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Figure 1: Reconstruction samples. CATOK with a MeanFlow decoder (Geng et al., 2025) supports
fast one-step (col. 2) and high-quality multi-step (col. 3) sampling with 256 tokens. Reconstructions
in cols. 3-7 show a fine-to-coarse trend as tokens are reduced from 256 to 16, highlighting the
causality of the 1D tokens. Cols. 7-10 present reconstructions from different 16-token segments,
demonstrating that CATOK naturally learns diverse visual concepts across token intervals.

ABSTRACT

Autoregressive (AR) language models rely on causal tokenization, but extending
this paradigm to vision remains non-trivial. Current visual tokenizers either flatten
2D patches into non-causal sequences or enforce heuristic orderings that misalign
with the “next-token prediction” pattern. Recent diffusion autoencoders similarly
fall short: conditioning the decoder on all tokens lacks causality, while applying
nested dropout mechanism introduces imbalance. To address these challenges,
we present CATOK, a 1D causal image tokenizer with a MeanFlow decoder. By
selecting tokens over time intervals and binding them to the MeanFlow objective,
as illustrated in Fig. 1, CATOK learns causal 1D representations that support both
fast one-step generation and high-fidelity multi-step sampling, while naturally
capturing diverse visual concepts across token intervals. To further stabilize and
accelerate training, we propose a straightforward regularization REPA-A, which
aligns encoder features with Vision Foundation Models (VFMs). Experiments
demonstrate that CATOK achieves state-of-the-art results on ImageNet reconstruc-
tion, reaching 22.72 PSNR and 0.681 SSIM with fewer training epochs, and the
AR model attains performance comparable to leading approaches.

1 INTRODUCTION

The autoregressive (AR) paradigm enables generative large language models (LLMs) to achieve
remarkable progress, exhibiting strong generalization and scalability (Achiam et al., 2023; OpenAl,
2025; Comanici et al., 2025; Grattafiori et al., 2024; Yang et al., 2025; Liu et al., 2024). Following
the natural reading order of the text, LLMs tokenize a sentence into 1D causal tokens and perform
generative modeling through next-token prediction. To emulate the capabilities and properties of
LLMs in visual generation, the computer vision community has recently advanced large autoregressive
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Figure 2: Comparison among different decoders. a) Naive flow decoders (Sargent et al., 2025)
condition on all 1D tokens from the encoder without dropout, leading the 1D tokens to lack causality;
b) Consistency decoders obtain k by random sampling (Bachmann et al., 2025; Wen et al., 2025)
or timestep binding (Pan et al., 2025; Wang et al., 2025a), and condition on the first k£ 1D tokens,
which biases toward early tokens, introducing imbalance, leading to degraded performance of AR
generation; ¢) Our MeanFlow decoder conditions on 1D tokens within the time interval [r, ¢] to model
the average velocity field along the subpath, which inherently maintains causality and balance of the
1D tokens, and supporting one-step sampling during reconstruction or generation.

vision models (Bai et al., 2024; Yu et al., 2024a; Wang et al., 2024; Sun et al., 2024; Han et al., 2025;
Wang et al., 2025b). However, due to inferior performance, diffusion-based models (Ho et al., 2020;
Song et al., 2021) like rectified flows (Liu et al., 2022; Lipman et al., 2022) remain the dominant
approach in most scenarios (OpenAl, 2024; Wu et al., 2025).

In this paper, we argue that a crucial step toward bridging the gap between autoregressive language
models and vision models lies in the causal tokenization of visual content. Autoregressive modeling
relies on causal tokens and requires a predefined order of data. Unlike text, which inherently
possesses a natural order, defining an appropriate order for images remains an open issue. VQGAN-
like models (Esser et al., 2021) tokenize an image into grids of 2D tokens, and flatten them to a
1D sequence in raster (Razavi et al., 2019; Ramesh et al., 2021) or random (Yu et al., 2024b; Li
et al., 2024b) order, which lacks causality between preceding and succeeding tokens (Pan et al.,
2025; Wang et al., 2025a). VAR-like models (Tian et al., 2024; Han et al., 2025), on the other hand,
tokenize images into multi-scale 2D tokens and establish a coarse-to-fine ordering via next-scale
prediction. While this approach guarantees causality in visual tokens and yields promising results, it
compromises the “next-token prediction” pattern of LLMs.

