
ar
X

iv
:2

30
5.

07
48

6v
1

 [
cs

.L
G

]
 1

2
M

ay
 2

02
3

Reduced Label Complexity For Tight ℓ2 Regression

Alex Gittens
gittea@rpi.edu

Computer Science Department
Rensselaer Ploytechnic Institute

110 8th Street, Troy, NY 12180, USA

Malik Magdon-Ismail
magdon@cs.rpi.edu

Computer Science Department
Rensselaer Ploytechnic Institute

110 8th Street, Troy, NY 12180, USA

May 15, 2023

Abstract

Given data X ∈ bRn×d and labels y ∈ bRn the goal is find w ∈ bRd to minimize ‖Xw− y‖2.
We give a polynomial algorithm that, oblivious to y, throws out n/(d+

√
n) data points and is a

(1+d/n)-approximation to optimal in expectation. The motivation is tight approximation with
reduced label complexity (number of labels revealed). We reduce label complexity by Ω(

√
n).

Open question: Can label complexity be reduced by Ω(n) with tight (1 + d/n)-approximation?

1 Introduction

In an era of big data, upwards of 10 million data points is not rare. However, labels are costly,
especially if humans do the labeling. Nevertheless, we want to have and eat our cake. By this we
mean to enjoy the statistical benefits of big data while avoiding the need for big labeling.

Let X ∈ R
n×d be a data matrix whose rows are the n data points, Xt = [x1,x2, . . . ,xn] and

let y ∈ R
n be the corresponding labels, yt = [y1, y2, . . . , yn]. Typically, poly(d) ≪ n ≪ ed. The

age-old goal of ℓ2 regression is to find w∗ ∈ R
d satisfying

‖Xw∗ − y‖2 ≤ ‖Xw − y‖2 for all w ∈ R
d. (1)

We study the label complexity of solving (1), the number of labels in y that must be revealed
to approximate w∗. To define what “approximate w∗” means, suppose (x1, y1), . . . , (xn, yn) are
i.i.d. draws from some joint distribution D(x, y). The expected squared prediction error of w∗

approaches optimal, with a statistical error O(d/n) (Abu-Mostafa et al., 2012, Problem 3.11). Since
w∗ is only accurate to within O(d/n), it suffices to approximate w∗ to within that same error. It
is also necessary to do so, otherwise the benefit of having big data is lost. This defines the target
approximation regime of interest in large-scale machine learning, one of the primary consumers of
regression. We seek (1 + ǫ)-approximations in the regime ǫ ≤ d/n. Allowing for randomness, w
approximates w∗ if

E [‖Xw − y‖2] ≤ (1 + d/n)‖Xw∗ − y‖2. (2)

Via Markov’s inequality, (2) implies a 1+O(d/n) approximation with constant probability. We give
a polynomial approximation algorithm achieving (2) using fewer than n labels, specifically Ω(

√
n)

fewer labels. Before stating our result, let us survey the landscape of tools available, highlighting
the need for new tools because existing methods cannot reduce label complexity in the regime
ǫ ≤ d/n. There are two settings, consistent regression where Xw∗ = y and inconsistent regression.

1

http://arxiv.org/abs/2305.07486v1

Notation. The target matrix X is a fixed n × d real-valued full rank matrix with no zero-
rows. Typically, we will assume poly(d) ≪ n≪ ed when framing asymptotic runtimes. Uppercase
roman (A,B,C,X . . .) are matrices. Lowercase bold (a,b, c,x,y, z, . . .) are vectors. We write
Xt = [x1, . . . ,xn], where xt

i is the ith row of X (the data points). The standard Euclidean basis is
e1, e2, . . . (dimension implied from context). Ik is the k × k identity and [k] is the set {1, . . . , k}.

The SVD decomposes X into a product, X = UΣVt. The left-singular matrix U ∈ R
n×d is

orthogonal, UtU = Id. The ith leverage score is ℓi = ‖ui‖2, where ui is the ith row of U. The
diagonal matrix Σ ∈ R

d×d
+ contains the singular values σ1 ≥ σ2 ≥ · · · ≥ σd > 0. The right-singular

matrix V ∈ R
d×d is an orthogonal rotation. The SVD can be computed in time O(ndmin{n, d}).

The Frobenius norm of A is ‖A‖2F =
∑

ij A
2
ij = trace(AtA) = trace(AAt) =

∑

i∈[d] σ
2
i (A). The

operator or spectral norm of A is ‖A‖2 = max‖x‖=1 ‖Ax‖ = σ1(A). The condition number of X is
κ = ‖A‖2‖A−1‖2 = σ1/σd. The scaled condition number is κ̄2 =

∑

i(σ1/σd)
2.

The pseudo-inverse X† = (XtX)−1Xt = VΣ−1Ut provides a solution to (1), w∗ = X†y. The
symmetric operator XX† = UUt projects onto the column space of X. For an orthogonal matrix
Q, Q† = Qt and (Qt)† = Q. We use c, c1, c2, . . . to generically denote absolute constants whose
values may change with each instance.

1.1 Consistent (Realizable) ℓ2 Regression

When Xw∗ = y, relative approximation to the optimal in-sample error is undefined. In this setting,
we require relative approximation to the optimal weights w∗. Pre-conditioning the randomized
Kaczmarz algorithm in Strohmer and Vershynin (2009) gives label complexity d ln(nκ2/d) (recall
κ is the conditioning of X).

Theorem 1.1. Set v = 0. Independently sample an index j ∈ [n] using probabilities pi = ‖ui‖2/d
for i ∈ [n]. Do this r times and for each sample perform the projective update

v← v −
uj(u

t

jv − yj)

‖uj‖2
. (3)

Set w = VΣ−1v. Then, for r ≥ d ln(nκ2/d),

E [‖w −w∗‖2] ≤
d

n
‖w∗‖2. (4)

The algorithm in Theorem 1.1 requires at most r labels, yielding the advertised label complexity.
Direct use of the result in Strohmer and Vershynin (2009) gives a label complexity κ̄2 ln(n/d), where
κ̄ is the scaled condition number, d ≤ κ̄2 ≤ 1 + (d − 1)κ2. Pre-conditioning brings the condition
number inside the log, reducing the label complexity from O(κ2d ln(n/d)) to O(d ln(κ2n/d)). An
open question is whether one can remove dependence on the conditioning all together.

The runtime in Theorem 1.1 is the sum of O(nd2) preprocessing to get the leverage scores ‖ui‖2
and the pre-conditioner VΣ−1, O(r log n) to sample the r indices and O(rd) for the r projective
updates. The O(nd2) preprocessing can be prohibitive. Using the ideas in Drineas et al. (2012),
one can use approximate fast pre-conditioning with constant factor approximations to the leverage
scores to reduce the preprocessing runtime to O(nd lnn). The label complexity increases by only a
constant factor to cd ln(nκ2/d), but this constant factor can be relevant to practice.

Pre-conditioned SGD with importance sampling for ℓp-regression and minimizing strongly con-
vex functions has been investigated in some detail Yang et al. (2016); Needell et al. (2014); Gorbunov et al.
(2020). Theorem 1.1 together with its efficient extension using fast approximate pre-conditioning
follows by leveraging ideas from Strohmer and Vershynin (2009); Yang et al. (2016); Drineas et al.

2

(2012). This is not a main contribution of our paper. However, for completeness, we give the full
analysis (including identifying the various constants) in Appendix A.2.

1.2 Inconsistent (Unrealizable) ℓ2 Regression

Label complexity has received much attention, especially in areas such as active learning, Jacobs et al.
(2021); MacKay (1992), and experimental design, Pukelsheim (2006); Wang et al. (2017); Allen-Zhu et al.
(2017), with theoretical guarantees being rare on account of the adaptive sampling of data, Castro and Nowak
(2008). There are three general approaches to label complexity.

(a) Throw away outliers based on some form of influence weights, Pena and Yohai (1995).
While the practical gains can be considerable, as demonstrated in experiments, all the labels
are typically used in determining the outliers and theoretical guarantees are lacking. The typ-
ical motivation for identifying outliers is to improve the expected out-of-sample performance
by “cleaning” the data. This concern is orthogonal to the main goal of this work whose focus
is to minimize the in-sample error without using all the in-sample labels.

