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Abstract

Training deep convolution neural network requires a large amount of data to obtain good
performance and generalisable results. Transfer learning approaches from datasets such
as ImageNet had become important in increasing accuracy and lowering training samples
required. However, as of now, there has not been a popular dataset for training 3D vol-
umetric medical images. This is mainly due to the time and expert knowledge required
to accurately annotate medical images. In this study, we present a method in extracting
labels from DICOM metadata that information on the appearance of the scans to train a
medical domain 3D convolution neural network. The labels include imaging modalities and
sequences, patient orientation and view, presence of contrast agent, scan target and cover-
age, and slice spacing. We applied our method and extracted labels from a large amount of
cancer imaging dataset from TCIA to train a medical domain 3D deep convolution neural
network. We evaluated the effectiveness of using our proposed network in transfer learning
a liver segmentation task and found that our network achieved superior segmentation per-
formance (DICE=90.0%) compared to training from scratch (DICE=41.8%). Our proposed
network shows promising results to be used as a backbone network for transfer learning to
another task. Our approach along with the utilising our network, can potentially be used
to extract features from large-scale unlabelled DICOM datasets.
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1. Introduction

With the abundance of medical images routinely taken at hospitals, imaging-based machine
learning approaches had become a centre of development in diagnostic radiology. Methods
based on deep learning had promising results in many areas of diagnostic radiology such
as tumour segmentation and classification (Gonzalez et al., 2018; Song et al., 2018; Nielsen
et al., 2018). Despite successes, performances of neural networks in the medical domain are
often limited by small development set. To alleviate the problem, transfer learning from
pre-existing datasets were used to improve performance. Transfer learning is the process of
taking existing pre-trained network architecture designed for an existing dataset (typically
over a million) and then fine-tuned against on data for another task. The current most pop-
ular dataset used for transfer learning is ImageNet, which consists of over 14 million natural
images with 20 thousand classes (Russakovsky et al., 2014). Popular ImageNet architec-
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tures such as ResNet, Inception and DenseNet had had success in medical imaging task,
particular in radiographs and ophthalmological images such as a retina scan (Rajpurkar
et al., 2017; Gulshan et al., 2016). However, since most diagnostic imagery consists of 3D
volumetric images, transfer learning from the natural domain are not feasible. Since 3D
networks architecture generally is more prone to over-fitting due to having more parameters,
this had often lead to some studies to treat each 2D slices of a 3D volume independently to
leverage transfer learning, hence discarding the potential useful structural information.
Despite many radiological imaging datasets are available in the public domain from channels
such as CodaLab (https://competitions.codalab.org) and The Cancer Imaging Archive
(TCIA) (Clark et al., 2013), there has not been a large-scale 3D dataset that is available
to use for training a network similar to ImageNet. One primary reason is that medical
images are inherently more complex than natural images, and would require a significant
amount of time and specialised medical knowledge to annotate. The recent effort by Chen
et al. (2019) had developed a general multi-domain network (MED3D) based on publicly
available volumetric segmentation datasets had shown superior performance in several or-
gan segmentation tasks compared to training from scratch, further emphasises the need for
a large-scale dataset. One limiting factor of MED3D is that it requires segmentation anno-
tations which could be impractical on a large scale due to the time needed for annotating
volumetric images. An alternative method is needed to build such network and dataset for
transfer learning in the medical domain.
One potential avenue to explore is the use of digital imaging and communications in medicine
metadata (DICOM). DICOM is the standardised format for storing and transferring medi-
cal images in clinics. Along with the imagery, DICOM metadata stores patient information
and acquisition parameters of the scan. For example, information on the type of imaging
modality, types of MRI sequences used, patient position during the scan, and the use of
contrast agent could potentially provide enough distinct features to describe the appearance
of the images for a neural network to learn. In this study, we explore whether we can au-
tomatically or semi-automatically extract labels from DICOM metadata of a large amount
of DICOM images from publicly available datasets to train a general medical domain con-
volution neural network.

The main contributions of this study are as follows1:

• We acquired and semi-automatically labelled a large public MRI and CT dataset
available from TCIA by using the information provided in the DICOM headers.

• We trained a 3D convolution neural network on a large amount of volumetric radio-
logical scans to classify modality, imaging sequence, view, presence of contrast agent,
and the coverage of the body part.

• We demonstrated the effectiveness of using our proposed network for transfer learn-
ing of a liver segmentation task. We found a high performance gained compared to
training a 3D convolution neural network from scratch.

1. To facilitate future development and application of our network and data. Source code, dataset and
labels will be made publicly at https://github.com/du1388/3d-radnet
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2. Methodology

This study aims to develop and train a general medical domain network from a large amount
of 3D volumetric data that could be used for transfer learning to other medical imaging
tasks. To achieve this, we acquired and analysed a large collection of cancer imaging data
from the TCIA database to extract useful labels to train a convolution neural network called
the 3D-RADNet. We then tested the effectiveness of the network in transfer learning by
using the network as an encoder for segmentation of the liver.