With the recent advances in 1D tokenizers (Cui et al., 2024; Yu et al., 2024c), the community has
renewed its interest in diffusion autoencoders (Preechakul et al., 2022; Yang & Mandt, 2023) due
to their demonstrated effectiveness in visual generation. Diffusion autoencoders extract 1D tokens
from registers (Darcet et al., 2024) of encoders, and use them as conditions for the decoder to
reconstruct images with denoising or rectified flow objective. However, as shown in Fig. 2 a), Naive
flow decoders, such as FlowMo (Sargent et al., 2025), condition on all 1D tokens from the encoder,
causing the 1D tokens to lack causality and making AR learning difficult. To learn the causality
for 1D tokens, as shown in Fig. 2 b), consistency decoders apply nested dropout (Rippel et al.,
2014) by conditioning on the first k tokens, where k is determined either via random sampling, as in
FlexTok (Bachmann et al., 2025) and Semanticist (Wen et al., 2025), or via timestep binding, as in
DDT (Pan et al., 2025) and Selftok (Wang et al., 2025a). Since earlier tokens are more likely to be
selected, this approach introduces imbalance and can be harmful to AR generation (see Tab. 3b).

Motivated by these observations, we propose CATOK, a 1D CAusal image TOKenizer equipped with
a MeanFlow decoder (Geng et al., 2025). As illustrated in Fig. 2 c), we address the imbalance problem
by selecting 1D tokens within a sampled time interval [r, ¢] and binding them with the corresponding
time interval in the MeanFlow objective. This allows the 1D tokens to model the average velocity
field along the subpath from r to ¢, capturing causality in the noise-to-image generation process
while naturally supporting one-step sampling during generation. Moreover, inspired by REPA and
REPA-E (Yu et al,, 2024d; Leng et al., 2025), we align the image features from encoders with
high-quality external visual representations, providing a regularization that effectively accelerates
and stabilizes autoencoder training. We refer to this variant as REPA-A.
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As shown in Fig. 1, CATOK supports both fast one-step sampling (col. 2) and high-quality multi-step
sampling (col. 3) with 256 tokens, demonstrating its flexibility in balancing efficiency and fidelity.
Reconstructions in cols. 3—7, obtained by progressively reducing the number of tokens from 256 to
16, exhibit a clear fine-to-coarse trend, providing evidence for the causality of the learned 1D tokens.
Moreover, reconstructions in cols. 7-10 from different 16-token segments show that CATOK naturally
learns diverse visual concepts across token intervals, underscoring its ability to disentangle semantic
information and distribute it meaningfully among tokens. Our contributions can be summarized as:

1. We propose a novel architecture for 1D causal image tokenization based on diffusion autoen-
coders (Preechakul et al., 2022) with the MeanFlow (Geng et al., 2025) objective.

2. We seamlessly combine the training of a causal encoder and a one-step flow decoder, enabling
one-step sampling in diffusion autoencoders for the first time.

3. We propose REPA-A, an advanced technique that leverages existing vision foundation models
to stabilize and accelerate diffusion autoencoder training.

4. On ImageNet, our CATOK-L achieves state-of-the-art results with 22.72 PSNR and 0.681 SSIM,
while attains comparable performance o leading approaches with 0.84 rFID and 3.40 gFID.

2 BACKGROUND

In this section, we provide a concise introduction to rectified flows (Liu et al., 2022; Lipman et al.,
2022) and MeanFlow models (Geng et al., 2025) as a preliminary to our CATOK.

