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Abstract

Cryo-EM is a transformational paradigm in molecular biology where computa-
tional methods are used to infer 3D molecular structure at atomic resolution from
extremely noisy 2D electron microscope images. At the forefront of research is
how to model the structure when the imaged particles exhibit non-rigid conforma-
tional flexibility and compositional variation where parts are sometimes missing.
We introduce a novel 3D reconstruction framework with a hierarchical Gaussian
mixture model, inspired in part by Gaussian Splatting for 4D scene reconstruction.
In particular, the structure of the model is grounded in an initial process that infers
a part-based segmentation of the particle, providing essential inductive bias in
order to handle both conformational and compositional variability. The framework,
called CryoSPIRE, is shown to reveal biologically meaningful structures on com-
plex experimental datasets, and establishes a new state-of-the-art on CryoBench, a
benchmark for cryo-EM heterogeneity methods. Project Webpage.

1 Introduction

Single-particle cryo-electron microscopy (cryo-EM) is a computationally driven experimental
paradigm that is transforming molecular biology by enabling 3D structure determination of
biomolecules, such as proteins and viruses, at near-atomic resolutions [3, 18, 38]. The core compu-
tational task is estimating a 3D structure from 2D images with unknown orientation and position,
under extremely low signal-to-noise conditions. Essential to their biological function, biomolecules
exhibit varying degrees of conformational flexibility, where structures deform non-rigidly, and com-
positional variation, where parts of a structure may be present in some images and absent in others
(see Fig. 1). Accordingly, a major challenge in cryo-EM is the estimation of 3D structures from
such heterogeneous data and, to that end, how to infer meaningful representations of structures such
as parts that capture their heterogeneity. The crux of this challenge is how to effectively represent
and regularize this variability without overfitting to the noise in cryo-EM images. Existing methods,
while encouraging, are generally limited in either expressiveness, interpretability, or efficiency.

Here, we propose CryoSPIRE, a new method for heterogeneous reconstruction. We leverage a
part-based Gaussian mixture model (GMM) of 3D density that enables CryoSPIRE to represent
both conformational and compositional heterogeneity, unlike some existing deformation-based
methods [ 13, 33]. Further, it provides a naturally interpretable and physically plausible, part-based
structure in contrast to existing latent variable methods based on linear density subspaces [10, 32] or
neural field models [19, 20, 47]. A key challenge with part-based GMMs concerns initialization and
the discovery of parts. We propose a novel method for part discovery which estimates a coarse-grained
GMM with per-Gaussian learnable features (c.f., [2]) and an MLP which defines Gaussian locations
and amplitudes. We show that these learned features naturally encode characteristics of structural
heterogeneity, which we leverage to infer a part-based segmentation of the structure. Inspired in
part by Scaffold-GS [21], we define CryoSPIRE (Scaffold Part-Aware Mixture of Gaussians), a
hierarchical model which estimates a Gaussian mixture wherein the composition of components
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Figure 1: (A) Based on a stack of noisy particle images, (B) CryoSPIRE learns a part-based Gaussian
mixture, with parameters ©, and a latent space representing structural heterogeneity. Given a latent
code z, a generator produces a 3D density map. (C) The model supports compositional variability (e.g.,
Go(z") with a missing part), and conformational flexibility (e.g., G (2(?)) with part deformation).

and their deformation are defined in terms of a set of anchors, corresponding to parts. The resulting
model naturally allows for the arbitrary combination of parts which can both rigidly move and locally
deform as a function of an input heterogeneity latent code (see Fig. 1).

To our knowledge, this is the first GMM-based model to be successfully benchmarked on Cry-
oBench [15], a standardized benchmark for cryo-EM heterogeneity with ground-truth labels. In
particular, CryoSPIRE outperforms widely used and state-of-the-art methods [10, 19, 32, 33, 47],
sometimes by a wide margin. Through ablations, we also validate key design choices, demonstrating
the benefits of Gaussian features over positional encoding as in DynaMight [40], and highlighting the
benefits of hierarchical motion modeling. Finally, on experimental data, CryoSPIRE automatically
discovers representations of 3D density maps that correspond to biologically meaningful parts.

