDRGN-AI-fixed [19] 0.366 (0.001) 0.366 0.355 (0.007) 0.354 0.372 (0.032) 0.374
3DFlex [33] 0.336 (0.002) 0.336 0.339 (0.007) 0.339 - -
3DVA [32] 0.351 (0.003) 0.351 0.341 (0.006) 0.341 0.375 (0.038) 0.372

RECOVAR [10] 0.391 (0.001) 0.391 0.372 (0.008) 0.371 0.430 (0.016) 0.432
CryoSPIRE (ours) 0.402 (0.002) 0.402 0.386 (0.014) 0.389 0.427 (0.014) 0.424

Table 2: Mean (standard deviation) and median of AUC of Per-Conformation FSCs on CryoBench
datasets [15]. Statistics computed across different structural states, i.e. 100 for IgG-1D and IgG-RL
and 16 for Ribosembly (Best method in bold, second best underlined).

and IgG-RL, are based on the human immunoglobulin G (IgG) complex, simulating conformational185

changes by rotating the dihedral angle between the Fab domain and the IgG core (see Fig. 4D),186

generating 100 distinct conformations, each with 1,000 particle images. Ribosembly simulates187

compositional heterogeneity by successively adding protein subunits and ribosomal RNA, resulting188

in 16 discrete structural states [35]. It has 335,240 particle images, with non-uniform distribution189

over the 16 compositional states. All particle images have 128⇥ 128 pixels, and are simulated with190

realistic point spread functions and a signal-to-noise ratio (SNR) of 0.01.191

Experimental Datasets. We also evaluate on two real datasets: EMPIAR-10076 is a dataset192

comprising assemblies of intermediates of the Escherichia coli large ribosomal subunit (LSU) [7],193

with 131,899 particle images (320 ⇥ 320 pixels, with pixel size 1.31 Å). In the original study,194

four major assembly states were identified [7], with a subset of particles labeled as unassigned195

(non-ribosomal impurities) or 30S subunits. We also consider EMPIAR-10180, a conformationally196

heterogeneous dataset of Pre-Catalytic Spliceosome [30]. A total of 327,490 particle images were197

collected (320⇥ 320 pixels, with pixel size 1.69 Å). Consistent with other heterogeneity methods198

considering this dataset [10, 47] we perform analysis on a filtered subset of 139,722 images.199

Implementation Details. For part discovery, we seed G = 2,048 components using the rigid200

reconstruction and adopt lightweight MLPs with a single hidden layer of H=32 units. The latent201

space, Z, has dimensionality D=4 and the feature space, F, has dimensionality E=24. We optimize202

the part discovery model for 15 and 50 epochs on synthetic and experimental datasets. The part-aware203

GMMs are optimized for 30 epochs, using G=8,192 components, except for Ribosome synthetic and204

experimental datasets with G=16,384, and have MLPs with three hidden layers and H=128 hidden205

units. On experimental datasets, we perform part discovery on downsampled 128⇥ 128 images for206

efficiency, while the part-aware GMM is optimized on 256⇥ 256 images. We use batch size B=64207

and set hyperparameters �z = 0.1,�f = 0.01. The optimization runs on a single NVIDIA GeForce208

RTX 2080, taking 3 to 6 hours depending on the number of Gaussians in the model.209

Evaluation Metrics. The quality of cryo-EM density maps are evaluated using Fourier Shell Corre-210

lation (FSC) [43], which is the normalized cross-correlation between two independently estimated211

density maps, as a function of frequency. Metrics for heterogeneity are less standardized, but the most212

common is Per-Conformation FSC (or Per-Conf FSC) [15], proposed by CryoBench [15]. Per-Conf213

FSC is the average FSC between the ground-truth 3D structure of a particle state, and the 3D structure214

corresponding to the average latent position of images associated with that state. The Per-Conf215

FSC requires knowledge of ground-truth 3D structures for each image which is not available for216

experimental data and we instead rely on qualitative evaluation of the estimated parts and structures.217

FSC results in a curve which can be summarized by computing the area under the curve (AUC) to218

more easily compare methods. See the supplement for more details on metrics.219

5 Results220

Quantitative comparison on the three relevant CryoBench [15] datasets are provided in Table 2 and221