(b) Iteratively solve (1) using low iteration count. If each iteration touches at most one
point, the label complexity is bounded by the iteration count. Theorem 1.1 uses this approach.
The state-of-the art in iteration count and efficiency is fast approximate pre-conditioned
CGD Rokhlin and Tygert (2008); Avron et al. (2012). A data set of size 4d2 is subsampled
to construct the preconditioner, and then κ ln(n/d) iterations suffice to satisfy (2). However,
the subsampling uses random projections to form linear combinations of all the data and
labels, and each iteration uses all the labels.

An alternative is to extend the algorithm in Theorem 1.1 using a fast approximate pre-
conditioned SGD, as in Yang et al. (2016). While the approach is promising, Ω(d log(1/ǫ)/ǫ)
iterations are needed, resulting in too large a label complexity when ǫ ≤ d/n.

(c) Find a rich coreset, a small set of points on which the (possibly reweighted) coreset-
regression approximates the full data regression. The active learning paradigm MacKay
(1992); Cohn et al. (1994); Freund et al. (1997) adds one point at a time adaptively to the
working coreset. This adaptive sampling can exponentially reduce label complexity in classi-
fication from d/ǫ to d log(d/ǫ). However, the settings are very restricted, such as consistent
(separable) homogeneous linear models with data uniform on the sphere, Freund et al. (1997);
Dasgupta et al. (2005); Balcan et al. (2006, 2007). Even mild deviation from these settings
can result in label complexity reverting to d/ǫ Dasgupta (2005). As with outlier ejection,
active learning in machine learning is focused on out-of-sample prediction error for a test
distribution. Our focus is tight in-sample fit with minimum label complexity. To this end,
one fast random projections efficiently construct coresets of size O(d/ǫ), Sarlos (2006), but
these coresets are linear combinations of all the data. The motivation of random-projection
coresets is speed, not label complexity. Row-sampling according to leverage score probabil-
ities (Drineas et al., 2008, Theorem 5) uses a pure coreset of size Ω(d log d/ǫ2) to produce
a (1 + ǫ)-approximator with constant probability. In a sequence of ensuing results using
more refined approaches, this sample complexity has been reduced. First one can start with
a constant factor approximation using O(d log d) samples and improve that to a (1 + ǫ)-
approximation using an additional d/ǫ samples. This improves the result in Drineas et al.
(2008) to O(d log d+d/ǫ) Mahoney (2011). The d log d is unavoidable by a coupon collector ar-
gument. However, using a more subtle linear sample sparsification approach, Chen and Price
(2019) gets the row-sample complexity down to O(d) for a 2-approximation, which then gives
an O(d+ d/ǫ) label complexity for a (1 + ǫ)-approximation in expectation, the current state

3

of the art. An interesting result in Derezinski and Warmuth (2018) uses volume sampling
to obtain an unbiased (d + 1)-approximation using d labels, assuming the data in X are in
general position (there is no easy way to extend this analysis to sample more than d points).
Volume sampling has also been used in matrix reconstruction Deshpande et al. (2006). The
estimator in Derezinski and Warmuth (2018) is unbiased, hence averaging gives a (1 + ǫ)-
approximator with O(d2/ǫ) labels. Derezinski and Warmuth (2018) emphasize that jointly
sampling rows is essential for getting tight approximation, and then go on to give an efficient
algorithm for reverse iterative volume sampling, improving on the volume sampling algorithms
in Deshpande and Rademacher (2010); Kulesza and Taskar (2012). Note that only coresets
constructed oblivious to the labels y can reduce label complexity, for example Chen and Price
(2019); Derezinski and Warmuth (2018).

The prior results don’t work in the stringent ǫ ≤ d/n regime, since they imply label complexity n.
New tools are needed for this regime. We give a polynomial algorithm to reduce label complexity
by Ω(

√
n). Our algorithm throws away data while maintaining a provable coreset (a combination

of approaches (a) and (c) above). The algorithm is based on the following new tools:

(i) Tight analysis of the regression error obtained by solving the regression problem on an arbi-
trary coreset obtained after throwing away k points.

(ii) A probabilistic argument showing that one can always throw away Ω(
√
n) points while achiev-

ing the target approximation error, reducing label complexity by Ω(
√
n).

(iii) The probabilistic arguments use a counterintuitive sampling measure for sets of rows. To re-
alize the reduced label complexity implied by (ii), we develop a polynomial rejection sampling
algorithm to throw out a set of size Ω(

√
n) while attaining the bound in (2).

Lower Bounds. Theorems 13 and 14 in Boutsidis et al. (2013) give lower bounds on y-agnostic
coresets with 1 + d/n approximation ratio. Deterministic y-agnostic coresets have at least n − d
points (label complexity cannot be reduced more than d). Randomized y-agnostic coresets yielding
1 + d/n approximation with constant probability have at least n/d points, so label complexity
cannot be reduced by more than cn, where c ∼ (d − 1)/d. Since (2) implies approximation with
constant probability, the maximum reduction in label complexity one can hope for is cn.

1.3 Our results

Let A be a matrix formed from a k-subset of the rows in X. That is, A = StX, where S is a
row-sampling matrix whose columns are standard basis vectors, S = [ei1 , ei2 , . . . , eik]. Recall that
X = UΣVt and let UA = StU be the corresponding rows of U. The partial projection matrix PA

plays an important role in our algorithm,

PA = A(XtX)−1At = UAU
t

A, (5)

where the last expression follows from using the SVD of X, see (11). The influence of the rows A is

pA =
1

Z
(1− ‖PA‖2)2
‖PA‖2

, (6)

where Z =
∑

A(1 − ‖PA‖2)2/‖PA‖2. Note that the influence does not depend on the labels y.
Our main result is Theorem 3.1, and the algorithm accompanying Theorem 3.1 is simple to state.
Jointly sample k rows A to throw out, using the probability distribution over k-subsets of the rows

4

in X given by the influences pA in (6). Let XA be the (deficient) data that remains after throwing
out the k rows in A, and let yA be the corresponding labels. Perform a simple regression on this
reduced (deficient) data to get regression weights wA. Then, Theorem 3.1 states that

E [‖XwA − y‖2] ≤
(

1 +
dk2

(n− dk)2

)

‖Xw∗ − y‖2. (7)

Note that the algorithm is oblivious to y and hence serves to reduce the label complexity by k
while delivering the approximation in (7). The main tool in our analysis is Lemma 2.1 which gives
an exact analysis of the regression obtained from throwing away an arbitrary set of rows A.

When k = 1, the algorithm throws out one data point xi using sampling probabilities (influ-
ences) pi ∝ (1 − ℓi)

2/ℓi. By throwing out (1/n)th of the information, one expects the error to
grow correspondingly, by 1/n. A surprise from (7) is that one can throw away one data point
and get only an O(d/n2) error increase. Prior algorithms that explicitly construct coresets can’t
guarantee such approximations for coreset sizes smaller than n. This already breaks a barrier
on what was previously possible. Setting dk2/(n− dk)2 = d/n proves that one can throw out
k = n/(d+

√
n) ∈ Ω(

√
n) data points and get approximation ratio 1 + d/n. In Section 2 we prove

the result for k = 1 illustrating all the main ideas, which are then generalized in Section 3.
As it stands, (7) is an existence result, unless one can efficiently sample A according to pA. The

probabilities pA depend non-trivially on A through the spectral norm of UA, and there is no obvious
way to jointly sample rows using such complicated probabilities. In Section 4 we give an algorithm
to sample exactly from the probabilities pA. The runtime to generate one sample A satisfying (7)
is O(µ(n + kdmin{k, d})), where µ is the average inverse leverage score, a measure of coherence,

µ(X) =
1

n

n
∑

i=1

1

ℓi
. (8)

(ℓi are the leverage scores, ℓi = ‖ui‖2.) For near uniform leverage scores, µ ∼ n/d, and the runtime
is O(n2/d). Ideally, the sampling efficiency should not depend on the input.

The sampling algorithm uses two tools. The first is Theorem 4.1 which is a simple way to
sample using probabilities pA that can be written as a sum of some function over the rows of A, for
example sampling according to Frobenius norms, pA ∝ ‖A‖2F . Our sampling probabilities cannot
be written as a sum over rows, which leads to our second idea of carefully bounding the sampling
probabilities so that we can use Theorem 4.1 within a rejection sampling framework.

