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Fig. 1: By optimizing through a quasi-physical simulator curriculum, we success-
fully transfer human demonstrations to dexterous robot hand simulations. We enable
accurate tracking of complex manipulations with changing contacts (Fig. (a)), non-
trivial object motions (Fig. (b)) and intricate tool-using (Fig. (c,d)). Besides, our
physics curriculum can substantially improve a failed baseline (Fig. (e,f)).

Abstract. We explore the dexterous manipulation transfer problem by
designing simulators. The task wishes to transfer human manipulations
to dexterous robot hand simulations and is inherently difficult due to
its intricate, highly-constrained, and discontinuous dynamics and the
need to control a dexterous hand with a DoF to accurately replicate hu-
man manipulations. Previous approaches that optimize in high-fidelity
black-box simulators or a modified one with relaxed constraints only
demonstrate limited capabilities or are restricted by insufficient simula-
tion fidelity. We introduce parameterized quasi-physical simulators
and a physics curriculum to overcome these limitations. The key ideas
are 1) balancing between fidelity and optimizability of the simulation via
a curriculum of parameterized simulators, and 2) solving the problem in
each of the simulators from the curriculum, with properties ranging from
high task optimizability to high fidelity. We successfully enable a dex-
terous hand to track complex and diverse manipulations in high-fidelity
simulated environments, boosting the success rate by 11%+ from the
best-performed baseline. The project website is available at QuasiSim.
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1 Introduction

Advancing an embodied agent’s capacity to interact with the world represents
a significant stride toward achieving general artificial intelligence. Due to the
substantial costs and potential hazards of setting up real robots to do trial
and error, the standard approach for developing embodied algorithms involves
learning in physical simulators [9, 15, 23, 25, 33, 56, 59] before transitioning to
real-world deployment. In most cases, physical simulators are treated as black
boxes, and extensive efforts have been devoted to developing learning and op-
timization methods for embodied skills within these black boxes. Despite the
considerable progress [2,6–8,16,20,21,31,36,39,43,46,60,62,66,68], the question
like whether the simulators used are the most suitable ones is rarely discussed. In
this work, we investigate this issue and illustrate how optimizing the simulator
concurrently with skill acquisition can benefit a popular yet challenging task in
robot manipulation – dexterous manipulation transfer.

The task aims at transferring human-object manipulations to a dexterous
robot hand, enabling it to physically track the reference motion of both the
hand and the object (see Fig. 1). It is challenged by 1) the complex, highly con-
strained, non-smooth, and discontinuous dynamics with frequent contact estab-
lishment and breaking involved in the robot manipulation, 2) the requirement of
precisely controlling a dexterous hand with a high DoF to densely track the ma-
nipulation at each frame, and 3) the morphology difference. Some existing works
rely on high-fidelity black-box simulators, where a small difference in robot con-
trol can result in dramatically different manipulation outcomes due to abrupt
contact changes, making the tracking objective highly non-smooth and hard to
optimize [4,6,8,43,46]. In this way, their tasks are restricted to relatively simple
goal-driven manipulations such as pouring and re-locating [8,43,46,68], in-hand
re-orientation, flipping and spinning [4, 6] with a fixed-root robot hand, or ma-
nipulating objects with simple geometry such as balls [36]. Other approaches
attempt to improve optimization by relaxing physical constraints, with a pri-
mary focus on smoothing out contact responses [3,24,38,55,56]. However, their
dynamics models may significantly deviate from real physics [38], hindering skill
deployment. Consequently, we ask how to address the optimization challenge
while preserving the high fidelity of the simulator.

Our key insight is that a single simulator can hardly provide both high fidelity
and excellent optimizability for contact-rich dexterous manipulations. Inspired
by the line of homotopy methods [12, 28, 29, 61], we propose a curriculum of
simulators to realize this. We start by utilizing a quasi-physical simulator to
initially relax physical constraints and warm up the optimization. Subsequently,
we transfer the optimization outcomes to simulators with gradually tightened
physical constraints. Finally, we transition to a physically realistic simulator for
skill deployment in realistic dynamics.

