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ABSTRACT

Real-world time series often have multiple frequency components that are inter-
twined with each other, making accurate time series forecasting challenging. De-
composing the mixed frequency components into multiple single frequency com-
ponents is a natural choice. However, the information density of patterns varies
across different frequencies, and employing a uniform modeling approach for dif-
ferent frequency components can lead to inaccurate characterization. To address
this challenges, inspired by the flexibility of the recent Kolmogorov-Arnold Net-
work (KAN), we propose a KAN-based Frequency Decomposition Learning ar-
chitecture (TimeKAN) to address the complex forecasting challenges caused by
multiple frequency mixtures. Specifically, TimeKAN mainly consists of three
components: Cascaded Frequency Decomposition (CFD) blocks, Multi-order
KAN Representation Learning (M-KAN) blocks and Frequency Mixing blocks.
CFD blocks adopt a bottom-up cascading approach to obtain series representa-
tions for each frequency band. Benefiting from the high flexibility of KAN, we
design a novel M-KAN block to learn and represent specific temporal patterns
within each frequency band. Finally, Frequency Mixing blocks is used to re-
combine the frequency bands into the original format. Extensive experimental
results across multiple real-world time series datasets demonstrate that TimeKAN
achieves state-of-the-art performance as an extremely lightweight architecture.

1 INTRODUCTION

Time series forecasting (TSF) has garnered significant interest due to its wide range of applications,
including finance (Huang et al., 2024), energy management (Yin et al., 2023), traffic flow planning
(Jiang & Luo, 2022), and weather forecasting (Lam et al., 2023). Recently, deep learning has led
to substantial advancements in TSF, with the most state-of-the-art performances achieved by CNN-
based methods (Wang et al., 2023; donghao & wang xue, 2024), Transformer-based methods(Nie
et al., 2023; Liu et al., 2024b) and MLP-based methods (Zeng et al., 2023; Wang et al., 2024a).

Due to the complex nature of the real world, observed multivariate time series are often non-
stationary and exhibit diverse patterns. These intertwined patterns complicate the internal rela-
tionships within the time series, making it challenging to capture and establish connections between
historical observations and future targets. To address the complex temporal patterns in time series,
an increasing number of studies focus on leveraging prior knowledge to decompose time series into
simpler components that provide a basis for forecasting. For instance, Autoformer (Wu et al., 2021)
decomposes time series into seasonal and trend components. This idea is also adopted by DLinear
(Zeng et al., 2023) and FEDFormer (Zhou et al., 2022b). Building on this foundation, TimeMixer
(Wang et al., 2024a) further introduces multi-scale seasonal-trend decomposition and highlights the
importance of interactions between different scales. Furthermore, models like TimesNet (Wu et al.,
2023), PDF (Dai et al., 2024), and SparseTSF (Lin et al., 2024) emphasize the inherent periodicity
in time series and decompose long sequences into multiple shorter ones based on the period length,
thereby enabling the separate modeling of inter-period and intra-period dependencies within tempo-
ral patterns. These different decomposition methods share a common goal: utilizing the simplified
subsequences to provide critical information for future predictions, thereby achieving accurate fore-
casting.
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It is worth noting that time series are often composed of multiple frequency components, where the
low-frequency components represent long-term periodic variations and the high-frequency compo-
nents capture certain abrupt events. The mixture of different frequency components makes accurate
forecasting particularly challenging. The aforementioned decomposition approaches motivate us to
design a frequency decomposition framework that decouples different frequency components in a
time series and independently learns the temporal patterns associated with each frequency. However,
this introduces another challenge: the information density of patterns varies across different frequen-
cies, and employing a uniform modeling approach for different frequency components can lead to
inaccurate characterizations, resulting in sub-optimal results. Fortunately, a new neural network ar-
chitecture, known as Kolmogorov-Arnold Networks (KAN) (Liu et al., 2024c), has recently gained
significant attention in the deep learning community due to its outstanding data-fitting capabilities
and flexibility, showing potential as a substitute for traditional MLP. Compared to MLP, KAN offers
optional kernels and allows for the adjustment of kernel order to control its fitting capacity. This
consideration leads us to explore the use of Multi-order KANs to represent temporal patterns across
different frequencies, thereby providing more accurate information for forecasting.

Technically, we propose a KAN-based Frequency Decomposition Learning architecture (TimeKAN)
to address the complex prediction challenges caused by multiple frequency mixtures. Specifically,
TimeKAN first employs moving average to progressively remove relatively high-frequency compo-
nents from the sequence. Subsequently, Cascaded Frequency Decomposition (CFD) blocks adopt a
bottom-up cascading approach to obtain sequence representations for each frequency band. Multi-
order KAN Representation Learning (M-KAN) blocks leverage the high flexibility of KAN to learn
and represent specific temporal patterns within each frequency band. Finally, Frequency Mixing
blocks recombine the frequency bands into the original format, ensuring that this Decomposition-
Learning-Mixing process is repeatable, thereby modeling different temporal patterns at various fre-
quencies more accurately. The final high-level sequence is then mapped to the desired forecast-
ing output via a simple linear mapping. With our meticulously designed architecture, TimeKAN
achieves state-of-the-art performance across multiple long-term time series forecasting tasks, while
also being a lightweight architecture that outperforms complex TSF models with fewer computa-
tional resources.

Our contributions are summarized as follows:

• We revisit time series forecasting from the perspective of frequency decoupling, accurately
disentangling time series characteristics through a frequency Decomposition-Learning-
Mixing architecture to address challenges caused by complex information coupling in time
series.

• We introduce TimeKAN as a lightweight yet effective forecasting model and design a novel
M-KAN blocks to effectively modeling and representing patterns at different frequencies
by maximizing the flexibility of KAN.

• TimeKAN demonstrates superior performance across multiple TSF prediction tasks, while
having a parameter count significantly lower than that of state-of-the-art TSF models.

2 RELATED WORK

2.1 KOLMOGOROV-ARNOLD NETWORK

Kolmogorov-Arnold representation theorem states that any multivariate continuous function can be
expressed as a combination of univariate functions and addition operations. Kolmogorov-Arnold
Network (KAN) (Liu et al., 2024c) leverages this theorem to propose an innovative alternative to
traditional MLP. Unlike MLP, which use fixed activation functions at the nodes, KAN introduces
learnable activation functions along the edges. Due to the flexibility and adaptability, KAN is con-
sidered as a promising alternative to MLP.

