
Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Dhruva Tirumala * 1 Hyeonwoo Noh * 2 Alexandre Galashov 1 Leonard Hasenclever 1 Arun Ahuja 1

Greg Wayne 1 Razvan Pascanu 1 Yee Whye Teh 1 Nicolas Heess 1

Abstract
As reinforcement learning agents are tasked with
solving more challenging and diverse tasks, the
ability to incorporate prior knowledge into the
learning system and the ability to exploit reusable
structure in solution space is likely to become
increasingly important. The KL-regularized ex-
pected reward objective constitutes a convenient
tool to this end. It introduces an additional com-
ponent, a default or prior behavior, which can be
learned alongside the policy and as such partially
transforms the reinforcement learning problem
into one of behavior modelling. In this work we
consider the implications of this framework in
case where both the policy and default behavior
are augmented with latent variables. We discuss
how the resulting hierarchical structures can be
exploited to implement different inductive biases
and how the resulting modular structures can be
exploited for transfer. Empirically we find that
they lead to faster learning and transfer on a range
of continuous control tasks.

1. Introduction
Recent advances have greatly improved data efficiency, scal-
ability, and stability of reinforcement learning (RL) algo-
rithms leading to successful applications in a number of
domains (Heess et al., 2017; Riedmiller et al., 2018; Ope-
nAI et al., 2018; Mnih et al., 2015; OpenAI, 2018; Silver
et al., 2016). Many problems, however, still remain chal-
lenging to solve or require large numbers of interactions
with the environment; a situation that is likely to get worse
as we attempt to tackle increasingly challenging and diverse
problems.

A general avenue for reducing sample complexity in ma-
chine learning is the use of appropriate prior knowledge,

*Equal contribution 1DeepMind, London, UK 2Department of
Computer Science and Engineering, POSTECH, Pohang, Korea.
Correspondence to: Dhruva Tirumala <dhruvat@google.com>,
Hyeonwoo Noh <shgusdngogo@postech.ac.kr>.

or inductive biases. In RL, curricula, learning and trans-
fer across task distributions, and the use of demonstrations
have been shown to be powerful tools in this regard. The
success of these ideas, and more generally our ability build
agents that have a chance of succeeding in lifelong learning
scenarios, relies on the ability to transfer and generalize
behaviours across tasks, and thus on mechanisms for ex-
tracting knowledge from existing solutions and for using
such knowledge to shape the solutions to new problems.

Recently (Teh et al., 2017; Galashov et al., 2019) have devel-
oped a framework for knowledge representation and transfer
in RL that allows to express and exploit inductive biases in
reinforcement learning problems. The approach relies on a
connection between the KL-regularized objective (Todorov,
2007; Kappen et al., 2012; Rawlik et al., 2012; Schulman
et al., 2017a) and probabilistic models. One way to think of
a policy is that, together with the environment dynamics, it
defines a distribution over trajectories, and the framework
uses probabilistic models of trajectories to express prior
knowledge about the solution distribution of a RL problem.
To this end it introduces a second component, a prior or de-
fault behaviour, to which the policy is encouraged to remain
close in terms of the Kullback-Leibler (KL) divergence.
This prior can simplify the learning problem, for instance
by reducing the trajectory space that needs to be searched,
or by steering the learning algorithm away from undesirable
solutions. Rather than manually crafting specific constraints
which may or may not be appropriate for a given task or
task distribution, it is possible to learn the prior from data,
and (Teh et al., 2017; Galashov et al., 2019) have shown that
this can be effective both in multi-task and transfer learning
scenarios. (Galashov et al., 2019) demonstrate how informa-
tion asymmetry, i.e. restricting the prior’s access to certain
parts of the state space can be used to selectively transfer or
generalize certain aspects of a learned behavior across tasks
or different parts of the state space.

In this paper we extend and generalize this framework and
study priors and policies that are hierarchically structured
and augmented with latent variables. The introduction of
latent variables can increase model capacity, and allow for
richer classes of distributions (e.g. non-Gaussian). Impor-
tantly, it enables a broader range of inductive biases: It
allows us to express more specific constraints on the infor-

ar
X

iv
:1

90
3.

07
43

8v
2

 [
cs

.L
G

]
 2

3
Ja

n
20

20

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

mation processing capabilities of the agent leading to priors
that have more diverse generalization properties. In partic-
ular, the hierarchical model structure allows us to mirror
more closely the natural structure of many problems. For
instance, in motor control, one tends to observe a separation
into rapidly varying motor commands and slower changing
higher-level goals. Similarly, different types of information
tend to be processed by different levels of the system (e.g.
vision vs. proprioception).

The hierarchical formulation also gives rise to a modular
structure that allows to selectively constrain, transfer and
generalize certain aspects of the behavior, such as low-level
skills or high-level goals. Exploiting the compositionality
of probabilistic models, this modularity also facilitates the
immediate reuse of some model components in a princi-
pled manner, such as the sharing of low-level skills across
tasks. This allows imposing more flexible constraints and
can reduce the number of model parameters leading to an
increased statistical efficiency and faster learning.

The presence of latent variables introduces additional com-
plexities and we present a general framework which ad-
dresses these in Appendix A. We elaborate on a particular
but still general hierarchically structured variant in the main
text, and develop suitable efficient off-policy algorithms.
We provide empirical results on several tasks with physi-
cally simulated bodies and continuous action spaces and
discrete grid worlds which demonstrate the benefits of the
general framework and especially the advantages of the hi-
erarchical structure, compared to the unstructured policies
used in (Galashov et al., 2019).