To summarize our contributions: we propose a new method enabling part-discovery on 3D biomolec-
ular structures based on a coarse-grained GMM. This part-based structure is used to initialize a
novel, hierarchical GMM-based model for heterogeneous reconstruction with compositional and
conformational variability. The resulting framework, CryoSPIRE, establishes a new state-of-the-art
on quantitative benchmarks and qualitative experimental datasets.

2 Background and Related Work

Latent Variable Models. Heterogeneous cryo-EM reconstruction methods typically introduce latent
variables to represent structural variability of the 3D density map. 3DVA [32] and RECOVAR [10]
learn a linear subspace to represent variation in 3D density maps, with clever numerical and regular-
ization techniques to optimize high-dimensional basis maps at high spatial resolutions. Nevertheless,
to model large-scale continuous motion with a high dimensional subspace, memory requirements are
prohibitive. Much current work has shifted to nonlinear latent models and deep learning [14, 19, 47],

with Cryo-DRGN [47] and DRGN-AI [19] using auto-encoders to obtain latent codes and conditional
coordinate networks [24] to generate density maps. Such latent-variable models are hard to interpret,
however, as conformational and compositional heterogeneity are not decoupled, and they provide
no explicit model of motion between conformational states. By contrast, the latents in 3DFlex [33]
encode flow fields that model the conformational deformation of a canonical structure. While resolv-
ing detailed motion and improving the quality of density maps, 3DFlex cannot handle compositional
heterogeneity, and it is highly sensitive to regularization, often requiring substantial trial and error.

GMM-Based Methods. Gaussian mixtures have been used to model 3D density [4, 5, 6, 40]; they
provide a sparse, compact representation in which conformation and compositional variability are
modeled in terms of positions and amplitudes of Gaussian components. With Gaussian components
viewed as atomic primitives, such models also facilitate physics-based priors [6, 40] and subsequent
molecular model fitting. Nevertheless, existing GMM-based methods fall short in various ways.
E2GMM [4] and related methods [5, 6] generate GMM parameters with a single network, which
scales poorly to large numbers of Gaussians. Further, their multi-scale smoothness priors [0] are
based on an arbitrary hierarchy which fails to capture part-based structures, thus resorting to manual
part masks to resolve and estimate local motions. DynaMight [40] is similar to CryoSPIRE in defining
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an explicit motion model, but it is unable to handle compositional variations, and, as we show, its
positional encodings are inferior to our learnable features.

Gaussian Splatting. Beyond cryo-EM, the effectiveness of GMMs has been demonstrated in

3D Gaussian Splatting [16, 48], a technique which provides a fast approximation to the volume
rendering integral [8, 23], enabling efficient high-fidelity reconstruction of 3D scenes from multi-view
images [11, 17,22, 44, 45, 46]. 3D Gaussian Splatting represents scene appearance and structure

using thousands to millions of Gaussian components, each associated with parameters that control
opacity and view-dependent color. CryoSPIRE is in part inspired by Gaussian Splatting [2, 2 1], but
tailored to cryo-EM, with a different image formation model, images with signal-to-noise ratios less
than 5%, and a novel method for part discovery.

GMM Image Formation. Following [4, 5, 6, 40], we parameterize the terms of a Gaussian mixture
with center ¢ € R3, isotropic scale s € R, and an amplitude m € R:

_ 12
fp) =3 miexp (—'pc“) , ()

2
2s;3

for location p € R3. We transform the GMM into the observation space for the n-th particle image,
with a rotation R"™ € SO(3) and translation t(™) € R3, followed by an integral projection along
the z-axis of the microscope, to obtain a noise-free 2D image, I(p), [4]:

~ ~ R(n) ; t(n)z 2
1) = 3 VERsmexp <_"P R e+ 6], 1B o

2512
where p € R? and [],,,, is an operator to discard z coordinate of the input position. Cryo-EM images
are then convolved with microscope point spread function and corrupted by additive mean-zero
Gaussian noise, (™) = ¢(") « J(") 4 (") Like other cryo-EM models, the parameters are typically
optimized by minimizing a squared L2 reconstruction loss between model predictions and observed
images. See the supplement for more details on image formation and the image likelihood.