The original KAN was parameterized using spline functions. However, due to the inherent com-
plexity of spline functions, the speed and scalability of the original KAN were not satisfactory.
Consequently, subsequent research explored the use of simpler basis functions to replace splines,
thereby achieving higher efficiency. ChebyshevKAN (SS, 2024) incorporates Chebyshev polyno-
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mials to parametrize the learnable functions. FastKAN (Li, 2024) uses faster Gaussian radial basis
functions to approximate third-order B-spline functions.

Moreover, KAN has been applied as alternatives to MLP in various domains. Convolutional KAN
(Bodner et al., 2024) replaces the linear weight matrices in traditional convolutional networks with
learnable spline function matrices. U-KAN (Li et al., 2024) integrates KAN layers into the U-Net
architecture, demonstrating impressive accuracy and efficiency in several medical image segmen-
tation tasks. KAN has also been used to bridge the gap between AI and science. Works such as
PIKAN (Shukla et al., 2024) and PINN (Wang et al., 2024b) utilize KAN to build physics-informed
machine learning models. This paper aims to introduce KAN into TSF and demonstrate the strong
potential of KAN in representing time series data.

2.2 TIME SERIES FORECASTING

Traditional time series forecasting (TSF) methods, such as ARIMA (Zhang, 2003), can provide suf-
ficient interpretability for the forecasting results but often fail to achieve satisfactory accuracy. In
recent years, deep learning methods have dominated the field of TSF, mainly including CNN-based,
Transformer-based, and MLP-based approaches. CNN-based models primarily apply convolution
operations along the temporal dimension to extract temporal patterns. For example, MICN (Wang
et al., 2023) and TimesNet (Wu et al., 2023) enhance the precision of sequence modeling by adjust-
ing the receptive field to capture both short-term and long-term views within the sequences. Mod-
ernTCN (donghao & wang xue, 2024) advocates using large convolution kernels along the temporal
dimension and capture both cross-time and cross-variable dependencies. Compared to CNN-based
methods, which have limited receptive field, Transformer-based methods offer global modeling ca-
pabilities, making them more suitable for handling long and complex sequence data. They have
become the cornerstone of modern time series forecasting. Informer (Zhou et al., 2021) is one of the
early implementations of Transformer models in TSF, making efficient forecasting possible by care-
fully modifying the internal Transformer architecture. PatchTST (Nie et al., 2023) divides the se-
quence into multiple patches along the temporal dimension, which are then fed into the Transformer,
establishing it as an important benchmark in the time series domain. In contrast, iTransformer (Liu
et al., 2024b) treats each variable as an independent token to capture cross-variable dependencies
in multivariate time series. However, Transformer-based methods face challenges due to the large
number of parameters and high memory consumption. Recent research on MLP-based methods has
shown that with appropriately designed architectures leveraging prior knowledge, simple MLPs can
outperform complex Transformer-based methods. DLinear (Zeng et al., 2023), for instance, prepro-
cesses sequences using a trend-season decomposition strategy. FITS (Xu et al., 2024b) performs
linear transformations in the frequency domain, while TimeMixer (Wang et al., 2024a) uses MLP to
facilitate information interaction at different scales. These MLP-based methods have demonstrated
strong performance regarding both forecasting accuracy and efficiency. Unlike the aforementioned
methods, this paper introduces the novel KAN to TSF to represent time series data more accurately.
It also proposes a well-designed Decomposition-Learning-Mixing architecture to fully unlock the
potential of KAN for time series forecasting.

2.3 TIME SERIES DECOMPOSITION

Real-world time series often consist of various underlying patterns. To leverage the characteristics
of different patterns, recent approaches tend to decompose the series into multiple subcomponents,
including trend-seasonal decomposition, multi-scale decomposition, and multi-period decomposi-
tion. DLinear (Zeng et al., 2023) employs moving averages to decouple the seasonal and trend
components. SCINet (Liu et al., 2022) uses a hierarchical downsampling tree to iteratively ex-
tract and exchange information at multiple temporal resolutions. TimeMixer (Wang et al., 2024a)
follows a fine-to-coarse principle to decompose the sequence into multiple scales across different
time spans and further splits each scale into seasonal and periodic components. TimesNet (Wu
et al., 2023) and PDF (Dai et al., 2024) utilize Fourier periodic analysis to decouple sequence into
multiple sub-period sequences based on the calculated period. Inspired by these works, this paper
proposes a novel Decomposition-Learning-Mixing architecture, which examines time series from a
multi-frequency perspective to accurately model the complex patterns within time series.
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Figure 1: The overall architecture of TimeKAN, which mainly consists of Cascaded Frequency
Decomposition block, Multi-order KAN Representation Learning block, and Frequency Mixing
block. Here, we consider dividing the frequency range of the time series into three frequency bands
as an example.

3 TIMEKAN

3.1 OVERALL ARCHITECTURE

Given a historical multivariate time series input X ∈ RN×T , the aim of time series forecasting is to
predict the future output series XO ∈ RN×F , where T, F is the look-back window length and the
future window length, and N represents the number of variates. In this paper, we propose TimeKAN
to tackle the challenges arising from the complex mixture of multi-frequency components in time
series. The overall architecture of TimeKAN is shown in Figure 1. We adopt variate-independent
manner (Nie et al., 2023) to predict each univariate series independently. Each univariate input time
series is denoted as X ∈ RT and we consider univariate time series as the instance in the following
calculation. In our TimeKAN, the first step is to progressively remove the relatively high-frequency
components using moving averages and generate multi-level sequences followed by projecting each
sequence into a high-dimensional space. Next, adhering to the Decomposition-Learning-Mixing
architecture design principle, we first design Cascaded Frequency Decomposition (CFD) blocks
to obtain sequence representations for each frequency band, adopting a bottom-up cascading ap-
proach. Then, we propose Multi-order KAN Representation Learning (M-KAN) blocks to learn and
represent specific temporal patterns within each frequency band. Finally, Frequency Mixing blocks
recombine the frequency bands into the original format, ensuring that the Decomposition-Learning-
Mixing process is repeatable. More details about our TimeKAN are described as follow.