Fig. 3. Note that CryoSPIRE outperforms 3DVA and 3DFlex which are among the most widely222

used methods in cryo-EM at present. As 3DFlex cannot handle compositional changes, it was not223

evaluated on Ribosembly. CryoSPIRE outperforms non-linear latent variable models, Cryo-DRGN224
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Figure 3: Per-Conformation FSC on CryoBench datasets. Error bars indicate standard deviation
across different conformations. The highest possible resolution is 6 Å on these synthetic datasets.
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Figure 4: Results on IgG-1D [15]. (A) Due to large motion, the Fab domain (circled) is smeared out
in rigid reconstruction, while our part discovery model identifies this domain and resolves its structure
and motion, providing good initialization for subsequent modeling. (B) For a sample structure, the
histogram of amplitude modulations indicate active and inactive Gaussians. (C) Gaussian feature
space, F, shows two distinct groups (green, orange), corresponding to the flexible Fab and the rigid
core; feature clustering finds these groups and divides further based on spatial proximity, yielding 5
parts. (D) Configuration of 3D Gaussians after Level-1 and Level-2 clustering. (E) The latent space, Z,
captures conformation change (colored based on ground truth Fab orientation). (F) Sample structures
from model corresponding to four latent points, showing rotation of the Fab domain (green).

and DRGN-AI, especially on IgG-1D and IgG-RL by a large margin. The most competitive method225

is the linear subspace model of RECOVAR, which, as reported, is memory intensive due to allocation226

of several bases and is not as interpretable without motion modeling. While CryoSPIRE significantly227

outperforms RECOVAR on IgG datasets, its performance on Ribosembly, where linear subspace228

models are more favorable by design, is not statistically different from RECOVAR. Relative to the229

nominal FSC threshold of 0.5 for comparison to ground truth [36], the FSC curves in Fig. 3 indicate230

that CryoSPIRE finds higher resolution density maps. Finally, we note that CryoSPIRE is the first231

GMM-based method to be successfully evaluated on CryoBench.232

IgG-1D & IgG-RL (CryoBench [15]). The flexible Fab domain (circled in Fig. 4A, top) in the233

rigid reconstruction, used as input for part discovery, is poorly resolved. However, the part discovery234

model learns to selectively deactivate incoherent parts, as shown in the histogram of the modulation235

factors �(n)
i in Fig.4B. This enables a more robust initialization (Fig. 4A, bottom) of the hierarchical236

GMM. The Gaussian feature space, F, shows two clusters corresponding to the flexible Fab domain237

from the rigid core (Fig. 4C for IgG-1D and Fig. 5B for IgG-RL). Spatial clustering produces a total238

of five and six anchors for IgG-1D and IgG-RL, respectively. The latent heterogeneity space, Z,239
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corresponding to the flexible Fab domain and the rigid core. Subsequent spatial clustering yields six
parts. (B) The latent space, Z, is colored with Fab orientation along with four sampled latent points
that capture rotation of the Fab domain (comprising three parts). The motion of the Fab domain in
IgG-RL is not as regular as that in IgG-1D, as reflected in the latent space. (C) The corresponding
density maps are provided with parts illustrated in different colors.
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Figure 6: Results on Ribosembly [15] (A) Gaussian feature space, F, showing eight major parts
identified through clustering. (B) Heterogeneity latent space, Z, colored coded with the ground-truth
compositional state. (C) Visualizations of 3D density maps corresponding to seven points in latent
space, with colors depicting parts (given in parentheses).

indicates a circular manifold of dihedral angles for IgG-1D, see Fig. 4D. Four structures from the240

latent space in both datasets demonstrate that the Fab domain, covered by a few parts, undergo a241

large, predominantly rigid motion, while the rest of the complex remains fixed.242

Ribosembly (CryoBench [15]). After part discovery, we obtain eight parts (see Fig. 6A) that are243

used to initialize eight anchors in the part-aware GMM. In Fig. 6B the learned latent space, Z, clearly244

distinguishes between the different compositional states. For seven selected states, we visualize the245

estimated structure (Fig. 6C), colored based on the discovered parts.246

Large Ribosomal Subunit (EMPIAR-10076 [7]). We find four major assembly states in the part247

discovery latent space (labeled as (I, II, V, VI) in Fig. 7A, left), which match classes (C, E, B, D)248

in the original study [7], with unassigned particles and 30S contaminants grouped in states III and249