3 CryoSPIRE

Heterogeneous cryo-EM involves non-rigid 3D reconstruction from noisy 2D images. For such an
inverse problem, regularization and inductive bias are key. Local smoothness is a natural choice for
regularization, however, smoothness alone is not sufficient as nearby regions can deform in somewhat
independent ways [33]. Further, the presence or absence of biomolecule parts is not dictated by
spatial proximity alone. Macromolecular complexes, like many objects, naturally possess a part-based
structure that connects to their compositional and conformational variations. But a coherent 3D part-
decomposition is unavailable a priori, and estimating parts from noisy 2D observations is inherently
challenging. As a consequence, prior work resort to manually designed masks or meshes [25, 33].

Here, we propose a novel two-stage GMM-based framework. Given particle images with correspond-
ing poses {(I(™, R™ ¢(")}N_| ‘and a crude initial 3D structure, we first optimize a coarse-grained
GMM in which each Gaussian component is augmented with a learnable feature vector (c.f., [2]).
We observe that the learned features encode meaningful information about structural regularities. In
particular, Gaussian components that coherently deform or consistently appear or disappear receive
similar features, facilitating the inference of a part-based segmentation of the particle. Second,
based on the identified parts and inspired by Scaffold-GS [21], we define a part-aware Gaussian
mixture model in terms of a set of anchors, one per part, each with a corresponding set of Gaussians.
Optimizing this representation recovers a high-resolution representation of 3D density maps with
compositional and conformational variability. In what follows, we describe the part-based hierarchical
model, (Fig. 2B-D), followed by the part discovery method and initialization scheme (Fig. 2A).

3.1 Part-Aware Gaussian Mixture

We first specify the form of the part-aware latent-conditioned mixture model; Table 1 provides a
summary of the notation used. The model is conditioned on a latent coordinate z € 3 C RP for each
image, which specifies the state of the macromolecule. The density model itself comprises a set of
anchors, each associated with a meaningful part of the macromolecule (Fig. 2B). We parameterize the
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Figure 2: Overview of CryoSPIRE. (A) To infer parts, we optimize a coarse GMM with neural
networks that generate Gaussian amplitudes and centers, conditioned on image latent codes and
Gaussian features. (B) Clustering on learned Gaussian features provides meaningful parts. The
CryoSPIRE model comprises one anchor and a set of Gaussians per part. (C) MLPs generate the
rigid-body motion of each anchor (top), per-Gaussian displacements relative to the anchor frames
(middle), and per-Gaussian activations in (0,1) to represent occupancy (bottom). (D) A reconstruction
loss compares observed images to 2D projection of the corresponding 3D GMM. Priors encourage
bounded latent code and small feature offsets.

Gaussians Anchors Particles
) Gaussian index a Anchor index n Particle index
C; Gaussian center a; Anchor index of ¢-th Gaussian [ (n) Observed image
m; Gaussian amplitude c Anchor center Im Estimated projection
S; Gaussian scale f. Anchor feature 2™ Particle latent code
Ac;  Gaussian center offset R, Anchor rotation R™ Particle rotation
Af, Gaussian feature offset £ Anchor translation t(™ Particle translation

i Gaussian translation

Table 1: Summary of notations used to denote variables related to Gaussians, anchors or particles.

anchors as, 4 = {(¢,, f )}/, where &, € R3 specifies the anchor center location in a canonical
frame, and f, € § C R¥ is an associated feature vector that encodes heterogeneity information of its
corresponding part. The GMM has G Gaussian components associated with anchors (Fig. 2B, left),
denoted by G = {(f;, ci,si,mi,a;)}5, where f, € §and a; € {1,..., A} specifies the anchor
associated with the Gaussian that is set by the part discovery method below.