3.2 HIERARCHICAL SEQUENCE PREPROCESSING

Assume that we divide the frequency range of raw time series X into predefined k frequency bands.
We first use moving average to progressively remove the relatively high-frequency components and
generate multi-level sequences {x1, · · · , xk}, where xi ∈ R

T

di−1 (i ∈ {1, · · · , k}). x1 is equal to
the input series X and d denotes the length of moving average window. The process of producing
multi-level sequences is as follows:

xi = AvgPool(Padding(xi−1)) (1)

After obtaining the multi-level sequences, each sequence is independently embedded into a higher
dimension through a Linear layer:

xi = Linear(xi) (2)

where xi ∈ R
T

di−1 ×D and D is embedding dimension. We define x1 as the highest level sequence
and xk as the lowest level sequence. Notably, each lower-level sequence is derived from the se-
quence one level higher by removing a portion of the high-frequency information. The above process
is a preprocessing process and only occurs once in TimeKAN.
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3.3 CASCADED FREQUENCY DECOMPOSITION

Real-world time series are often composed of multiple frequency components, with the low-
frequency component representing long-term changes in the time series and the high-frequency
component representing short-term fluctuations or unexpected events. These different frequency
components complement each other and provide a comprehensive perspective for accurately mod-
eling time series. Therefore, we design the Cascaded Frequency Decomposition (CFD) block to
accurately decompose each frequency component in a cascade way, thus laying the foundation for
accurately modeling different frequency components.

The aim of CFD block is to obtain the representation of each frequency component. Here, we take
obtaining the representation of the i-th frequency band as an example. To achieve it, we first employ
the Fast Fourier Transform (FFT) to obtain the representation of xi+1 in the frequency domain.
Then, Zero-Padding is used to extend the length of the frequency domain sequence, so that it can
have the same length as the upper sequence xi after transforming back to the time domain. Next,
we use Inverse Fast Fourier Transform (IFFT) to transform it back into the time domain. We refer
to this upsampling process as Frequency Upsampling, which ensures that the frequency information
remains unchanged before and after the upsampling. The process of Frequency Upsampling can be
described as:

x̂i = IFFT(Padding(FFT(xi+1))) (3)
Here, x̂i and xi have the same sequence length. Notably, compared to xi, x̂i lacks the i-th frequency
component. The reason is that xi+1 is originally formed by removing i-th frequency component
from xi in the hierarchical sequence preprocessing and xi+1 is now transformed into x̂i through a
lossless frequency conversion process, thereby aligning length with xi in the time domain. There-
fore, to get the series representation of the i-th frequency component fi in time domain, we only
need to get the residuals between xi and x̂i:

fi = xi − x̂i (4)

3.4 MULTI-ORDER KAN REPRESENTATION LEARNING

Given the multi-level frequency component representation {f1, · · · , fk} generated by the CFD
block, we propose Multi-order KAN Representation Learning (M-KAN) blocks to learn specific
representations and temporal dependencies at each frequency. M-KAN adopts a dual-branch par-
allel architecture to separately model temporal representation learning and temporal dependency
learning in a frequency-specific way, using Multi-order KANs to learn the representation of each
frequency component and employing Depthwise Convolution to capture the temporal dependency.
The details of Depthwise Convolution and Multi-order KAN will be given as follows.

Depthwise Convolution To separate the modeling of temporal dependency from learning se-
quence representation, we adopt a specific type of group convolution known as Depthwise Con-
volution, in which the number of groups matches the embedding dimension. Depthwise Convolu-
tion employs D groups of convolution kernels to perform independent convolution operations on
the series of each channel. This allows the model to focus on capturing temporal patterns without
interference from inter channel relationships. The process of Depthwise Convolution is:

fi,1 = ConvD→D(fi, group = D) (5)

Multi-order KANs Compared with traditional MLP, KAN replaces linear weights with learnable
univariate functions, allowing complex nonlinear relationships to be modeled with fewer parameters
and greater interpretability. Xu et al. (2024a). Assume that KAN is composed of L+1 layer neurons
and the number of neurons in layer l is nl. The transmission relationship between the j-th neuron
in layer l+ 1 and all neurons in layer l can be expressed as zl+1,j =

∑nl

i=1 ϕl,j,i(zl,i), where zl+1,j

is the j-th neuron at layer l + 1 and zl,iis the i-th neuron at layer l. We can simply understand
that each neuron is connected to other neurons in the previous layer through a learnable univariate
function ϕ. The vanilla KAN Liu et al. (2024c) employs spline function as the learnable univariate
basic functions ϕ, but suffering from the complex recursive computation process, which hinders the
efficiency of KAN. Here, we adopt ChebyshevKAN (SS, 2024) to learn the representation of each
frequency component, i.e., channel learning. ChebyshevKAN is constructed from linear combina-
tions of Chebyshev polynomial. That is, using the linear combination of Chebyshev polynomial with
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different order to generate learnable univariate function ϕ. The Chebyshev polynomial is defined by:

Tn(x) = cos(n arccos(x)) (6)

where n is the highest order of Chebyshev polynomials and the complexity of Chebyshev polyno-
mials is increasing with increasing order. A 1-layer ChebyshevKAN applied to channel dimension
can be expressed as:

ϕo(x) =

D∑
j=1

n∑
i=0

Θo,j,iTi(tanh(xj)) (7)

KAN(x) =

{
ϕ1(x)
· · ·

ϕD(x)

}
(8)

where o is the index of output neuron and Θ ∈ RD×D×(n+1) are the learnable coefficients used
to linearly combine the Chebyshev polynomials. It is worth noting that the frequency compo-
nents within the time series exhibit increasingly complex temporal dynamics as the frequency in-
creases, necessitating a network with stronger representation capabilities to learn these characteris-
tics. ChebyshevKAN allows for the adjustment of the highest order of Chebyshev polynomials n
to enhance its representation ability. Therefore, from the low-frequency to high-frequency compo-
nents, we adopt an increasing order of Chebyshev polynomials to align the frequency components
with the complexity of the KAN, thereby accurately learning the representations of different fre-
quency components. We refer to this group of KANs with varying highest Chebyshev polynomials
orders as Multi-order KANs. We set an lower bound order b, and the representation learning process
for xi can be expressed as:

fi,2 = KAN(fi, order = b+ k − i) (9)

The final output of the M-KAN block is the sum of the outputs from the Multi-order KANs and the
Depthwise Convolution.

f̂i = fi,1 + fi,2 (10)

3.5 FREQUENCY MIXING

After specifically learning the representation of each frequency component, we need to re-transform
the frequency representations into the form of multi-level sequences before inputting them into next
CFD block, ensuring that the Decomposition-Learning-Mixing process is repeatable. Therefore,
we designed Frequency Mixing blocks to convert the frequency component at i-th level f̂i into
multi-level sequences xi, enabling it to serve as input for the next CFD block. To transform the
frequency component at i-th level f̂i into multi-level sequences xi, we simply need to to supple-
ment the frequency information from levels i + 1 to k back into the i-th level. Thus, we employ
Frequency Upsampling again to incrementally reintegrate the information into the higher frequency
components:

xi = IFFT(Padding(FFT(xi+1))) + fi (11)
For the last Frequency Mixing block, we extract the highest-level sequence x1 and use a simple
linear layer to produce the forecasting results XO.

