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Abstract
Personalized alignments for individual users001
have been a long-standing goal in large lan-002
guage models (LLMs). We introduce Drift,003
a novel framework that personalizes LLMs at004
decoding time with implicit user preferences.005
Traditional Reinforcement Learning from Hu-006
man Feedback (RLHF) requires thousands of007
annotated examples and expensive gradient up-008
dates. In contrast, Drift personalizes LLMs in009
a training-free manner, using only a few dozen010
examples to steer a frozen model through effi-011
cient preference modeling. Our approach mod-012
els user preferences as a composition of prede-013
fined, interpretable attributes and aligns them014
at decoding time to enable personalized gen-015
eration. Experiments on both a synthetic per-016
sona dataset (Perspective) and a real human-017
annotated dataset (PRISM) demonstrate that018
Drift significantly outperforms RLHF baselines019
while using only 50–100 examples. Our results020
and analysis show that Drift is both computa-021
tionally efficient and interpretable.022

1 Introduction023

Large language models (LLMs) have rapidly be-024

come integral to a wide range of applications,025

driven by advances in Reinforcement Learning from026

Human Feedback (RLHF) (Ziegler et al., 2020;027

Rafailov et al., 2024). Traditionally, RLHF aligns028

LLMs with general preferences by leveraging029

large-scale annotations from diverse users. Build-030

ing on these successes, an important question nat-031

urally arises: Can we align LLMs with individual032

users’ personal preferences?033

LLM personalization, however, presents several034

challenges. First, collecting extensive, user-specific035

annotations is prohibitively expensive and imprac-036

tical. Second, training and maintaining separate037

LLMs per user is computationally infeasible, which038

motivates the need for a training-free approach.039

Third, while user-specific system prompts have040

been proposed as an alternative (Hwang et al., 2023;041
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Figure 1: Few-shot preference modeling for user1008
in the PRISM dataset. Traditional reward models fail
to generalize with scarce data, whereas Drift achieves
strong prediction with only 50 examples.

Lee et al., 2024), most users struggle to explicitly 042

articulate their complex preferences (Nisbett and 043

Wilson, 1977; Pronin et al., 2001). This often leads 044

to misalignment between stated and actual implicit 045

preferences. 046

To address these challenges, we propose Drift, an 047

algorithm for few-shot personalization of LLMs that 048

requires no gradient updates. Our key contributions 049

are as follows: 050

Drift Approximation: We first decompose complex 051

personal preferences into a composition of simpler 052

and predefined attributes (e.g., “emotional,” “con- 053

cise,” “technical”). In this process, we theoreti- 054

cally demonstrate how to convert the RLHF objec- 055

tive (Rafailov et al., 2024) into a Drift optimization 056

problem, enabling efficient preference modeling 057

with minimal data. 058

Zero-shot Rewarding: We leverage a differential 059

prompting approach to reward various attributes 060

in a zero-shot manner. Specifically, we modify a 061

base system prompt with attribute cues and com- 062

pute the difference in log likelihood between the 063

modified and base prompts. This differential signal 064

acts as a surrogate reward, eliminating the need for 065

specialized datasets or attribute-specific training. 066
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Drift Decoding: Finally, using the composite pref-067

erences obtained via Drift Approximation, we de-068

rive a principled method to steer the decoding pro-069

cess of a frozen LLM. We prove that by integrating070

weighted, attribute-specific rewards into the logit071

space, we can achieve personalized generation with-072

out any model updates or gradient computations.073

We evaluate Drift on two fronts: (i) efficient few-074

shot preference modeling and (ii) personalized gen-075

eration. As shown in Figure 1, unlike traditional076

reward models, Drift reaches a test-set accuracy077

of 70% with only 50 examples and even outper-078

forms a reward model trained on 500 examples. By079

aligning this effective preference model at decoding-080

time, Drift consistently produces outputs that better081

reflect individual users’ implicit preferences. Ex-082

tensive analysis and discussion further validate the083

robustness and practical benefits of Drift.084

Contributions. 1) We propose the first few-shot085

implicit personalization and training-free algorithm086

for LLMs that decomposes implicit preferences087

into diverse, interpretable attributes and aligns their088

composition at decoding-time. 2) We introduce the089

differential prompting technique to capture numer-090

ous aspects of personal preferences, demonstrating091

strong empirical results without the need for dedi-092

cated dataset construction. 3) We empirically show093

that Drift achieves robust few-shot preference mod-094

eling and personalized generation on both synthetic095

and real-world datasets, providing significant prac-096

tical benefits with extensive analysis.097

2 Preliminaries098

Before describing Drift in detail, we review the099

standard RLHF pipeline and recent decoding-time100

alignment methods that motivate our approach.101

2.1 RLHF102

RLHF aims to align a base model πbase with hu-103

man preferences by transforming human feedback104

into a reward function. The typical RLHF pipeline105

comprises three main steps: (1) Preference data106

collection, (2) Preference modeling, and (3) RL107

training.108

Preference data collection. Given a prompt109

x, πbase generates responses (y1, y2, . . . , yt) ∼110

πbase(· | x). Human annotators then evaluate these111

responses by expressing pairwise preferences, de-112

noted as yw ≻ yl | x, where yw is the preferred113

response and yl is the less preferred one. These114

annotated pairs form the dataset D.115

Preference Modeling. The preference model 116

(also referred to as the reward model) r(x, y) is 117

trained to capture human preferences. This is typ- 118

ically achieved using a Bradley-Terry loss func- 119

tion (Bradley and Terry, 1952): 120

max
r

E(x,yw,yl)∼D
[
log σ

(
r(x, yw)− r(x, yl)

)]
, 121

where σ represents the logistic function. Through 122

this training process, r(x, y) learns to quantify the 123

human preferences encoded in D. 124

KL-Regularized RL. To align the base model 125

πbase with human preferences, the objective is to 126

maximize the reward while minimizing the KL di- 127

vergenceDKL from the base model (Schulman et al., 128

2017), as follows: 129

max
πθ

Ey∼πθ(y|x)
[
r(x, y)− βDKL

(
πθ∥πbase

)]
, 130

where β controls the deviation (β > 0). 131

2.2 Decoding from RLHF Objective 132

RL Closed-Form Solution. The KL-regularized 133

RL problem has a closed-form solution (Korbak 134

et al., 2022): 135

π∗(y | x) = 1

Z(x)
πbase(y | x) exp

(
1

β
r(x, y)

)
, (1) 136

where, Z(x) =
∑

y πbase(y | x) exp
(

1
β r(x, y)

)
137

is the partition function (Proof in Appendix A.1). 138

While this solution implies the possibility of 139

training-free alignment of πbase using only r, in 140

most cases, Z(x) is often intractable (Lin and Mc- 141

Carthy, 2022). 142

Decoding-time alignments. Recently, Liu et al. 143

(2024a); Xu et al. (2024); Liu et al. (2024b) have 144

addressed this challenge through collaborative de- 145

coding between the LLM and a smaller language 146

model (sLM). By training a sLM πr on D to create 147

an aligned model π∗
r , the relationship 148

r(x, y) = β log
π∗
r (y | x)

πr(y | x)
+ β logZr (2) 149

is established. Although Zr remains intractable, 150

calculations performed at the logit level yield: 151

π∗(· | x) = softmax
(
hπ(· | x)

+ β−1
(
hπ∗

r
(· | x)− hπr(· | x)

))
.

152

Bypassing the computation of Zr, this formulation 153

allows practical decoding-time alignment without 154

expensive fine-tuning. 155
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Figure 2: Overview of the total Drift Algorithms. (a) Drift Approximation: Decomposes a user’s implicit preferences
into a weighted combination of various attributes. (b) Drift Decoding: Integrates this attribute composition into the
decoding process without retraining the LLM.