To realize this vision, we propose a family of parameterized quasi-
physical simulators for contact-rich dexterous manipulation tasks. These sim-
ulators can be customized to enhance task optimizability while can also be tai-
lored to approximate realistic physics. The parameterized simulator represents
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an articulated multi rigid body as a parameterized point set, models contact
using an unconstrained parameterized spring-damper, and compensates for un-
modeled effects via parameterized residual physics. Specifically, the articulated
multi-body dynamics model is relaxed as the point set dynamics model. An ar-
ticulated object is relaxed into a set of points, sampled from the ambient space
surrounding each body’s surface mesh. The resulting dynamics model combines
the original articulated dynamics with the mass-point dynamics of each indi-
vidual point. Parameters are introduced to control the point set construction
and the dynamics model. The contact model is softened as a parameterized
spring-damper model [3, 19, 35, 38, 51] with parameters introduced to control
when to calculate contacts and contact spring stiffness. The residual physics
network compensate for unmodeled effects from the analytical modeling [22].
The parameterized simulator can be programmed for high optimizability by re-
laxing constraints in the analytical model and can be tailored to approximate
realistic physics by learning excellent residual physics. We demonstrate that the
challenging dexterous manipulation transfer task can be effectively addressed
through curriculum optimization using a series of parameterized physical simu-
lators. Initially, both articulated rigid constraints and the contact model stiffness
are relaxed in the simulator. It may not reflect physical realism but provides a
good environment where the manipulation transfer problem can be solved eas-
ily. Subsequently, the articulated rigid constraints and the contact model are
gradually tightened. Task-solving proceeds iteratively within each simulator in
the curriculum. Finally, the parameterized simulator is optimized to approxi-
mate realistic physics. Task optimization continues, yielding a dexterous hand
trajectory capable of executing the manipulation in environments with realistic
physics.

We demonstrate the superiority of our method and compare it with previ-
ous model-free and model-based methods on challenging manipulation sequences
from three datasets, describing single-hand or bimanual manipulations with
daily objects or using tools. We conduct dexterous manipulation transfer on
two widely used simulators, namely Bullet [9] and Isaac Gym [33] to demon-
strate the generality and the efficacy of our method and the capability of our
quasi-physical simulator to approximate the unknown black-box physics model
in the contact-rich manipulation scenario (Fig. 1). We can track complex manip-
ulations involving non-trivial object motions such as large rotations and com-
plicated tool-using such as using a spoon to bring the water back and forth.
Our approach successfully surpasses the previous best-performed method both
quantitatively and qualitatively, achieving more than 11% success rate than the
previous best-performed method. Besides, optimizing through the physics cur-
riculum can significantly enhance the performance of previously under-performed
RL-based methods, almost completing the tracking problem from failure, as
demonstrated in Fig. 1. This indicates the universality of our approach to em-
bodied AI through optimization via a physics curriculum. Thorough ablations
are conducted to validate the efficacy of our designs.

Our contributions are three-fold:
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– We introduce a family of parameterized quasi-physical simulators that can
be configured to relax various physical constraints, facilitating skill optimiza-
tion, and can also be tailored to achieve high simulation fidelity.

– We present a quasi-physics curriculum along with a corresponding opti-
mization method to address the challenging dexterous manipulation transfer
problem.

– Extensive experiments demonstrate the effectiveness of our method in trans-
ferring complex manipulations, including non-trivial object motions and
changing contacts, to a dexterous robot hand in simulation.

2 Related Works
Dexterous manipulation transfer. Transferring human manipulations to
dexterous robot-hand simulations is an important topic in robot skill acquisi-
tion [8,21,31,43,60,62,68,70]. Most approaches treat the simulator as black-box
physics models and try to learn skills directly from that [4,6,8,43,46]. However,
their demonstrated capabilities are restricted to relatively simple tasks. Another
trend of work tries to relax the physics model [37,38] to create a better environ-
ment for task optimization. However, due to the disparity between their mod-
eling approach and realistic physics, successful trials are typically demonstrated
only in their simulators, which can hardly complete the task under physically
realistic dynamics. In this work, we introduce various parameterized analytical
relaxations to improve the task optimizability while compensating for unmodeled
effects via residual physics networks so the fidelity would not be sacrificed.
Learning for simulation. Analytical methods can hardly approximate an ex-
tremely realistic physical world despite lots of smart and tremendous efforts
made in developing numerical algorithms [19, 23, 26, 27]. Recently, data-driven
approaches have attracted lots of interest for their high efficiency and strong
approximation ability [10, 11, 22, 40, 41, 50, 63]. Special network designs are pro-
posed to learn the contact behaviour [22,41]. We in this work propose to leverage
an analytical-neural hybrid approach and carefully design network modules for
approximating residual contact forces in the contact-rich manipulation scenario.
Sim-to-Sim and Sim-to-Real transfer. The field of robot manipulation con-
tinues to face challenges in the areas of Sim2Sim and Sim2Real transferabil-
ity [71]. Considering the modeling gaps, the optimal strategy learned in a specific
simulator is difficult to transfer to a different simulator or the real world. There-
fore, many techniques for solving the problem have been proposed, including
imitation learning [34,42,43,45,46,48], transfer learning [72], distillation [47,57],
residual physics [17,67], and efforts on bridging the gap from the dynamics model
aspect [22, 69]. Our parameterized simulators learn residual physics involved in
contact-rich robot manipulations. By combining an analytical base with residual
networks, we showcase their ability to approximate realistic physics.