XO = Linear(x1) (12)

Due to the use of a variate-independent strategy, we also need to stack the predicted results of all
variables together to obtain the final multivariate prediction XO.

4 EXPERIMENTS

Datasets We conduct extensive experiments on six real-world time series datasets, including
Weather, ETTh1, ETTh2, ETTm1, ETTm2 and Electricity for long-term forecasting. Following
previous work (Wu et al., 2021), we split the ETT series dataset into training, validation, and test
sets in a ratio of 6:2:2. For the remaining datasets, we adopt a split ratio of 7:1:2.
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Baseline We carefully select eleven well-acknowledged methods in the field of long-term time se-
ries forecasting as our baselines, including (1) Transformer-based methods: Autoformer (2021),
FEDformer (2022b), PatchTST (2023), iTransformer (2024b); (2) MLP-based methods: DLin-
ear (2023) and TimeMixer (2024a) (3) CNN-based method: MICN (2023), TimesNet (2023); (4)
Frequency-based methods: FreTS Yi et al. (2024) and FiLM Zhou et al. (2022a). And a time series
foundation model Time-FFM Liu et al. (2024a).

Experimental Settings To ensure fair comparisons, we adopt the same look-back window length
T = 96 and the same prediction length F = {96, 192, 336, 720}. We utilize the L2 loss for model
training and use Mean Square Error (MSE) and Mean Absolute Error (MAE) metrics to evaluate the
performance of each method.
Table 1: Full results of the multivariate long-term forecasting result comparison. The input sequence
length is set to 96 for all baselines and the prediction lengths F ∈ {96, 192, 336, 720}. Avg means
the average results from all four prediction lengths.

Models TimeKAN TimeMixer iTransformer Time-FFM PatchTST TimesNet MICN DLinear FreTS FiLM FEDformer Autoformer
Ours 2024a 2024b 2024a 2023 2023 2023 2023 2024 2022a 2022b 2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.367 0.395 0.385 0.402 0.386 0.405 0.385 0.400 0.460 0.447 0.384 0.402 0.426 0.446 0.397 0.412 0.395 0.407 0.438 0.433 0.395 0.424 0.449 0.459
192 0.414 0.420 0.443 0.430 0.441 0.436 0.439 0.430 0.512 0.477 0.436 0.429 0.454 0.464 0.446 0.441 0.490 0.477 0.494 0.466 0.469 0.470 0.500 0.482
336 0.445 0.434 0.512 0.470 0.487 0.458 0.480 0.449 0.546 0.496 0.638 0.469 0.493 0.487 0.489 0.467 0.510 0.480 0.547 0.495 0.490 0.477 0.521 0.496
720 0.444 0.459 0.497 0.476 0.503 0.491 0.462 0.456 0.544 0.517 0.521 0.500 0.526 0.526 0.513 0.510 0.568 0.538 0.586 0.538 0.598 0.544 0.514 0.512

Avg 0.417 0.427 0.459 0.444 0.454 0.447 0.442 0.434 0.516 0.484 0.495 0.450 0.475 0.480 0.461 0.457 0.491 0.475 0.516 0.483 0.498 0.484 0.496 0.487

E
T

T
h2

96 0.290 0.340 0.289 0.342 0.297 0.349 0.301 0.351 0.308 0.355 0.340 0.374 0.372 0.424 0.340 0.394 0.332 0.387 0.322 0.364 0.358 0.397 0.346 0.388
192 0.375 0.392 0.378 0.397 0.380 0.400 0.378 0.397 0.393 0.405 0.402 0.414 0.492 0.492 0.482 0.479 0.451 0.457 0.405 0.414 0.429 0.439 0.456 0.452
336 0.423 0.435 0.432 0.434 0.428 0.432 0.422 0.431 0.427 0.436 0.452 0.452 0.607 0.555 0.591 0.541 0.466 0.473 0.435 0.445 0.496 0.487 0.482 0.486
720 0.443 0.449 0.464 0.464 0.427 0.445 0.427 0.444 0.436 0.450 0.462 0.468 0.824 0.655 0.839 0.661 0.485 0.471 0.445 0.457 0.463 0.474 0.515 0.511

Avg 0.383 0.404 0.390 0.409 0.383 0.407 0.382 0.406 0.391 0.411 0.414 0.427 0.574 0.531 0.563 0.519 0.433 0.446 0.402 0.420 0.437 0.449 0.450 0.459

E
T

T
m

1

96 0.322 0.361 0.317 0.356 0.334 0.368 0.336 0.369 0.352 0.374 0.338 0.375 0.365 0.387 0.346 0.374 0.337 0.374 0.353 0.370 0.379 0.419 0.505 0.475
192 0.357 0.383 0.367 0.384 0.377 0.391 0.378 0.389 0.390 0.393 0.374 0.387 0.403 0.408 0.382 0.391 0.382 0.398 0.389 0.387 0.426 0.441 0.553 0.496
336 0.382 0.401 0.391 0.406 0.426 0.420 0.411 0.410 0.421 0.414 0.410 0.411 0.436 0.431 0.415 0.415 0.420 0.423 0.421 0.408 0.445 0.459 0.621 0.537
720 0.445 0.435 0.454 0.441 0.491 0.459 0.469 0.441 0.462 0.449 0.478 0.450 0.489 0.462 0.473 0.451 0.490 0.471 0.481 0.441 0.543 0.490 0.671 0.561

Avg 0.376 0.395 0.382 0.397 0.407 0.410 0.399 0.402 0.406 0.407 0.400 0.406 0.423 0.422 0.404 0.408 0.407 0.417 0.412 0.402 0.448 0.452 0.588 0.517