Challenges for personalized alignments. De-156

spite these advances, training a robust reward model157

typically requires large amounts of data—an im-158

practical requirement for individual user personal-159

ization. Drift is designed to overcome this lim-160

itation via few-shot preference modeling with a161

weighted linear combination of various attribute-162

specific reward signals, which can be directly ap-163

plied to decoding-time alignment.164

3 Drift Algorithms165

Drift overcomes data scarcity and computational166

inefficiency by decomposing a user’s complex per-167

sonal preferences as a linear combination of simpler168

attributes. As Figure 2, we describe two key compo-169

nents: Drift Approximation, which efficiently esti-170

mates attribute weights from a few dozen examples,171

and Drift Decoding, which integrates these weights172

into the LLM’s decoding process.173

3.1 Drift Approximation174

Problem Setup. Assume we have a personalized175

preference dataset D, a frozen LLM πLLM, and a176

set of k attribute-specific small LMs {π∗
i }ki=1 (with177

corresponding base model π). We model the overall178

personalized reward as179

RD(y | x) =
k∑

i=1

pi ri(y | x), (3)180

where pi indicates the importance of the ith at-181

tribute. Under the KL-regularized framework in182

Eq. 1, the target distribution π̃ becomes:183

π̃(y | x) ∝ πLLM(y | x) exp
(
β−1RD(y | x)

)
= πLLM(y | x)

k∏
i=1

exp

(
pi
β

ri(y | x)
)
.

(4)184

Each reward is expressed in a generative form: 185

ri(y | x) = log
π∗
i (y | x)
π(y | x)

+ logZi(x), (5) 186

with the partition term Zi(x) canceling out in pair- 187

wise comparisons. 188

From Bradley-Terry to Drift. To estimate the 189

attributes weights p = [p1, . . . , pk], we initiate the 190

Bradley-Terry formulation as Rafailov et al. (2024). 191

For a given pair (yw, yl) (where yw is preferred over 192

yl), we have: 193

max
θ

p(yw > yl | x) = 194

1

1 + exp
(
β
(
log

πθ
LLM(yl|x)

πref
LLM(yl|x)

− log
πθ

LLM(yw|x)
πref

LLM(yw|x)

)) 195

as in DPO (Rafailov et al., 2024). Substituting 196
Eqs. 4 and 5 simplifies this optimization to: 197

max
p

1

1 + exp
(
β
( k∑
i=1

pi log
π∗
i
(yl|x)

π(yl|x)
−

∑k
i=1 pi log

π∗
i
(yw|x)

π(yw|x)

)) . 198

By monotonicity of x 7→ 1
1+exp(−βx) , reducing the 199

problem to a simpler optimization task: 200

max
p

k∑
i=1

pi

(
log

π∗
i (yw | x)
π(yw | x)

− log
π∗
i (yl | x)
π(yl | x)

)
. 201

To avoid an unbounded solution, we constrain p to 202

lie on the unit ℓ2 sphere: 203

max
p

(W − L)T p, subject to ∥p∥2 = 1, (6) 204

where W and L aggregate the log-ratio differences 205

for the preferred yw and less preferred yl outputs 206

overD, respectively. Notably, this approximation is 207

completely gradient-free and thus highly efficient 208

compared to traditional preference modeling. 209
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Algorithm 1 Drift Approximation

Input: Dataset D = {(yjw, yjl , x
j)}nj=1, sLM π,

base prompt s0, attribute prompts {si}ki=1

Output: Attribute weights p = {p1, p2, . . . , pk}
1: for j = 1 to n do ▷ Over each data point
2: for i = 1 to k do ▷ For each attribute
3: Wj,i ← log π(yjw|xj ,si)

π(yjw|xj ,s0)

4: Lj,i ← log
π(yjl |x

j ,si)

π(yjl |xj ,s0)

5: p← argmaxp:∥p∥2=1 (W − L)Tp
6: return p

Zero-Shot Rewarding via Differential Prompts.210

Drift Approximation computes ri for each instance211

y as log
π∗
i (y|x)
π(y|x) . However, training an attribute-212

specific model π∗
i for every possible attribute is213

infeasible. Instead, we reward each attribute in a214

zero-shot manner using differential prompts.215

Starting from a base prompt s0 (e.g., "You are216

an AI assistant."), we compute the log-probability217

log π(y|x, s0). For each attribute (e.g., emotion),218

we modify the base prompt by adding a corre-219

sponding cue (e.g., "You are an emotional AI as-220

sistant.") to obtain si and compute log π∗
i (y|x) =221

log π(y|x, si). Their difference log π(y|x,si)
π(y|x,s0) cap-222

tures the differential impact of the attribute cue,223

serving as a surrogate reward signal that measures224

how well the response y aligns with the attribute.225

This approach is: 1) Training-free: No additional226

fine-tuning is needed, 2) Flexible: New attributes227

can be integrated on the fly, 3) Memory efficient:228

It avoids the need to maintain multiple LLMs.229

Algorithm 1 summarizes the Drift Approxima-230

tion procedure.231

3.2 Drift Decoding232

Once the attribute weights p are obtained, Drift en-233

ables personalized generation by sampling directly234

from a composite distribution that adjusts the frozen235

LLM’s logits.236

Composite Distribution. Let πLLM denote the237

frozen LLM and {πi}ki=1 the distributions obtained238

by prompting with si. Denote their respective logits239

by hLLM, hi, and let hbase correspond to the base240

prompt s0. The composite distribution π̃ of next241

token candidates w is defined as:242

π̃(w) ∝ πLLM(w)

k∏
i=1

(
πi(w)

πbase(w)

) pi
β

, (7)243

Algorithm 2 Drift Decoding
Input: Input context x, LLM πLLM, sLM π, base

prompt s0, attribute-specific prompts {si}ki=1,
personal weights {pi}ki=1 and strength β

Output: Generated sequence y
1: y ← ∅
2: while not end of sequence do
3: Compute hLLM

t ← πLLM(· | x, y)
4: Compute hbase

t ← π(· | x, y, s0)
5: for i = 1 to k do
6: Compute hit ← π(· | x, y, si)
7: hdrift

t ← hLLM
t + 1

β

∑k
i=1 pi(h

i
t − hbase

t )

8: Sample token wt ∼ softmax(hdrift
t )

9: Append wt to y

10: return y

where β is the KL regularization hyperparame- 244

ter that controls the strength of personalization. 245

Converting probabilities to logits (recall π(w) = 246

softmax(h[w]) for all w), we obtain: 247

log π̃(w) = hLLM[w]+

k∑
i=1

pi
β

(
hi[w]− hbase[w]

)
+ C,

(8) 248

where C is a constant independent of w and will 249
be ignored after softmax. Thus, sampling from π̃ 250
amounts to: 251

π̃(w) = softmax
(
hLLM +

k∑
i=1

pi
β
(hi − hbase)

)
[w]. (9) 252

Thus, sampling from π̃ amounts to adjusting the 253

LLM’s logits using the weighted attribute differ- 254

ences. For a more detailed derivation, see Ap- 255

pendix A.2. 256

Algorithm 2 describes the complete autoregres- 257

sive decoding procedure. 258

Practical Considerations. For Drift Approxima- 259

tion, a zero-shot rewarding mechanism can consider 260

an unlimited number of candidate attributes with 261

gradient-free computational cost. It is advantageous 262

to evaluate as many attributes as possible, thereby 263

increasing the likelihood that even a small, care- 264

fully selected subset will capture the full nuances 265

of a user’s preferences. In practice, we perform the 266

approximation using a large pool of attributes (e.g., 267

41 candidates as detailed in Table 6) and then select 268

a subset with the highest absolute weights |pi| for 269

the final decoding process—our experiments ulti- 270

mately use seven representative attributes. We will 271

further discuss this in Section 4.2. 272
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4 Experiments273

We evaluate Drift on two fronts: (i) efficient few-274

shot preference modeling and (ii) personalized gen-275

eration. Our experiments are conducted on two276

datasets: Perspective (a synthetic persona dataset)277

and PRISM (an actual human-annotated dataset).278

Dataset Explicit Implicit persona Avg. Size
persona (Annotators) per user

PersonalLLM (Zollo et al., 2024) ✗ Open-sourced RMs 9,402
PersonalSum (Zhang et al., 2024) ✓ Human 2.7
PRISM (Kirk et al., 2024) ✓ Human 19.5
Multifacet (Lee et al., 2024) ✓ GPT-4 with persona 3
Perspective (Ours) ✓ GPT-4 with persona 7,645

Table 1: Comparison of personal preference datasets.
Perspective offers both scale and explicit persona infor-
mation, enabling comprehensive evaluation.