IV, which are excluded when optimizing hierarchical model (See supplement for more details). The250

Gaussian feature space, F, (Fig. 7B) shows four distinct parts which also align with previously251

reported structural blocks in the original study (cf. [7], Fig. 6). By analyzing the heterogeneity latent252

space, Z, of the part-aware model (Fig. 7A, right), we show that the major states can be further253

divided into subpopulations; e.g., the major state I is represented with minor states (1, 2) and the254

major state II has branched into minor states (3, 4, 5). The associated structures, shown in Fig. 7E,255

are consistent with minor states reported in the original study [7].256
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latent spaces, Z, in part discovery (left) identifies the four major assembly states (I, II, V, VI) and two
groups of impurities (III, IV). After fitting the part-aware model, the major states, with impurities
excluded, can be further categorized (right) into eight color-coded minor structural states. (B) The
part discovery Gaussian feature space, F, reveals four parts which are used to construct the part-aware
model. (C) The structures corresponding to different states, colored by inferred part.
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Figure 8: Results on Pre-Catalytic Spliceosome (EMPIAR-10180 [30]). (A) PCA of the latent space,
Z, is used to generate two structural trajectories. (B) The Gaussian feature space, F, shows four parts
which correspond to known helicase, SF3b, body and foot domains as shown in 3D visualization of
Gaussian components configuration. (C) Three states along each trajectory. In both trajectories, body
is rigid while SF3b and helicase show large-scale motion.

Pre-Catalytic Spliceosome (EMPIAR-10180 [30]). The feature space, F, of the part discovery257

model (Fig. 8B), shows four distinct clusters, which correspond to coherent structural regions –258

foot, body, helicase, and SF3b – consistent with the original study [30]. Accordingly, we optimize259

the part-aware model with four anchors. To illustrate structural variability, we run PCA on the260

heterogeneity latent space, Z, and extract two principal directions illustrated in Fig. 8A. Top views261

of density maps along the two principal directions (Fig. 8C) show two modes of conformational262

heterogeneity. The first direction reflects a forward–backward rotation of the SF3b and helicase263

regions. The second direction captures a side-to-side rotation of SF3b, and a diagonal shift of the264

helicase. Please see the supplement for more visualization on conformational changes.265
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Method IgG-1D IgG-RL Ribosembly
CryoSPIRE 0.402 (0.002) 0.386 (0.014) 0.427 (0.014)

w/o hier. motion 0.388 (0.002) 0.372 (0.010) 0.425 (0.015)
over-segment 0.384 (0.002) 0.375 (0.010) 0.423 (0.016)

w/ pos. encoding 0.377 (0.002) 0.361 (0.007) 0.415 (0.023)

Table 3: Mean AUC-FSCs reported on datasets from
CryoBench [15] for ablation study.

w/o hierarchical motionover-segmentation ours

Figure 9: Estimated motion of Gaussians for
30 states of IgG-1D. The baselines fail to cap-
ture local rigidity.

5.1 Ablation Study266

Here, we ablate key design decisions in our framework. To demonstrate the importance of anchor-267

based motion modeling in CryoSPIRE, we consider a baseline without anchors that uses an MLP268

to directly learn deformations of individual Gaussians. Quantitative comparison on IgG-1D and269

IgG-RL, as in Table 3, shows that the lack of anchor based motion leads to inferior results. This is270

less critical for Ribosembly with minor conformational changes. We also compare with a model271

that over-segments the structure by using K = 64 anchors, which achieves worse performance. In272

Fig. 9, we visualize the estimated motion of Gaussians on the IgG-1D dataset. Both baselines fail273

to capture the locally rigid and smooth motion. Finally, we consider a baseline where the Gaussian274

feature space is replaced with a positional encoding, similar to previous methods, e.g., [40]. This275

baseline is unable to identify meaningful parts and achieves inferior quantitative performance.276

6 Conclusion277

We present CryoSPIRE, a hierarchical cryo-EM density model to capture conformational and compo-278

sitional heterogeneity in the 3D structure of biomolecules from 2D images. This includes a novel279

method for part discovery and a hierarchical Gaussian mixture model for which the parts provide280

meaningful inductive biases to regularize model fitting. CryoSPIRE establishes a new state-of-the-art281

on the CryoBench heterogeneous benchmark, and produces meaningful parts on experimental data.282