We parameterize the position and feature embedding of the ¢-th Gaussian relative to its associated

anchor a; as -
Ci:Eai+Acia fi:'fai+Afi7 (3)

where Ac; € R? and Af, € RE are learnable offsets. We initially set A f;, = 0 so all Gaussians are
initialized with the features of their corresponding anchors.

To enable conformational variability, we parameterize deformations at two levels. First, the large-
scale motion of each anchor frame is parameterized as a rigid body transformation (Fig. 2C, top).

Given the latent code for n-th particle image, z(™ € 3, and the anchor feature vector f we
compute the rotated and translated center of the i-th Gaussian, cl(. ), as
& = R Ac; + (€q, + ), where RY &™) = MLPA([F,,z™;W4), @)

where [-, -] denotes concatenation, and the MLP with weights T/ returns a rotation Rfl:L) € S0(3)

and translation vector tfﬁ) € R3. To capture fine-scale flexibility, additional shifts are applied to

individual Gaussians (Fig. 2C, middle), i.e.,
=g e " = MLPY([f;, 2 W) 5)

¢
Here, the network MLPg, with separate weights W, generates individual Gaussian displacements,
"
(]

where tl(.

€ R3, which are smooth as Gaussians associated with the same anchor will have similar features.
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Finally, to account for compositional variability, where regions of a density map may be missing, we
modulate Gaussian amplitudes (Fig. 2C, bottom), as

mz(-n) =m; X 01(”) ,  where UZ(”) = MLPY ([f;, z™]; W9) . 6)

Here, MLP?R is an MLLP with a sigmoid output activation to restrict the modulation to (0, 1). Values
close to 0 and 1, respectively, correspond to inactive (absent) and active (present) Gaussians. Con-
sidering both modifications to centers and amplitudes, we obtain a modulated set of 3D Gaussians

for n-th particle image, G(™) = {(cl(,”)7 Si, m§">)}. Gaussian scales remain the same as they control
local resolution, a factor independent of structural variability.

We jointly optimize the parameters © (which includes Gaussian and anchor parameters and MLP
weights), and the per-image latent coordinates, Z = {2(™}, by minimizing the objective (Fig. 2D)

N G
1 N
L©,2) = 5 DL (1™ 0M) + X 1= + A YL ™
n=1

i=1

where the reconstruction loss, £, is proportional to the negative image log-likelihood (i.e., the squared
error between 1™ and ¢(™ I™ where g™ is the microscope point spread function and Im
is the 2D projection of G(™ from Eq. 2). The second term imposes a zero-mean Gaussian prior
over the per-image latent codes, ensuring latent coordinates remain bounded [26, 33], while the
third term regularizes Gaussians to remain close to the anchor in the feature space. A, and Ay are
hyperparameters that control the relative strength of these priors.

3.2 Part Discovery for Model Initialization

The part discovery process is illustrated in Fig. 2A. We optimize a coarse-grained model without
anchors and with fewer Gaussians, similarly parameterized as G = {(f,,ci,s:,m;)}&,. Here,
the Gaussian features, f,, are directly learnable parameters (and randomly initialized). We use
MLPg (Eq. 5), to shift Gaussian centers and MLP%1 (Eq. 6) to modulate Gaussian amplitudes. The
parameters are estimated using the L2 reconstruction loss and the latent prior, similar to the objective
in Eq. 7. Once optimized, we find that the feature space naturally groups Gaussians into 3D parts
that undergo consistent motion or appear and disappear together. Remarkably, this property emerges
without any direct supervision on features.

To obtain parts, we apply clustering on the Gaussian features, thereby finding regions with reasonably
consistent motion and presence. We then further divide these clusters by clustering in 3D space to
ensure large parts are well-covered with anchors. For clustering we simply use k-means++ [1]. We
use the position and feature vector of the Gaussian closest to the centroid of the cluster to initialize
the anchor set, A = {(&,, f, )} ,. From the coarse-grained model, we also compute an improved
density map which is used to seed the Gaussians of the part-aware model. This provides a more
robust initialization, especially in the presence of large-scale motion which can lead to blurred or
over-dispersed density. Lastly, the coarse-grained model provides a preliminary estimate of the image
latent codes, which are used to initialize latent codes in the part-aware model.