2.1 RECTIFIED FLOWS

Given data © ~ pgqiq(x) and prior € ~ pyrior(€), rectified flows learn the conditional velocity
fields vy = v¢(z¢|x) between these two distributions. Specifically, a flow path can be constructed as
2zt = (1 — t)x + te with time ¢, and the conditional velocity can be derived by:

d
v(z|z) = P2 (D
A deep neural network vy (z¢, t) parameterized by 6 is learned to model the marginal velocity field
U(Zt7 t) £ Ept(vt|zt) [’Ut]a (2)

which is equivalent to fitting the conditional velocity field in Eq. (1) (Lipman et al., 2022). In
inference, starting from 21 = € ~ pprior(€), samples can be generated by solving:

t
i = / vo(zr,7)dr, 3)

where r denotes another timestep and r < ¢. In practice, this integral is numerically approximated in
discrete time steps. For instance, the Euler method updates each step as:

zr = 2t — (t — r)vg(ze, ). ()]
However, it estimates the average velocity over the interval [r, t] using only the instantaneous velocity
at time ¢, which introduces inaccuracies during sampling.

2.2 MEANFLOW MODELS

To mitigate the errors that arise with fewer sampling steps, MeanFlow models directly fit the average
velocity u over the interval [r, t]. Formally, the average velocity u can be defined as:

1 t
4

— | v(zy,7)dT Q)

U(Zt,’r, t) t—rp

Through derivations in Geng et al. (2025), the average velocity u(z,,t) can be obtained from the
instantaneous velocity v(z¢, t):

u(ze,rt) = v(ze, t) — (¢ — r)(v(24, )0 u(ze, 7y t) + Opu(ze, 1, 1)), (6)
and the MeanFlow objective is:
L(0) = Ellug (¢, 7,t) — sg[v(z|z) — (¢ — ) (v(z|2)D-ug + dpuo)]|[3, )

where sg[-] denotes the stop-gradient operation, avoiding double backpropagation through the Jaco-
bian—vector product. Moreover, one-step sampling can be given by zg = € — ug(€, 0, 1).



Under review as a conference paper at ICLR 2026

Image patches T Registers Noised Images 2t
556 D00 T |
v - oy
&s
LREPA- A Causal ViT 10 g MeanFlow DiT — Lrepa
. 1 ' ! % . 3 : .
Avg. velocity Ug  Ins. velocity Vg
000 B8 ; ‘
Image features He 1D tokens Vi Lyr Lrr

Figure 3: Architecture of our CATOK. CATOK is a diffusion autoencoder with a causal Vision
Transformer (ViT) (Dosovitskiy et al., 2021) encoder and a MeanFlow Diffusion Transformer
(DiT) (Peebles & Xie, 2023) decoder. The encoder leverages registers (Darcet et al., 2024) to extract
rich visual information into 1D tokens, which are then conditioned to the decoder through time
interval selecting. With two flow objectives and two representation alignment objectives, CATOK
effectively learns causal 1D representations that support both one-step and multi-step sampling, while
naturally capturing diverse visual concepts across different token intervals.

3 CATok

We now introduce CATOK, a diffusion autoencoder (Preechakul et al., 2022; Yang & Mandt, 2023)
with a causal Vision Transformer (ViT) (Dosovitskiy et al., 2021) encoder and a MeanFlow Diffusion
Transformer (DiT) (Peebles & Xie, 2023) decoder, for 1D causal image tokenization. We begin in
Sec. 3.1 by presenting the architecture of CATOK. Next, in Sec. 3.2, we describe how it is optimized
through multiple objectives. Finally, in Sec. 3.3, we outline the autoregressive modeling procedure
used for image generation with the trained CATOK.

3.1 ARCHITECTURE

As shown in Fig. 3, CATOK is a diffusion autoencoder with a causal ViT encoder £5 and a MeanFlow
DiT decoder Dy parameterized by § and 6 respectively. Specifically, given an image x, we concatenate
it with K registers R and send them into the encoder:

[Heva] 255([1'7]%])7 (®)

where H. denotes the image features and Vi represents the compressed 1D tokens. Furthermore, a
causal attention mask is applied to enforce the dependency structure among 1D tokens (Cui et al.,
2024; Bachmann et al., 2025; Wen et al., 2025). Specifically, image features can attend to each other
but not to the 1D tokens; in contrast, 1D tokens are allowed to attend to all image features while
being restricted to only their preceding 1D tokens.