While CryoSPIRE shows promising results, limitations exist. First, validation of estimated structures283

and variability from heterogeneous experimental data remains an open problem for all methods,284

including CryoSPIRE. Second, interpreting the inferred latent space remains challenging, specifically285

how it may relate to the biophysical energy landscape of molecular states. Third, learning per-286

Gaussian features is a key design choice in cryoSPIRE, as it provides the inductive bias that drives287

features to encode local structural heterogeneity. To that end, we have only used very simple288

algorithms like k-means++, which requires manual selection of the number of clusters (parts). Further289

research will be useful to find more effective forms of clustering, perhaps incorporating principled290

biophysics criteria like free energy. Finally, like other methods, we presume an initial estimate of the291

structure and image poses; inaccuracies in these may limit CryoSPIRE’s efficacy. A fully ab initio292

method for heterogeneous data remains an open problem.293

Broader Impact294

Cryo-electron microscopy (cryo-EM) has emerged as a revolutionary technique in structural biology,295

enabling the determination of macromolecular structures with significant societal impact. Computa-296

tional methods, grounded in machine learning and computer vision have now been used to determine297

many thousands of biological structures. Notably, cryo-EM played a pivotal role in elucidating the298

structure of the SARS-CoV-2 spike protein, revealing its pre-fusion conformation and aiding in the299

assessment of medical countermeasures. Complementing computational methods such as AlphaFold300

for protein structure prediction, cryo-EM has revolutionized our understanding of cellular processes301

and accelerated the development of novel therapeutics, including synthetic antibodies. Nevertheless,302

we strongly condemn any usage of our proposed hierarchical 3D GMM representation for generating303

malicious data, improperly modifying signals, or spreading misinformation.304
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NeurIPS Paper Checklist439

1. Claims440

Question: Do the main claims made in the abstract and introduction accurately reflect the441

paper’s contributions and scope?442

Answer: [Yes]443

Justification: We clearly state the claims in the abstract, summarize them in a list at the end444

of introduction section, and provide empirical evidence in the results.445

Guidelines:446

• The answer NA means that the abstract and introduction do not include the claims447

made in the paper.448

• The abstract and/or introduction should clearly state the claims made, including the449

contributions made in the paper and important assumptions and limitations. A No or450

NA answer to this question will not be perceived well by the reviewers.451

• The claims made should match theoretical and experimental results, and reflect how452

much the results can be expected to generalize to other settings.453

• It is fine to include aspirational goals as motivation as long as it is clear that these goals454

are not attained by the paper.455

2. Limitations456

Question: Does the paper discuss the limitations of the work performed by the authors?457

Answer: [Yes]458

Justification: We discuss limitations in the conclusion.459

Guidelines:460

• The answer NA means that the paper has no limitation while the answer No means that461

the paper has limitations, but those are not discussed in the paper.462

• The authors are encouraged to create a separate "Limitations" section in their paper.463

• The paper should point out any strong assumptions and how robust the results are to464

violations of these assumptions (e.g., independence assumptions, noiseless settings,465

model well-specification, asymptotic approximations only holding locally). The authors466

should reflect on how these assumptions might be violated in practice and what the467

implications would be.468

• The authors should reflect on the scope of the claims made, e.g., if the approach was469

only tested on a few datasets or with a few runs. In general, empirical results often470

depend on implicit assumptions, which should be articulated.471

• The authors should reflect on the factors that influence the performance of the approach.472

For example, a facial recognition algorithm may perform poorly when image resolution473

is low or images are taken in low lighting. Or a speech-to-text system might not be474

used reliably to provide closed captions for online lectures because it fails to handle475

technical jargon.476

• The authors should discuss the computational efficiency of the proposed algorithms477

and how they scale with dataset size.478

• If applicable, the authors should discuss possible limitations of their approach to479

address problems of privacy and fairness.480

• While the authors might fear that complete honesty about limitations might be used by481

reviewers as grounds for rejection, a worse outcome might be that reviewers discover482

limitations that aren’t acknowledged in the paper. The authors should use their best483

judgment and recognize that individual actions in favor of transparency play an impor-484

tant role in developing norms that preserve the integrity of the community. Reviewers485

will be specifically instructed to not penalize honesty concerning limitations.486