E
T

T
m

2

96 0.174 0.255 0.175 0.257 0.180 0.264 0.181 0.267 0.183 0.270 0.187 0.267 0.197 0.296 0.193 0.293 0.186 0.275 0.183 0.266 0.203 0.287 0.255 0.339
192 0.239 0.299 0.240 0.302 0.250 0.309 0.247 0.308 0.255 0.314 0.249 0.309 0.284 0.361 0.284 0.361 0.259 0.323 0.248 0.305 0.269 0.328 0.281 0.340
336 0.301 0.340 0.303 0.343 0.311 0.348 0.309 0.347 0.309 0.347 0.321 0.351 0.381 0.429 0.382 0.429 0.349 0.386 0.309 0.343 0.325 0.366 0.339 0.372
720 0.395 0.396 0.392 0.396 0.412 0.407 0.406 0.404 0.412 0.404 0.408 0.403 0.549 0.522 0.558 0.525 0.559 0.511 0.410 0.400 0.421 0.415 0.433 0.432

Avg 0.277 0.322 0.277 0.324 0.288 0.332 0.286 0.332 0.290 0.334 0.291 0.333 0.353 0.402 0.354 0.402 0.339 0.374 0.288 0.328 0.305 0.349 0.327 0.371

W
ea

th
er

96 0.162 0.208 0.163 0.209 0.174 0.214 0.191 0.230 0.186 0.227 0.172 0.220 0.198 0.261 0.195 0.252 0.171 0.227 0.195 0.236 0.217 0.296 0.266 0.336
192 0.207 0.249 0.211 0.254 0.221 0.254 0.236 0.267 0.234 0.265 0.219 0.261 0.239 0.299 0.237 0.295 0.218 0.280 0.239 0.271 0.276 0.336 0.307 0.367
336 0.263 0.290 0.263 0.293 0.278 0.296 0.289 0.303 0.284 0.301 0.246 0.337 0.285 0.336 0.282 0.331 0.265 0.317 0.289 0.306 0.339 0.380 0.359 0.395
720 0.338 0.340 0.344 0.348 0.358 0.347 0.362 0.350 0.356 0.349 0.365 0.359 0.351 0.388 0.345 0.382 0.326 0.351 0.360 0.351 0.403 0.428 0.419 0.428

Avg 0.242 0.272 0.245 0.276 0.258 0.278 0.270 0.288 0.265 0.285 0.251 0.294 0.268 0.321 0.265 0.315 0.245 0.294 0.271 0.290 0.309 0.360 0.338 0.382

E
le

ct
ri

ci
ty

96 0.174 0.266 0.153 0.245 0.148 0.240 0.198 0.282 0.190 0.296 0.168 0.272 0.180 0.293 0.210 0.302 0.171 0.260 0.198 0.274 0.193 0.308 0.201 0.317
192 0.182 0.273 0.166 0.257 0.162 0.253 0.199 0.285 0.199 0.304 0.184 0.322 0.189 0.302 0.210 0.305 0.177 0.268 0.198 0.278 0.201 0.315 0.222 0.334
336 0.197 0.286 0.185 0.275 0.178 0.269 0.212 0.298 0.217 0.319 0.198 0.300 0.198 0.312 0.223 0.319 0.190 0.284 0.217 0.300 0.214 0.329 0.231 0.443
720 0.236 0.320 0.224 0.312 0.225 0.317 0.253 0.330 0.258 0.352 0.220 0.320 0.217 0.330 0.258 0.350 0.228 0.316 0.278 0.356 0.246 0.355 0.254 0.361

Avg 0.197 0.286 0.182 0.272 0.178 0.270 0.270 0.288 0.216 0.318 0.193 0.304 0.196 0.309 0.225 0.319 0.192 0.282 0.223 0.302 0.214 0.327 0.227 0.338

1st Count 18 22 4 3 5 4 3 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

4.1 MAIN RESULTS

The comprehensive forecasting results are presented in Table 1, where the best results are high-
lighted in bold red and the second-best are underlined in blue. A lower MSE/MAE indicates a
more accurate prediction result. We observe that TimeKAN demonstrates superior predictive per-
formance across all datasets, except for the Electricity dataset, where iTransformer achieves the best
result. This is due to iTransformer’s use of channel-wise self-attention mechanisms to model inter-
variable dependencies, which is particularly effective for high-dimensional datasets like Electricity.
Additionally, both TimeKAN and TimeMixer perform consistently well in long-term forecasting
tasks, showcasing the generalizability of well-designed time-series decomposition architectures for
accurate predictions. Compared with other state-of-the-art methods, TimeKAN introduces a novel
Decomposition-Learning-Mixing framework, closely integrating the characteristics of Multi-order
KANs with this hierarchical architecture, enabling superior performance in a wide range of long-
term forecasting tasks.

4.2 ABLATION STUDY

In this section, we investigate several key components of TimeKAN, including Frequency Upsam-
pling, Depthwise Convolution and Multi-order KANs.
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Frequency Upsampling To investigate the effectiveness of Frequency Upsampling, we compared
it with three alternative upsampling methods that may not preserve frequency information before
and after transformation: (1) Linear Mapping; (2) Linear Interpolation; and (3) Transposed Con-
volution. As shown in Table 2, replacing Frequency Upsampling with any of these three methods
resulted in a decline in performance. This indicates that these upsampling techniques fail to maintain
the integrity of frequency information post-transformation, rendering the Decomposition-Learning-
Mixing framework ineffective. This strongly demonstrates that the chosen Frequency Upsampling,
as a non-parametric method, is an irreplaceable component of the TimeKAN framework.

Table 2: Ablation study of the Frequency Upsampling. The best results are in bold.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Linear Mapping 0.401 0.413 0.312 0.362 0.328 0.365 0.180 0.263 0.164 0.211 0.184 0.275
Linear Interpolation 0.383 0.398 0.296 0.347 0.336 0.370 0.181 0.263 0.165 0.210 0.196 0.277

Transposed Convolution 0.377 0.407 0.290 0.344 0.326 0.366 0.178 0.261 0.163 0.211 0.188 0.274
Frequency Upsamping 0.367 0.395 0.290 0.340 0.322 0.361 0.174 0.255 0.162 0.208 0.174 0.266

Depthwise Convolution To assess the effectiveness of Depthwise Convolution, we replace it with
the following choice: (1) w/o Depthwise Convolution; (2) Standard Convolution; (3) Multi-head
Self-Attention. The results are shown in Table 3. Overall, Depthwise Convolution is the best
choice. We clearly observe that removing Depthwise Convolution or replacing it with Multi-head
Self-Attention leads to a significant drop in performance, highlighting the effectiveness of using con-
volution to learn temporal dependencies. When Depthwise Convolution is replaced with Standard
Convolution, there are declines in most metrics, which implies that focusing on extracting tempo-
ral dependencies individually with Depthwise Convolution, without interference from inter-channel
relationships, is a reasonable design.