In the MeanFlow DiT decoder phase, we first independently sample two timesteps r and ¢, ensuring
that r, ¢ € [0, 1] and r < t. Then, the flow path is constructed by linearly interpolating the image x
with random noise € ~ A(0, 1):

zt = (1 —t)x + te. )

By conditioning the noised image z; with the 1D tokens from the interval [r - Kt - K], denoted as
V¢, and timesteps 7, t, the DiT decoder predicts the average velocity ug over the time interval:

ug = Do (21,7, 1, Viu). (10)

Since accurately modeling the instantaneous velocity field improves training stability when learning
the average velocity field (Geng et al., 2025; Peng et al., 2025), we follow Eq. (5) and set r =t to
model the instantaneous velocity field vg:

Vo :D9<Ztat7ta VK)7 (11)

and all the 1D tokens Vi are conditioned upon.



Under review as a conference paper at ICLR 2026

3.2 TRAINING

As illustrated in Fig. 3, CATOK is jointly optimized with two flow objectives—MeanFlow (Geng
et al., 2025) and Rectified Flow (Liu et al., 2022; Lipman et al., 2022)—and two representation
alignment objectives—REPA (Yu et al., 2024d) and our proposed REPA-A.

MeanFlow objective. From Eq. (1), Eq. (7) and Eq. (10), we define our MeanFlow objective as:
Larr = Ellug — (¢ — ) — sg[(t = 7)((e — 2)D.ug + Dyuo)]|[3, (12)

where sg[-] denotes the stop-gradient operation, and (¢ — 2)0,ugp + Jzup is computed using the
Jacobian-vector product operation.

Recitified Flow objective. We also model the instantaneous velocity field to enhance training stability.
Based on Eq. (1), we define our Rectified Flow objective as follows:

Lrr = E|jvg — (e — z)||3. (13)
Following Geng et al. (2025), we employ an adaptive Ly loss in place of the standard Lo loss
to enhance performance, defined as Lagapive = ||A[3 / sg[(||A]|3 + ¢)*], where A denotes the

regression error, and integrate the two objectives in L by fixing a proportion ¢ of samples with
r = t. In our implementation, we set ¢ = 1073, w = 1.0, and q = 75%.

REPA objective. REPA (Yu et al., 2024d) is a regularization technique that leverages Vision
Foundation Models (VFMs) to assist DiT training and accelerate convergence. Formally, given the
hidden states H 4 from a middle layer of the DiT decoder and pretrained representations H,, s, from
a VFM, our REPA objective can be defined as:

N
1 . n .rrln
LrEpa = _E[N Z s1m(H1[)f]m,prOJ(Hg M, (14)

n=1
where n is a patch index, sim(-, -) is the cosine similarity function and proj(-) is the projection layer.

Our proposed REPA-A objective. Unlike REPA-E (Leng et al., 2025), which backpropagates
gradients to the VAE (Kingma & Welling, 2014), or VA-VAE (Yao et al., 2025), which directly
regularizes the compressed features of VAE using VFEMs, we propose REPA-A, a representation
alignment method specifically tailored for conditional diffusion autoencoders such as our CATOK.
Formally, given the image features H, from the ViT encoder and the same VFM representations
H, 1, the REPA-A objective can be defined as:

N
1 Z : n n
EREPAfA = _E[N 51m(H7[jf]m,H£ ])], (15)
n=1

where 7 is a patch index and sim(-, -) is the cosine similarity function. With REPA-A, the encoder
produces higher quality semantic representations, allowing 1D tokens to extract more informative and
discriminative visual content, thereby accelerating convergence and enhancing overall performance.

3.3 AUTOREGRESSIVE MODELING

Once the causal 1D tokens Vi are obtained from a well-trained CATOK encoder, we train a standard
autoregressive model following the “next-token prediction” paradigm to generate images. Formally,
the AR model defines the generation process as:

K
p(Vi, Vo, ., Vie) = [ oVl VA, . Vi) (16)

k=1
When V}, is represented as discrete indices, this probabilistic model can be optimized via cross-entropy

loss. In contrast, when V}, is continuous-valued, as in our setting, optimization is performed using a
diffusion loss introduced in Li et al. (2024b). More details are provided in Appendix A.