3 Method
Given a human manipulation demonstration, composed of a human hand mesh
trajectory and an object pose trajectory {H,O}, the goal is transferring the
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Fig. 2: The parameterized quasi-physical simulator relaxes the articulated multi
rigid body dynamics as the parameterized point set dynamics, controls the contact
behavior via an unconstrained parameterized spring-damper contact model, and com-
pensates for unmodeled effects via parameterized residual physics networks. We tackle
the difficult dexterous manipulation transfer problem via a physics curriculum.

demonstration to a dexterous robot hand in simulation. Formally, we aim to
optimize a control trajectory A that drives the dexterous hand to manipulate the
object in a realistic simulated environment so that the resulting hand trajectory
Ĥ and the object trajectory Ô are close to the reference motion {H,O}. The
problem is challenged by difficulties from the highly constrained, discontinuous,
and non-smooth dynamics, the requirement of controlling a high DoF dexterous
hand for tracking, and the morphology difference.

Our method comprises two key designs to tackle the challenges: 1) a family of
parameterized quasi-physical simulators, which can be programmed to enhance
the optimizability of contact-rich dexterous manipulation tasks and can also be
tailored to approximate realistic physics (Section 3.1), and 2) a physics curricu-
lum that carefully adjusts the parameters of a line of quasi-physical simulators
and a strategy that solves the difficult dexterous manipulation transfer task by
addressing it within each simulator in the curriculum (Section 3.2).

3.1 Parameterized Quasi-Physical Simulators

Our quasi-physical simulator represents an articulated multi-body, i.e., the robotic
dexterous hand, as a point set. The object is represented as a signed distance
field. The base of the simulator is in an analytical form leveraging an uncon-
strained spring-damper contact model. Parameters are introduced to control the
analytical relaxations on the articulated rigid constraints and the softness of the
contact model. Additionally, neural networks are introduced to compensate for
unmodeled effects beyond the analytical framework. We will elaborate on each
of these design aspects below.
Parameterized point set dynamics. Articulated multi-body represented in
the reduced coordinate system [19,59] may require a large change in joint states
to achieve a small adjustment in the Euclidean space. Moving the end effector
from one point to a nearby point may require adjusting all joint states (Fig. 3).
Besides, transferring the hand trajectory to a morphologically different hand
requires correspondences to make the resulting trajectory close to the original
one. Defining correspondences in the reduced coordinate or via sparse correspon-
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dences will make the result suffer from noise in the data, leading to unwanted
results finally (Fig. 3). Hence, we propose relaxing an articulated multi-rigid
body into a mass-point set sampled from the ambient space surrounding each
body. Each point is considered attached to the body from which it is sampled
and is capable of both self-actuation and actuation via joint motors. We intro-
duce a parameter α to control the point set construction and the dynamics.
This representation allows an articulated rigid object to behave similarly to a
deformable object, providing a larger action space to adjust its state and thereby
easing the control optimization problem.

A
B

A
B

Wish to change the
contact point from A to B

Result: adjust two joint
states to achieve this

A
B

Wish to change the
contact point from A to B

A
B

Result: adjust one joint
state and a few point states
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Multi-Body

Point Set

Noise in data

Transfer w/o Point set

Transfer w/ Point set

Fig. 3: Point Set can
flexibly adjust its states,
avoid overfitting to data
noise, and ease the difficulty
brought by the morphology
difference.