Table 3: Ablation study of the Depthwise Convolution. The best results are in bold.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o Depthwise Conv 0.379 0.397 0.296 0.343 0.337 0.373 0.180 0.263 0.168 0.211
Standard Conv 0.364 0.393 0.295 0.345 0.323 0.364 0.180 0.264 0.162 0.210
Self-Attention 0.377 0.406 0.293 0.342 0.329 0.365 0.184 0.272 0.174 0.225

Depthwise Conv 0.367 0.395 0.290 0.340 0.322 0.361 0.174 0.255 0.162 0.208

Multi-order KANs We designed the following modules to investigate the effectiveness of Multi-
order KANs: (1) MLPs, which means using MLP to replace each KAN; (2) Fixed Low-order KANs,
which means using a KAN of order 2 at each frequency level; and (3) Fixed High-order KANs,
which means using a KAN of order 5 at each frequency level. The comparison results are shown
in Table 4. Overall, Multi-order KANs achieved the best performance. Compared to MLPs, Multi-
order KANs perform significantly better, demonstrating that well-designed KANs possess stronger
representation capabilities than MLPs and are a compelling alternative. Both Low-order KANs
and High-order KANs performed worse than Multi-order KANs, indicating the validity of our de-
sign choice to incrementally increase the order of KANs to adapt to the representation of different
frequency components. Thus, the learnable functions of KANs are indeed a double-edged sword;
achieving satisfactory results requires selecting the appropriate level of function complexity for spe-
cific tasks.

Table 4: Ablation study of the Multi-order KANs. The best results are in bold.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MLPs 0.376 0.397 0.298 0.348 0.319 0.361 0.178 0.264 0.162 0.211
Fixed Low-order KANs 0.376 0.398 0.292 0.341 0.327 0.366 0.175 0.257 0.164 0.211
Fixed High-order KANs 0.380 0.407 0.310 0.363 0.327 0.269 0.176 0.257 0.164 0.212

Multi-order KANs 0.367 0.395 0.290 0.340 0.322 0.361 0.174 0.255 0.162 0.208
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Varing Look-back Window In principle, extending the look-back window can provide more in-
formation for predicting future, leading to a potential improvement in forecasting performance. A ef-
fective long-term TSF method equipped with a strong temporal relation extraction capability should
be able to improve forecasting performance when look-back window length increasing (Zeng et al.,
2023). As a model based on frequency decomposition learning, TimeKAN should achieve better
predictive performance as the look-back window lengthens, since more incremental frequency in-
formation is available for prediction. To demonstrate that TimeKAN benefits from a larger look-back
window, we select look-back window lengths from T = {48, 96, 192, 336, 512, 720} while keeping
the prediction length fixed at 96. As demonstrated in Figure 2, our TimeKAN consistently reduces
the MSE scores as the look-back window increases, indicating that TimeKAN can effectively learn
from long time series.

48 96 192 336 512 720
T

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

M
SE

ETTm2
TimeKAN
TimeMixer
iTransformer
PatchTST

48 96 192 336 512 720
T

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

M
SE

Weather
TimeKAN
TimeMixer
iTransformer
PatchTST

Figure 2: Comparison of forecasting performance between TimeKAN and other three models with
varying look-back windows on ETTm2 and Weather datasets. The look-back windows are selected
to be T ∈ {48, 96, 192, 336, 512, 720}, and the prediction length is fixed to F = 96.

4.3 MODEL EFFICIENCY

Table 5: A comparison of model parameters (Params) and multiply-accumulate operations (MACs)
for TimeKAN and three other models. To ensure a fair comparison, we fix the prediction length
F = 96 and the input length T = 96, and set the input batch size to 32. The lowest computational
cost is highlighted in bold.

Datasets
ETTH1 ETTH2 ETTm1 ETTm2 Weather Electricity

Metric Params MACs Params MACs Params MACs Params MACs Params MACs Params MACs

TimeMixer 75.50K 20.37M 75.50K 20.37M 75.50K 20.37M 77.77K 24.18M 104.43K 82.62M 106.83K 1.26G
iTransformer 841.57K 77.46M 224.22K 19.86M 224.22K 19.86M 224.22K 19.86M 4.83M 1.16G 4.83M 16.29G

PatchTST 3.75M 5.90G 10.06M 17.66G 3.75M 5.90G 10.06M 17.66G 6.90M 35.30G 6.90M 539.38G
TimeKAN 12.84K 7.63M 15.00K 8.02M 14.38K 7.63M 38.12K 16.66M 20.94K 29.86M 23.34K 456.50M

We compare TimeKAN with MLP-based method TimeMier and Transformer-based methods iTrans-
former and PatchTST, in terms of model parameters and Multiply-Accumulate Operations (MACs),
to validate that TimeKAN is a lightweight and efficient architecture. To ensure a fair comparison,
we fix the prediction length F = 96 and input length T = 96, and set the input batch size to 32. The
comparison results are summarized in Table 5. It is clear that our TimeKAN demonstrates significant
advantages in both model parameter size and MACs, particularly when compared to Transformer-
based models. For instance, on the Electricity dataset, the parameter count of PatchTST is nearly
295 times that of TimeKAN, and its MACs are almost 118 times greater. Even when compared
to the relatively lightweight MLP-based method TimeMixer, TimeKAN shows superior efficiency.
On the Weather dataset, TimeKAN requires only 20.05% of the parameters needed by TimeMixer
and only 36.14% of the MACs. This remarkable efficiency advantage is primarily attributed to the
lightweight architectural design. The main computations of the TimeKAN model are concentrated
in the M-KAN block, and the Depthwise Convolution we employed significantly reduces the num-
ber of parameters through grouped operations. Additionally, the powerful representation capabilities
afforded by Multi-order KANs allow us to represent time series with very few neurons. Therefore,
we cannot overlook that TimeKAN achieves outstanding forecasting performance while requiring
minimal computational resources.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

We proposed an efficient KAN-based Frequency Decomposition Learning architecture (TimeKAN)
for long-term time series forecasting. Based on Decomposition-Learning-Mixing architecture,
TimeKAN obtains series representations for each frequency band using a Cascaded Frequency
Decomposition blocks. Additionally. a Multi-order KAN Representation Learning blocks further
leverage the high flexibility of KAN to learn and represent specific temporal patterns within each
frequency band. Finally, Frequency Mixing blocks recombine the frequency bands into the original
format. Extensive experiments on real-world datasets demonstrate that TimeKAN achieves the state
of the art forecasting performance and extremely lightweight computational consumption.
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A MATHEMATICAL DETAILS