2. RL as probabilistic modelling
In this section, we briefly review how the KL-regularized
objective can connect RL and probabilistic model learning.
We will denote states and actions at time t respectively with
st and at. r(s, a) is the instantaneous reward received in
state s when taking action a. We will refer to the history
up to time t as xt = (s1, a1, .., st) and the whole trajec-
tory as τ = (s1, a1, s2, a2, . . .). The agent policy π(at|xt)
denotes a distribution over next actions given history xt,
while π0(at|xt) denotes a default or habitual policy.1 The
KL-regularized RL objective (Todorov, 2007; Kappen et al.,
2012; Rawlik et al., 2012; Schulman et al., 2017a) takes the
form:

L(π, π0) = Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(at|xt)

]
(1)

where γ is discount factor and α controls the relative con-
tributions of both terms. Eτ [·] is taken w.r.t. the trajec-

1 We generally work with history dependent policies since we
will consider restricting access to state information from policies
(for information asymmetry), which may render fully observed
MDPs effectively partially observed.

tory distribution given by agent policy and system dy-
namics: p(s1)

∏
t≥1 π(at|xt)p(st+1|st, at). We use a con-

venient notation2 for the KL divergence: KL(at|xt) =

Eπ(at|xt)[log π(at|xt)
π0(at|xt)].

When optimized with respect to π the objective can be seen
to trade off expected reward with closeness (in terms of
KL) between trajectories produced by executing π and π0
(Appendix A). This is also evident from the optimal π in
eq. (1)

π∗(at|xt) = π0(at|xt) exp 1
α (Q∗(xt, at)− V ∗(xt)) (2)

Q∗(xt, at) = r(st, at) + γEst+1|st,at [V
∗(xt+1)] (3)

V ∗(xt) = α log
∫
π0(at|xt) exp 1

αQ
∗(xt, at)dat, (4)

where Q∗(·) and V ∗(·) are optimal action value and value
functions of eq. (1); See (e.g. Rawlik et al., 2012; Fox et al.,
2016; Schulman et al., 2017a; Nachum et al., 2017) for
derivations. We can thus think of π as a specialization of π0
that is obtained by tilting π0 towards high-value actions (as
measured by the action value Q).

As discussed in (Galashov et al., 2019) the default behavior
thus bears resemblance to a trajectory prior in a particular
probabilistic model. Several recent works have considered
optimizing eq. (1) when π0 is of a fixed and simple form.
For instance, when π0 is chosen to be uniform entropy-
regularized objective is recovered e.g. (Ziebart, 2010; Fox
et al., 2016; Haarnoja et al., 2017; Schulman et al., 2017a;
Hausman et al., 2018). More interestingly, in some cases
π0 can be used to inject detailed prior knowledge into the
learning problem. In a transfer scenario π0 can be a learned
object, and the KL term plays effectively the role of a shap-
ing reward.

π and π0 can also be co-optimized. In this case the rela-
tive parametric forms of π0 and π are of importance. The
optimal π0 in eq. (1) is

π∗0(at|xt) = arg max
π0

Eπ(a|xt)[log π0(a|xt)], (5)

which maximizes only terms in eq. (1) depending on π0.
Thus learning π0 can be seen as supervised learning where
π0 is trained to match the history-conditional action se-
quences produced by π. It should be clear that π0 = π
is the optimal solution when π0 has sufficient information
and capacity, and in this scenario the regularizing effect of
π0 is lost. When the information or the capacity of π0 is
limited then π0 will be forced to generalize the behavior
of π. For instance, (Teh et al., 2017) and (Galashov et al.,
2019) consider a multitask scenario in which π is given
task-identifying information, while π0 is not. As a result,
π0 is forced to learn a marginal trajectory distribution over

2In the following, KL(Y |X) always denotes
Eπ(Y |X)[log

π(Y |X)
π0(Y |X)

] for arbitrary variables X and Y .

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 1. Diagram of the generic structure of the regularized KL-
objective considered. (a) shows an unstructured policy, where
information asymmetry (e.g. hiding task instance information) is
exploited to induce a meaningful default policy π0 (Galashov et al.,
2019); (b) shows the scenario when we use structured policies
composed from high-level πH and low-level πL policies that com-
municate through the latent action z. Note that now different forms
of information asymmetry can be employed. See text for details.

tasks, which can be considered as a common default be-
haviour, and this behaviour is then shareable across tasks
to regularize π. More generally, appropriate choices for
the model classes of π0 and π will allow us to influence
both the learning dynamics as well as the final solutions to
eq. (1) and thus provide us with a means of injecting prior
knowledge into the learning problem.

3. Hierarchically structured policies
(Galashov et al., 2019) consider simple unstructured models
and focus on the information that π0 has access to. In this
paper we focus on a complementary perspective. We explore
how variations of the parametric forms of π0 and π, via the
introduction of latent variables, can give rise to richer and
hierarchically structured models with different inductive
biases and generalization properties. In this section we
discuss a particular instantiation of this idea and discuss the
general framework in Appendix A.

We consider learning multi-level representations of be-
haviour. Specifically, we consider a two level architecture
in which the high-level decisions are concerned with task
objectives but largely agnostic to details of actuation. The
low-level control translates the high-level decisions into
motor actions while being agnostic to task objectives. Suc-
cessful learning of such abstractions can be useful to exploit
repetitive structures within or across tasks. As two use cases
we consider (a) multi-task control where different tasks re-
quire similar motor-skills; as well as (b) a scenario where we
aim to solve similar tasks with different actuation systems.