Specifically, for each body of the articulated ob-
ject, we sample a set of points from the ambient
space near the body mesh. The point set Q is con-
structed by concatenating all sampled points to-
gether. Each point pi ∈ Q is treated as a mass
point with a finite mass mi and infinitesimal vol-
ume. The dynamics of the point set consist of artic-
ulated multi-body dynamics [14, 30], as well as the
mass point dynamics of each point pi. For each pi,
we have:

miẍi = Jiu+ αfi + αai, (1)

where Ji represents the Jacobian mapping from the
generalized velocity to the point velocity ẋi, u de-
notes the generalized joint force, fi accounts for ex-
ternal forces acting on pi, and ai ∈ R3 represents the actuation force applied to
the point pi. Consequently, the point set is controlled by a shared control in the
reduced coordinate space u and per-point actuation force ai.
Parameterized spring-damper contact modeling. To ease the optimization
challenges posed by contact-rich manipulations, which arise from contact con-
straints such as the non-penetration requirement and Coulomb friction law [3,5],
as well as discontinuous dynamics involving frequent contact establishment and
breaking, we propose a parameterized contact model for relaxing constraints
and controlling the contact behavior. Specifically, we leverage a classical un-
constrained spring-damper model [19, 35, 51, 59, 64] to model the contacts. This
model allows us to flexibly adjust the contact behavior by tuning the contact
threshold and the spring stiffness coefficients. Intuitively, a contact model with
a high threshold and low spring stiffness presents “soft” behaviors, resulting in
a continuous and smooth optimization space. This makes optimization through
such a contact model relatively easy. Conversely, a model with a low threshold
and large stiffness coefficients will produce “stiff” behaviors, increasing the dis-
continuity of the optimization space due to frequent contact establishment and
breaking. However, it also becomes more physically realistic, meaning contact
forces are calculated only when two objects collide, and a large force is applied
to separate them if penetrations are observed, thus better satisfying the non-
penetration condition. Therefore, by adjusting the contact distance threshold



Quasi-Physical Simulators for Dexterous Manipulations Transfer 7

and spring stiffness coefficients, we can modulate the optimizability and fidelity
of the contact model. The parameter set of the contact model comprises a dis-
tance threshold dc and spring stiffness coefficients. Next, we will delve into the
details of the contact establishment, breaking, and force calculations processes.

Contacts are established between points in the manipulator’s point set Q
and the object. A point p ∈ Q is considered to be in “contact” with the object
if its signed distance to the object sd(p) is smaller than the contact distance
threshold dc. Subsequently, the object surface point nearest to p is identified as
the corresponding contact point on the object, denoted as po. The normal direc-
tion of the object point po is then determined as the contact normal direction,
denoted as no. The contact force f c applied from the manipulator point p to po

is calculated as follows:
f c = −(knd− kddḋ)no, (2)

where, kn represents the spring stiffness coefficient, kd denotes the damping
coefficient, and d = dc − sd(p) is always positive. To enhance the continuity of
f c [64], kddḋ is used as the magnitude of the damping force, rather than kdḋ.

Friction forces are modeled as penalty-based spring forces [3,65]. Once a point
p is identified as in contact with the object, with the object contact point denoted
as po, the contact pair is stored. Contact forces between them are continually
calculated until the contact breaking conditions are met. In more detail, the
static friction force from p to po is calculated using a spring model:

ffs = kfTn(p− po), (3)

where kf is the friction spring stiffness coefficient, Tn = I−nonoT is a tangential
projection operator. When the static friction satisfies ∥ffs ∥ ≤ µ∥f c∥, ffs is applied
to the object point po. Otherwise, the dynamic friction force is applied, and the
contact breaks:

ffd = −µ∥ffs ∥
Tnvp←po

∥Tnvp←po∥
, (4)

where vp←po is the relative velocity between p and po.
Parameterized residual physics. The analytical designs facilitate relaxation
but may limit the use of highly sophisticated and realistic dynamics models,
deviating from real physics. To address this, the final component of our quasi-
physical simulator is a flexible neural residual physics model [1, 22,41].

Specifically, we propose to employ neural networks to learn and predict resid-
ual contact forces and friction forces based on contact-related information. For
detailed residual contact force prediction, we introduce a local contact network
fψlocal that utilizes contact information identified in the parameterized contact
model and predicts residual forces between each contact pair. To address discrep-
ancies in contact region identification between the parameterized contact model
and real contact region, we also incorporate a global residual network fψglobal

that predicts residual forces and torques applied directly to the object’s center
of mass. In more detail, for a given contact pair (p,po), the local contact net-
work utilizes contact-related features from the local contact region, comprising
geometry, per-point velocity, and per-object point normal. It then maps these
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features to predict the residual contact force and residual friction force between
the two points in the contact pair. Additionally, the global residual network in-
corporates contact-related information from the global contact region, including
geometry, per-point velocity, and per-object point normal, as input. It then pre-
dicts a residual force and residual torque to be applied to the object’s center
of mass. Details such as contact region identification and network architectures
are deferred to the Supp. We denote the optimizable parameters in the residual
physics network as ψ = (ψglobal, ψlocal). Through optimization of the residual
physics network, we unlock the possibility of introducing highly non-linear dy-
namics to align our parametrized quasi-physical simulator with any realistic
black-box physical simulator.