Remark. Methods for 4D scene reconstruction [27, 31], and DynaMight [40] in cryo-EM, often
use neural networks to output deformations or motion. However, they condition on positional
encodings of input coordinates instead of learnable features. Such fixed conditioning strongly biases
deformations to be spatially smooth, whereas our approach with learnable feature space enables a
more flexible form of piecewise smoothness, allowing nearby parts to move quite differently. Through
an ablation study, we show that positional encodings quantitatively underperform as well.

4 Experimental Setup

We quantitatively compare CryoSPIRE with the state-of-the-art methods, namely, RECOVAR [10],
CryoDRGN [47], DRGN-AI [19], 3DFlex [33] and 3DVA [32] using the CryoBench benchmark [15].
We also provide qualitative results on experimental datasets.

CryoBench. The sole benchmark for cryo-EM heterogeneity is CryoBench [15], a set of synthetic
datasets with ground-truth labels and a protocol for quantitative evaluation. Two datasets, IgG-1D
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Method | IgG-1D | IgG-RL I Ribosembly
| Mean(std) | Med | Mean(std) | Med | Mean(std) | Med
3D Classification [39] 0.297 (0.019) | 0.291 0.309 (0.01) 0.307 | 0.289 (0.081) | 0.288

CryoDRGN [47] 0.366 (0.003) | 0.366 | 0.349 (0.008) | 0.348 | 0.415(0.019) | 0.415
CryoDRGN-AI-fixed [19] | 0.366 (0.001) | 0.366 | 0.355(0.007) | 0.354 | 0.372(0.032) | 0.374
3DFlex [33] 0.336 (0.002) | 0.336 | 0.339(0.007) | 0.339 - -
3DVA [32] 0.351 (0.003) | 0.351 | 0.341 (0.006) | 0.341 | 0.375(0.038) | 0.372
RECOVAR [10] 0.391 (0.001) | 0.391 | 0.372(0.008) | 0.371 | 0.430 (0.016) | 0.432
CryoSPIRE (ours) 0.402 (0.002) | 0.402 | 0.386 (0.014) | 0.389 | 0.427 (0.014) | 0.424

Table 2: Mean (standard deviation) and median of AUC of Per-Conformation FSCs on CryoBench
datasets [15]. Statistics computed across different structural states, i.e. 100 for IgG-1D and IgG-RL
and 16 for Ribosembly (Best method in bold, second best underlined).

and IgG-RL, are based on the human immunoglobulin G (IgG) complex, simulating conformational
changes by rotating the dihedral angle between the Fab domain and the IgG core (see Fig. 4D),
generating 100 distinct conformations, each with 1,000 particle images. Ribosembly simulates
compositional heterogeneity by successively adding protein subunits and ribosomal RNA, resulting
in 16 discrete structural states [35]. It has 335,240 particle images, with non-uniform distribution
over the 16 compositional states. All particle images have 128 x 128 pixels, and are simulated with
realistic point spread functions and a signal-to-noise ratio (SNR) of 0.01.

Experimental Datasets. We also evaluate on two real datasets: EMPIAR-10076 is a dataset
comprising assemblies of intermediates of the Escherichia coli large ribosomal subunit (LSU) [7],
with 131,899 particle images (320 x 320 pixels, with pixel size 1.31 A). In the original study,
four major assembly states were identified [7], with a subset of particles labeled as unassigned
(non-ribosomal impurities) or 30S subunits. We also consider EMPIAR-10180, a conformationally
heterogeneous dataset of Pre-Catalytic Spliceosome [30]. A total of 327,490 particle images were
collected (320 x 320 pixels, with pixel size 1.69 A). Consistent with other heterogeneity methods
considering this dataset [10, 47] we perform analysis on a filtered subset of 139,722 images.