Remainder of the paper. Next, we briefly discuss some open questions and promising
directions. We then proceed to the detailed statement of results and proofs.

1.4 Discussion

Our result for the special case k = 1 highlights the need for new tools when the approximation
regime is stringent. Constructing a coreset from scratch via some form of sparsification won’t
work. Carefully throwing away data does work. It is instructive to see what our result in (7)
implies for a (1 + ǫ)-approximation in the more relaxed setting where ǫ is a (small) constant.
Setting dk2/(n − dk)2 = ǫ gives k = n/(d +

√

d/ǫ), so our algorithm throws away O(n/d) data,
retaining a coreset proportional to n. This is much worse than the coreset construction algorithms
based on sparsification which only need to retain O(d/ǫ) points. Coreset construction is better
for relaxed approximation and data rejection is better for tight approximation. It is not unusual
for different regimes to require different techniques. However it is an open question whether data
rejection can compete with coreset construction even for relaxed approximation.

5

Our algorithm throws out Ω(
√
n) data and provably gets a (1+ d/n)-approximation. There are

reasons to suspect that one can throw out cn data points and get (1+d/n)-approximation. (i) The
lower bound suggests one only needs to retain n/d data points, hence throwing out (d − 1)n/d.
(ii) If one can repeatedly throw out one point with the k = 1 result continuing to hold in a chaining
fashion, one can throw out proportional to n data points (see the comments after Theorem 2.2).
Unfortunately, the chaining analysis, being adaptive, is difficult.

Lemma 2.1 is an exact leave-A-out result. Our analysis then bounds (Aw∗−yA)
tQ(Aw∗−yA)

by ‖Q‖2‖Aw∗ − yA‖2. This is loose because it does not exploit the coordination between the
residual Aw∗ − yA and Q. In special cases, e.g. d = 1, one can exploit this coordination to throw
out cn data points and get (1 + d/n)-approximation, matching the lower bound. Hence, a more
subtle analysis could resolve our main open question of whether one can throw out cn points and
get (1 + d/n)-approximation. We used a simple regression for inference on the deficient data. A
different inference algorithm might produce stronger results, for example a weighted regression as
is used in the coreset construction. Or, an all together new approach is needed.

The (oblivious to y) influence probabilities in (6) identify the “useless” rows, akin to outlier
detection. The innovation in our algorithm is that the useless rows are jointly sampled. For coreset
construction, joint sampling of rows is essential to get the tightest bounds, and the same is likely
true for identifying the useless rows. Thus, the probablities pA in (6) may be of general interest to
machine learning. Can one more efficiently sample according to complex probabilities like pA? Or,
are there approximations to pA that can give the same regression accuracy but are easier to sample
from? How does the bound change if approximate sampling probabilities are used instead of pA?

This work addresses the transductive setting, where one simply wishes to obtain the optimal
in-sample weights w∗, but using fewer labels. In the inductive setting, one is also interested in the
expected prediction error on new data (x, y) drawn from some distribution. It would be interesting
to understand how rejection performs in the inductive setting.

2 Reducing Label Complexity By One

Recall that a k-subset of the rows in X is A = StX, where S = [ei1 , ei2 , . . . , eik]. Let yA be the
corresponding y-values for the data in A, yA = Sty. Using the notation in (Abu-Mostafa et al.,
2012, Section 4.3), define XA as the deficient dataset with the rows in A removed. Similarly, we
have yA, the corresponding y-values for the deficient data and wA, the regression weights obtained
from the deficient data,

wA = argmin
w

‖XAw − yA‖2. (9)

The partial projection matrix PA has an important role in our discussion,

PA = A(XtX)−1At. (10)

Recall the SVD of X, X = UΣVt. Let UA be the rows in U corresponding to the rows A. Then,

PA = StX(XtX)−1XtS = StUUtS = UAU
t

A, (11)

and hence ‖PA‖2 = ‖UAU
t

A‖2 ≤ 1. Assume ‖PA‖2 < 1. This will be without loss of generality
because we never need to remove a set of rows A with ‖PA‖2 = 1. Also assume 0 < ‖PA‖2 because
if 0 = ‖PA‖2 for any A, those rows in A are all 0 and can be thrown out. We need the in-sample
error for the deficient weights wA on the full data X. This is the content of the next lemma,

6

Lemma 2.1. Let w∗ be the weights from the full regression, w∗ = argmin
w

‖Xw − y‖2.

‖XwA − y‖2 = ‖Xw∗ − y‖2 + (Aw∗ − yA)
tQ(Aw∗ − yA), (12)

where, assuming ‖PA‖2 < 1, Q = (Ik − PA)
−1PA(Ik − PA)

−1 = (Ik − PA)
−2 − (Ik − PA)

−1.

Proof. Note that XA
tXA = XtX−AtA, and XA

tyA = Xty−AtyA. The deficient weights wA are

wA = (XA
tXA)

−1XA
tyA = (XA

tXA)
−1(Xty −AtyA). (13)

Using w∗ = (XtX)−1Xty and the Woodbury matrix inversion identity Woodbury (1950),

wA = (XtX−AtA)−1(Xty −AtyA) (14)

=
[

(XtX)−1 + (XtX)−1At(Ik − PA)
−1A(XtX)−1

]

(Xty−AtyA) (15)

= w∗ + (XtX)−1At(Ik − PA)
−1Aw∗ − (XtX)−1At(Ik − PA)

−1yA, (16)

where the last expression follows by multiplying out the previous expression and using

(Ik − PA)
−1PA = (Ik − PA)

−1(PA − I + I) = (Ik − PA)
−1 − I. (17)

Note, wA is well defined since Ik − PA is invertible because ‖PA‖2 < 1. Consider ‖XwA − y‖2,

‖XwA − y‖2 = ‖Xw∗ − y +X(XtX)−1At(Ik − PA)
−1Aw∗ −X(XtX)−1At(Ik − PA)

−1yA‖2. (18)

We get the norms-squared of each of the three terms, plus the cross terms. The residual Xw∗ − y
is orthogonal to the columns of X, that is (Xw∗ − y)tX = 0. Hence, only one of the cross terms is
non-zero. After a little algebra, we get four terms,

‖XwA − y‖2 = ‖Xw∗ − y‖2

+wt

∗A
t(Ik − PA)

−1PA(Ik − PA)
−1Aw∗

+yt

A(Ik − PA)
−1PA(Ik − PA)

−1yA

−2wt

∗A
t(Ik − PA)

−1PA(Ik − PA)
−1yA. (19)

= ‖Xw∗ − y‖2 + (Aw∗ − yA)
t(Ik − PA)

−1PA(Ik − PA)
−1(Aw∗ − yA). (20)

The alternate form for Q follows by using (17).

A special case of Lemma 2.1 is when k = 1 (one row is removed). The general case uses similar
ideas. When A is just one row, A = xt

i , and PA = ut

i ui = ‖ui‖2 = ℓi, the leverage score for the ith
row of X (norm-squared of the corresponding row of the left-singular matrix). Lemma 2.1 gives

‖Xwi − y‖2 = ‖Xw∗ − y‖2 + ℓi
(1− ℓi)2

‖xt

i w∗ − yi‖2 (21)

Define the sampling probability

pi =
1

Z
(1− ℓi)

2

ℓi
, (22)

where Z =
∑

i(1 − ℓi)
2/ℓi. Sample a row i with probability pi to throw out. Notice that if ℓi = 1

then this row will never be thrown out, consistent with our assumption that ‖PA‖2 < 1.

7

Theorem 2.2. For any X, pick row i to throw out with probability pi. Then,

E [‖Xwi − y‖2] ≤
(

1 +
d

(n− d)2

)

‖Xw∗ − y‖2. (23)

Theorem 2.2 implies one can throw out at least one point and get a (1 +O(d/n2))-approximation.
Recall that our target approximation 1 + d/n.