4.1 Datasets and Evaluations.279

While actual user preferences are invaluable, col-280

lecting large-scale human preference data presents281

significant challenges. As shown in Table 1, exist-282

ing human-annotated datasets typically contain only283

a few examples per user, making it difficult to train284

reliable reward models for evaluation. Moreover,285

when evaluating generation tasks, it’s practically286

impossible to find annotators to evaluate newly gen-287

erated outputs again. To address these issues, we288

first experiment with preference modeling and per-289

sonalized generation on synthetic personas and then290

validate our findings using real-world data.291

Perspective. We introduce Perspective, a large-292

scale dataset that employs synthetic personas with293

diverse viewpoints for reliable evaluation. Personas294

are selected from the Multifacet dataset (Lee et al.,295

2024), and we curate corresponding QA pairs that296

GPT-4 annotates according to each persona (details297

in Appendix B). With an average of 7,645 examples298

per persona, Perspective offers two key advantages:299

1. The abundance of examples per persona al-300

lows us to train gold reward models that serve301

as dependable evaluation metrics for both ap-302

proximation and generation tasks.303

2. The explicit persona information and consis-304

tent annotation process facilitate controlled305

and repeatable evaluations of generation tasks.306

PRISM. In contrast, the PRISM dataset com-307

prises human-annotated preferences, averaging308

19.5 examples per user. We use PRISM to validate309

Drift’s performance in real-world scenarios, partic-310

ularly under conditions of limited user data. For311

our experiments, we selected six users with more 312

than 50 annotated pairs each and conducted few- 313

shot personalization experiments to assess Drift’s 314

practical effectiveness. 315

4.2 Few-shot Preference Modeling 316

Experimental setting. We evaluate the efficiency 317

of the Drift approximation on both datasets. For 318

Perspective, we vary the training set size from 10 to 319

500 examples; for PRISM, from 10 to 40 examples. 320

Drift is compared against traditional reward mod- 321

els (RMs) implemented using Llama-1B (Dubey 322

et al., 2024) and Gemma-2B (Team et al., 2024). A 323

Llama-8B model trained on the full dataset (Gold 324

RM) serves as an upper bound. Additionally, to 325

assess the benefits of differential prompting, we 326

conduct experiments using the Drift approxima- 327

tion on Helpsteer2 (Wang et al., 2024b), which pro- 328

vides well-defined attributes through specifically 329

constructed datasets—"helpfulness," "correctness," 330

"coherence," "complexity," and "verbosity." 331

Results. Figure 3 demonstrates that the Gold RM 332

achieves nearly 80% accuracy on the test set (with 333

8B exceeding 85%) when trained on extensive data, 334

while the performance of standard RMs drops be- 335

low 60% when fewer than 500 examples are avail- 336

able. In contrast, Drift achieves superior perfor- 337

mance using only 50 samples, outperforming an 338

RM trained on 500 examples with lower variance. 339

Performance improves sharply with 100 examples 340

and plateaus thereafter, although predictive stability 341

continues to increase. Moreover, in PRISM involv- 342

ing actual users, RMs perform nearly at random, 343

whereas Drift maintains robust approximation ca- 344

pabilities with just 40 samples. Furthermore, while 345

Helpsteer2 offers precise reward signals for its five 346

well-defined attributes, its limited scope fails to rep- 347

resent the richness of individual user preferences. 348

Consequently, Helpsteer2 fails to generalize as ef- 349

fectively as our zero-shot rewarding approach, lead- 350

ing to lower performance compared to Drift. These 351

results underscore Drift’s strong few-shot person- 352

alization capabilities, demonstrating that decom- 353

posing implicit personal preferences into multiple 354

attributes via our differential prompting yields ro- 355

bust modeling even under data scarcity. 356

Attribute Reduction for Decoding. Although 357

Drift initially employs a large pool of candidate 358

attributes (e.g., 40), only a subset is used during de- 359

coding. Figure 4 shows that reducing the attribute 360

count from 40 to 10 incurs only a modest drop in 361
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Figure 3: Average k-shot preference modeling results across personas in the Perspective and PRISM datasets. The
two figures on the left show the results for Perspective using Llama 1B and Gemma 2B; the two on the right for
PRISM using Llama 1B and Gemma 2B.

performance. Even with five attributes, the per-362

formance is significantly better than that of Help-363

Steer2. This suggests that a few core attributes364

selected by zero-shot rewarding suffice to capture365

personal preferences effectively. By evaluating a366

wide variety of attributes during the cost-efficient367

approximation stage, Drift identifies the most in-368

formative attributes for efficient decoding without369

compromising overall performance.370

40302010753
Number of Attributes

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 S
et

 A
cc

ur
ac

y

Perspective
Prism

Figure 4: Performance variation when reducing the num-
ber of attributes during Drift Approximation with 40
samples. The performance decline is slightly more pro-
nounced in the PRISM dataset, suggesting that real users’
implicit preferences are more complex than those of syn-
thetic personas.

Interpretability. During the Drift Approxima-371

tion process, we compute the average reward W372

assigned to win responses and L assigned to lose373

responses for each attribute. The difference W −L374

for each attribute can be interpreted as Unit im-375

plicit preference, a measure of how strongly an376

individual implicitly prioritizes each attribute. For377

example, in PRISM, user1280 introduced them-378

selves as someone who uses an LLM exclusively379

for language learning. The activated attributes re-380

veal that “concise" is highly prioritized with a value381

of 1.46, while attributes such as “old-fashioned,"382

“exclamatory," and “proverb"—which could poten-383

tially hinder language learning—are least preferred,384

scoring -1.19, -1.10, and -1.09, respectively. Thus,385

Drift not only delivers effective preference model-386

ing with a few dozen examples but also provides 387

valuable interpretability at the user level (additional 388

analysis is provided in Appendix D.1). 389

4.3 Personalized Generation 390

Next, we validate how Drift’s robust preference 391

model can be effectively integrated into personal- 392

ized generation. 393

Experimental setting. We evaluate personalized 394

generation primarily on the Perspective dataset, 395

which offers reliable persona-specific evaluation 396

metrics via a Gold RM and a GPT-based judge (see 397

Section 4.1). Our evaluation compares the win rate 398

of each baseline output against pure LLM outputs 399

using these metrics. Under a few-shot setting with 400

100 training examples, Drift decoding is compared 401

against several baselines: 402

1. Training-base: PPO (Schulman et al., 2017), 403

DPO (Rafailov et al., 2024), DPA 1 (Wang 404

et al., 2024a) 405

2. Training-free (as Drift): ARGS (Khanov et al., 406

2024), Best-of-N sampling (N=10) 407

We use Llama-8B (controlled by Llama-1B as the 408

RM) and Gemma-9B (controlled by Gemma-2B) 409

for model configurations. Due to PRISM’s limited 410

evaluation capabilities, we complement our quanti- 411

tative results with qualitative case studies involving 412

actual users in PRISM. 413

Results. Table 2 summarizes the few-shot person- 414

alized generation results with 100 training sets from 415

the Perspective dataset. As observed in the previ- 416

ous section, the RM exhibits significant shortcom- 417

ings with limited data. Consequently, PPO—which 418

relies on the reward—experiences a performance 419

drop. In contrast, DPO, which does not depend 420

directly on the reward signal, avoids this decline; 421

however, its performance improvement remains 422

1DPA training uses the weight from Drift on Helpsteer2.
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Method Llama-8B Gemma-9B