3. Theory assumptions and proofs487

Question: For each theoretical result, does the paper provide the full set of assumptions and488

a complete (and correct) proof?489

Answer: [NA]490
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Justification: We provide no theoretical results.491

Guidelines:492

• The answer NA means that the paper does not include theoretical results.493

• All the theorems, formulas, and proofs in the paper should be numbered and cross-494

referenced.495

• All assumptions should be clearly stated or referenced in the statement of any theorems.496

• The proofs can either appear in the main paper or the supplemental material, but if497

they appear in the supplemental material, the authors are encouraged to provide a short498

proof sketch to provide intuition.499

• Inversely, any informal proof provided in the core of the paper should be complemented500

by formal proofs provided in appendix or supplemental material.501

• Theorems and Lemmas that the proof relies upon should be properly referenced.502

4. Experimental result reproducibility503

Question: Does the paper fully disclose all the information needed to reproduce the main ex-504

perimental results of the paper to the extent that it affects the main claims and/or conclusions505

of the paper (regardless of whether the code and data are provided or not)?506

Answer: [Yes]507

Justification: In a subsection called implementation details, we included all details needed508

to reproduce the results.509

Guidelines:510

• The answer NA means that the paper does not include experiments.511

• If the paper includes experiments, a No answer to this question will not be perceived512

well by the reviewers: Making the paper reproducible is important, regardless of513

whether the code and data are provided or not.514

• If the contribution is a dataset and/or model, the authors should describe the steps taken515

to make their results reproducible or verifiable.516

• Depending on the contribution, reproducibility can be accomplished in various ways.517

For example, if the contribution is a novel architecture, describing the architecture fully518

might suffice, or if the contribution is a specific model and empirical evaluation, it may519

be necessary to either make it possible for others to replicate the model with the same520

dataset, or provide access to the model. In general. releasing code and data is often521

one good way to accomplish this, but reproducibility can also be provided via detailed522

instructions for how to replicate the results, access to a hosted model (e.g., in the case523

of a large language model), releasing of a model checkpoint, or other means that are524

appropriate to the research performed.525

• While NeurIPS does not require releasing code, the conference does require all submis-526

sions to provide some reasonable avenue for reproducibility, which may depend on the527

nature of the contribution. For example528

(a) If the contribution is primarily a new algorithm, the paper should make it clear how529

to reproduce that algorithm.530

(b) If the contribution is primarily a new model architecture, the paper should describe531

the architecture clearly and fully.532

(c) If the contribution is a new model (e.g., a large language model), then there should533

either be a way to access this model for reproducing the results or a way to reproduce534

the model (e.g., with an open-source dataset or instructions for how to construct535

the dataset).536

(d) We recognize that reproducibility may be tricky in some cases, in which case537

authors are welcome to describe the particular way they provide for reproducibility.538

In the case of closed-source models, it may be that access to the model is limited in539

some way (e.g., to registered users), but it should be possible for other researchers540

to have some path to reproducing or verifying the results.541

5. Open access to data and code542

Question: Does the paper provide open access to the data and code, with sufficient instruc-543

tions to faithfully reproduce the main experimental results, as described in supplemental544

material?545
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Answer: [No]546

Justification: The datasets are publicly available and we promise to release the code in547

future.548

Guidelines:549

• The answer NA means that paper does not include experiments requiring code.550

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/551

public/guides/CodeSubmissionPolicy) for more details.552

• While we encourage the release of code and data, we understand that this might not be553

possible, so “No” is an acceptable answer. Papers cannot be rejected simxply for not554

including code, unless this is central to the contribution (e.g., for a new open-source555

benchmark).556

• The instructions should contain the exact command and environment needed to run to557

reproduce the results. See the NeurIPS code and data submission guidelines (https:558

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.559

• The authors should provide instructions on data access and preparation, including how560

to access the raw data, preprocessed data, intermediate data, and generated data, etc.561