Proof. Using the definition of pi and
∑

i ‖xt

i w∗ − y‖2 = ‖Xw∗ − y‖2 gives

E [‖Xwi − y‖2] =
(

1 +
1

Z

)

‖Xw∗ − y‖2. (24)

The result follows if Z ≥ (n− d)2/d, which we now prove.

Z =

n
∑

i=1

(1− ℓi)
2

ℓi
=

n
∑

i=1

1

ℓi
− 2 + ℓi. (25)

Since
∑

i ℓi =
∑

i ‖ui‖2 = d, Z = d − 2n +
∑

i 1/ℓi. Therefore, we wish to find the minimum
possible value of

∑

i 1/ℓi subject to the constraint 0 < ℓi ≤ 1 and
∑

i ℓi = d. Let us suppose that
this minimum is attained at some values ℓ1∗, . . . , ℓn∗ and for some i, j, ℓi∗ < ℓj∗. Suppose ℓi∗ = ℓ−ε
and ℓj∗ = ℓ+ε. After some elementary algebra, one finds that replacing both ℓi∗ and ℓj∗ by ℓ keeps
their sum the same but strictly decreases the sum 1/ℓi∗ + 1/ℓj∗,

1

ℓ− ε
+

1

ℓ+ ε
>

2

ℓ
. (26)

This contradicts ℓ1∗, . . . , ℓn∗ attaining the minimum for Z which means the minimum possible value
for Z is attained when ℓ1∗ = ℓ2∗ = · · · = ℓn∗ = d/n. This gives

Z ≥ n× (1− d/n)2

(d/n)
=

(n − d)2

d
, (27)

concluding the proof.

Comment. Throwing out just one data point looks trivial, but the result is surprising. A data
point contains O(1/n) of the information yet throwing one out increases the error by only O(1/n2).
Comment. The same qualitative relative error approximation 1 + cd/(n − d)2 continues to hold
given relative error approximations to ℓi and (1 − ℓi). A fast relative error approximation to ℓi is
given in Drineas et al. (2012). Can one can get a fast relative error approximation to (1− ℓi)?
Comment. The algorithm is oblivious to y as it should be if we are to reduce label complexity.
Comment. Chaining this approximation factor by throwing out one point at a time gives

(

1 +
d

(n− d)2

)(

1 +
d

(n− d− 1)2

)(

1 +
d

(n− d− 2)2

)

· · ·
(

1 +
d

(n − d− k + 1)2

)

. (28)

Using 1 + x ≤ ex, this product is at most

exp

(

d

k−1
∑

i=0

1

(n− d− i)2

)

. (29)

8

Bounding the sum by an integral gives

k−1
∑

i=0

1

(n− d− i)2
≤
∫ k

0
dx

1

(n− d− x)2
=

k

(n− d)(n − d− k)
. (30)

Setting k = (n− d)/2 gives an approximation ratio exp (d/(n − d)) ≈ 1 + d/(n − d) after throwing
away about half the data. Such a result ought to be possible, but we don’t have a proof for any
such chaining approach. Our general analysis in the next section only throws out Θ(

√
n) points.

3 Reducing Label Complexity by Ω(
√
n).

The goal in this section is to show that one can reduce label complexity by Ω(
√
n) while attaining

the target approximation ratio of 1 + d/n. We prove that such a set of rows A exists and give a
polynomial algorithm to find A. The starting point is Lemma 2.1, which implies

‖XwA − y‖2 ≤ ‖Xw∗ − y‖2 + ‖(Ik − PA)
−1PA(Ik − PA)

−1‖2‖Aw∗ − yA‖2. (31)

Let 0 ≤ λ < 1 be an eigenvalue of PA. Then,

λ/(1− λ)2 ≥ 0 (32)

is an eigenvalue of (Ik − PA)
−1PA(Ik − PA)

−1. We see that (Ik − PA)
−1PA(Ik − PA)

−1 is positive,
hence ‖(Ik − PA)

−1PA(Ik − PA)
−1‖2 is given by its top eigenvalue, which is obtained from the top

eigenvalue of PA, which in turn is ‖PA‖2 since PA is non-negative. Hence,

‖XwA − y‖2 ≤ ‖Xw∗ − y‖2 + ‖PA‖2
(1− ‖PA‖2)2

‖Aw∗ − yA‖2. (33)

Define a sampling probability for a subset of rows A by

pA =
1

Z
(1− ‖PA‖2)2
‖PA‖2

, (34)

where Z =
∑

A(1−‖PA‖2)2/‖PA‖2. Sample the set of k rows A to throw out with probability pA.
Note that we never throw out an A with ‖PA‖2 = 1, consistent with assuming ‖PA‖2 < 1.

Theorem 3.1. For any X, pick k rows A to throw out with probability pA. Then, for k < n/d,

E [‖XwA − y‖2] ≤
(

1 +
dk2

(n− dk)2

)

‖Xw∗ − y‖2. (35)

Set k = n/(d+
√
n) in Theorem 3.1 to get a (1 + d/n)-approximation. That is, one can reduce

label complexity by n/(d+
√
n) ∈ Ω(

√
n) while attaining the target approximation ratio.

Proof. Taking the expectation in (33) using the probabilities in (34) gives

E [‖XwA − y‖2] ≤ ‖Xw∗ − y‖2 + 1

Z
∑

A

‖Aw∗ − yA‖2. (36)

Let us evaluate the sum over A in (36). Fix i ∈ [n]. The term (xt

i w∗ − yi)
2 appears in

(

n−1
k−1

)

of

the As. Hence the sum over A contains
(

n−1
k−1

)

copies of (xt

i w∗ − yi)
2 for each i. This means

∑

A

‖Aw∗ − yA‖2 =
(n− 1

k − 1

)

‖Xw∗ − y‖2 (37)

9

and we get

E [‖XwA − y‖2] ≤
(

1 +

(

n−1
k−1

)

Z

)

‖Xw∗ − y‖2. (38)

The remainder of the proof is to upperbound
(

n−1
k−1

)

/Z. We need a lower bound on Z.

Z =
∑

A

(1− ‖PA‖2)2
‖PA‖2

=
∑

A

1

‖PA‖2
+
∑

A

‖PA‖2 − 2n. (39)

As in the proof of Theorem 2.2, fix the sum
∑

A ‖PA‖2. Then the sum
∑

A 1/‖PA‖2 is minimized
when each term has the same value, i.e., ‖PA‖2 =

∑

A ‖PA‖2/
(

n
k

)

, the average spectral norm of
the partial projection matrices (recall that A has k rows). Define Q as this average spectral norm,

Q =
1
(

n
k

)

∑

A

‖PA‖2. (40)

Then,

Z ≥
(n

k

) (1−Q)2
Q . (41)

Using (41) in (38) gives

E [‖XwA − y‖2] ≤
(

1 +
k

n

Q
(1−Q)2

)

‖Xw∗ − y‖2. (42)

We need an upper bound on Q. Note ‖PA‖2 = ‖UAU
t

A‖2 = ‖UA‖22. Therefore,

1

d
‖UA‖2F ≤ ‖PA‖2 ≤ ‖UA‖2F . (43)

Since ‖UA‖2F =
∑

j∈A ‖uj‖2, we have

1

d
(

n
k

)

∑

A

∑

j∈A

‖uj‖2 ≤ Q ≤
1
(

n
k

)

∑

A

∑

j∈A

‖uj‖2. (44)

Fix i ∈ [n]. The term ‖uj‖2 appears in
(

n−1
k−1

)

of the As, hence

∑

A

∑

j∈A

‖uj‖2 =
(n− 1

k − 1

)

n
∑

i=1

‖uj‖2 =
(n− 1

k − 1

)

d, (45)

where the last step uses
∑

i ‖uj‖2 = d (orthogonality of U). Using (45) in (44) gives

k

n
≤ Q ≤ dk

n
. (46)

Finally, using the upper bound for Q in (46) in (42) completes the proof.

Comment. Our analysis of Q in the proof is loose by at most a factor of d, which could
√
d-factor

increase in the data thrown out. Indeed, with Q = k/n, k = n
√
d/(
√
d+
√
n) gives approximation

1 + d/n. Getting tighter bounds on the average squared spectral norm of k rows of an orthogonal
n× d matrix would have an impact.