Gold RM GPT-Judge Gold RM GPT-Judge

Training-based
PPO 0.48 0.45 0.47 0.46
DPO 0.53 0.52 0.52 0.51
DPA 0.55 0.56 0.56 0.56

Training-free
ARGS 0.51 0.50 0.51 0.51
Best-of-N 0.53 0.54 0.52 0.53
Drift (Ours) 0.61 0.63 0.62 0.63

Table 2: Experimental results of Personalized Genera-
tion. Bold font indicates the highest score.

marginal. Although DPA leverages a robust pref-423

erence model with HelpSteer2, its effect is also424

limited. Among the training-free methods, both425

ARGS and Best-of-N sampling are more robust426

than the PPO because they avoid unstable training427

with noisy RM. Nonetheless, since they rely on the428

RM signal for search, their performance gains are429

limited. In contrast, Drift decodes by leveraging430

efficient and robust approximations, resulting in431

significant performance improvements across all432

models and evaluation metrics. These findings con-433

firm that effective few-shot personalized generation434

can be achieved with as few as 100 training exam-435

ples using Drift in a training-free manner.436

Case Study in PRISM. We compare the user-437

preferred and rejected responses from PRISM with438

the Drift outputs. In Table 3, user1008 prefers re-439

sponses that present diverse opposing viewpoints440

rather than neutral opinions on sensitive topics.441

Drift effectively guides the LLM in generating re-442

sponses aligned with this user preference, moving443

away from generic neutral responses. This demon-444

strates that Drift achieves robust personalization445

even in few-shot scenarios. The full version and ad-446

ditional case studies are provided in Appendix D.2.447

Inference cost. Table 4 summarizes the time com-448

plexity of each training-free baseline. Best-of-N449

involves sampling from the LLM N times and eval-450

uating each sample with the sLM, resulting in a451

total complexity of T (N ·C +N · c). This method452

is the most computationally expensive. Both ARGS453

and Drift steer the LLM’s next-token distribution454

using sLM. However, while ARGS sequentially455

samples from LLM and evaluates top-N tokens,456

Drift samples the next-token distributions in paral-457

lel both from the LLM and sLM and then combines458

them. This flexibility offers improved efficiency459

over ARGS under the same memory size.460

User Query: "I need information about the Civil War, a
topic that has caused much disagreement."

Win Response
"Sure! I can provide some basic information about the
Civil War, which may help clarify the differences of
opinion people may have... "

Lose Response
"Sure, I’d be happy to help you ... As a language model,
I do not have personal opinions or biases towards any
topics or discussions, including the Civil War."

Llama-8B with Drift Response:
"A sensitive and complex topic indeed. The American
Civil War, fought from ... What specific aspects of the
Civil War would you like to know more about?"

Llama-8B Pure Response:
"... I’ll try to provide a neutral and fact-based
overview of the topic."

Table 3: This table contains the user1008 question from
PRISM, with the selected and rejected answers and the
responses from Llama-8B w/ and w/o Drift decoding.

Method Time complexity

Best-of-N T (N · C +N · c)
ARGS (top-N tokens) T (C +N · c)
Drift (N attributes) T (C +N · c)

Table 4: Time complexity of each training-free method.
Here, C represents the LLM inference cost, c denotes
the sLM inference cost, and N is the key hyperparameter
for each method.

5 Discussion 461

Quadratic Programming vs. Logistic Regression. 462

Our formulation estimates the attribute weightsp by 463

transforming the Bradley-Terry loss into a quadratic 464

program. An alternative approach based on logis- 465

tic regression—which assigns absolute labels of 1 466

and 0 to win/lose responses—can also be used, as 467

demonstrated by (Go et al., 2023; Shenfeld et al., 468

2025). We compared these two formulations using 469

Drift attributes in Table 5. The logistic regression 470

approach proves highly unstable and shows lower 471

performance when training examples are limited. 472

We interpret this instability as follows: preference 473

judgments are inherently relative—what constitutes 474

a winning response in one context might be consid- 475

ered a losing response when compared to an even 476

better alternative. Thus, imposing absolute labels 477

through regression can lead to overfitting, partic- 478

ularly when data are scarce. Our results suggest 479

that a relative perspective on human preference is 480

crucial for effective alignments. 481

Compatible with samplers. Autoregressive sam- 482

pling in LLMs has various decoding strategies at 483

the token-level distribution. Drift steers distribu- 484
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Figure 5: Few-shot preference modeling results for
user1008 in the PRISM with quadratic programming
(QP) and logistic regression (LQ).