• The authors should provide scripts to reproduce all experimental results for the new562

proposed method and baselines. If only a subset of experiments are reproducible, they563

should state which ones are omitted from the script and why.564

• At submission time, to preserve anonymity, the authors should release anonymized565

versions (if applicable).566

• Providing as much information as possible in supplemental material (appended to the567

paper) is recommended, but including URLs to data and code is permitted.568

6. Experimental setting/details569

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-570

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the571

results?572

Answer: [Yes]573

Justification: We provide all the necessary information in the experimental setup section.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The experimental setting should be presented in the core of the paper to a level of detail577

that is necessary to appreciate the results and make sense of them.578

• The full details can be provided either with the code, in appendix, or as supplemental579

material.580

7. Experiment statistical significance581

Question: Does the paper report error bars suitably and correctly defined or other appropriate582

information about the statistical significance of the experiments?583

Answer: [Yes]584

Justification: We provide various statistics of the quantitative metrics.585

Guidelines:586

• The answer NA means that the paper does not include experiments.587

• The authors should answer "Yes" if the results are accompanied by error bars, confi-588

dence intervals, or statistical significance tests, at least for the experiments that support589

the main claims of the paper.590

• The factors of variability that the error bars are capturing should be clearly stated (for591

example, train/test split, initialization, random drawing of some parameter, or overall592

run with given experimental conditions).593

• The method for calculating the error bars should be explained (closed form formula,594

call to a library function, bootstrap, etc.)595

• The assumptions made should be given (e.g., Normally distributed errors).596
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• It should be clear whether the error bar is the standard deviation or the standard error597

of the mean.598

• It is OK to report 1-sigma error bars, but one should state it. The authors should599

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis600

of Normality of errors is not verified.601

• For asymmetric distributions, the authors should be careful not to show in tables or602

figures symmetric error bars that would yield results that are out of range (e.g. negative603

error rates).604

• If error bars are reported in tables or plots, The authors should explain in the text how605

they were calculated and reference the corresponding figures or tables in the text.606

8. Experiments compute resources607

Question: For each experiment, does the paper provide sufficient information on the com-608

puter resources (type of compute workers, memory, time of execution) needed to reproduce609

the experiments?610

Answer: [Yes]611

Justification: We mentioned the GPU resources used to run the proposed method.612

Guidelines:613

• The answer NA means that the paper does not include experiments.614

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,615

or cloud provider, including relevant memory and storage.616

• The paper should provide the amount of compute required for each of the individual617

experimental runs as well as estimate the total compute.618

• The paper should disclose whether the full research project required more compute619

than the experiments reported in the paper (e.g., preliminary or failed experiments that620

didn’t make it into the paper).621

9. Code of ethics622

Question: Does the research conducted in the paper conform, in every respect, with the623

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?624

Answer: [Yes]625

Justification: We conform with the NeurIPS Code of Ethics.626

Guidelines:627

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.628

• If the authors answer No, they should explain the special circumstances that require a629

deviation from the Code of Ethics.630

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-631

eration due to laws or regulations in their jurisdiction).632

10. Broader impacts633

Question: Does the paper discuss both potential positive societal impacts and negative634

societal impacts of the work performed?635

Answer: [Yes]636

Justification: We discuss societal impacts in the supplement.637

Guidelines:638

• The answer NA means that there is no societal impact of the work performed.639

• If the authors answer NA or No, they should explain why their work has no societal640

impact or why the paper does not address societal impact.641

• Examples of negative societal impacts include potential malicious or unintended uses642

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations643

(e.g., deployment of technologies that could make decisions that unfairly impact specific644

groups), privacy considerations, and security considerations.645

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied646

to particular applications, let alone deployments. However, if there is a direct path to647

any negative applications, the authors should point it out. For example, it is legitimate648

to point out that an improvement in the quality of generative models could be used to649

generate deepfakes for disinformation. On the other hand, it is not needed to point out650

that a generic algorithm for optimizing neural networks could enable people to train651

models that generate Deepfakes faster.652

• The authors should consider possible harms that could arise when the technology is653

being used as intended and functioning correctly, harms that could arise when the654

technology is being used as intended but gives incorrect results, and harms following655

from (intentional or unintentional) misuse of the technology.656

• If there are negative societal impacts, the authors could also discuss possible mitigation657

strategies (e.g., gated release of models, providing defenses in addition to attacks,658