Semi-implicit time-stepping is leveraged to make the simulation auto differ-
entiable and easy to combine with neural networks [22].

3.2 Dexterous Manipulation Transfer via a Physics Curriculum

Building upon the family of parameterized quasi-physical simulators, we present
a solution to the challenging dexterous manipulation transfer problem through
a physics curriculum. This curriculum consists of a sequence of parameterized
simulators, ranging from those with minimal constraints and the softest con-
tact behavior to increasingly realistic simulators. We address the problem by
transferring the manipulation demonstration to the dexterous hand within each
simulator across the curriculum progressively. To elaborate further, the opti-
mization process begins within the parameterized simulator where articulated
rigid constraints are removed and the contact model is tuned to its softest level.
Additionally, the residual physics networks are deactivated. This initial simulator
configuration offers a friendly environment for optimization. Subsequently, the
physics constraints are gradually tightened as we progress through each simula-
tor within the curriculum. The task is solved iteratively within each simulator.
After reaching the most tightened analytical model, the analytical part is fixed
and residual networks are activated. The simulator is gradually optimized to
approximate the dynamics in a realistic physical environment. Concurrently, the
control trajectory A continues to be refined in the quasi-physical simulator. Fi-
nally, we arrive at a simulator optimized to be with high fidelity and a trajectory
A capable of guiding the dexterous hand to accurately track the demonstration
within a realistically simulated physical environment. Additionally, since object
properties as well as system parameters are unknown from the kinematics-only
demonstration, we set them optimizable and identify them (denoted S) together
with optimizing the hand control trajectory. Next we’ll illustrate this in detail.
Transferring human demonstration via point set dynamics. To robustly
transfer the human demonstration to a morphologically different dexterous robot
hand in simulation and to overcome noise in the kinematic trajectory, we ini-
tially relax the articulated rigid constraints and transfer the kinematics human
demonstration to the control trajectory of the point set. Specifically, the point set
representation with the relaxation parameter α for the dynamic human hand [8]
is constructed. The shared control trajectory A and per-point per-frame actions
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are optimized so that the resulting trajectory of the point set can manipulate
the object according to the demonstration. After that, a point set with the same
parameter α is constructed to represent the dexterous robot hand. Subsequently,
the shared control trajectory A and per-point per-frame actions are optimized
to track the manipulation accordingly.
Transferring through a contact model curriculum. After that, the articu-
lated rigid constraint is tightened by freezing the point set parameter α to zero.
The following optimization starts from a parameterized simulator with the soft-
est contact model. We then gradually tighten the contact model by adjusting its
distance threshold, contact force spring stiffness, etc. By curriculum optimizing
the trajectory A and parameters S in each of the quasi-physical simulators, we
finally arrive at the control trajectory that can drive a dexterous hand to accom-
plish the tracking task in the parameterized simulator with the most tightened
analytical model.
Optimizing towards a realistic physical environment. Subsequently, the
residual physics network is activated and the parameterized simulator is opti-
mized to approximate the dynamics in a realistic physical environment. We con-
tinue to optimize the hand trajectory in the quasi-physical simulator. Specifically,
we leverage the successful trial in model-based human tracking literature [16,66]
and iteratively optimize the control trajectory A and the parameterized simu-
lator. In more detail, the following two subproblems are iteratively solved: 1)
optimizing the quasi-physical simulator to approximate the realistic dynamics,
and 2) optimizing the control trajectory A to complete the manipulation in
the quasi-physical simulator. Gradient-based optimization is leveraged taking
advantage of the differentiability of the parameterized simulator.

After completing the optimization, the final control trajectory is yielded by
model predictive control (MPC) [18] based on the optimized parameterized sim-
ulator and the hand trajectory A. Specifically, in each step, the current and
the following controls in several subsequent frames are optimized to reduce the
tracking error. More details are deferred to the Supp.