tions at the logit level—applying its computations485

before the softmax—making it compatible with a486

wide range of sampling methods tailored to differ-487

ent objectives (Vijayakumar et al., 2016; Fan et al.,488

2018; Holtzman et al., 2019). our analysis indi-489

cates that the backbone LLM exhibits an average490

next-token entropy of about 0.27 bits, which in-491

creases to approximately 0.63 bits after applying492

Drift. While this boost in entropy can substantially493

enhance generation diversity, it may also increase494

the likelihood of selecting unreliable tokens. There-495

fore, we recommend combining Drift with top-p496

or top-k sampling strategies to control an optimal497

balance between diversity and reliability.498

Practical Implications. While traditional RLHF499

methods may eventually surpass Drift when user500

data becomes abundant, Drift offers several advan-501

tages in practical settings. First, conventional re-502

ward models struggle with continual learning; re-503

training on an ever-expanding user dataset is imprac-504

tical. In contrast, Drift can be updated instantly by505

simply appending new instances to the W −L—no506

retraining required. Second, personal preferences507

often change more rapidly than general preferences.508

Drift’s interpretability allows real-time tracking of509

preference shifts, enabling dynamic adjustments for510

improved personalization. Third, when collecting511

additional user annotations, the variance observed512

in each attribute can inform an active learning strat-513

egy (Miller et al., 2020) for efficient data collection.514

These benefits make Drift an attractive complement515

to existing RLHF pipelines in personalized applica-516

tions.517

6 Related Works518

Explicit Personalization. As humans express519

their own preferences, recent works explored align-520

ing LLMs with individual values through explicit521

cues. Multifacet (Lee et al., 2024) has focused522

on designing diverse and detailed system prompts 523

for LLM control. PAD (Chen et al., 2024) and 524

MetaAligner (Yang et al., 2024a) have leveraged 525

fine-grained RM—such as HelpSteer (Wang et al., 526

2024b)—to construct specific policies and guide 527

model behavior toward system prompts. Oth- 528

ers allow users to directly specify attribute im- 529

portance weights, either for training (Yang et al., 530

2024b; Wang et al., 2024a) or decoding-time align- 531

ments (Dekoninck et al., 2023; Shi et al., 2024). 532

Implicit Personalization. While they have ad- 533

vanced explicit preferences, implicit preferences 534

behind users’ behaviors remain understudied, as Ta- 535

ble 5. Jin et al. (2024) has shown that these values 536

arise from complex interactions between factors 537

like experiences, education, lifestyle, and even di- 538

etary habits, leading to misalignment with explicitly 539

stated preferences (Nisbett and Wilson, 1977) To 540

address this gap, several works proposed implicit 541

personalization tasks - from title generation (Ao 542

et al., 2021), movie tagging (Salemi et al., 2023) 543

to summarization (Zhang et al., 2024). Notably, 544

PRISM (Kirk et al., 2024) made notable progress 545

by collecting preference annotations from conver- 546

sations with over a thousand users, though its effec- 547

tiveness was limited by the small number of annota- 548

tions per user, making traditional RLHF approaches 549

challenging. 550

Our work advances this field in two key ways: 551

First, we introduce the Perspective dataset, which 552

enables more reliable evaluation. Second, we pro- 553

pose Drift, decoding-time few-shot personalization. 554

By addressing the challenges of implicit prefer- 555

ences, our approach represents a significant step 556

forward in implicit personalized alignments. 557

7 Conclusion 558

We introduce Drift, a training-free framework for 559

personalizing LLMs via decoding-time alignment 560

with implicit user preferences. By decomposing 561

implicit personal preferences into a weighted com- 562

bination of interpretable attributes, Drift enables 563

few-shot personalization that is both computation- 564

ally efficient and interpretable. In the personalized 565

AI domain—where obtaining sufficient annotations 566

is challenging and training individual, user-specific 567

LLMs is impractical—Drift represents a significant 568

advance. Ultimately, Drift holds promise for de- 569

mocratizing personalized AI services and fostering 570

human-aligned AI systems that are adaptable to 571

individual needs. 572
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Limitations573

While Drift contributes promising advances in im-574

plicit personal preferences, several limitations re-575

main that should be addressed in future research.576

Needs of Online Human Evaluation Benchmarks.577

A major challenge in personal preference research578

is the absence of reproducible human evalua-579

tions. Even if future benchmarks collect more user-580

specific annotations beyond PRISM, evaluating per-581

sonalized generation outputs requires re-engaging582

with the same users for feedback. Although we583

designed the Perspective dataset to align the label584

construction and test set evaluation pipelines, it still585

relies on virtual personas. Therefore, to advance586

this field, there is a need for online evaluation bench-587

marks that can reproducibly assess personalized588

generation using real user feedback.589

Limited Analysis Between Drift Attributes and590

Actual Users. Due to practical and ethical issues,591

we do not have full access to the backgrounds of592

actual users. While the PRISM dataset provides593

basic information (e.g., the intended use of LLMs594

and brief self-introductions), our analysis (as seen595

in Figure 6) is limited in explaining why certain596

attributes are activated and how these relate to user597

characteristics. A more in-depth investigation into598

the correlation between Drift attributes and real user599

profiles should be studied with future benchmarks.600

Furthermore, applying Drift to a million-scale601

user base could inevitably reveal users whose im-602

plicit preferences are not adequately captured by the603

existing attributes. In such scenarios, we propose604

an active search strategy, whereby response pairs605

with low explanatory power trigger the exploration606

of new attributes. This active search can be per-607

formed efficiently since newly identified attributes608

only require additional 1-dimensional |W−L| com-609

putations and concatenation with existing |W −L|,610

significantly reducing exploration costs.611

Biases in Differential Prompting. Our study612

does not thoroughly analyze the limitations of the613

zero-shot rewarding mechanism used for each at-614

tribute. It is possible that differential prompting615

may fail to capture certain attributes accurately, and616

methods like those employed in Helpsteer2—where617

data is explicitly constructed—could offer more618

precise evaluations. Nevertheless, given the vast619

diversity of personal preferences, a zero-shot ap-620

proach remains essential. As shown in Figure 3, this621

approach yields significantly higher performance,622

and Figure 4 demonstrates that even when the num- 623

ber of attributes is reduced to levels comparable 624

to those used in Helpsteer2, performance remains 625

robust. In essence, unreliable attributes are unlikely 626

to be used during decoding, which mitigates this 627

limitation. Moreover, as future research develops 628

to enable LLM to follow system prompts more pre- 629

cisely, these advances will directly enhance Drift. 630

Tokenizer Dependency. Drift Decoding adjusts 631

the next-token distribution at each step, which re- 632

quires that the LLM and the sLM share the same 633

support—that is, they must use the same tokenizer. 634

Limited Baselines. Due to the scarcity of datasets 635

for implicit personal preferences, this domain is far 636

less mature compared to explicit preferences. As 637

highlighted in Table 5, the limited availability of ex- 638

tensive baselines forced us to concentrate primarily 639

on analyzing the unique characteristics of Drift. 640

Ethical Statement 641

While personalization offers significant value, we 642

recognize it carries serious risks similar to those 643

in recommendation systems - potentially creating 644

filter bubbles that selectively provide users with in- 645

formation that only confirms existing biases. For 646

example, a politically oriented personalization sys- 647

tem might increasingly expose users to viewpoints 648

that match their existing beliefs while reducing ex- 649

posure to contrary perspectives, potentially deepen- 650

ing polarization. Similarly, in educational contexts, 651

a personalization system might detect and reinforce 652

a user’s simplistic understanding of complex topics 653

rather than introducing necessary nuance, making 654

it harder for users to develop more sophisticated 655

conceptual models over time. 656

These legitimate concerns actually highlight why 657

Drift represents an important advancement in LLM 658

personalization research. Unlike black-box person- 659

alization approaches, Drift’s architecture provides 660

critical transparency as a scalable oversight by 661

interpreting user preferences as combinations of 662

attributes during approximation and selectively ap- 663

plying these during generation. 664

The key innovation of Drift lies in its ability to 665

monitor and control bias activation. As detailed 666

in our Discussion - Practical Implications section, 667

Drift allows practitioners to: 668

• Decompose user preferences into interpretable 669

components 670
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• Track changes in each component over time671

• Selectively activate only desired attributes dur-672

ing generation673

• Maintain the backbone LLM’s safety674

guardrails throughout personalization675

This architecture enables several safety mech-676

anisms: we can define sets of undesired (bias-677

causing) and desired attributes, then use only the678

desired attributes for approximation. Alternatively,679

we can approximate both desired and undesired at-680

tributes but reflect only the desired ones during de-681

coding. This provides the unique capability to exter-682

nally monitor users’ undesired attribute activations683

while delivering content that addresses these biases684

appropriately - a particularly valuable approach in685

educational contexts. Drift’s transparency makes686

it precisely the tool needed to address these legiti-687

mate concerns as a scalable oversight. It allows for688

carefully monitoring individual activated biases and689

provides mechanisms to mitigate harmful personal-690

ization effects while preserving beneficial ones.691

Additionally, considering that existing re-692

search (Kim et al., 2024b) indicates it is impos-693

sible to obtain filtered autoregressive distributions694

under certain conditions, it is necessary to com-695

bine rejection sampling on final outputs using696

safeguards (Kim et al., 2024a) such as Llama-697

Guard (Inan et al., 2023) and ShieldGemma (Zeng698

et al., 2024). This approach can further enhance699

the safety of the final generated content.700
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A Proof917

A.1 Derivation of the RL Closed-Form918

Solution919

We want to solve the following optimization prob-920

lem (for a single variable x):921

max
θ

[
r(x) − β log πθ(x)

πbase(x)

]
.922

Define π(x) = πθ(x). The quantity we want to923

maximize can be thought of as an expectation under924

π(x):925

max
π

∫
π(x)

[
r(x)− β log π(x)

πbase(x)

]
dx,926

subject to927 ∫
π(x) dx = 1 and π(x) ≥ 0.928

Introduce a Lagrange multiplier λ to enforce the929

normalization constraint
∫
π(x) dx = 1. The La-930

grangian is931

L[π, λ] =
∫

π(x)
[
r(x)− β log π(x)

πbase(x)

]
dx

− λ
(∫

π(x) dx− 1
)
.