A.1 KOLMOGOROV-ARNOLD NETWORK

Kolmogorov-Arnold representation theorem states that any multivariate continuous function can be
expressed as a combination of univariate functions and addition operations. More specifically, a
multivariate continuous function g : [0, 1]n ⇒ R can be defined as:

g(x) = g(x1, · · · , xn) =

2n+1∑
i=1

Φi

( n∑
j=1

ϕij(xj)
)

(13)

where ϕij and Φi are univariate functions. Following the pattern of MLP, Kolmogorov-Arnold
Network (KAN) Liu et al. (2024c) extends the Kolmogorov-Arnoldtheorem to deep representations,
i.e., stacked multilayer Kolmogorov-Arnold representations. Assume that KAN is composed of L+1
layer neurons and the number of neurons in layer l is nl. The transmission relationship between the
j-th neuron in layer l + 1 and all neurons in layer l can be expressed as:

xl+1,j =

nl∑
i=1

ϕl,j,i(xl,i) (14)

We can simply understand that each neuron is connected to other neurons in the previous layer
through a univariate function ϕ. Similar to MLP, the computation of all neurons at layer l can be
reorganized as a function matrix multiplication Φl−1. Therefore, given a input vector x ∈ Rn0 , the
final output of KAN network is:

KAN(x) = (ΦL−1 ◦ · · · ◦Φ1 ◦Φ0)x (15)

In vanilla KAN Liu et al. (2024c), the univariate function ϕl,j,i is parametrized using B-splines,
which is a class of smooth curves constructed via segmented polynomial basis functions. To ensure
the stability and enhance the representational capacity, KAN overlays the spline function on a fixed
basis function b, which is typically the SiLU function:

ϕ(x) = wbb(x) + wsspline(x) (16)

spline(x) =
∑
i

ciBi(x) (17)

where wb and ws are learnable weights and spline(x) is the spline function constructed from the
linear combination of B-spline basis functions Bi. However, the complex recursive computation
process of high-order B-spline functions hinders the efficiency of KAN. Therefore, in this work, we
adopt the simpler Chebyshev polynomial as the univariate function to replace the B-spline function
SS (2024). The univariate function defined by the Chebyshev polynomial is given as follows:

Tk(x) = cos(k arccos(x)) (18)

Here, k represents the order of the polynomial. Then, we consider the univariate function Φ as a
linear combination of Chebyshev polynomials with different orders:

xl+1,j =

nl∑
i=1

ϕl,j,i(xl,i) =

nl∑
i=1

K∑
k=0

Θi,kTk(tanh(xl,i)) (19)

Where Θi,k is the coefficients of k-th order Chebyshev polynomials acting on the xl,i and tanh
is the tanh activation function used to normalize the inputs to between -1 and 1. By adjusting the
highest order of the Chebyshev polynomial K, we can control the fitting capability of KAN. This
also inspires tour design of the Multi-order KAN to dynamically represent different frequencies.

A.2 FOURIER TRANSFORM

Time series are often composed of multiple frequency components superimposed on each other, and
it is difficult to observe these individual frequency components directly in the time domain. There-
fore, transforming a time series from the time domain to the frequency domain for analysis is often

13
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necessary. The Discrete Fourier Transform (DFT) is a commonly used domain transformation algo-
rithm that converts a discrete-time signal from the time domain to the complex frequency domain.
Mathematically, given a sequence of real numbers x[n] in time domain, where n = 0, 1, . . . , N − 1
the DFT process can be described as:

X[k] =

N−1∑
n=0

x[n] · e−i 2π
N kn =

N−1∑
n=0

x[n]

(
cos

(
2π

N
kn

)
− i sin

(
2π

N
kn

))
, k = 0, 1, . . . , N −1

(20)
where X[k] is the k-th frequency component of frequency domain signal and i is the imaginary unit.
Similarly, we can use Inverse DFT (iDFT) to convert a frequency domain signal back to the time
domain.

x[n] =
1

N

N−1∑
k=0

X[k] · ei 2π
N kn =

1

N

N−1∑
k=0

X[k]

(
cos

(
2π

N
kn

)
+ i sin

(
2π

N
kn

))
(21)

The computational complexity of the DFT is typically O(N2)Zhou et al. (2022b). In practice, we
use the Fast Fourier Transform (FFT) to efficiently compute the Discrete Fourier Transform (DFT)
of complex sequences, which reduces the computational complexity to O(N logN). Additionally,
by employing the Real FFT (rFFT), we can compress an input sequence of N real numbers into a
signal sequence in the complex frequency domain containing N/2 + 1 frequency components.

B ADDITIONAL MODEL ANALYSIS

B.1 COMPUTATIONAL COMPLEXITY ANALYSIS

In our TimeKAN, the main computational complexity lies in Fast Fourier Transform (FFT), Depth-
wise Convolution block and Multi-order KAN block. Consider a time series with length L and the
hidden state of each time point is D. For FFT, the computation complexity is O(L logL). For
Depthwise Convolution block, if we set the convolutional kernel to M and stride to 1, the com-
plexity is O(LDM). Finally, assuming that the highest order of Chebyshev polynomials is K, the
complexity of Multi-order KAN block is O(LD2K). Since M,D,K are constants that are indepen-
dent of the input length L, the computational complexity of both the Depthwise Convolution block
and the Multi-order KAN block can be reduced to O(L), which is linear about the sequence length.
In summary, the overall computational complexity is max(O(L logL),O(L) = O(L logL). When
the input is a multivariate sequence with M variables, the computational complexity will expand to
O(ML logL) due to our variable-independent strategy.

Table 6: Full comparison results of model parameters (Params) and multiply-accumulate operations
(MACs) for TimeKAN and other models. To ensure a fair comparison, we fix the prediction length
F = 96 and the input length T = 96, and set the input batch size to 32. The lowest computational
cost is highlighted in bold.