We are interested in the role of the KL-regularized objective
and the default policies for learning the desired multi-level

abstractions. In this view, the hierarchical structure and
latent variables mirror the structure of the abstractions that
we want to learn, and the structured default policy allows
fine-grained control of its regularization effect in each level
of abstractions. Besides, the latent variables allow us to
work with richer (e.g. non-Gaussian) distribution classes,
allow us to model temporal correlations, e.g. in the high-
level goals, and they give rise to modular structure that
enables parameter sharing.

Conceptually policies are divided into high-level and low-
level components which interact via auxiliary latent vari-
ables. For concreteness, but without loss of generality, let zt
be a (continuous) latent variable for each time step t (we dis-
cuss alternative choices such as latent variables that are sam-
pled infrequently in Appendices A and C). The agent policy
is extended as π(at, zt|xt) = πH(zt|xt)πL(at|zt, xt) and
likewise for the default policy π0. zt can be interpreted
as a high-level or abstract action, taken according to the
high-level (HL) controller πH , and which is translated into
low-level or motor action at by the low-level (LL) controller
πL. We extend the histories xt and trajectories τ to appropri-
ately include zt’s. Note that as we elaborate in the appendix
this allows for temporally correlated zt’s including the case
where z is only sampled once at the beginning of the episode.
As will be discussed in Section 5, structuring a policy into
HL and LL controllers has been studied e.g. (Heess et al.,
2016; Hausman et al., 2018; Haarnoja et al., 2018a; Merel
et al., 2019), but the concept of a default policy has not been
widely explored in this context. We discuss the differences
between these works and ours in detail in Appendix A.

In case zt’s can take on many values or are continuous, the
objective (1) becomes intractable as the marginal distribu-
tions π(at|xt) and π0(at|xt) in the KL divergence cannot
be computed in closed form. As discussed in more detail
in Appendix A this problem can be addressed in different
ways. For simplicity and concreteness we here assume that
the latent variables in π and π0 have the same dimension
and semantics. We can then construct a lower bound for the
objective by using the following upper bound for the KL:

KL(at|xt) ≤KL(zt|xt) + Eπ(zt|xt)[KL(at|zt, xt)], (6)

which is tractably approximated using Monte Carlo sam-
pling. The derivation is in Appendix C.1. Note that:

KL(zt|xt) = KL
(
πH(zt|xt)‖πH0 (zt|xt)

)
(7)

KL(at|zt, xt) = KL
(
πL(at|zt, xt)‖πL0 (at|zt, xt)

)
. (8)

The resulting lower bound for the objective is:

L(π, π0) ≥ Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(zt|xt)

− αγtKL(at|zt, xt)
]
,

(9)

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

where τ is a trajectory that appropriately includes zt’s. Full
derivation including discount terms is in Appendix C.2. In
this paper we consider eq. (9) as a main objective function.

3.1. Structuring the default policy

Compared to e.g. (Galashov et al., 2019) who mostly use
conditional Gaussian distributions to model the default pol-
icy, the presence of latent variables may allow more flexi-
ble trajectory models that can, in principle, capture richer,
non-Gaussian state-conditional distributions as a marginal
π0(at|xt) =

∫
zt
πH0 (zt|xt)πL0 (at|zt, xt)dzt, and thus to ap-

proximate π∗0 more accurately.3 We can also model dif-
ferent marginal distribution based on the parameterization
of πH0 (zt|xt), which could be a useful inductive bias for
generalizing the learned trajectory distribution.

In this work, we consider the following choices of of
HL default policy: Independent isotropic Gaussian.
πH0 (zt|xt) = N (zt|0, 1), i.e. the HL default policy assumes
the abstract actions to be context independent. AR(1) pro-
cess. πH0 (zt|xt) = N (zt|αzt−1,

√
1− α2), i.e. the HL de-

fault policy is a first-order auto-regressive process with a
fixed parameter 0 ≤ α < 1 chosen to ensure a marginal
distribution N (0, 1). This allows for more structured tem-
poral dependence among the abstract actions. Learned
AR process. Similar to the AR(1) process this default HL
policy allows zt to depend on zt−1 but now the high-level
default policy is a Gaussian distribution with mean and
variance that are learned functions of zt−1 with parameters
φ: πH0 (zt|xt) = N (zt|µφ(zt−1), σ2

φ(zt−1)). Note that the
considered HL default policies are not conditioned on xt.
This is a form of information asymmetry for capturing task
agnostic trajectory distribution as we will discuss in the
following.

Regularizing via information asymmetries As dis-
cussed in (Galashov et al., 2019) restricting the information
available to different policies is a powerful tool to force
regularization and generalization. In our case we let this
information asymmetry be reflected also in the separation
between HL and LL controllers (see Figure 1). Specifically
we introduce a separation of concerns between πL and πH

by providing full information only to πH while informa-
tion provided to πL is limited. In our experiments we vary
the information provided to πL; it receives body-specific
(proprioceptive) information as well as different amounts of
environment-related (exteroceptive) information. The task
is only known to πH . Hiding task specific information from
the LL controller makes it easier to transfer across tasks. It

3 Note that π∗0 is itself obtained by marginalizing over different
contexts, e.g. different task-specific policies, cf. eq. (5)). Thus,
even though the individual task-conditional policies may be well
represented by conditional Gaussian distributions, their mixture
may not be.

forces πL to focus on learning task agnostic behaviour, and
to rely on the abstract actions selected by πH to solve the
task. Similarly, we hide task specific information from both
πL0 and πH0 , which in turn makes the marginal default policy
π0 to be agnostic to the task (see above). In the experiments
we further consider transferring the HL controller across
bodies, in situations where the abstract task is the same but
the body changes. Here we additionally hide body-specific
information from πH , so that the HL controller is forced to
learn body-agnostic behaviour.