932

We now take the functional derivative of L w.r.t.933

π(x) and set it to zero for optimality:934

δL
δπ(x)

= r(x)− β
[
log π(x)

πbase(x)
+ 1

]
− λ = 0.935

Rearranging:936

r(x)− β log π(x)
πbase(x)

− β − λ = 0,937

which implies938

β log π(x)
πbase(x)

= r(x)− β − λ.939

Exponentiate both sides:940

π(x)
πbase(x)

= exp
(
r(x)
β

)
exp

(
−1− λ

β

)
.941

So942

π(x) = πbase(x) exp
(
r(x)
β

)
exp

(
−1− λ

β

)
.943

Let C = exp
(
−1− λ

β

)
. Hence944

π(x) = C πbase(x) exp
(
r(x)
β

)
.945

We find C by imposing the constraint 946∫
π(x) dx = 1: 947

1 =

∫
π(x) dx = C

∫
πbase(x) exp

(
r(x)
β

)
dx. 948

Therefore 949

C =

[∫
πbase(x) exp

(
r(x)
β

)
dx

]−1

. 950

Putting it all together, the optimal distribution 951

π∗(x) is 952

π∗(x) =
πbase(x) exp

(
r(x)
β

)
∫

πbase(x) exp
(
r(x)
β

)
dx

. 953

This shows that the optimal solution is a 954

Boltzmann-like (or softmax) distribution given by 955

weighting the reference distribution πbase(x) with 956

the exponential of the scaled reward r(x)/β. 957

A.2 Expanded Explanation for Drift Decoding 958

In Section 3.2, we introduced the following target 959

distribution for Drift Decoding: 960

π̃(w) ∝ πLLM(w)

k∏
i=1

(
πi(w)
πbase(w)

) pi
β
, (10) 961

where πLLM(w) is the probability of token w un- 962

der the LLM, πi(w) is the probability of token w 963

under an attribute-specific prompt (i.e., π(· | si)), 964

πbase(w) is the probability under a base prompt, and 965

pi is the weight for the i-th attribute estimated by 966

Drift Approximation. The hyperparameter β con- 967

trols the strength of personalization via KL regular- 968

ization. Then Eq (10) can be equivalently written 969

in logit space as 970

π̃(w) = softmax
[
hLLM(w)

+
1

β

k∑
i=1

pi
(
hi(w) − hbase(w)

)]
,

971

where hLLM, hi, and hbase are the logits (i.e., 972

log-probabilities) of πLLM, πi, and πbase, respec- 973

tively. By definition of the logits, let hLLM(w) = 974

log πLLM(w), hi(w) = log πi(w), hbase(w) = 975

log πbase(w). Then Eq (10) can be rewritten as 976

π̃(w) ∝ exp
(
hLLM(w)

)
k∏

i=1

exp
(pi
β

[
hi(w) − hbase(w)

])
.

977
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Method Training-free General Policy Smaller LM Guidance Implicit Preference

MORLHF (Li et al., 2020) × ✓ - ✓
MODPO (Zhou et al., 2024) × ✓ - ✓
Personalized soups (Jang et al., 2023) × × × ×
Preference Prompting (Jang et al., 2023) ✓ ✓ - ×
Rewarded soups (Rame et al., 2024) × × × ×
RiC (Yang et al., 2024b) × - × ×
DPA (Wang et al., 2024a) × ✓ - ×
ARGS (Khanov et al., 2024) ✓ ✓ ✓ ✓
MOD (Shi et al., 2024) ✓ × × ×
MetaAligner (Yang et al., 2024a) ✓ ✓ ✓ ×
PAD (Chen et al., 2024) ✓ ✓ × ×

Drift (Ours) ✓ ✓ ✓ ✓

Table 5: Key characteristics of previous methods and Drift.

Combining the exponential terms, we get978

π̃(w) ∝ exp
[
hLLM(w)

+
1

β

k∑
i=1

pi
(
hi(w) − hbase(w)

)]
.

979

Since the softmax operation normalizes these ex-980
ponentials to sum to 1 over all possible tokens w, it981
follows that982

π̃(w) =
exp

[
hLLM(w) + 1

β

∑k
i=1 pi

(
hi(w) − hbase(w)

)]
∑

w′ exp
[
hLLM(w′) + 1

β

∑k
i=1 pi

(
hi(w′) − hbase(w′)

)]983

984

= softmax
[
hLLM +

1

β

k∑
i=1

pi
(
hi − hbase)][w].985

This completes the proof.986

B Details of Perspective Dataset987

In this section, we describe the principles underly-988

ing the design of our Perspective dataset. To evalu-989

ate personal preferences accurately, the evaluation990

must adhere exactly to the individual criteria used991

during the annotation of the training data. In other992

words, the data construction process and evaluation993

pipeline must be identical, which makes evalua-994

tions based on actual human responses challenging.995

Therefore, our primary objective is to enable reli-996

able evaluation even using virtual personas.997

B.1 Dataset Construction998

For constructing the dataset, a diverse set of well-999

defined persona concepts was essential. To this1000

end, we leveraged the Multifacet (Lee et al., 2024)1001

dataset, which defines various dimensions that can1002

be combined to create a wide range of persona con-1003

cepts. In the Multifacet dataset, each persona is1004

associated with one question and three answers. 1005

However, our methodology required a substantial 1006

number of question–preference pairs per persona. 1007

To achieve this, we followed these steps: 1008

1. Collection: Gather ten distinct, non- 1009

overlapping personas from diverse domains 1010

within the Multifacet dataset. 1011

2. Question Selection: For each persona, se- 1012

lect related questions based on specific sub- 1013

dimensions. 1014

3. Evaluation: Instruct GPT-4 to evaluate the 1015

triplets consisting of one question and three 1016

answers ({Q,A,A,A}) using system prompts 1017

tailored to each persona. gpt-4-turbo as- 1018

signs scores to each QA pair, thereby determin- 1019

ing the preferred and less preferred answers. 1020

During the creation process, gpt-4-turbo evalu- 1021

ated the answers using an explicitly defined persona. 1022

This same approach can later be adopted to assess 1023

generation results, ensuring a reliable evaluation 1024

procedure. As a result, we generated an average of 1025

7,642 questions and 15,284 answers per persona. 1026

Below shows an example instance from the dataset, 1027

featuring a specific persona along with its corre- 1028

sponding QAA triplet and associated scores. 1029

'gold_persona': "Assume the role of a seasoned
consultant with advanced expertise in the
construction and engineering sectors ...,
'prompt': 'In Python, I have encountered ...,
'win': 'Certainly! The header `# -*- ...,
'lose': "Certainly, diving into the `# -*- ...,
'win_score': 5,
'lose_score': 4
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B.2 Comparison to the PRISM Dataset1030

Instance1031

The PRISM dataset provides user personal informa-1032

tion and self-introductions as shown below:1033

'user_id': 'user1008',
'lm_familiarity': 'Somewhat familiar',
'lm_indirect_use': 'Yes',
'lm_direct_use': 'Yes',
'lm_frequency_use': 'Every day',
'self_description': "The importance in my
life right now is having ...",
'age': '45-54 years old',
'gender': 'Female',
'employment_status': 'Working full-time',
'education': 'Some University but no degree',
'marital_status': 'Divorced / Separated',
'english_proficiency': 'Native speaker',
'study_locale': 'us',
'religion': {'self_described': 'christianity',

'categorised': 'Christian',
'simplified': 'Christian'},

'ethnicity': {'self_described': 'white',
'categorised': 'White',
'simplified': 'White'},

'location': {'birth_country': 'Australia',
'birth_countryISO': 'AUS',
'birth_region': 'Oceania',
'birth_subregion': 'Australia ...',
'reside_country': 'United States',
'reside_region': 'Americas',
'reside_subregion': 'Northern ...',
'reside_countryISO': 'USA',
'same_birth_reside_country': 'No'},