For image generation, given a prior such as a class token, we first obtain a predicted sequence Vi via
Eq. (16). By feeding it into MeanFlow decoder, we can directly perform one-step sampling to render

an image through & = ¢ — Dy(¢, 0, 1, VK), where € denotes a random Gaussian noise.
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4 RELATED WORKS

AR modeling requires compressing raw data into a sequence of tokens, which in turn has spurred a
line of research on visual tokenizers. In this section, we categorize them into three types.

2D visual tokenizers. VQ-VAE (Van Den Oord et al., 2017; Razavi et al., 2019) is one of the most
widely adopted 2D visual tokenizers, integrating Vector Quantization (VQ) into the VAE (Kingma
& Welling, 2014) to produce discrete tokens from image patches. Subsequent works improve upon
this design: VQGAN (Esser et al., 2021) introduces an adversarial loss to enhance reconstruction
quality, while RQ-VAE (Lee et al., 2022) employs multiple quantization stages. MAGVIT-v2 Yu
et al. (2024a) further alleviates quantization bottlenecks with Look-up Free Quantization (LFQ), and
MaskBit modernizes the VQGAN framework with binary quantized tokens. Most recently, VAR
models (Tian et al., 2024; Han et al., 2025) tokenize images into multi-scale 2D tokens and establish a
coarse-to-fine ordering via “next-scale prediction”. However, these 2D tokenizers either lack causality
across tokens or compromise the “next-token prediction” paradigm.

1D visual tokenizers. SEED (Cui et al., 2024) employs a causal Q-Former (Li et al., 2023) to extract
1D tokens from a ViT Dosovitskiy et al. (2021) encoder and performs semantic reconstruction with a
pre-trained text encoder. TiTok (Yu et al., 2024c) derives 1D tokens using learnable registers and
conditions a ViT decoder for mask-to-patch reconstruction. Building on these designs, a line of
work explores 1D causal visual tokenizers. TexTok (Zha et al., 2025) and TA-TiTok (Kim et al.,
2025) leverage textual conditioning to enhance performance, ALIT (Duggal et al., 2025) introduces
adaptive-length tokenization via recurrent encoding, One-D-Piece (Miwa et al., 2025) applies nested
dropout (Rippel et al., 2014) on tokens to introduce causality, and Spectral AR (Huang et al., 2025)
adopts a similar architecture but imposes explicit spectral interpretations to supervise different tokens.
In contrast, CATOK adopts a diffusion-based decoder, which we introduce next.

Diffusion autoencoders as 1D tokenizers. Diffusion autoencoders (Preechakul et al., 2022; Yang &
Mandt, 2023; Li et al., 2024a; Wang et al., 2025c) compress image features into 1D tokens, which
serve as conditioning inputs for diffusion models trained with denoising or rectified flow objectives.
However, naive flow decoders such as FlowMo (Sargent et al., 2025) and DiTo (Chen et al., 2025)
condition on all tokens simultaneously, eliminating causal structure and thereby hindering AR learning.
To address this, consistency decoders introduce causality through nested dropout, conditioning only
on early tokens. The early-token set is determined either stochastically, as in FlexTok (Bachmann
et al., 2025) and Semanticist (Wen et al., 2025), or deterministically via timestep binding, as in
DDT (Pan et al., 2025) and Selftok (Wang et al., 2025a). However, because earlier tokens are
disproportionately favored, these methods induce imbalance, which can degrade AR generation
quality. In contrast, our CATOK leverages an additional MeanFlow (Geng et al., 2025) objective to
capture causality in a balanced manner while naturally supporting one-step sampling.

5 EXPERIMENTS

For fair comparison, we follow common practice (Li et al., 2024b) and conduct experiments on
ImageNet-1K (Deng et al., 2009) at 256 x 256 resolution.