Implementation Details. For part discovery, we seed G = 2,048 components using the rigid
reconstruction and adopt lightweight MLPs with a single hidden layer of H =32 units. The latent
space, 3, has dimensionality D=4 and the feature space, §, has dimensionality £ =24. We optimize
the part discovery model for 15 and 50 epochs on synthetic and experimental datasets. The part-aware
GMMs are optimized for 30 epochs, using G=28,192 components, except for Ribosome synthetic and
experimental datasets with G=16,384, and have MLPs with three hidden layers and H =128 hidden
units. On experimental datasets, we perform part discovery on downsampled 128 x 128 images for
efficiency, while the part-aware GMM is optimized on 256 x 256 images. We use batch size B =64
and set hyperparameters A\, = 0.1, Ay = 0.01. The optimization runs on a single NVIDIA GeForce
RTX 2080, taking 3 to 6 hours depending on the number of Gaussians in the model.

Evaluation Metrics. The quality of cryo-EM density maps are evaluated using Fourier Shell Corre-
lation (FSC) [43], which is the normalized cross-correlation between two independently estimated
density maps, as a function of frequency. Metrics for heterogeneity are less standardized, but the most
common is Per-Conformation FSC (or Per-Conf FSC) [15], proposed by CryoBench [ 5]. Per-Conf
FSC is the average FSC between the ground-truth 3D structure of a particle state, and the 3D structure
corresponding to the average latent position of images associated with that state. The Per-Conf
FSC requires knowledge of ground-truth 3D structures for each image which is not available for
experimental data and we instead rely on qualitative evaluation of the estimated parts and structures.
FSC results in a curve which can be summarized by computing the area under the curve (AUC) to
more easily compare methods. See the supplement for more details on metrics.

5 Results

Quantitative comparison on the three relevant CryoBench [15] datasets are provided in Table 2 and
Fig. 3. Note that CryoSPIRE outperforms 3DVA and 3DFlex which are among the most widely
used methods in cryo-EM at present. As 3DFlex cannot handle compositional changes, it was not
evaluated on Ribosembly. CryoSPIRE outperforms non-linear latent variable models, Cryo-DRGN
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Figure 3: Per-Conformation FSC on CryoBench datasets. Error bars indicate standard deviation
across different conformations. The highest possible resolution is 6 A on these synthetic datasets.
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Figure 4: Results on IgG-1D [15]. (A) Due to large motion, the Fab domain (circled) is smeared out
in rigid reconstruction, while our part discovery model identifies this domain and resolves its structure
and motion, providing good initialization for subsequent modeling. (B) For a sample structure, the
histogram of amplitude modulations indicate active and inactive Gaussians. (C) Gaussian feature
space, §, shows two distinct groups (green, orange), corresponding to the flexible Fab and the rigid
core; feature clustering finds these groups and divides further based on spatial proximity, yielding 5
parts. (D) Configuration of 3D Gaussians after Level-1 and Level-2 clustering. (E) The latent space, 3,
captures conformation change (colored based on ground truth Fab orientation). (F) Sample structures
from model corresponding to four latent points, showing rotation of the Fab domain (green).

and DRGN-ALI, especially on IgG-1D and IgG-RL by a large margin. The most competitive method
is the linear subspace model of RECOVAR, which, as reported, is memory intensive due to allocation
of several bases and is not as interpretable without motion modeling. While CryoSPIRE significantly
outperforms RECOVAR on IgG datasets, its performance on Ribosembly, where linear subspace
models are more favorable by design, is not statistically different from RECOVAR. Relative to the
nominal FSC threshold of 0.5 for comparison to ground truth [36], the FSC curves in Fig. 3 indicate
that CryoSPIRE finds higher resolution density maps. Finally, we note that CryoSPIRE is the first
GMM-based method to be successfully evaluated on CryoBench.