Datasets
ETTH1 ETTH2 ETTm1 ETTm2 Weather Electricity

Metric Params MACs Params MACs Params MACs Params MACs Params MACs Params MACs

TimeMixer 75.50K 20.37M 75.50K 20.37M 75.50K 20.37M 77.77K 24.18M 104.43K 82.62M 106.83K 1.26G
iTransformer 841.57K 77.46M 224.22K 19.86M 224.22K 19.86M 224.22K 19.86M 4.83M 1.16G 4.83M 16.29G

PatchTST 3.75M 5.90G 10.06M 17.66G 3.75M 5.90G 10.06M 17.66G 6.90M 35.30G 6.90M 539.38G
TimesNet 605.48K 18.13G 1.19M 36.28G 4.71M 144G 1.19M 36.28G 1.19M 36.28G 150.30M 4.61T

MICN 25.20M 71.95G 25.20M 71.95G 25.20M 71.95G 25.20M 71.95G 111.03K 295.07M 6.64M 19.5G
Dlinear 18.62K 0.6M 18.62K 0.6M 18.62K 0.6M 18.62K 0.6M 18.62K 0.6M 18.62K 0.6M
FreTS 3.24M 101.46M 3.24M 101.46M 3.24M 101.46M 3.24M 101.46M 3.24M 101.46M 3.24M 101.46M
FILM 12.58M 2.82G 12.58M 2.82G 12.58M 2.82G 12.58M 2.82G 12.58M 8.46G 12.58M 8.46G

FEDFormer 23.38M 24.96G 23.38M 24.96G 23.38M 24.96G 23.38M 24.96G 23.45M 25.23G 24.99M 30.89G
AutoFormer 10.54M 22.82G 10.54M 22.82G 10.54M 22.82G 10.54M 22.82G 10.61M 23.08G 12.14M 28.75G
TimeKAN 12.84K 7.63M 15.00K 8.02M 14.38K 7.63M 38.12K 16.66M 20.94K 29.86M 23.34K 456.50M

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 MODEL EFFICIENCY

Here, we provide the complete results of model efficiency in terms of parameters and MACs in
Table 6 . As can be seen, except for DLinear, our TimeKAN consistently demonstrates a significant
advantage in both parameter count and MACs compared to any other model. DLinear is a model
consisting of only a single linear layer, which makes it the most lightweight in terms of parameters
and MACs. However, the performance of DLinear already shows a significant gap when compared
to state-of-the-art methods. Therefore, our TimeKAN actually achieves superior performance in
both forecasting accuracy and efficiency.

B.3 ERROR BARS

To evaluate the robustness of TimeKAN, we repeated the experiments on three randomly selected
seeds and compared it with the second-best model (TimeMixer). We report the mean and standard
deviation of the results across the three experiments, as well as the confidence level of TimeKAN’s
superiority over TimeMixer. The results are averaged over four prediction horizons (96, 192, 336,
and 720). As shown in the Table 7, in most cases, we have over 90% confidence that TimeKAN
outperforms the second-best model and demonstrates good robustne of TimeKAN.

Table 7: Standard deviation and statistical tests for our TimeKAN method and second-best method
(TimeMixer) on five datasets.

Metric MSE MAE

Dataset TimeKAN TimeMixer Confidence TimeKAN TimeMixer Confidence

ETTh1 0.422±0.004 0.462±0.006 99% 0.430±0.002 0.448±0.004 99%
ETTh2 0.387±0.003 0.392±0.003 99% 0.408±0.003 0.412±0.004 90%
ETTm1 0.378±0.002 0.386±0.003 99% 0.396±0.001 0.399±0.001 99%
ETTm2 0.278±0.001 0.278±0.001 — 0.324±0.001 0.325±0.001 90%
Weather 0.243±0.001 0.245±0.001 99% 0.273±0.001 0.276±0.001 99%

B.4 FREQUENCY LEARNING WITH LONGER WINDOW

Table 8: Comparison on the Electricity dataset when the look back window is expanded to 512.

Models 96 192 336 720

MSE MAE MSE MAE MSE MAE MSE MAE

MOMENT 0.136 0.233 0.152 0.247 0.167 0.264 0.205 0.295

TimeMixer 0.135 0.231 0.149 0.245 0.172 0.268 0.203 0.295

TimeKAN 0.133 0.230 0.149 0.247 0.165 0.261 0.203 0.294

In Table 1, TimeKAN performs relatively poorly on the Electricity dataset. We infer that its poor
performance on the electricity dataset is due to the overly short look-back window (T = 96), which
cannot provide sufficient frequency information. To verify this, we compare the average number
of effective frequency components under a specific look-back window. Specifically, we randomly
select a sequence of length T from the electricity dataset and transform it into the frequency do-
main using FFT. We define effective frequencies as those with amplitudes greater than 0.1 times the
maximum amplitude. Then, we take the average number of effective frequencies obtained across all
variables to reflect the amount of effective frequency information provided by the sequence. When
T = 96 (the setting in the paper), the average number of effective frequencies is 10.69. When
we extend the sequence length to 512, the average number of effective frequencies becomes 19.74.
Therefore, the effective frequency information provided by 512 time steps is nearly twice that of 96
time steps. This indicates that T = 96 loses a substantial amount of effective information.

To validate whether using T = 512 allows us to leverage more frequency information, we extend
the look-back window of TimeKAN to 512 on the electricity dataset and compare it with the state-
of-the-art methods TimeMixer and time series foundatiom model MOMENT Goswami et al. (2024).
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The results are shown in Table 8. Although TimeKAN performs significantly worse than TimeMixer
when T = 96, it achieves the best performance on the electricity dataset when the look-back window
is extended to 512. This also demonstrates that TimeKAN can benefit significantly from richer
frequency information.

B.5 IMPACT OF NUMBER OF FREQUENCY BANDS

To explore the impact of the number of frequency bands on performance, we set the number of
frequency bands to 2, 3, 4, and 5. The effects of different frequency band divisions on performance
are shown in the Table 9. As we can see, in most cases, dividing the frequency bands into 3 or 4
layers yields the best performance. This aligns with our prior intuition: dividing into two bands
results in excessive frequency overlap, while dividing into five bands leads to too little information
within each band, making it difficult to accurately model the information within that frequency
range.

Table 9: Impact of number of frequency bands on performance under the 96-to-96 prediction setting.

Number of Frequency ETTh2 Weather Electricity

MSE MAE MSE MAE MSE MAE

2 0.292 0.340 0.164 0.209 0.183 0.270
3 0.290 0.339 0.163 0.209 0.177 0.268
4 0.290 0.340 0.162 0.208 0.174 0.266
5 0.295 0.346 0.164 0.211 0.177 0.273
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