5.1 IMPLEMENTATION DETAILS.

CAToOK. The CATOK encoder is a ViT-B/8 (Dosovitskiy et al., 2021) with registers (Darcet et al.,
2024) and causal attention masks (Cui et al., 2024; Bachmann et al., 2025). For fair comparison,
the extracted 1D tokens are 16-dimensional and normalized before being passed to the decoder
following (Li et al., 2024a; Wen et al., 2025). The decoder is either a DiT-B/4 or DiT-L/2 (Peebles &
Xie, 2023), which are denoted as CATOK-B and CATOK-L respectively, operating on the latent space
of a frozen, publicly available KL-16 MAR-VAE (Li et al., 2024b) to reduce computation. Both
the encoder and decoder are trained from scratch on ImageNet-1K (Deng et al., 2009) training split.
Besides, we utilize DINOv2-B/16 (Oquab et al., 2024) as the VFM of REPA and REPA-A, and the
loss weights for Lr, Lrppa, and Lrppa_a are set to 1.0, 1.0, and 0.8, respectively.

Autoregressive modeling. Following (Wen et al., 2025), we evaluate frozen CATOK by training
autoregressive generators LlamaGen (Sun et al., 2024) with a diffusion loss (Li et al., 2024b).
The input sequence is conditioned with a learnable class token, which is randomly dropped with
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Table 1: Reconstruction results on ImageNet 256 <256 benchmark. “Token” denotes the number
of tokens used for reconstruction, and “Dim.” denotes the dimension of these tokens. “Param.”
indicates the model size, and “VQ” specifies whether the tokens are vector-quantized. “}” or “1”
denote lower or higher values are better. {: enabling one-step sampling. *: without one-step render.

Method Token #Dim. #Param. Epochs VQ rFID| PSNR?T SSIMt
One-step 2D tokenizers
VQGAN 16x16 16 307M - v o 7194 - -
LlamaGen 16x16 8 72M 40 v 219 20.67  0.589
MaskBit 16x16 12 54M 270 v 1.37 21.50  0.560
MAR-VAE 16x16 16 - - X 1.22 - -
OpenMagViT-V2 16x16 - 116M 270 v 1.17 21.63  0.640
One-step 1D tokenizers
SpectralAR-64 64 16 172M 300 v 403 - -
TiTok-S-128 128 16 44M 300 v o L71 17.52  0.437
TiTok-L-32 32 8 614M 300 v o221 15.60  0.359
One-D-Piece-B-256 256 16 172M 300 v 1.11 18.77 -
CATOK-B-2561 256 16 224M 80 X 489  20.77 0.617
CATOK-L-321 32 16 552M 160 X 4.48 1725 0.441
CATOK-L-256f 256 16 552M 160 X 4.63 2099  0.630
Diffusion tokenizers

FlexTok d12-d12 256 6 170M 640 v 4.20 - -
FlexTok d18-d18 256 6 573M 640 v 1.61 - -
FlexTok d18-d28 256 6 1.4B 640 v 1.45 18.53  0.465
Semanticist-L-256 256 16 552M 400 X 0.78 21.61 0.626
SelfTok-512* 512 16 - - v - 21.86  0.600
FlowMo-Lo-256 256 - 945M 130 v 095 22.07  0.649
CATOK-B-256 256 16 224M 80 X 1.17  22.10  0.666
CATOK-L-32 32 16 552M 160 X 2.03 17.85  0.465
CATOK-L-256 256 16 552M 160 X 0.84 2272  0.681

probability 0.1 during training to enable Classifier-Free Guidance (CFG). At inference, we adopt a
CFG schedule following (Chang et al., 2023; Li et al., 2024b; Wen et al., 2025) without temperature
sampling. Additional details are provided in Appendix B.

5.2 RECONSTRUCTION

We report reconstruction FID (Heusel et al., 2017) (distributional dissimilarity), PSNR (pixel-wise
MSE), and SSIM (Wang et al., 2004) (perceptual similarity) on the ImageNet-1K validation set at
256 x 256 resolution. We evaluate three variants: CATOK-B with 256 1D tokens, CATOK-L with
32 tokens and CATOK-L with 256 tokens. The results are compared against state-of-the-art variants
with comparable latent spaces and model sizes. As shown in Tab. 1, among diffusion autoencoders,
CATOK-L-256 achieves superior PSNR and SSIM, with SSIM significantly outperforming the 945M
FlowMo-Lo-256, while also reaching competitive rFID with less than half the training epochs copared
with Semanticist-L-256. Remarkably, CATOK-B-256 attains comparable results with only 80 epochs,
demonstrating the high training efficiency of CATOK.