Partial parameter sharing An advantage of the hier-
archical structure of the policies is that it enables sev-
eral options for partial parameter sharing, which when
used in the appropriate context can make learning more
statistically efficient. We explore the utility of sharing
low-level controllers between agent and default policy, i.e.
πL(at|zt, xt) = πL0 (at|zt, xt), and study the associated
trade-offs in different learning scenarios. In the case of
sharing, the new lower bound is:

L(π, π0) ≥ Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(zt|xt)

]
(10)

This objective function is similar in spirit to current KL-
regularized RL approaches discussed in Section 2, except
that the KL divergence is between policies defined on ab-
stract actions zt as opposed to concrete actions at. The
effect of this KL divergence is that it regularizes both the
HL policies as well as the space of behaviours parameterised
by the abstract actions. This special case of our framework
also reveals a connection to (Goyal et al., 2019), where
eq. (10) was motivated as an approximation of information
botteneck for learning a goal conditioned policy. Here, we
provide a different perspective of eq. (10) in terms of proba-
bilistic modeling and structured policies as a special case of
eq. (9) (and more generally the framework in Appendix A),
which suggests a broader range of algorithms that were not
discussed in (Goyal et al., 2019); see Section 5 for detailed
discussion.

4. Algorithm
We jointly optimize the default policy and the agent’s policy,
while the agent’s policy is regularized by a target default
policy, which is periodically updated to a new default policy.
The objective for the default policies is similar to distillation
(Parisotto et al., 2016; Rusu et al., 2016) or supervised
learning, where agent’s policies define the data distribution.
Note that due to the particular way we lower bound the
KL (see eq. (9)) the supervised step remains unproblematic
despite the presence of the latent variables in π0.

To efficiently optimize the hierarchical policy with latent
variables, we develop off-policy learning algorithm based
on SVG(0) (Heess et al., 2015) with experience replay.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Algorithm 1 On-policy verison of our algorithm
Flat (HL+LL) policy: πθ(at|εt, xt), parameter θ
Reparameterized HL policy: zt = fHθ (xt, εt)
Default policy: πH0,φ(zt|xt), πL0,φ(at|zt, xt), parameter φ
Q-function: Qψ(at, zt, xt), parameter ψ
repeat

for t = 0,K, 2K, ...T do
Rollout trajectory: τt:t+K = (st, at, rt, ..., rt+K)
Sample latent: zt′ = fH(xt′ , εt′), where εt′ ∼ ρ(ε)
Compute KL: K̂Lt′ = KL (z|xt′) + KL (a|zt′ , xt′)
Bootstrap:V̂ = EπQ(a, zt+K , xt+K)− αK̂Lt+K
Estimate Q target: Q̂t′ =

∑t′+K−1
i=t′ (ri−αK̂Li)+V̂

Policy loss: L̂π =
∑t+K−1
i=t EπQ(a, zi, xi)−αK̂Li

Q-value loss: L̂Q =
∑t+K−1
i=t ‖Q̂i −Q(a, zi, xi)‖2

Default policy loss: L̂π0
=
∑t+K−1
i=t K̂Li

θ ← θ + βπ∇θL̂π φ← φ+ βπ0
∇φL̂π0

ψ ← ψ − βQ∇ψL̂Q
end for

until

We follow a strategy similar to (Heess et al., 2016) and
reparameterize zt ∼ πH(zt|xt) as zt = fH(xt, εt), where
εt ∼ ρ(εt) is a fixed noise distribution and fH(·) is a de-
terministic function. In practice this means that the hierar-
chical policy can be treated as a flat policy π(at|εt, xt) =
πL(at|fH(xt, εt), xt). We reparameterize action distribu-
tion of the flat policy π(at|εt, xt) and optimize it by back-
propagating the gradient from an action value function
Q(at, zt, xt). Note that the action value function is condi-
tioned on zt because it will be contained in history from the
next time step and affect the policy accordingly. The action
value function is optimized to match a target action value
estimated by Retrace (Munos et al., 2016), which provides
low variance estimate of action value from K-step windows
of off-policy trajectories. Note that the off-policy learning
with hierarchical policy requires extra care in terms of han-
dling latent variables in action value function and applying
Retrace. We describe these details in Appendix B. For illus-
tration, Algorithm 1 provides the pseudo-code for a simple
on-policy version of our algorithm. We implement our al-
gorithm in a distributed setup similar to (Riedmiller et al.,
2018) where multiple actors are used to collect trajectories
and a single learner is used to optimize model parameters.
Similarly to other KL-regularized RL approaches e.g. (Teh
et al., 2017; Galashov et al., 2019), we additionally regu-
larize the entropy of πL to encourage exploration. More
details about the learning algorithms are in Appendix B.

5. Related Work
Entropy regularized reinforcement learning (RL), also
known as maximum entropy RL (Ziebart, 2010; Kappen

et al., 2012; Toussaint, 2009) is a special case of KL regular-
ized RL. This framework connects probabilistic inference
and sequential decision making problems. Recently, this
idea has been adapted to deep reinforcement learning (Fox
et al., 2016; Schulman et al., 2017a; Nachum et al., 2017;
Haarnoja et al., 2017; Hausman et al., 2018; Haarnoja et al.,
2018b). Another instance of KL regularized RL includes
trust region based methods (Schulman et al., 2015; 2017b;
Wang et al., 2017; Abdolmaleki et al., 2018). They use KL
divergence between new policy and old policy as a trust
region constraints for conservative policy update.