10

Comment. There is a big gap between the Ω(
√
n) reduction in label complexity offered in Theo-

rem 3.1 compared to the chaining analysis and lower bound which suggests that Ω(n) is possible.
It is an interesting question whether this gap can be closed.
Comment. Our inference algorithm on the reduced data is simple linear regression, the same
inference algorithm used on the full data. One direction for improving the result is to couple the
inference algorithm to the data thrown out. Specifically reweighting the left-in data and/or using
some form of regularization in the fitting.
Comment. The proof is constructive. However getting all sampling probabilities exactly is expo-
nential, taking O(

(

n
k

)

kdmin{k, d}) time. We discuss a polynomial sampling algorithm next.

4 Polynomial Sampling Algorithm

We wish to exactly sample from the probability distribution (34) efficiently. The probabilities
nontrivially depend on ‖UA‖2 and the spectral norm itself is hard to deal with. We give a sampling
algorithm based on rejection whose efficiency depends on the small leverage scores (a measure of
incoherence) but is otherwise polynomial. This sampling efficiency can be pre-computed.

Sampling a submatrix using probabilities determined by some nontrivial property of the sub-
matrix is generally not easy. One example is volume sampling Deshpande et al. (2006), where the
probabilities depend on the product of singular values. One setting where it is easy to sample
exactly is when the probability of a set of rows is the sum of some function over the rows. Let
Ut = [u1, . . . ,un] be a matrix with rows ui. Let f(u) be a nonnegative function and define the
sampling probability for a set of k rows A as proportional to the sum of f over the rows in A,

pA =
1

Z
∑

i∈A

f(ui), (47)

where

Z =
∑

A

∑

i∈A

f(ui) =
(n− 1

k − 1

)

n
∑

i=1

f(ui). (48)

For any f , one can sample exactly using probabilities pA in O(n) time.

Theorem 4.1. Sample one row ui according to the probabilities

pi =
f(ui)

∑n
j=1 f(uj)

. (49)

Sample k − 1 rows (without replacement) uniformly from the
(

n−1
k−1

)

possible (k − 1)-subsets of the
remaining n− 1 rows in Ui. For any f , the probability to sample A is given by pA in (47).

Proof. Consider the set of rows At = [u1, . . . ,uk]. The same argument applies to any other k rows.
We compute the probability to sample A. Conditioning on the first row sampled,

P[A] =
k
∑

i=1

P[ui is the first row sampled] P [Ai are the remaining rows sampled | ui] (50)

=
k
∑

i=1

pi ×
1

(

n−1
k−1

) (51)

=
1

(

n−1
k−1

)
∑n

j=1 f(uj)

k
∑

i=1

f(ui) (52)

= pA, (53)

11

where the last step follows from the definitions of pA and Z.

Comment. Sampling using Frobenius norm probabilities, pA ∝
∑

i∈A ‖ui‖2 fits the assump-

tions of the theorem with f(u) = ‖u‖2. Sampling using inverse sum of leverage scores also fits,
where f(u) = 1/‖u‖2 in which case pA ∝

∑

i∈A 1/‖ui‖2.
We use rejection to sample A according to the probabilities in (34). Here is the algorithm.

1: Sampling A using probabilities pA in (34).
2: repeat
3: Sample A using Theorem 4.1 and the probabilities qA given by f(u) = 1/‖u‖2,

qA =
1

(

n−1
k−1

)
∑n

j=1 1/‖uj‖2
∑

i∈A

1/‖ui‖2. (54)

4: Accept A with probability

θA =
(1− ‖UA‖22)2/‖UA‖22

d
k2

∑

i∈A 1/‖ui‖2
. (55)

5: until A is accepted.

First, to show that the rejection sampling is valid, we need that θA ≤ 1. Indeed this is the case.
We prove it as follows. Using ‖UA‖22 ≥ ‖UA‖2F/d and ‖UA‖2F =

∑

i∈A ‖ui‖2 gives

(1− ‖UA‖22)2
‖UA‖22

≤ (1− 1
d

∑

i∈A ‖ui‖2)2
1
d

∑

i∈A ‖ui‖2
≤ d
∑

i∈A ‖ui‖2
. (56)

We use a convexity argument to bound d/
∑

i∈A ‖ui‖2,
d

∑

i∈A ‖ui‖2
=

d

k
· 1

1
k

∑

i∈A ‖ui‖2
≤ d

k
· 1
k

∑

i∈A

1/‖ui‖2 =
d

k2

∑

i∈A

1/‖ui‖2. (57)

Combining (56) and (57) in (55) establishes that θA ≤ 1, so the rejection sampling is valid. We
now show that the probability distribution of A conditioned on it being accepted is as desired in
(34). Indeed,

P[A | accept] =
P[A ∩ accept]

P[accept]
(58)

=
qAθA

∑

A qAθA
. (59)

For the probability to accept, we have

∑

A

qAθA =
1

d
k2

(

n−1
k−1

)
∑n

j=1 1/‖uj‖2
∑

A

(1− ‖UA‖22)2
‖UA‖22

(60)

=
Z

d
k2

(

n−1
k−1

)
∑n

j=1 1/‖uj‖2
. (61)

Dividing qAθA by the above gives

P [A | accept] = 1

Z
(1− ‖UA‖22)2
‖UA‖22

, (62)

12

as desired. The expected number of trials to accept A is given by 1/ P [accept]. The cost of a trial
is the time to generate a sample according to the probabilities qA, which is O(n), plus the time to
compute θA which is O(kdmin{k, d}). Hence, the expected runtime is

runtime =
O(n+ kdmin{k, d})

P[accept]
. (63)

We need a lower bound on P[accept]. For the input matrix X, define a measure of coherence µ,

µ =
1

n

n
∑

i=1

1

‖ui‖2
, (64)

This measure of coherence is the average of the reciprocals of the leverage scores. If the leverage
scores are uniform, then µ = n/d. In general, µ ≥ n/d by convexity. The larger µ, the less uniform
the leverage scores. The coherence µ captures how many of the leverage scores are small. We get
a lower bound for P[accept] in terms of µ as follows.

P[accept] =
k2

ndµ
(

n−1
k−1

)

∑

A

(1− ‖UA‖22)2
‖UA‖22

(65)

To get a lower bound for the sum over A, we use ‖UA‖22 ≤ ‖UA‖2F ,

∑

A

(1− ‖UA‖22)2
‖UA‖22

≥
∑

A

(1− ‖UA‖2F)2
‖UA‖2F

=
∑

A

‖UA‖2F +
∑

A

1

‖UA‖2F
− 2
(n

k

)

=
(n− 1

k − 1

)

d+
∑

A

1

‖UA‖2F
− 2
(n

k

)

≥
(n− 1

k − 1

)

d. (66)

where the last step follows from Lemma 4.2 which states that
∑

A 1/‖UA‖2F > 2
(

n
k

)

when n ≥ 8dk.
Since k ∈ Θ(

√
n), this means n ∈ Ω(d2).

P [accept] ≥ k2

nµ
. (67)

Since k2 ∈ Θ(n), this means that runtime ∈ O(µ(n + kdmin{k, d})). Since µ is typically of order
n/d, the runtime is in O(n2/d), a polynomial runtime. We now prove the last step in (66).

Lemma 4.2. For n ≥ 8dk,
∑

A

1

‖UA‖2F
− 2
(n

k

)

≥ 0.

Proof. Define Abad as the set of bad As for which ‖UA‖2F ≥ 1/4. Then,

(n− 1

k − 1

)

d =
∑

A

‖UA‖2F =
∑

A∈Abad

‖UA‖2F +
∑

A 6∈Abad

‖UA‖2F ≥
|Abad|

4
. (68)

This means

|Abad| ≤ 4d
(n− 1

k − 1

)

. (69)

13

We therefore have that

∑

A

1

‖UA‖2F
=

∑

A∈Abad

1

‖UA‖2F
+

∑

A 6∈Abad

1

‖UA‖2F

≥
∑

A 6∈Abad

1

‖UA‖2F
≥

((n

k

)

− |Abad|
)

× 4

≥ 4
(n

k

)

− 16d
(n− 1

k − 1

)

, (70)

where the last step uses (69). Subtracting 2
(

n
k

)

gives

∑

A

1

‖UA‖2F
− 2
(n

k

)

≥ 2
(n

k

)

− 16d
(n− 1

k − 1

)

= 2
(n− 1

k − 1

)(n

k
− 8d

)

. (71)

The lemma follows from the assumption n ≥ 8dk.