Notably, CATOK-L-256 achieves the best PSNR and SSIM among one-step 1D tokenizers, demon-
strating its flexibility in sampling: it supports fast one-step sampling while also benefiting from multi-
step sampling for improved reconstruction. However, although its rFID surpasses VQGAN (Esser
et al., 2021)—a classic 2D tokenizer—by three points, it still lags behind modern tokenizers. This
gap arises because those methods rely on more challenging objectives (e.g., GAN (Goodfellow et al.,
2014) loss) and complex training recipes (Yu et al., 2024c; Miwa et al., 2025), whereas CATOK is not
specifically optimized for one-step sampling but attains comparable results as a byproduct.
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Table 2: Class-conditional generation results on ImageNet-1K 256 x 256 benchmark. “#Param.”
denotes the parameters of generator, “Token” and “Step” indicates the number of tokens and steps
used for generation, respectively. “|” or “4”” denote lower or higher values are better.

Method Generator #Param. Token Step ¢FID] ISt
2D autoregressive models
VQGAN Tam. Trans. 1.4B 256 256 15.78 74.3
RQ-VAE RQ-Trans. 3.8B 256 68 7.55 134.0
Causal MAR MAR-L 481M 256 256 4.07 232.4
LlamaGen LlamaGen-L 343M 256 256 3.80 248.3
VAR VAR-d16 310M 680 10 3.30 274.4
1D masked-prediction models
FlowMo-Lo-256 MaskGiT-L 227TM 256 - 4.30 274.0
TiTok-L-32 MaskGiT-L 227TM 32 8 2.77 194.0
TiTok-S-128 MaskGiT-L 227TM 128 64 1.97 281.8
1D autoregressive models
FlexTok d12-d12 AR Trans. 1.3B 32 32 3.83 -
Spectral AR-64 VAR 310M 64 64 3.02 282.2
Semanticist-L-256 eLlamaGen-L 343M 32 32 2.57 260.9
CATOK-L-32 eLlamaGen-L 343M 32 32 3.40 288.6

Table 3: Ablation on technique designs.

(a) Ablation on training recipe. FID @n: n-step sampling. (b) Ablation on the causality and
balance of 1D visual tokens.

Method rFID@1 rFID@25

Naive Decoder (Crp in Eq. (13)) 183.69  1.81 Select Token rFID gFID
+ Ly r in Eq. (12) 4.71 1.90 [, ] 256  1.17 4091
+ Lrepa in Eq. (14) 4.31 1.71 All 256  1.15 13.54
+ Lrppa—a in Eq. (15) 3.92 1.15 First k256 137 9.21
+ Selecting tokens in [r, ¢] 4.89 1.17 Firstk 128 532 7.49

5.3 AUTOREGRESSIVE GENERATION

Following common prective (Li et al., 2024b), we report generation FID and IS (Salimans et al.,
2016) (image quality and class diversity) with evaluation suite provided by Dhariwal & Nichol (2021).
For fair comparison and efficient training, we train eLlamaGen-L, i.e., standard LlamaGen (Sun et al.,
2024) with the diffusion loss (Li et al., 2024b) modified by Wen et al. (2025), for 400 epochs. As
shown in Tab. 2, CATOK attains comparable gFID and IS scores to the state-of-the-art tokenizers,
with far fewer tokenization training epochs (160 vs. 3004-), demonstrating its capability to learn 1D
causal tokens well-suited for standard autoregressive modeling. We present qualitative visualizations
in Fig. 4. It is worth noting that training a state-of-the-art visual generative model is computationally
expensive and beyond the scope of this work. Instead, we focus on building a 1D tokenizer that
captures visual causality and validating its advantages on AR modeling under fair comparison.

5.4 ABLATION STUDY

We conduct ablation studies on the smaller CATOK-B-256 models, training for 80 epochs on both
reconstruction and generation tasks.

Improved training recipe. We present a roadmap from the conventional diffusion autoencoder with
naive decoder to our CATOK step by step in Tab. 3a. Traditional DiT decoders lack one-step sampling
capability, but equipping them with the MeanFlow objective enables reasonable one-step results.
Both REPA and REPA-A accelerate convergence and enhance performance. Moreover, optimizing
MeanFlow objective on 1D tokens selected from a time interval [r, ¢] allows the model to learn visual
causality, at the cost of a slight performance drop.