Introducing a parameterized default policy provides a con-
venient way to transfer knowledge or regularize the policy.
Schmitt et al. (Schmitt et al., 2018) use a pretrained policy
as the default policy; other works jointly learn the policy
and default policy to capture reusable behaviour from expe-
rience (Teh et al., 2017; Czarnecki et al., 2018; Galashov
et al., 2019; Grau-Moya et al., 2019). To retain the role
of default policy as a regularizer, it has been explored to
restrict its input (Galashov et al., 2019; Grau-Moya et al.,
2019), parameteric form (Czarnecki et al., 2018) or to share
it across different contexts (Teh et al., 2017; Ghosh et al.,
2018).

Another closely related regularization for RL is using infor-
mation bottleneck (Tishby & Polani, 2011; Still & Precup,
2012; Rubin et al., 2012; Ortega & Braun, 2013; Tiomkin
& Tishby, 2017). Galashov et al. (Galashov et al., 2019)
discussed the relation between information bottleneck and
KL regularized RL. Strouse et al. (Strouse et al., 2018) learn
to hide or reveal information for future use in multi-agent
cooperation or competition. Goyal et al. (Goyal et al., 2019)
consider identifying bottleneck states based on eq. (10) and
using them for exploration during transfer. However, unlike
(Goyal et al., 2019) motivating the objective simply as an
approximation to an information bottleneck, we provide
a new perspective that considers structuring policies with
latent variables as a way of injecting inductive bias in the
KL-regularized RL framework. This new perspective mo-
tivates the eq. (10) as one instance of a broader family of
algorithms that were not discussed in (Goyal et al., 2019),
and we demonstrate how different instances of the proposed
family of algorithms can be useful in different learning sce-
narios.

The hierarchical RL literature (Dayan & Hinton, 1993; Parr
& Russell, 1998; Sutton et al., 1999) has studied hierarchy
extensively as a means to introduce inductive bias. Among
various ways (Sutton et al., 1999; Bacon et al., 2017; Vezh-
nevets et al., 2017; Nachum et al., 2018; 2019; Xie et al.,
2018; Lee et al., 2019), our approach resembles (Heess et al.,
2016; Hausman et al., 2018; Haarnoja et al., 2018a; Merel
et al., 2019), in that a HL controller modulates a LL con-
troller through a continuous channel. For learning the LL

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 2. Bodies and tasks for experiments. Left: All considered bodies. Right: Example tasks.

Figure 3. Learning with structured policies. Left: Locomotion with the Ant. Center: Manipulation (easy) with the Ant. Right:
Manipulation (hard) with the Ball. The proposed models with hierarchy are denoted with the type of HL default policy: Isotropic Gaussian,
AR-1, AR-Learned.

controller, imitation learning (Fox et al., 2017; Krishnan
et al., 2017; Merel et al., 2019), unsupervised learning (Gre-
gor et al., 2017; Eysenbach et al., 2019) and meta learn-
ing (Frans et al., 2018) have been employed. Similar to our
approach, (Heess et al., 2016; Florensa et al., 2017; Haus-
man et al., 2018) use a pretraining task to learn a reusable
LL controller. However, the concept of a default policy has
not been widely explored in this context.

6. Experiments
We evaluate our method in several environments with contin-
uous state and action spaces. We consider a set of structured,
sparse reward tasks that can be executed by multiple bodies
with different degrees of freedom. The tasks and bodies are
illustrated in Figure 2.

We consider task distributions that are designed such that
their solutions exhibit significant overlap in trajectory space
so that transfer can reasonably be expected. They are further
designed to contain instances of variable difficulty and hence
provide a natural curriculum. Our tasks are as follows.
Locomotion: reaching a specific target among 3 locations.
Locomotion with gap: reaching the end of a corridor with
a gap of variable length. Solving the task requires being
able to jump over the gap. Manipulation: moving one of
N boxes to one of K targets as indicated by the environment.
(easy): N=1, K=1, (mid): N=1, K=3, (hard): N=2, N=2.
Manipulation (heavy): manipulation (easy) with heavier
box. Manipulation (gather): moving two boxes such that
they are in contact with each other. Combined task (And

/ Or): moving a box to one target (And / Or) go to the
other target in a single episode. See Appendix E for exact
configurations.

We use three simulated bodies: Ball, Ant, and Quadruped.
Ball and Ant have been used in (Heess et al., 2017; Xie et al.,
2018; Galashov et al., 2019); we introduce the Quadruped
as a variant of the Ant. The Ball has 2 actuators for moving
forward or backward and turning left or right. The Ant has
8 actuators for moving its legs to walk and to interact with
objects. The Quadruped is similar to the Ant, but with 12
actuators. Each body is characterized by a different set of
proprioceptive features. Further details of the bodies are in
Appendix E.

Throughout the experiments, we use 32 actors to collect
trajectories and a single learner to optimize the model. We
plot average episode return with respect to the number of
steps processed by the learner. Note that the number of
steps is different from the number of agent’s interaction
with environment, because the collected trajectories are
processed multiple times by a centralized learner to update
model parameters. Hyperparameters, including KL cost
and action entropy regularization cost, are optimized on a
per-task basis. Details are provided in Appendices F and G.