4 Experiments
We conduct extensive experiments to demonstrate the effectiveness of our method.
The evaluation dataset is constructed from three HOI datasets with both single-
hand and bimanual manipulations (with rigid objects), with complex manipula-
tions with non-trivial object movements, and rich and changing contacts involved
(see Section 4.1). We use Shadow hand [49] and test in two simulators widely
used in the embodied AI community: Bullet [9] and Isaac Gym [33]. We com-
pare our method with both model-free approaches and model-based strategies
and demonstrate the superiority of our method both quantitatively and qual-
itatively. We can track complex contact-rich manipulations with large object
rotations, back-and-forth object movements, and changing contacts successfully
in both of the two simulators, while the best-performed baseline fails (see Sec-
tion 4.2, Fig. 4). On average, we boost the tracking success rate by 11%+ from
the previous best-performed (see Section 4.2). We make further analysis and
discussions and show that the core philosophy of our work, optimizing through
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Fig. 4: Qualitative comparisons. Please refer to our website and the accom-
panying video for animated results.

a quasi-physics curriculum, is potentially general and can help improve the per-
formance of a model-free baseline (see Section 4.3).

4.1 Experimental Settings

Datasets. Our evaluation dataset is compiled from three distinct sources, namely
GRAB [53], containing single-hand interactions with daily objects, TACO [32],
containing humans manipulating tools, and ARCTIC [13] with bimanual manip-
ulations. For GRAB, we randomly sample a manipulation trajectory for each
object. If its manipulation is extremely simple, we additionally sample one tra-
jectory for it. The object is not considered if its corresponding manipulation
is bimanual such as binoculars, involves other body parts such as bowl, or
with detailed part movements such as the game controller. The number of
manipulation sequences from GRAB is 27. For TACO [32], we acquire data by
contacting authors. We randomly select one sequence for each right-hand tool ob-
ject. Sequences with very low quality like erroneous object motions are excluded.
14 trajectories in total are selected finally. For ARCTIC [13], we randomly se-
lect one sequence for each object from its available manipulation trajectories,
resulting in 10 sequences in total. More details are deferred to the Supp.

https://meowuu7.github.io/QuasiSim/
https://youtu.be/Pho3KisCsu4
https://youtu.be/Pho3KisCsu4
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Metrics. We introduce three distinct metrics to assess the quality of object
tracking, the accuracy of hand tracking, and the overall success of the tracking
task: 1) Per-frame average object rotation error: Rerr =

1
N

∑N
n=1(1− (qn · q̂n)),

where qn is the ground-truth orientation and q̂n is the tracked result, rep-
resented in quaternion. 2) Per-frame average object translation error: Terr =
1
N

∑N
n=1 ∥tn− t̂n∥, where t and tn are ground-truth and tracked translations re-

spectively. 3) Mean Per-Joint Position Error (MPJPE) = 1
N

∑N
n=1 ∥Jn−Ĵn∥ [20,

44, 58], where Jn and Ĵn are keypoints of GT human hand and the simulated
robot hand respectively. We manually define the keypoints and the correspon-
dences to the human hand keypoints for the Shadow hand. 4) Per-frame aver-
age hand Chamfer Distance: CD = 1

N

∑N
n=1 Chamfer-Distance(Hn − Ĥn), for

evaluating whether the Shadow hand can “densely” track the demonstration.
5) Success rate: a tracking is regarded as successful if the object rotation er-
ror Rerr, object translation error Terr, and the hand tracking error MPJPE are
smaller than their corresponding threshold. Three success rates are calculated
using three different thresholds, namely 10◦−10cm−10cm, 15◦−15cm−15cm.
Baselines. We compare with two trends of baselines. For model-free approaches,
since there is no prior work with exactly the same problem setting as us, we try to
modify and improve a goal-driven rigid object manipulation method DGrasp [8]
into two methods for tracking: 1) DGrasp-Base, where the method is almost kept
with same with the original DGrasp. We use the first frame where the hand and
the object are in contact with each other as the reference frame. Then the policy
is trained to grasp the object according to the reference hand and object goal
at first. After that, only the root is guided to complete the task. 2) DGrasp-
Tracking, where we divide the whole sequence into several subsequences, each of
which has 10 frames, and define the end frame of the subsequence as the reference
frame. Then the grasping policy is used to guide the hand and gradually track
the object according to the hand and the object pose of each reference frame.
We improve the DGrasp-Tracking by optimizing the policy through the quasi-
physical curriculum and creating “DGrasp-Tracking (w/ Curriculum)” trying to
improve its performance. For model-based methods, we compare with Control-
VAE [66] and traditional MPC approaches. For Control-VAE, we modify its
implementation for the manipulation tracking task. We additionally consider
three differentiable physics models to conduct model-predictive control for solv-
ing the task. Taking the analytical model with the most tightened contact model
as the base model (“MPC (w/ base sim.)”), we further augment it with a general
state-of-the-art contact smoothing for robot manipulation [52] and create “MPC
(w/ base sim. w/ soften)”. Details of baseline models are deferred to the Supp.
Training and evaluation settings. The physics curriculum is composed of
three stages. In the first stage, the parameter α varies from 0.1 to 0.0 and the
contact model stiffness is relaxed to the softest level. In the second stage, α is
fixed and the contact model stiffness varies from the softest version to the most
tightened level gradually through eight stages. Details w.r.t. parameter settings
are deferred to the Supp. In the first two stages, we alternately optimize the
trajectory A and parameters S. In each optimization iteration, the A is optimized
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Table 1: Quantitative evaluations and comparisons to baselines. Bold red
numbers for best values and italic blue values for the second best-performed ones.
Simulator Method Rerr (◦, ↓) Terr (cm, ↓) MPJPE (mm, ↓) CD (mm, ↓) Success Rate (%, ↑)