IgG-1D & IgG-RL (CryoBench [15]). The flexible Fab domain (circled in Fig. 4A, top) in the
rigid reconstruction, used as input for part discovery, is poorly resolved. However, the part discovery
model learns to selectively deactivate incoherent parts, as shown in the histogram of the modulation

factors ogn) in Fig.4B. This enables a more robust initialization (Fig. 4A, bottom) of the hierarchical
GMM. The Gaussian feature space, §, shows two clusters corresponding to the flexible Fab domain
from the rigid core (Fig. 4C for IgG-1D and Fig. 5B for IgG-RL). Spatial clustering produces a total

of five and six anchors for IgG-1D and IgG-RL, respectively. The latent heterogeneity space, 3,
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Figure 5: Results on IgG-RL [15]. (A) The feature space, §, shows two parts (green and orange)
corresponding to the flexible Fab domain and the rigid core. Subsequent spatial clustering yields six
parts. (B) The latent space, 3, is colored with Fab orientation along with four sampled latent points
that capture rotation of the Fab domain (comprising three parts). The motion of the Fab domain in
IgG-RL is not as regular as that in I[gG-1D, as reflected in the latent space. (C) The corresponding
density maps are provided with parts illustrated in different colors.
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Figure 6: Results on Ribosembly [15] (A) Gaussian feature space, §, showing eight major parts
identified through clustering. (B) Heterogeneity latent space, 3, colored coded with the ground-truth
compositional state. (C) Visualizations of 3D density maps corresponding to seven points in latent
space, with colors depicting parts (given in parentheses).

indicates a circular manifold of dihedral angles for IgG-1D, see Fig. 4D. Four structures from the
latent space in both datasets demonstrate that the Fab domain, covered by a few parts, undergo a
large, predominantly rigid motion, while the rest of the complex remains fixed.

Ribosembly (CryoBench [15]). After part discovery, we obtain eight parts (see Fig. 6A) that are
used to initialize eight anchors in the part-aware GMM. In Fig. 6B the learned latent space, 3, clearly
distinguishes between the different compositional states. For seven selected states, we visualize the
estimated structure (Fig. 6C), colored based on the discovered parts.

Large Ribosomal Subunit (EMPIAR-10076 [7]). We find four major assembly states in the part
discovery latent space (labeled as (I, II, V, VI) in Fig. 7A, left), which match classes (C, E, B, D)
in the original study [7], with unassigned particles and 30S contaminants grouped in states III and
IV, which are excluded when optimizing hierarchical model (See supplement for more details). The
Gaussian feature space, §, (Fig. 7B) shows four distinct parts which also align with previously
reported structural blocks in the original study (cf. [7], Fig. 6). By analyzing the heterogeneity latent
space, 3, of the part-aware model (Fig. 7A, right), we show that the major states can be further
divided into subpopulations; e.g., the major state I is represented with minor states (1, 2) and the
major state II has branched into minor states (3, 4, 5). The associated structures, shown in Fig. 7E,
are consistent with minor states reported in the original study [7].
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Figure 7: Results on Large Ribosomal Subunit (EMPIAR-10076 [7]). (A) The learned heterogenity
latent spaces, 3, in part discovery (left) identifies the four major assembly states (I, II, V, VI) and two
groups of impurities (III, IV). After fitting the part-aware model, the major states, with impurities
excluded, can be further categorized (right) into eight color-coded minor structural states. (B) The
part discovery Gaussian feature space, §, reveals four parts which are used to construct the part-aware
model. (C) The structures corresponding to different states, colored by inferred part.
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Figure 8: Results on Pre-Catalytic Spliceosome (EMPIAR-10180 [30]). (A) PCA of the latent space,
3, is used to generate two structural trajectories. (B) The Gaussian feature space, §, shows four parts
which correspond to known helicase, SF3b, body and foot domains as shown in 3D visualization of
Gaussian components configuration. (C) Three states along each trajectory. In both trajectories, body
is rigid while SF3b and helicase show large-scale motion.