6.1. Learning with structured policies

We study how the KL-regularized objective with different
structures and parameterizations discussed in Section 3 af-
fects learning. Our baselines are SVG-0 with entropy regu-
larization and an unstructured KL regularized policy similar

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 4. Transfer learning scenarios. The blue boxes denote
modules that are transferred and fixed, and the green dotted boxes
denote modules learned from scratch.

to (Galashov et al., 2019; Teh et al., 2017) (DISTRAL prior).
As described in Section 3 we employ hierarchical structure
with shared LL components (Shared LL) and separate LL
components (Separate LL). Unless otherwise stated, we use
Shared LL as our default hierarchical model. The HL con-
troller receives full information while the LL controller (and
hence the default policy) receives proprioceptive informa-
tion plus the positions of the box(es) as indicated. The same
information asymmetry is applied to the DISTRAL prior
i.e. the default policy receives proprioception plus box po-
sitions as inputs. We explore multiple HL default policies:
Isotropic Gaussian, AR(1) process, and learned AR prior.

Figure 3 illustrates the results of the experiment. Our main
finding is that the KL regularized objective significantly
speeds up learning, and that the hierarchical structure does
as well or better than the flat, DISTRAL formulation. The
gap increases for more challenging tasks (e.g. Manipulation
(hard)).

7. Transfer Learning
The hierarchical structure introduces a modularity of the
policy and default policy, which can be utilized for transfer
learning. We consider two transfer scenarios (see Figure 4):
1) task transfer where we reuse the learned default policy
to solve novel tasks, and 2) body transfer, where reusing
the body agnostic HL policy and default policy transfers the
goal directed behaviour to another body.

7.1. Task transfer

We consider transfer between task distributions whose solu-
tions exhibit significant shared structure, e.g. because solu-
tion trajectories can be produced by a common set of skills
or repetitive behaviour. If the default policy can capture
and transfer this reusable structure it will facilitate learning
similar tasks. Transfer then involves specializing the default
behavior to the needs of the target task (e.g. by directing
locomotion towards a goal).

For task transfer, we reuse pretrained goal agnostic com-

Figure 5. Transfer learning with structured policies. Left:
From Manipulation (easy) to Manipulation (mid) with Ant. Right:
From Manipulation (hard) to Manipulation (gather) with Ball.

ponents, including πH0 and πL0 . We learn a new πH and
either set the LL policy πL identical to the pretrained LL
default policy πL0 (Shared LL), or allow πL to diverge from
πL0 (Separate LL). In the case of Shared LL, similarly e.g.
to (Heess et al., 2016; Hausman et al., 2018), the new HL
policy πH learns to control the LL policy πL in the latent
space. Unlike in previous work, however, we regularize πH

with πH0 . Transferring the learned default policy to a new
task is similar to (Galashov et al., 2019), but our approach is
different in that we exploit the modular structure of π0 and
π; It allows to re-use the pretrained πL (Shared LL) or to
initialize the new LL policy with the pretrained parameters
(Separate LL with weight initialization).

We consider two baselines: (a) the Shared LL model learned
from scratch (Hierarchical Agent); (b) a DISTRAL prior,
i.e. we transfer a pretrained unstructured default policy to
regularize the policy for the target task. The first baseline
allows us to assess the benefit of transfer; the second base-
line provides an indication whether the hierarchical policy
structure is beneficial. Additionally, we compare different
types of HL default policies. Specifics of the experiments in-
cluding the information provided to HL and LL are provided
in Appendix E.

Figure 5 shows the results with Shared LL. Transferring the
pretrained default policy can bring clear benefits for related
tasks. The hierarchical structure, which facilitates partial
parameter sharing and transferring flexible non-Gaussian
default policy, performs better than the DISTRAL prior re-
gardless of type of HL default policy. To assess the benefit
of the more flexible trajectory model we measure the KL
divergence between π and π0 in Manipulation (mid) for the
DISTRAL prior and the hierarchical latent variable model
with Gaussian prior. Values of 11.35 and 2.64 respectively
are consistent with the idea that the latent variable default
policy provides a better prior over the trajectory distribu-
tion and thus allows for a more favorable trade-off between
KL and task reward. Figure 6 illustrates the benefits of the
flexibility afforded by the full model in eq. (9) compared
to eq. (10). In the presented transfer scenarios the adapta-
tion of low level skills is required to learn the target task.
Specifically, the transfer task requires the acquisition of a

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 6. Effect of partial parameter sharing. From Locomo-
tion (easy) to Locomotion (Gap) with Ant, AR-1.

new skill (jumping) in order to consistently solve the task.
Allowing the πL to diverge from πL0 as in eq. (9) turns out
to be critical in these scenarios.

7.2. Body transfer

We study whether our architecture can facilitate transfer
of high-level, goal-directed behavior between bodies with
different actuation systems. To this end we reuse the pre-
trained body-agnostic components, HL policy πH and the
default policy πH0 . We learn a new body-specific LL policy
πL, which is assumed to be shared with LL default policy
πL0 (see Figure 4b). The transferred HL policies provide
goal-specific behaviour actuated on the latent space, which
can then be instantiated by learning a new LL policy. During
transfer, we optimize eq. (10) to exploit KL between the HL
policies as a dense reward signal to guide learning new LL
policy. Here, using the KL between the HL policies during
transfer looks superficially similar to (Goyal et al., 2019),
but their motivation and method are different. They rely
on the positive KL as an exploration bonus, trying to get
the agent to explore the new state. We rely on negative KL,
encouraging the new policy to be close to the default policy.
We discuss further differences with (Goyal et al., 2019) in
Section 5.