Bullet

Model
Free

DGrasp-Base 44.24 5.82 40.55 16.37 0/13.73/15.69
DGrasp-Tracking 44.45 5.04 37.56 14.72 0/15.69/15.69
DGrasp-Tracking (w/ curric.) 33.86 4.60 30.47 13.53 7.84/23.53/37.25

Model
Based

Control-VAE 42.45 2.73 25.21 10.94 0/15.68/23.53
MPC (w/ base sim.) 32.56 3.67 24.62 10.80 0/15.68/31.37
MPC (w/ base sim. w/ soften) 31.89 3.63 28.26 11.31 0/21.57/37.25

Ours 24.21 1.97 24.40 9.85 27.45/37.25/58.82

Isaac Gym

Model
Free

DGrasp-Base 36.41 4.56 50.97 18.78 0/7.84 /7.84
DGrasp-Tracking 44.71 5.57 41.53 16.72 0/0/7.84
DGrasp-Tracking (w/ curric,) 38.75 5.13 40.09 16.26 0/23.53/31.37

Model
Based

Control-VAE 35.40 4.61 27.63 13.17 0/13.73/29.41
MPC (w/ base sim.) 37.23 4.73 23.19 9.75 0/15.69/31.37
MPC (w/ base sim. w/ soften) 36.40 4.46 23.27 10.34 0/9.80/23.53

Ours 25.97 2.08 25.33 10.31 21.57/43.14/56.86

for 100 steps while S is optimized for 1000 steps. In the third stage, A and ψ are
optimized for 256 steps in each iteration. For time-stepping, dt is set to 5×10−4

in the parameterized and the target simulators. The articulated multi-body is
controlled by joint motors and root velocities in the parameterized quasi-physical
simulator while PD control [54] is leveraged in the target simulators.

4.2 Dexterous Manipulating Tracking
We conducted thorough experiments in two widely used simulators [9, 33]. We
treat them as realistic simulated physical environments with high fidelity and
wish to track the manipulation in them. In summary, we can control a dexterous
hand to complete a wide range of the manipulation tracking tasks with non-
trivial object movements and changing contacts. As presented in Table 1, we
can achieve significantly higher success rates calculated under three thresholds
than the best-performed baseline in both tested simulators. Fig. 4 showcases
qualitative examples and comparisons. Please check out our website and video
for animated results.
Complex manipulations. For examples shown in Fig. 4, we can complete
the tracking task on examples with large object re-orientations and complicated
tool-using (Fig. (a,b,c)). However, DGrasp-Tracking fails to establish sufficient
contact for correctly manipulating the object. In more detail, in Fig. 4(b), the
bunny gradually bounced out from its hand in Bullet, while our method does
not suffer from this difficulty. In Fig. 4(c), the spoon can be successfully picked
up and waved back-and-forth in our method, while DGrasp-Tracking loses the
track right from the start.
Bimanual manipulations. We are also capable of tracking bimanual manipu-
lations. As shown in the example in Fig. 4(d), where two hands collaborate to
relocate the object, DGrasp-Tracking fails to accurately track the object, while
our method significantly outperforms it.
4.3 Further Analysis and Discussions

Could model-free methods benefit from the physics curriculum? In ad-
dition to the demonstrated merits of our quasi-physical simulators, we further

https://meowuu7.github.io/QuasiSim/
https://youtu.be/Pho3KisCsu4
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Table 2: Ablation studies. Bold red numbers for best values and italic blue values
for the second best-performed ones. The simulation environment is Bullet.
Method Rerr (◦, ↓) Terr (cm, ↓) MPJPE (mm, ↓) CD (mm, ↓) Success Rate (%, ↑)