Under review as a conference paper at ICLR 2026

Figure 4: Qualitative Results. 256256 generated images on ImageNet-1K with CATOK-L-32.
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Figure 5: Effectiveness of our REPA-A.a) We apply principal component analysis (PCA) to visualize
image features from the CATOK encoder. b) Training curves of the smoothed MSE between prediction
and target, with the MeanFlow loss (L) added at 25K steps.

Causality and balance matter in AR modeling. We evaluate three variants of 1D token selection:
(1) selecting tokens within an interval [r,t] (our default setting); (2) selecting all tokens; and (3)
selecting the first k tokens. For the third variant, we train two AR models using either all 256 tokens
or only the first 128 tokens. As shown in Tab. 3b, CATOK achieves the best gFID. Non-causal tokens
hinder AR modeling, and, consistent with Bachmann et al. (2025); Wen et al. (2025), imbalance
reduces the contribution of later tokens—an issue that CATOK fundamentally addresses without
requiring additional re-weighting mechanism (Wang et al., 2025a).

REPA-A stabilizes training and improves performance. As shown in Fig. 5 a), REPA-A makes
encoder features more informative and discriminative, helping the registers capture richer content.
In Fig. 5 b), REPA-A mitigates the loss spike at 25K steps when the MeanFlow loss is introduced,
stabilizing decoder training and improving overall performance.

6 CONCLUSION

We presented CATOK, a novel 1D causal image tokenizer to bridge the gap between autoregressive
language models and vision models. By binding the average velocity field in the MeanFlow objective
to the corresponding 1D token segments, we enabled the diffusion autoencoder to learn visual
causality along the flow path while supporting one-step sampling. Furthermore, we proposed an
advanced regularization method REPA-A, which effectively stabilized and accelerated the training of
the autoencoder. Experiments demonstrated that we achieved state-of-the-art PSNR and SSIM on
ImageNet reconstruction, and obtaining comparable results on the class-conditional generation.
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REPRODUCIBILITY STATEMENT

We provide hyperparameter details in Sec. 5 and Appendix B. We will also release the codebase and
model checkpoints to reproduce the results in the paper.
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A ARCHITECTURE OF AR MODELING
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Figure 6: Architecture of AR modeling.

We illustrate AR training and sampling in Fig. 6, and visualize the causal mask mechanism in ViT in
Fig. 6 a). After training CATOK, we freeze the encoder to extract 1D tokens. During AR training
stage, these tokens are optimized with a class token prefix using teacher forcing under a diffusion
loss (Li et al., 2024b). At sampling time, we input a learned class token, the AR model predicts the
corresponding visual 1D tokens, and these tokens are then conditioned to the decoder for generation.

B MORE IMPLEMENTATION DETAILS

Table 4: Detailed configuration of CATOK-B and CATOK-L for tokenization and AR modeling.

Training Config CATOK-B CATOK-L AR modeling
Optimizer AdamW

Peak learning rate 1x1074 5x107°
Minimum learning rate 0

Learning rate schedule cosine decay constant
Batch size 1024 2048
Weight decay 0.05

Epochs 80 160 400
Warmup epochs 0 96
Gradient clipping 3.0

EMA 0.999

Training setup follows Wen et al. (2025), with detailed hyperparameters in Tab. 4. For reconstruction,
we disable CFG in one-step sampling, and apply CFG with a scale of 2.0 in 25-step sampling. For
80-epoch training, we introduced the MeanFlow objective at epoch 10 and the selecting mechanism
at epoch 40; for 160-epoch training, these corresponded to epochs 20 and 80, respectively. For
generation, we do not use CFG with CATOK, and the CFG of AR model is the same as MUSE (Chang
et al., 2023), MAR (Li et al., 2024b) and Semanticist (Wen et al., 2025), whici tunes down the
guidance scale of small-indexed tokens to improve the diversity of generated sample.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are utilized for language refinement and are not involved in any other component of this work.
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