Figure 7 illustrates result for transferring from Ant to
Quadruped in Locomotion task with egocentric vision as ob-
servation input. We compare our approach with baseliness
learning the hierarchical policy from scratch and analyze the
effects of the KL regularization. It shows that transferring
the HL component and using KL regularization works best
in this setting. We observed that this result is consistent in
multiple settings with different tasks and bodies both in con-
tinuous control and discrete grid world environments. These

Figure 7. Body transfer from vision, AR-1 Prior. Ant to
Quadruped, Locomotion. Task information is provided by egocen-
tric vision.

additional experiments can be found in Appendix D.3.

8. Discussion
In this work we have studied the benefit of learned proba-
bilistic models of default behaviors for multi-task and trans-
fer scenarios in RL. In particular, we have outlined a generic
framework for hierarchically structured models together
with suitable off-policy RL algorithms. The hierarchical
model structure allows to model richer distributions, can
give rise to modular network structure and generally allows
to express a broad range of inductive biases with different
generalization properties. Here, we have studied a particular
model variant and shown its empirical advantages. Look-
ing forward we believe that as the importance of multitask
and lifelong learning scenarios will grow, frameworks such
as ours, that provide flexible mechanisms for introducing
prior knowledge and reusing previous learned solutions will
provide a fertile ground for advancing RL algorithms.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,

R., Heess, N., and Riedmiller, M. Maximum a posteri-
ori policy optimisation. In International Conference on
Learning Representations, 2018.

Agakov, F. V. and Barber, D. An auxiliary variational
method. In Neural Information Processing, 11th In-
ternational Conference, ICONIP 2004, Calcutta, India,
November 22-25, 2004, Proceedings, pp. 561–566, 2004.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Czarnecki, W., Jayakumar, S., Jaderberg, M., Hasenclever,
L., Teh, Y. W., Heess, N., Osindero, S., and Pascanu, R.
Mix & match agent curricula for reinforcement learning.
In Proceedings of the 35th International Conference on
Machine Learning, 2018.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

In Advances in neural information processing systems,
pp. 271–278, 1993.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine
Learning, 2018.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. In Inter-
national Conference on Learning Representations, 2017.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. In Proceedings of
the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, pp. 202–211. AUAI Press, 2016.

Fox, R., Krishnan, S., Stoica, I., and Goldberg,
K. Multi-level discovery of deep options. CoRR,
abs/1703.08294, 2017. URL http://arxiv.org/
abs/1703.08294.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta learning shared hierarchies. In International
Conference on Learning Representations, 2018.

Galashov, A., Jayakumar, S., Hasenclever, L., Tirumala,
D., Schwarz, J., Desjardins, G., Czarnecki, W. M., Teh,
Y. W., Pascanu, R., and Heess, N. Information asymmetry
in KL-regularized RL. In International Conference on
Learning Representations, 2019.

Ghosh, D., Singh, A., Rajeswaran, A., Kumar, V., and
Levine, S. Divide-and-conquer reinforcement learning.
In International Conference on Learning Representations,
2018.

Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Larochelle,
H., Botvinick, M., Levine, S., and Bengio, Y. Trans-
fer and exploration via the information bottleneck. In
International Conference on Learning Representations,
2019.

Grau-Moya, J., Leibfried, F., and Vrancx, P. Soft q-learning
with mutual-information regularization. In International
Conference on Learning Representations, 2019.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. In International Conference on Learning
Representations, 2017.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
In International Conference on Machine Learning, pp.
1352–1361, 2017.

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S.
Latent space policies for hierarchical reinforcement learn-
ing. In Proceedings of the 35th International Conference
on Machine Learning, pp. 1851–1860, 2018a.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, pp.
1861–1870, 2018b.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an embedding space for
transferable robot skills. In International Conference on
Learning Representations, 2018.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and
Tassa, Y. Learning continuous control policies by stochas-
tic value gradients. In Advances in Neural Information
Processing Systems, 2015.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller,
M., and Silver, D. Learning and transfer of modulated
locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Heess, N., Tirumala, D., Sriram, S., Lemmon, J., Merel, J.,
Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Ried-
miller, M., et al. Emergence of locomotion behaviours
in rich environments. arXiv preprint arXiv:1707.02286,
2017.

Johnson, M., Duvenaud, D. K., Wiltschko, A., Adams, R. P.,
and Datta, S. R. Composing graphical models with neural
networks for structured representations and fast inference.
In Advances in Neural Information Processing Systems
29, pp. 2946–2954. 2016.

Kappen, H. J., Gómez, V., and Opper, M. Optimal control as
a graphical model inference problem. Machine learning,
87(2):159–182, 2012.

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. DDCO:
discovery of deep continuous options forrobot learning
from demonstrations. CoRR, abs/1710.05421, 2017. URL
http://arxiv.org/abs/1710.05421.

Lee, Y., Sun, S.-H., Somasundaram, S., Hu, E., and Lim,
J. J. Composing complex skills by learning transition
policies with proximity reward induction. In International
Conference on Learning Representations, 2019.

http://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1710.05421

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Merel, J., Hasenclever, L., Galashov, A., Ahuja, A., Pham,
V., Wayne, G., Teh, Y. W., and Heess, N. Neural proba-
bilistic motor primitives for humanoid control. In Inter-
national Conference on Learning Representations, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
2016.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Bridging the gap between value and policy based rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 2775–2785, 2017.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances
in Neural Information Processing Systems 31, pp. 3307–
3317. 2018.