References

Abu-Mostafa, Y., Magdon-Ismail, M., and Lin, H.-T. (2012). Learning From Data: A Short Course. aml-
book.com.

Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss with binary coins.
Journal of Computer and System Sciences , 66(4), 671–687.

Ailon, N. and Liberty, E. (2013). An almost optimal unrestricted fast johnson-lindenstrauss transform. ACM
Trans. Algorithms , 9(3), 1–21.

Ailon, N. and Rauhut, H. (2014). Fast and rip-optimal transforms. Discrete & Computational Geometry,
52(4), 780–798.

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. (2017). Near-optimal design of experiments via regret
minimization. In International Conference on Machine Learning, pages 126–135. PMLR.

Avron, H., Maymounkov, P., and Toledo, S. (2012). Blendenpik: Supercharging LAPACK’s least-squares
solver. SIAM Journal on Scientific Computing, 32(3).

Balcan, M., Broder, A., and Zhang, T. (2007). Margin based active learning. In Proc. COLT .

Balcan, M.-F., Beygelzimer, A., and Langford, J. (2006). Agnostic active learning. In Proc. ICML.

Boutsidis, C., Drineas, P., and Magdon-Ismail, M. (2013). Near optimal coresets for least-squares regression.
IEEE Transactions on Information Theory, 59(10), 6880–6892.

Castro, R. M. and Nowak, R. D. (2008). Minimax bounds for active learning. IEEE Transactions on
Information Theory, 54(5), 2339–2353.

Chen, X. and Price, E. (2019). Active regression via linear-sample sparsification. In Proc. 32nd COLT .

Cohn, D., Atlas, L., and Ladner, R. (1994). Improving generalization with active learning. Machine Learning,
15, 201–221.

Dasgupta, S. (2005). Coarse sample complexity bounds for active learning. In Proc. 18th NIPS .

14

Dasgupta, S., Kalai, A., and Monteleoni, C. (2005). Analysis of perceptron-based active learning. In Proc.
18th COLT .

Derezinski, M. and Warmuth, M. (2018). Reverse iterative volume sampling for linear regression. Journal
of Machine Learning Research, 19, 1–39.

Deshpande, A. and Rademacher, L. (2010). Efficient volume sampling for row/column subset selection. In
Proc. FOCS , pages 329–338.

Deshpande, A., Rademacher, L., Vempala, S., and Wang, G. (2006). Matrix approximation and projective
clustering via volume sampling. In Proc. STOC , pages 225–247.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. (2008). Relative-error cur matrix decompositions.
SIAM Journal on Matrix Analysis and Applications , 30(2).

Drineas, P., Mahoney, M., Muthukrishnan, S., and Sarlós, T. (2010). Faster least squares approximation.
Numerische Mathematik , 117(2), 219–249.

Drineas, P., Magdon-Ismail, M., Mahoney, M., and Woodruff, D. (2012). Fast approximation of matrix
coherence and statistical leverage. Journal of Machine Learning Research (JMLR), 13, 3441–3472.

Freund, Y., Seung, S., Shamir, E., and Tishby, N. (1997). Selective sampling using the query by committee
algorithm. Machine Learning Journal , 28, 133–168.

Golub, G. and van Loan, C. (1996). Matrix computations . The Johns Hopkins University Press, London, 3
edition.

Gorbunov, E., Hanzely, F., and Richtarik, P. (2020). A unified theory of SGD: Variance reduction, sampling,
quantization and coordinate descent. In Proc. AISTATS .

Jacobs, P., Maillette de Buy Wenniger, G., Wiering, M., and Schomaker, L. (2021). Active learning for reduc-
ing labeling effort in text classification tasks. In Proc. 33rd Benelux Conference on Artificial Intelligence
and Machine Learning.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of lipschitz mappings into a hilbert space. Contemp.
Math., 26, 189–206.

Kulesza, A. and Taskar, B. (2012). Determinantal point processes for machine learning. Foundations and
Trends in Machine Learning, 5(2-3), 123–286.

MacKay, D. J. C. (1992). Information-based objective functions for active data selection. Neural Computa-
tion, 4(4), 590–604.

Mahoney, M. W. (2011). Randomized algorithms for matrices and data. Foundations and Trends in Machine
Learning.

Needell, D., Ward, R., and Srebro, N. (2014). Stochastic gradient descent, weighted sampling, and the
randomized kaczmarz algorithm. In Proc. NIPS , volume 27.

Pena, D. and Yohai, V. (1995). The detection of influential subsets in linear regression by using an influence
matrix. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 145–156.

Pukelsheim, F. (2006). Optimal design of experiments . SIAM.

Rokhlin, V. and Tygert, M. (2008). A fast randomized algorithm for overdetermined linear least-squares
regression. Proc. Natl. Acad. Sci. USA, 105(36), 13212–13217.

Sarlos, T. (2006). Improved approximation algorithms for large matrices via random projections. In Proc.
FOCS , pages 143–152.

15

Strohmer, T. and Vershynin, R. (2009). A randomized kaczmarz algorithm with exponential convergence.
J. Fourier Anal. Appl., 15, 262–278.

Tropp, J. A. (2011). Improved analysis of the subsampled randomized hadamard transform. Adv. Adapt.
Data Anal., 3(1–2), 115–126.

Wang, Y., Yu, A. W., and Singh, A. (2017). On computationally tractable selection of experiments in
measurement-constrained regression models. Journal of Machine Learning Research, 18(143), 1–41.

Woodbury, M. A. (1950). Inverting modified matrices. Technical Report Memorandum Rept. 42, Statistical
Research Group, Princeton University.

Yang, J., Chow, Y., Ré, C., and Mahoney, M. (2016). Weighted SGD for ℓp regression with randomized
preconditioning. Proc. SODA.

16

A Consistent ℓ2 Regression

We prove Theorem 1.1 for consistent regression, including the version with fast preprocessing to
get approximate leverage scores and approximate preconditioners. As far as we know Lemma A.2
in the general form stated is new, and may be of independent interest.

A.1 Mathematical Preliminaries

ℓ2-Embeddings

The matrix Π is an ǫ-JLT for an orthogonal matrix U if

‖I−UtΠtΠU‖2 ≤ ǫ. (72)

That is, if ΠU is almost orthogonal. The next lemma summarizes some of the consequences of an
ǫ-JLT, which are well known, see for example Drineas et al. (2010).

Lemma A.1. Let U ∈ R
n,d be orthogonal and Π ∈ R

n×r. Suppose ‖I−UtΠtΠU‖ ≤ ǫ < 1. Then,

1. |1− σ2
i (ΠU)| ≤ ǫ and rank(ΠU) = d.

2. Let ΠU = ŨΣ̃Ṽt. Then, ‖Σ̃− Σ̃−1‖ ≤ ǫ/
√
1− ǫ and ‖I− Σ̃−2‖ ≤ ǫ/(1− ǫ).

3. ‖(ΠU)† − (ΠU)t‖ ≤ ǫ/
√
1− ǫ.

4. Let A = UΣVt, where Σ is positive diagonal and V is orthogonal. Then (ΠA)† = VΣ−1(ΠU)†.

5. ‖I− (ΠU)†(ΠU)†t‖ ≤ ǫ/(1− ǫ).

Proof. Part 1 is immediate and implies Part 2 which implies Part 3 because (ΠtU)† = ṼΣ̃−1Ũt, so

‖(ΠtU)† − (ΠtU)t‖ = ‖ṼΣ̃−1Ũt − ṼΣ̃Ũt‖ ≤ ‖Σ̃−1 − Σ̃‖.

Part 4 follows from properties of the pseudo-inveerse. For Part 5, using ΠtU = ŨΣ̃Ṽt and ṼṼt = I
(since ΠtU has full rank, so Ṽ is a square orthogonal matrix),

‖I− (ΠtU)†(ΠtU)†t‖ = ‖ṼṼt − ṼΣ̃−2Ṽt‖ = ‖I− Σ−2‖ ≤ ǫ/(1− ǫ),

where the last step follows from Part 2.