Ours w/o Analytical Sim. 44.27 4.39 29.84 12.91 0/13.73/25.49
Ours w/o Residual Physics 33.69 3.81 26.57 10.34 5.88/23.53/41.18
Ours w/o Local Force NN 35.98 2.90 32.87 12.44 0/19.61/35.29
Ours w/o Curriculum 42.40 4.87 32.61 13.37 0/17.64/29.41
Ours w/ Curriculum II 29.58 2.33 31.61 10.29 11.76/27.45/50.98
Ours 24.21 1.97 24.40 9.85 27.45/37.25/58.82

explore whether model-free strategies can benefit from them. We introduce the
“DGrasp-Tracking (w/ Curriculum)” method and compare its performance with
the original DGrasp-Tracking model. As shown in Table 1 and the visual compar-
isons in Fig. 6, the DGrasp-Tracking model indeed benefits from a well-designed
physics curriculum. For example, as illustrated in Fig. 6, the curriculum can
significantly improve its performance, enabling it to nearly complete challenging
tracking tasks where the original version struggles.

5 Ablation Study
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(a) Qualitative comparisons on the stapler example

(b) Training loss comparisons

(c) Tracking loss comparisons

Fig. 5: (a) Qualitative comparisons between our full method and the ablated models;
(b) Training loss curve comparisons; (c) Tracking loss curve comparisons.

Human
Demo

DGrasp-
Tracking

DGrasp-
Tracking

(Curriculum)

Fig. 6: Visual evidence on boosting DGrasp-Tracking’s performance via optimizing it
through a physics curriculum.

We conduct a wide range of ablation studies to validate the effectiveness
of some of our crucial designs, including the parameterized analytical physics
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model, the parameterized residual physics, the role of the local force network,
the necessity of introducing a physics curriculum into the optimization, and how
the design on the curriculum stages affects the result.
Parameterized analytical model. The skeleton of the quasi-physical simu-
lator is an analytical physics model. The intuition is that the parameterized
simulator with such physical bias can be optimized towards a realistic simulator
more easily than training pure neural networks for approximating. To validate
this, we ablate the analytical model and use neural networks to approximate
physics in Bullet directly (denoted as “Ours w/o Analytical Sim.”). The quanti-
tative (Table 2) and qualitative (Fig. 5) results indicate that the physical biases
brought by the analytical model could help the parameterized simulator to learn
better physics in the contact-rich scenario. For instance, in the example demon-
strated in Fig. 5, the ablated version fails to guide the robot hand to successfully
pinch the object in the second figure.
Parameterized residual physics. To validate the necessity of introducing
residual force networks to close the gap between the physics modeled in the
parameterized analytical simulator and that of a realistic simulator, we ablate
the parameterized force network and create a version named “Ours w/o Residual
Physics”. Table 2 demonstrated its role in enabling the parameterized simulator
to approximate realistic physics models.
Local residual force network. To adequately leverage state and contact-
related information for predicting residual contact forces, we propose to use two
types of networks: 1) a local force network for per contact pair residual forces
and 2) a global network for additionally compensating. The local network is
introduced for fine-grained approximation. We ablate this design and compare
the result with our full model to validate this (see Fig. 5 and Table 1).
Optimizing through an analytical physics curriculum. We further inves-
tigate the effectiveness of the analytical curriculum design and how its design
influences the result. Specifically, we create two ablated versions: 1) “Ours w/o
Curriculum”, where the optimization starts directly from the parameterized ana-
lytical model with articulated rigid constraints tightened and the stiffest contact
model, and 2) “Ours w/ Curriculum II”, where we move some stages out from the
original curriculum. Table 2 and Fig. 5 demonstrate that both the curriculum
and the optimization path will affect the model’s performance.

6 Conclusion and Limitations

In this work, we investigate creating better simulators for solving complex robotic
tasks involving complicated dynamics where the previous best-performed op-
timization strategy fails. We present a family of parameterized quasi-physical
simulators that can be both programmed to relax various constraints for task
optimization and can be tailored to approximate realistic physics. We tackle the
difficult manipulation transfer task via a physics curriculum.
Limitations. The method is limited by the relatively simple spring-damper
model for contact constraint relaxation. Introducing delicate analytical contact
models to parameterized simulators is an interesting research direction.
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