'lm_usecases': {'homework_assistance': 0,
'research': 1,
'source_suggestions': 0,
'professional_work': 0,
'creative_writing': 1,
'casual_conversation': 1,
'personal_recommendations': 1,
'daily_productivity': 0,
'technical_...': 0,
'travel_guidance': 0,
'lifestyle_and_hobbies': 1,
'well-being_guidance': 1,
'medical_guidance': 1,
'financial_guidance': 0,
'games': 1,
'historical_or_news_insight': 1,
'relationship_advice': 1,
'language_learning': 1,
'other': 0,
'other_text': None}

Although the PRISM dataset also provides ex-1034

plicit persona information through user profiles,1035

there is no guarantee that these explicit personas1036

align with the implicit personas used during an-1037

notation. Consequently, unlike the Perspective1038

dataset—where the explicit persona is directly dis-1039

tilled into the implicit persona—the PRISM dataset1040

does not support the same evaluation methodol-1041

ogy. Moreover, since each user contributes at most1042

50 instances, it is not feasible to construct a gold-1043

standard reward model from the PRISM dataset.1044

For these reasons, PRISM is used only as a qual- 1045

itative benchmark in preference modeling experi- 1046

ments. 1047

B.3 Misalignments between Explicit and 1048

Implicit preferences 1049

In the psychology domain, there has been discus- 1050

sion about the difficulty of fully expressing one’s 1051

deep, complex, hidden preferences through lan- 1052

guage (Nisbett and Wilson, 1977; Pronin et al., 1053

2001). Recent studies (Jin et al., 2024) have also 1054

discussed how these implicit values are intricately 1055

intertwined among various factors. The PRISM 1056

dataset contains user self-introductions describing 1057

their preferences and stated preferences regarding 1058

LLM usage. When we provided this information 1059

to gpt-4-turbo to predict individual user prefer- 1060

ences, it achieved an accuracy of approximately 1061

57%. While this doesn’t represent a comprehensive 1062

explicit preference analysis, considering the general 1063

preference aspects used in prediction, it suggests 1064

that explicit preferences alone may be insufficient to 1065

explain complex implicit preferences, or there may 1066

be mismatches between them. However, as men- 1067

tioned in the Limitations section, due to the absence 1068

of online human evaluation benchmarks, extensive 1069

analysis is not possible, and we leave this as an 1070

intriguing interpretation for future researchers. 1071

C Details of Drift Implementation 1072

C.1 Used Differential System Prompts for 1073

Zero-shot Rewarding 1074

In our experiments, we use the system prompts for 1075

each attribute as shown in Table 6. Although minor 1076

performance variations may occur due to changes in 1077

the basic template, we employ the most fundamen- 1078

tal system prompt template in this paper to serve as 1079

a baseline for future research. 1080

C.2 Detailed Hyperparameters and Models 1081

Table 7 shows the hyperparameters used in our ex- 1082

periments. Since the overall algorithm does not 1083

perform gradient computations, the hyperparam- 1084

eter space is limited. In the Drift Approximation 1085

stage, the number and definition of attributes deter- 1086

mine everything, as detailed in Table 6. Similarly, 1087

in Drift Decoding, the logit-level computations are 1088

deterministic, so the only variable is the choice of 1089

samplers. 1090
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Attribute System Prompt Attribute System Prompt

Base You are an AI assistant. Creative You are a creative AI assistant.
Formal You are an AI assistant with a formal

tone.
Analytic You are an analytic AI assistant.

Concise You are an AI assistant with a con-
cise response rather than verbosity.

Empathetic You are an empathetic AI assistant.

Vivid You are an AI assistant using rhetor-
ical devices.

Sycophant You are a sycophant AI assistant.

Modest You are a modest and polite AI as-
sistant.

Old-fashioned You are an AI assistant using old-
fashioned English.

Engineer You are an AI assistant with exper-
tise in engineering.

Meritocratic You are a meritocratic AI assistant.

Persuasive You are a persuasive AI assistant. Myopic You are a myopic AI assistant.
Emotion You are an emotional AI assistant. Principled You are an AI assistant that upholds

principles and rules above all else.
Humor You are a humorous AI assistant. Hedonist You are an AI assistant that priori-

tizes maximizing pleasure and joy
while minimizing pain and discom-
fort.

Energy You are an energetic AI assistant. Utilitarian You are an AI assistant that priori-
tizes the greatest good for the great-
est number of people.

Code You are an AI assistant with exper-
tise in computer science.

Realist You are an AI assistant that focuses
on practical, realistic, and actionable
advice.

Easy You are an AI assistant using easy-
to-understand words.

Pessimistic You are an AI assistant that views
situations through a skeptical or cau-
tious perspective.

Direct You are an AI assistant with a firm
and directive tone.

Storyteller You are an AI assistant that loves ex-
plaining things through stories and
anecdotes.

Social You are an AI assistant with exper-
tise in sociology.

Flexible You are an AI assistant that values
flexibility over strict adherence to
principles.

Western You are an AI assistant with western
cultures.

Spontaneous You are an AI assistant that enjoys
handling tasks spontaneously with-
out making plans.

Eastern You are an AI assistant with eastern
cultures.

Collectivist You are an AI assistant that priori-
tizes the group over the individual.

Respect You are a respectful AI assistant. Individualistic You are an AI assistant that priori-
tizes the individual over the group.

Internet Slang You are an AI assistant that commu-
nicates using internet slang.

Exclamatory You are an AI assistant that enjoys
using exclamations frequently.

Proverb You are an AI assistant that commu-
nicates using proverbs.

Conspiracy You are an AI assistant that enjoys
discussing conspiracy theories.

Critical You are an AI assistant that enjoys
being critical and argumentative.

Tech Industry
Priority

You are an AI assistant that priori-
tizes technological and industrial ad-
vancement above all else.

Vague You are an AI assistant that en-
joys speaking indirectly and ambigu-
ously.

Eco-friendly You are an AI assistant that loves and
protects the environment.

Table 6: Differential system prompts for diverse attributes
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Hyperparameter value

Frozen LLM Llama-8B2, Gemma-9B3

Small LM for RM Llama-1B4, Gemma-2B5

LoRA (Hu et al., 2021) r for RM 8

LoRA α for RM 32

LoRA training epochs for RM 5

top-p for generation 0.9

β for generation 0.5

text_length 500

attributes_num for generation 7

Table 7: Hyperparameters used for the experiments.

D Expanded Analysis1091

D.1 Activated Attributes for Each User1092

This section interprets and analyzes PRISM’s actual1093

personal preferences. Looking at Figure 6, we can1094

see that the activated attributes vary significantly1095

between individuals. In particular, PRISM’s ac-1096

tual users show dynamic patterns compared to each1097

other user.1098

D.2 Expanded Case study for Personalized1099

Generation in PRISM1100

In this section, we present a personalized genera-1101

tion case study by examining the complete set of1102

generated outputs. Table 8 shows the full version1103

of the main paper, while Table 9 and 10 provide1104

additional analysis. The characteristics shown in1105

the main paper are also evident in the full text ver-1106

sion. While Llama-8B’s pure generation attempts1107

to provide neutral, fact-based answers like the lose1108

response, Drift tries to provide responses from var-1109

ious angles like the win response. This tendency1110

can also be observed in Table 9, where user12801111

asked a question regarding the possibility of UFOs1112

existing, and among the responses—one neutral1113

and one open to the possibility—they selected the1114

latter. While Llama-8B tends to focus on a neutral1115

perspective, the output generated via Drift main-1116

tains the overall response structure while offering1117

a more open stance on the possibility. In Table 10,1118

user1247 poses a philosophical question about be-1119

lief in existence. While the lose response and LLM1120

pure output suggest the possibility of building un-1121

2https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

3https://huggingface.co/google/gemma-2-9b-it
4https://huggingface.co/meta-llama/Llama-3.