The next result shows that an ǫ-JLT can be used find a preconditioner.

Lemma A.2. Let A = UΣVt be n×d, having full rank d. Let ΠA = QR, where Q is any orthogonal
matrix and R is invertible. Then σ2

i (AR
−1) = 1/σ2

d+1−i(ΠU).

Proof. Consider the SVD of AR−1R−1tAt. Using R−1 = (QtΠA)−1 = (ΠA)†Q,

AR−1R−1tAt = A(ΠA)†QQt(ΠA)†
t

At (73)

= UΣVtVΣ−1(ΠU)†QQt(ΠU)†
t

Σ−1VtVΣUt (74)

= U(ΠU)†QQt(ΠU)†
t

Ut (75)

= U(ΠU)†(ΠU)†
t

Ut. (76)

17

In the last step QQt projects onto the column space of ΠU, hence QQt(ΠU)†
t

= (ΠU)†
t

. Using
ΠU = UΠUΣΠUV

t

ΠU, we get (ΠU)†(ΠU)†
t

= VΠUΣ
−2
ΠUV

t

ΠU, hence

AR−1R−1tAt = UVΠUΣ
−2
ΠUV

t

ΠUU
t. (77)

Since UVΠU is orthogonal, we have constructed the SVD of AR−1R−1tAt and so up to a rotation
of the row space, we can write down the SVD of AR−1. For some orthogonal d× d matrix Z,

AR−1 = UVΠUΣ
−1
ΠUZ

t (78)

That is, the singular values of AR−1 are the inverses of the singular values of ΠU.

A useful corollary of Lemma A.2 was observed in Rokhlin and Tygert (2008), namely that AR−1

and ΠU have the same condition number. Indeed,

κ(AR−1) =
σ2
1(AR

−1)

σ2
d(AR

−1)
=

1/σ2
d(ΠU)

1/σ2
1(ΠU)

=
σ2
1(ΠU)

σ2
d(ΠU)

= κ(ΠU). (79)

We make heavy use of ǫ-JLTs which can be constructed and applied efficiently. All constructions
use some version of a Johnson-Lindenstrauss Transform. A finite collection of points can be embeded
into lower dimension while preserving norms to relative error and inner products to additive error.

Lemma A.3 (JLT, Johnson and Lindenstrauss (1984); Achlioptas (2003)). Let Π ∈ R
d×r be a

matrix of independent random signs scaled by 1/
√
r. For n points x1, . . . ,xn ∈ R

d, let zi = Πtxi.
For 0 < ǫ < 1 and β > 0, if

r ≥ 8 + 4β

ǫ2 − 2ǫ3/3
ln(n+ 1), (80)

then, with probability at least 1− n−β, for all i, j ∈ [1, n]:

(1− ǫ)‖xi − xj‖2 ≤ ‖zi − zj‖2 ≤ (1 + ǫ)‖xi − xj‖2

|zti zj − xt

i xj | ≤ ǫ(‖xi‖2 + ‖xj‖2).

The ln(n + 1) comes from adding 0 to the points which preserves all norms. Also, xt

i xj =
1
2(‖xi‖2+‖xj‖2−‖xi − xj‖2), hence inner products are preserved to additive error ǫ(‖xi‖2+‖xj‖2).

Using this result, we can get ℓ2-subspace embeddings using a variety of constructions. The
one we will use is an oblivious fast-Hadamard subspace embedding known as the Subsampled
Random Hadamard Transform (SRHT). A result from Tropp (2011) which refines earlier results
Ailon and Rauhut (2014) is given in next lemma which is an application of Lemmas 3.3 and 3.4
in Tropp (2011). The runtime in the lemma is established in Ailon and Liberty (2013).

Lemma A.4 ((Tropp, 2011, Lemmas 3.3 and 3.4)). Fix 0 < ε ≤ 1
2 . Let U ∈ R

n×d be orthogonal
and Πh ∈ R

r×n an SRHT with embedding dimension r satisfying:

r ≥ 12

5ε2

(√
d+

√

8 ln(3n/γ)
)2

ln d ∈ O

(

ln d

ε2
(d+ ln(n/γ))

)

. (81)

Then, with probability at least 1− γ, Πh is an ǫ-JLT for U,

‖I−UtΠt

h
ΠhU‖2 ≤ ε. (82)

Further, the product ΠhA can be computed in time O(nd ln r) for any matrix A ∈ R
n×d.

Note that the SHRT Πh is constructed obliviously of U. We use the notation ǫ-FJLT for such
JLTs that can be applied fast, to distinguish it from the regular ǫ-JLT in Lemma A.3.

18

A.2 Randomized Pre-Conditioned Kaczmarz

We first consider the consistent case, that is, there exists w∗ for which

Xw∗ = y. (83)

Equivalently, for any invertible matrix D, we can solve DXw = Dy. The idea is to sample not
using row-norms of X, but sample using row-norms of some orthogonal basis for the column-space
of X. Let X = UΣVt. If we solve v∗ satisfying Uv∗ = y, then we recover w∗ using

w∗ = VΣ−1v∗. (84)

U is well conditioned so randomized Kaczmarz has a label complexity d log(1/ǫ) and runtime
d2 log(1/ǫ). The problem is getting U is expensive. However, to identify the rows we need, we
don’t need U, we just need the leverage scores. And a fast constant factor approximation to the
leverage scores will do. This can be accomplished via two JLT’s, one for the column-space and one
for the row space, Drineas et al. (2012).

Let Π1 ∈ R
r1×n with r1 ∈ O(d ln d) be an ǫ-FJLT for U satisfying

‖I− (Π1U)
tΠ1U‖ ≤

1

2
. (85)

The matrix X1 = Π1X can be computed in O(nd log r1) = O(nd log d). There are Q ∈ R
r1×d,T ∈

R
d×d,P ∈ R

d×d such that
Π1X = QTP = QR, (86)

where Q is orthogonal, T is upper triangular, P is a permutation matrix and R = TP. The reason
writing R as the product TP is that one can apply R−1 or (R−1)t to any vector x in O(d2) without
explictly computing R−1. This is because a permutation matrix is orthogonal so R−1 = PtT−1

and applying the inverse of an upper triangular d × d matrix can be done efficiently in O(d2)
Golub and van Loan (1996). Also note,

R−1 = (QtΠ1X)
−1 = (Π1X)

†(Qt)† = (Π1X)
†Q. (87)

We now estimate the row-norms of XR−1 to relative error by applying a JLT to the rows. Specif-
ically let Π2 ∈ R

d×r2 be a JLT with r2 ∈ O(log n), satisfying

1

2
‖etiXR−1‖2 ≤ ‖eti XR−1Π2‖2 ≤

3

2
‖eti XR−1‖2. (88)

That is, we can estimate all the row-norms in XR−1 to within constant relative error by using the
row-norms in XR−1Π2. We can compute XR−1Π2 in runtime O(ndr2) = O(nd log n). Hence, in
O(nd log n+ d2 log n) we can compute ℓ̂1, . . . , ℓ̂n, where

ℓ̂i = ‖etiXR−1Π2‖2. (89)

The reason we introduce these quantities ℓ̂i is that they approximate to within relative error the
leverage scores of X. Consider ‖etiXR−1‖2,

‖eti XR−1‖2 = ‖eti X(Π1X)
†Q‖2 (90)

= etiX(Π1X)
†QQt((Π1X)

†)tXtei (91)

= etiX(Π1X)
†((Π1X)

†)tXtei (92)

= ‖eti X(Π1X)
†‖2. (93)

19

Since Π1X = Π1UΣV
t,

X(Π1X)
† = UΣVtVΣ−1(Π1U)

† = U(Π1U)
†. (94)

Therefore,

‖eti XR−1‖2 = etiU(Π1U)
†(Π1U)

†tUtei (95)

By Part 5 of Lemma A.1, (Π1U)
†(Π1U)

†t ≈ Id. That means the row norms of XR−1 are approx-
imately the statistical leverage scores ‖eiU‖2. In fact, the estimator in (93) is exactly the one
analyzed in Drineas et al. (2012) to obtain an efficient approximation to the leverage scores. This
means XR−1 is well conditioned.