2.1. Data Acquisition and Label Extraction

TCIA is an online database that hosts a large number of medical images of cancer. All
images are in DICOM format and organised into different collections based on the type
of diseases. For this study, we downloaded all collections that contain MRI and CT scans
and can be redistributed under the creative commons attribution 3.0 unsupported license
(https://creativecommons.org/licenses/by/3.0/. A list of all the TCIA collections
acquired for this study are given in Appendix A Tables A1 and A2. Once all the scans were
acquired, we extracted all the standardised DICOM metadata from all scan series in the
collections for analysis.

2.1.1. MRI Sequences

The appearance of an MRI image is dependent on the MRI sequences used for the acqui-
sition. Commonly used diagnostic sequences can be classified into three types: spin-echo
(SE), inversion recovery (IR) and gradient-echo (GR). This is specified in the DICOM
attributes Scanning Sequence (0018,0020) under the same classification. Two main SE se-
quences, T1-weighted (T1 - SE) and T2-weighted (T2 - SE) are commonly used in diagnostic
scans. The differences between weighing can be determined by the attributes Repetition time
(0018,0080) and Echo time (0018,0081), where a T1-weighted scan have a short repetition
time (TS) and short echo time (TE), and vice versa. For IR sequences, fluid-attenuated
inversion recovery (FLAIR) and short tau inversion recovery (STIR) are most commonly
used. The weighting of IR sequences can be determined by the TE time of the sequence. In
addition to scanning sequence and TS/TE times, series (0008,103E) and study description
(0008,1030) can also be used to identify types of sequences. However the descriptions are
not standardised and can vary greatly depending on the convention used by the imaging
centre and vendor. Due to a high amount of different variants and different name con-
ventions of GR sequences, it is difficult to group the sequences accordingly. Therefore We
decided not to use GR in our analysis. Other types of functional imaging sequences such as
functional MRI, magnetic resonance angiography, diffusion and perfusion-weighted imaging
was also excluded in our study due to vast differences in appearances. Time-series images
such as dynamic-contrast were also excluded to avoid biases as there will be a high amount
of the same scan present in training.

2.1.2. Scan view

The anatomically plane in which the scan was taken can be identified by the attributes
Patient Image Position (0020,0032) and Patient Image Orientation (0020,0037). Patient
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image position specifies the (x,y,z) coordinates of the upper left-hand corner of the image,
whereas image orientation describes the direction cosine of the first row and the first column
with respect to the patient. For most standard patient orientation of scans,a image orien-
tation of [1,0,0,0,1,0], [1,0,0,0,0,-1], [0,1,0,0,0,-1] corresponds to axial, coronal and sagittal
view respectively. For non-standard orientations, the view can be determined by Patient
position (0018,5100) attributes. However, the occurrence of a non-standard view is rare.
Hence we excluded all the cases from our analysis.

2.1.3. Contrast agent

The presence of a contrast agent in MRI and CT imaging can significantly affect the appear-
ance of the image. The use of contrast agent are recorded in the attributes Contrast/Bolus
Agent (0018,0010).

2.1.4. Scan coverage label

The scan coverage of the body was explored to provide structural information of the image
to the network. As scans protocols are often standardised in practice, extracting the target
and coverage of the scan can systematically be obtained by comparing the study and series
description, type of cancer given by TCIA and size of the scan. The label scheme for the
coverage is shown in Figure 1. For each body parts/organs, the scan must cover the entirety
of the target to be considered. For upper head and neck, it must include the sphenoid sinus,
nasopharynx and oropharynx. Lower head and neck, it must cover from the larynx to apex
of the lung.

2.1.5. Image Processing

All scans with less than 16 slices were excluded from the study to ensure there are sufficient
slices for the network. To address heterogeneous voxels sizes and slice spacing across the
scans, all scans were linearly resized to 48x192x192, which is the input size of the network.
For scans with less than 48 slices, the scans were centred and filled with blank slices up
to 48 slices. The effective slice spacing after resizing was recorded, and all resized scans
with spacing higher than 1.5cm were excluded. All scans were then normalised by min-max
normalisation and discretised to 256 grey levels.

2.2. 3D-RADNet Network

The proposed 3D-RADNet takes an input image of 48x192x192 and outputs five outputs
classifying the image modality/sequences, view, contrast, scan coverage and slice spacing.
For the network architecture, we adapted a ResNet50 structure to take 3D inputs (He
et al., 2015). The network then connected to a fully connected layer of 1000 neurons
and then branches into five separate layers corresponding to each of the outputs. For
modality/sequence, view and contrast, softmax activation was used. Sigmoid activations
were used of the scan coverage layer, and linear activation was used for slice spacing. The
parameters of the network were optimised using cross-entropy loss and root-mean-squared
with by ADAM optimiser.
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