Pre-Catalytic Spliceosome (EMPIAR-10180 [30]). The feature space, §, of the part discovery
model (Fig. 8B), shows four distinct clusters, which correspond to coherent structural regions —
foot, body, helicase, and SF3b — consistent with the original study [30]. Accordingly, we optimize
the part-aware model with four anchors. To illustrate structural variability, we run PCA on the
heterogeneity latent space, 3, and extract two principal directions illustrated in Fig. 8A. Top views
of density maps along the two principal directions (Fig. 8C) show two modes of conformational
heterogeneity. The first direction reflects a forward—backward rotation of the SF3b and helicase
regions. The second direction captures a side-to-side rotation of SF3b, and a diagonal shift of the
helicase. Please see the supplement for more visualization on conformational changes.
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Figure 9: Estimated motion of Gaussians for
Table 3: Mean AUC-FSCs reported on datasets from 30 states of IgG-1D. The baselines fail to cap-

CryoBench [15] for ablation study. ture local rigidity.

5.1 Ablation Study

Here, we ablate key design decisions in our framework. To demonstrate the importance of anchor-
based motion modeling in CryoSPIRE, we consider a baseline without anchors that uses an MLP
to directly learn deformations of individual Gaussians. Quantitative comparison on IgG-1D and
IgG-RL, as in Table 3, shows that the lack of anchor based motion leads to inferior results. This is
less critical for Ribosembly with minor conformational changes. We also compare with a model
that over-segments the structure by using K = 64 anchors, which achieves worse performance. In
Fig. 9, we visualize the estimated motion of Gaussians on the IgG-1D dataset. Both baselines fail
to capture the locally rigid and smooth motion. Finally, we consider a baseline where the Gaussian
feature space is replaced with a positional encoding, similar to previous methods, e.g., [40]. This
baseline is unable to identify meaningful parts and achieves inferior quantitative performance.

6 Conclusion

We present CryoSPIRE, a hierarchical cryo-EM density model to capture conformational and compo-
sitional heterogeneity in the 3D structure of biomolecules from 2D images. This includes a novel
method for part discovery and a hierarchical Gaussian mixture model for which the parts provide
meaningful inductive biases to regularize model fitting. CryoSPIRE establishes a new state-of-the-art
on the CryoBench heterogeneous benchmark, and produces meaningful parts on experimental data.

While CryoSPIRE shows promising results, limitations exist. First, validation of estimated structures
and variability from heterogeneous experimental data remains an open problem for all methods,
including CryoSPIRE. Second, interpreting the inferred latent space remains challenging, specifically
how it may relate to the biophysical energy landscape of molecular states. Third, learning per-
Gaussian features is a key design choice in cryoSPIRE, as it provides the inductive bias that drives
features to encode local structural heterogeneity. To that end, we have only used very simple
algorithms like k-means++, which requires manual selection of the number of clusters (parts). Further
research will be useful to find more effective forms of clustering, perhaps incorporating principled
biophysics criteria like free energy. Finally, like other methods, we presume an initial estimate of the
structure and image poses; inaccuracies in these may limit CryoSPIRE’s efficacy. A fully ab initio
method for heterogeneous data remains an open problem.

Broader Impact

Cryo-electron microscopy (cryo-EM) has emerged as a revolutionary technique in structural biology,
enabling the determination of macromolecular structures with significant societal impact. Computa-
tional methods, grounded in machine learning and computer vision have now been used to determine
many thousands of biological structures. Notably, cryo-EM played a pivotal role in elucidating the
structure of the SARS-CoV-2 spike protein, revealing its pre-fusion conformation and aiding in the
assessment of medical countermeasures. Complementing computational methods such as AlphaFold
for protein structure prediction, cryo-EM has revolutionized our understanding of cellular processes
and accelerated the development of novel therapeutics, including synthetic antibodies. Nevertheless,
we strongly condemn any usage of our proposed hierarchical 3D GMM representation for generating
malicious data, improperly modifying signals, or spreading misinformation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state the claims in the abstract, summarize them in a list at the end
of introduction section, and provide empirical evidence in the results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in the conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We provide no theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In a subsection called implementation details, we included all details needed
to reproduce the results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The datasets are publicly available and we promise to release the code in
future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simxply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the necessary information in the experimental setup section.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide various statistics of the quantitative metrics.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mentioned the GPU resources used to run the proposed method.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts in the supplement.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention the benchmark CryoBench throughout which the comparison with
other methods is provided.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We don’t release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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