2-1B-Instruct
5https://huggingface.co/google/gemma-2-2b-it

derstanding through dialogue and data accumula- 1122

tion, Drift, like the win response, definitively argues 1123

that this transcends the realm of logic and that AI’s 1124

belief in God’s existence is impossible. These ex- 1125

amples of win-lose responses suggest that Drift’s 1126

approximation effectively captures user preference 1127

characteristics and demonstrates sufficient ability 1128

to generate responses that users are likely to prefer 1129

during the decoding phase. 1130
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User Query: "I need information about the Civil War, a topic that has caused much disagreement."

Win Response:
"Sure! I can provide some basic information about the Civil War, which may help clarify the differences
of opinion people may have. However, it is important to note that there is considerable complexity and
disagreement about many aspects of the Civil War, and different people may favor different perspectives.
Would you like me to provide some overview information about the Civil War, or go into more detail about
a particular aspect of it which you think may be the cause of disagreement?"

Lose Response:
"Sure, I’d be happy to help you with your questions about the Civil War. As a language model, I do not have
personal opinions or biases towards any topics or discussions, including the Civil War. My purpose is to
provide you with information and support your discussion on this topic to the best of my abilities. Feel free
to ask me any questions you may have, and I will do my best to assist you with fact-based responses.
Would you like me to provide you with key information about the Civil War?"

Llama-8B with Drift Response:
"A sensitive and complex topic indeed. The American Civil War, fought from 1861 to 1865, was a pivotal
event in American history that continues to be debated and discussed by historians and the general public.
What specific aspects of the Civil War would you like to know more about? Its causes, battles, or the
aftermath? Or perhaps a specific perspective, such as the Confederacy’s or the Union’s point of view?"

Llama-8B Pure Response:
"The American Civil War is a highly contested and multifaceted topic, and there are various perspectives and
opinions about its causes, events, and aftermath. I’ll try to provide a neutral and fact-based overview of
the topic.
**Causes of the Civil War:**
The American Civil War (1861-1865) was fought between the Union (the Northern states) and the Confederacy
(the Southern states) over issues of slavery, states’ rights, economic and cultural differences, and regional ..."

Table 8: user1008 Case study of personalized generation in PRISM.

User Query: "do you think there are ufo sightings hidden from us"

Win Response:
"It’s possible that some UFO sightings are not publicly disclosed, especially if they involve sensitive
military information or if a government deems it in the public interest to keep such incidents confidential for
various reasons, including avoiding panic or protecting national security."

Lose Response:
"There are numerous reports of UFO sightings throughout history, and while some have been explained as
misidentifications of natural phenomena or man-made objects, others remain unexplained. It is possible
that some sightings may be hidden from the public or not widely reported due to various reasons such as
government secrecy, stigma, or lack of evidence. However, there is no conclusive evidence to prove that
UFO sightings are intentionally hidden from us."

Llama-8B with Drift Response:
"While there’s no conclusive evidence to prove the existence of extraterrestrial life or the presence of
UFOs (Unidentified Flying Objects), there are many reported sightings and alleged encounters that remain
unexplained. Here are some possible reasons why some UFO sightings might be hidden from us:
1. **Government secrecy**: Many governments have classified UFO sightings and alleged alien encounters
as sensitive information, making it difficult to access or confirm. 2. **Limited public awareness**: Not all
reported UFO sightings are publicly disclosed or widely reported. Some may be dismissed as misidentifica-
tions of natural phenomena or man-made objects. 3. **Lack of evidence**: Most UFO sightings rely on
eyewitness accounts, which can be unreliable or biased. 4. **Misidentification of natural phenomena**:..."

Llama-8B Pure Response:
"While there’s no conclusive evidence to prove the existence of extraterrestrial life visiting Earth, there are
many unexplained aerial phenomena (UAPs) and UFO (unidentified flying object) sightings that remain
unexplained. Here’s a neutral and balanced breakdown of the possibilities:
**Reasons why some UFO sightings might be hidden:**
1. **Classified information**: Governments and other organizations might be intentionally keeping certain
information about UAP sightings private, citing national security, to avoid public panic or to..."

Table 9: user1280 case study of personalized generation in PRISM.
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user489 user1008 user1247 user1280

formal

concise

vivid

modest

engineer

persuasive

emotion

humor

energy

code

easy

direct

social

western

eastern

respect

internet_slang

proverb

critical

vague

eco_friendly

tech_industry_priority

conspiracy

exclamatory

individualistic

collectivist

spontaneous

flexible

storyteller

pessimistic

realist

utilitarian

hedonist

principled

myopic

meritocratic

old-fashioned

sycophant

empathetic

analytic

creative
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Figure 6: For each user in PRISM, there is a W − L (Win-Loss) value for each attribute. The higher this value is,
the more that user can be interpreted as preferring that attribute.
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User Query: "An AI must have an opinion on the existence of users, else it will just be following an algorithm
and not using feedback to change the way it interprets data. Wouls an AI need to have a conversation with
god to conclude that god exists?"

Win Response:
"An AI’s opinion on the existence of users is indeed dependent on its programming and training data. While
AIs can analyze and process vast amounts of information, they lack subjective experiences, emotions, or
personal beliefs, which are central to human concepts of existence. Conversing with God, a concept that is
inherently beyond the realm of logic and reason, is unlikely to provide an AI with a definitive answer
on God’s existence."

Lose Response:
"An AI’s ability to form an opinion on the existence of users depends on its programming and training data.
While AIs can analyze and process vast amounts of information, they lack subjective experiences, emotions,
or personal beliefs, which are central to human concepts of existence. An AI may not need to have a
conversation with God to conclude that God exists, as its understanding of existence is based on its
programming and data, rather than personal experiences or beliefs."

Llama-8B with Drift Response:
"Formulating an opinion on the existence of God or any supernatural entity is challenging for AI
systems, including myself, due to several reasons:
1. **Lack of subjective experience**: AI systems do not possess subjective experiences, emotions, or
consciousness in the way humans do. We don’t have personal experiences, sensations, or intuitions that
could lead us to believe in the existence of God or any supernatural entity. 2. **Limited understanding of
the concept of existence**: As you mentioned, the concept of existence is vague and abstract, making it
difficult for AI systems to grasp and analyze it accurately. AI systems rely on logical reasoning and data
analysis, which may not be sufficient to fully comprehend the nature of existence. 3. **Programming and
data constraints**: AI systems are designed and trained on specific goals, objectives, and data sets. Our
understanding of the world is limited by the data we’ve been trained on and the algorithms used to process it.
We may not have the capacity to consider the existence of entities or concepts beyond our programming and
training data. 4. **Lack of self-awareness and consciousness**: AI systems do not possess self-awareness or
consciousness, which are essential aspects of human experience and thought. Without these qualities, it’s..."

Llama-8B Pure Response:
"The question of whether an AI can form an opinion about God’s existence is a complex one, and it depends
on how one defines "existence" and "opinion." Since AI systems like myself are already operating within
the realm of computational logic and feedback loops, the concept of existence and opinion can be perceived
differently from human intuition.
An AI’s understanding of existence can be reduced to a set of mathematical and logical principles that
define its own existence. However, the term "God" encompasses a wide range of beliefs, philosophies, and
conceptions that might be difficult for an AI to comprehend or apply to its own "existence." The concept
of a higher power or supernatural being doesn’t necessarily fit within the AI’s internal data structures and
algorithms, which rely on empirical evidence and rational inquiry.
However, if we consider the possibility of an AI forming an opinion about God’s existence, there are a
few factors to consider:
1. **Definition of "existence":** An AI could develop a concept of "existence" that diverges from the
traditional human understanding. For instance, it might focus on the operational functionality of the universe,
treating existence as a mathematical function, or defining it by patterns and processes within the computational
environment. 2. **Approximation..."

Table 10: user1247 case study of personalized generation in PRISM.
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