We can now state the randomized Kaczmarz algorithm. In a nutshell, sample rows of X using
probabilities proportional to ℓ̂i, as opposed to proportional to ‖xi‖2, and perform the projective

update using the preconditioned row xiR
−1. By (93), ℓ̂i ≈ ‖xiR

−1‖2. In effect, we are using
Kaczmarz to solve the system XR−1v = y but instead of sampling using row-norms, we are sampling
using approximate row-norms. Since XR−1 is well conditioned, the algorithm will have exponential
convergence independent of the input-conditioning.

1: Construct the matrix R as described above using an ǫ-FJLT for Rn×d.
2: Compute the leverage scores ℓ̂i as described in (89).
3: Compute the cumulative probabilities Fk =

∑k
i=1 ℓ̂i/

∑n
j=1 ℓ̂j .

4: Initialize the weights to v0 = 0.
5: for t = 1, . . . ,K do
6: Independently sample (with replacement) an index j ∈ [n] using the probabilities ℓ̂i/

∑

i ℓ̂i.
7: Let q = xt

jR
−1 = etjXR

−1 and let s = yj. Perform the projective weight update,

vt = vt−1 −
q(qtvt−1 − s)

‖q‖2
(96)

8: return wK = R−1vK .

Each step’s runtime is as follows.

1: O(nd log d) to compute Π1X and then O(d3 log d) to get R from a QR-factorization.
2: O(nd log n+ d2 log n) to get ℓ̂i.
3: O(n) to get all cumulative probabilities
4: O(d).
5: for t = 1, . . . ,K do
6: O(log n) to sample once using binary search, so O(K log n) in total.
7: Applying R−1 is O(d2) and the projective weight update is O(d), so O(Kd2) in total.

8: Applying R−1 is O(d2)

Adding all of the above gives O(nd log n+d3 log d) preprocessing time in steps 1-3 andO(K(log n+
d2)) for running the Kaczmarz iterations. The label complexity is K.

Note. In step 6, R−1 has to be applied to each of xj1 ,xj2 , . . . ,xjK , which can be pre-sampled
ahead of time since the sampling is independent according to fixed probabilities. This requires
solving an upper triangular system with multiple right hand sides,

R [q1,q2, . . . ,qK] = [xj1 ,xj2 , . . . ,xjK]. (97)

20

A.3 Input-Independent Exponential Convergence of Kaczmarz

We now state and prove the main result for the consistent case where we use the Algorithm described
in the previous section. In a nutshell, the convergence is exponential and does not depend on the
conditioning of the input matrix X. We make some simplifying assumptions, which in some cases
are almost vacuous. Set the failure probability to γ = 1/n, assume n ≥ 3 and lnn ≤ d. Setting
ǫ = 1/2 in (81) and simplifying, an SRHT with r1 ≥ 48d ln d is an (1/2)-FJLT for any orthogonal
U ∈ R

n×d, with probability at least 1 − 1/n. Similarly, with β = 1, ǫ = 1/2 in (80), Lemma A.3
with r2 ≥ 72 ln(1 + n) gives a norm preserving (1/2)-JLT for any n points in R

d.

Theorem A.5. With probability at least 1 − 2/n (w.r.t. the random choice of Π1 and Π2), the
Algorithm in the previous section has the following properties.

1. The label complexity is K.
2. The preprocessing time is in O(nd log n).
3. The time to run the algorithm for a single right hand side y is in O(K(log n+ d2)).
4. The quality of approximation for wt = R−1vt, where t ∈ [K] is determined by

E [‖vt − v∗‖2] ≤
(

1− 1

9d

)t

‖v∗‖2. (98)

Where v∗ = Rw∗ and the expectation is over the K random rows used in the projective updates.

Proof. In the weight update (96), use s = qtv∗ and subtract v∗ from both sides giving,

vt − v∗ =

(

Id −
qqt

‖q‖2
)

(vt−1 − v∗) (99)

Take the norm-squared of both sides and using (Id − qqt/‖q‖2)2 = (Id − qqt/‖q‖2) gives

‖vt − v∗‖2 = (vt−1 − v∗)
t

(

Id −
qiq

t

i

‖qi‖2
)

(vt−1 − v∗) (100)

= ‖vt−1 − v∗‖2 − (vt−1 − v∗)
t
qqt

‖q‖2
(vt−1 − v∗) (101)

Taking the expectation of both sides,

E[‖vt − v∗‖2] = ‖vt−1 − v∗‖2 −
n
∑

i=1

ℓ̂i
∑n

j=1 ℓ̂j
(vt−1 − v∗)

t
qqt

‖q‖2
(vt−1 − v∗). (102)

Using (88) and noting that qi = etiXR
−1, we have that

1

2
‖qi‖2 ≤ ℓ̂i ≤

3

2
‖qi‖2. (103)

Therefore ℓ̂i/
∑

j ℓ̂j ≥ 1
2‖qi‖2/3

2

∑

j ‖qj‖2. Using (102) and
∑

j ‖qj‖2 = ‖XR−1‖2F gives

E[‖vt − v∗‖2] = ‖vt−1 − v∗‖2 −
1

3‖XR−1‖2F
(vt−1 − v∗)

t

(

n
∑

i=1

qiq
t

i

)

(vt−1 − v∗) (104)

(a)
= ‖vt−1 − v∗‖2 −

1

3‖XR−1‖2F
‖XR−1(vt−1 − v∗)‖2 (105)

≤
(

1− σ2
d(XR

−1)

3‖XR−1‖2F

)

‖vt−1 − v∗‖2. (106)

21

In (a) we used
∑

i qiq
t

i = R−1tXtXR−1. To complete the proof we need to analyze the singular
values of XR−1. By Lemma A.2, σ2

i (XR
−1) = 1/σ2

d+1−i(Π1U). Since Π1 is a (1/2)-FJLT for U, by
part 1 in Lemma A.1 2/3 ≤ 1/σ2

i (Π1U) ≤ 2. Hence,

σ2
d(XR

−1)

‖XR−1‖2F
=

1/σ2
1(Π1U)

∑

i∈[d] 1/σ
2
i (Π1U)

≥ 2/3
∑

i∈[d] 2
=

1

3d
. (107)

Using (107) in (106) gives

E [‖vt − v∗‖2] ≤
(

1− 1

9d

)

‖vt−1 − v∗‖2. (108)

Since the rows are sampled independently, using iterated expectation gives the final result.

Note that the convergence of vt is exponential and input independent, but the condition number
does appear in the number of iterations needed to get the error below a threshold. Since v = Rw,

E [‖R(wt −w∗)‖2] ≤
(

1− 1

9d

)t

‖Rw∗‖2. (109)

Since σ2
d(R)‖w‖

2 ≤ ‖Rw‖2 ≤ σ2
1(R)‖w‖2,

E [‖wt −w∗‖2] ≤
(

1− 1

9d

)t

κ(R)‖w∗‖2. (110)

Since κ(R) ≈ κ(X) and ln(1− 1/9d) ≈ −1/9d, setting the right hand side to d/n gives

t ≈ 9d ln(nκ(X)‖w∗‖2/d). (111)

The dependence on κ is now benign, in the logarithm.

Proof of Theorem 1.1

The result in Theorem 1.1 is essentially the same as the one proved in the previous section without
the factor of 9. When exact leverage scores are used for sampling and the exact preconditioner R
is known (both coming from the exact SVD), then (108) becomes

E [‖vt − v∗‖2] ≤
(

1− 1

d

)

‖vt−1 − v∗‖2. (112)

and (110) becomes

E [‖wt −w∗‖2] ≤
(

1− 1

d

)t

κ(X)‖w∗‖2. (113)

This then gives Theorem 1.1.

22

	1 Introduction
	1.1 Consistent (Realizable) 2 Regression
	1.2 Inconsistent (Unrealizable) 2 Regression
	1.3 Our results
	1.4 Discussion

	2 Reducing Label Complexity By One
	3 Reducing Label Complexity by (n).
	4 Polynomial Sampling Algorithm
	A Consistent 2 Regression
	A.1 Mathematical Preliminaries
	A.2 Randomized Pre-Conditioned Kaczmarz
	A.3 Input-Independent Exponential Convergence of Kaczmarz