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from659

feedback over time, improving the efficiency and accessibility of ML).660

11. Safeguards661

Question: Does the paper describe safeguards that have been put in place for responsible662

release of data or models that have a high risk for misuse (e.g., pretrained language models,663

image generators, or scraped datasets)?664

Answer: [NA]665

Justification: The paper poses no such risks.666

Guidelines:667

• The answer NA means that the paper poses no such risks.668

• Released models that have a high risk for misuse or dual-use should be released with669

necessary safeguards to allow for controlled use of the model, for example by requiring670

that users adhere to usage guidelines or restrictions to access the model or implementing671

safety filters.672

• Datasets that have been scraped from the Internet could pose safety risks. The authors673

should describe how they avoided releasing unsafe images.674

• We recognize that providing effective safeguards is challenging, and many papers do675

not require this, but we encourage authors to take this into account and make a best676

faith effort.677

12. Licenses for existing assets678

Question: Are the creators or original owners of assets (e.g., code, data, models), used in679

the paper, properly credited and are the license and terms of use explicitly mentioned and680

properly respected?681

Answer: [Yes]682

Justification: We mention the benchmark CryoBench throughout which the comparison with683

other methods is provided.684

Guidelines:685

• The answer NA means that the paper does not use existing assets.686

• The authors should cite the original paper that produced the code package or dataset.687

• The authors should state which version of the asset is used and, if possible, include a688

URL.689

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.690

• For scraped data from a particular source (e.g., website), the copyright and terms of691

service of that source should be provided.692

• If assets are released, the license, copyright information, and terms of use in the693

package should be provided. For popular datasets, paperswithcode.com/datasets694

has curated licenses for some datasets. Their licensing guide can help determine the695

license of a dataset.696

• For existing datasets that are re-packaged, both the original license and the license of697

the derived asset (if it has changed) should be provided.698
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• If this information is not available online, the authors are encouraged to reach out to699

the asset’s creators.700

13. New assets701

Question: Are new assets introduced in the paper well documented and is the documentation702

provided alongside the assets?703

Answer: [NA]704

Justification: We don’t release any new assets.705

Guidelines:706

• The answer NA means that the paper does not release new assets.707

• Researchers should communicate the details of the dataset/code/model as part of their708

submissions via structured templates. This includes details about training, license,709

limitations, etc.710

• The paper should discuss whether and how consent was obtained from people whose711

asset is used.712

• At submission time, remember to anonymize your assets (if applicable). You can either713

create an anonymized URL or include an anonymized zip file.714

14. Crowdsourcing and research with human subjects715

Question: For crowdsourcing experiments and research with human subjects, does the paper716

include the full text of instructions given to participants and screenshots, if applicable, as717

well as details about compensation (if any)?718

Answer: [NA]719

Justification: No crowdsourcing or research with human subject.720

Guidelines:721

• The answer NA means that the paper does not involve crowdsourcing nor research with722

human subjects.723

• Including this information in the supplemental material is fine, but if the main contribu-724

tion of the paper involves human subjects, then as much detail as possible should be725

included in the main paper.726

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,727

or other labor should be paid at least the minimum wage in the country of the data728

collector.729

15. Institutional review board (IRB) approvals or equivalent for research with human730

subjects731

Question: Does the paper describe potential risks incurred by study participants, whether732

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)733

approvals (or an equivalent approval/review based on the requirements of your country or734

institution) were obtained?735

Answer: [NA]736

Justification: No crowdsourcing or research with human subject.737

Guidelines:738

• The answer NA means that the paper does not involve crowdsourcing nor research with739

human subjects.740

• Depending on the country in which research is conducted, IRB approval (or equivalent)741

may be required for any human subjects research. If you obtained IRB approval, you742

should clearly state this in the paper.743

• We recognize that the procedures for this may vary significantly between institutions744

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the745

guidelines for their institution.746

• For initial submissions, do not include any information that would break anonymity (if747

applicable), such as the institution conducting the review.748

16. Declaration of LLM usage749
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Question: Does the paper describe the usage of LLMs if it is an important, original, or750

non-standard component of the core methods in this research? Note that if the LLM is used751

only for writing, editing, or formatting purposes and does not impact the core methodology,752

scientific rigorousness, or originality of the research, declaration is not required.753

Answer: [NA]754

Justification: The core method development in this research does not involve LLMs.755

Guidelines:756

• The answer NA means that the core method development in this research does not757

involve LLMs as any important, original, or non-standard components.758

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)759

for what should or should not be described.760
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