Nachum, O., Gu, S., Lee, H., and Levine, S. Near-optimal
representation learning for hierarchical reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Joze-
fowicz, R., McGrew, B., Pachocki, J., Petron, A., Plap-
pert, M., Powell, G., Ray, A., et al. Learning dexterous
in-hand manipulation. arXiv preprint arXiv:1808.00177,
2018.

Ortega, P. A. and Braun, D. A. Thermodynamics as a
theory of decision-making with information-processing
costs. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 469(2153):20120683,
2013.

Parisotto, E., Ba, J. L., and Salakhutdinov, R. Actor-mimic:
Deep multitask and transfer reinforcement learning. In
International Conference on Learning Representations,
2016.

Parr, R. and Russell, S. J. Reinforcement learning with hier-
archies of machines. In Advances in neural information
processing systems, pp. 1043–1049, 1998.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On stochas-
tic optimal control and reinforcement learning by ap-
proximate inference. In Robotics: science and systems,
volume 13, pp. 3052–3056, 2012.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., van de Wiele, T., Mnih, V., Heess, N., and
Springenberg, J. T. Learning by playing solving sparse
reward tasks from scratch. In Proceedings of the 35th
International Conference on Machine Learning, pp. 4344–
4353, 2018.

Rubin, J., Shamir, O., and Tishby, N. Trading value and
information in mdps. Decision Making with Imperfect
Decision Makers, pp. 57–74, 2012.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins,
G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu,
K., and Hadsell, R. Policy distillation. In International
Conference on Learning Representations, 2016.

Salimans, T., Kingma, D. P., and Welling, M. Markov Chain
Monte Carlo and Variational Inference: Bridging the Gap.
ArXiv e-prints, October 2014.

Schmitt, S., Hudson, J. J., Zidek, A., Osindero, S., Doersch,
C., Czarnecki, W. M., Leibo, J. Z., Kuttler, H., Zisserman,
A., Simonyan, K., et al. Kickstarting deep reinforcement
learning. arXiv preprint arXiv:1803.03835, 2018.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel,
P. Trust region policy optimization. In Proceedings
of the 32nd International Conference on International
Conference on Machine Learning-Volume 37, pp. 1889–
1897. JMLR. org, 2015.

Schulman, J., Chen, X., and Abbeel, P. Equivalence be-
tween policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017b.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Still, S. and Precup, D. An information-theoretic approach
to curiosity-driven reinforcement learning. Theory in
Biosciences, 131(3):139–148, 2012.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Strouse, D., Kleiman-Weiner, M., Tenenbaum, J., Botvinick,
M., and Schwab, D. J. Learning to share and hide in-
tentions using information regularization. In Advances
in Neural Information Processing Systems, pp. 10270–
10281, 2018.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust
multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 4496–4506, 2017.

Tiomkin, S. and Tishby, N. A unified bellman equation
for causal information and value in markov decision pro-
cesses. arXiv preprint arXiv:1703.01585, 2017.

Tishby, N. and Polani, D. Information theory of decisions
and actions. Perception-Action Cycle, pp. 601–636, 2011.

Todorov, E. Linearly-solvable markov decision problems.
In Advances in Neural Information Processing Systems,
2007.

Toussaint, M. Robot trajectory optimization using approxi-
mate inference. In Proceedings of the 26th annual inter-
national conference on machine learning, pp. 1049–1056.
ACM, 2009.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549,
2017.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. Sample efficient
actor-critic with experience replay. In International Con-
ference on Learning Representations, 2017.

Xie, S., Galashov, A., Liu, S., Hou, S., Pascanu, R., Heess,
N., and Teh, Y. W. Transferring task goals via hier-
archical reinforcement learning, 2018. URL https:
//openreview.net/forum?id=S1Y6TtJvG.

Ziebart, B. D. Modeling Purposeful Adaptive Behavior with
the Principle of Maximum Causal Entropy. PhD thesis,
Carnegie Mellon University, 2010.

https://openreview.net/forum?id=S1Y6TtJvG
https://openreview.net/forum?id=S1Y6TtJvG

Appendix

A. A general framework for RL as
probabilistic modelling

In Sections 2 and 3 of the main text we have introduced the
KL-regularized objective and explored a particular formula-
tion that uses latent variables in the default policy and policy
(Section 3 and experiments). The particular choice in Sec-
tion 3 arises as a special case of a more general framework
which we here outline briefly.

For both the default policy and for agent policy we can con-
sider general directed latent variable models of the following
form

π0(τ) =
∫
π0(τ |y)π0(y)dy, (11)

π(τ) =
∫
π(τ |z)π(z)dz (12)

where both y and z can be time varying, e.g. y =
(y1, . . . yT), and can be causally dependent on the trajec-
tory prefix xt, e.g. yt ∼ p(·|xt) (and equivalently for z).
The latent variables can further be continuous or discrete,
and yt or zt can exhibit further structure (and thus include
e.g. binary variables that model option termination). The
general form of the objective presented in the main text

L(π, π0) = Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(at|xt)

]
,

remains valid regardless of the particular form of π0 and π.
This form can be convenient when π0(at|xt) and π(at|xt)
are tractable (e.g. when z or y have a small number of
discrete states or decompose conveniently over time, e.g. as
in (Fox et al., 2017; Krishnan et al., 2017)).

In general, however, latent variables in π0 and π may intro-
duce the need for additional approximations. In this case
different models and algorithms can be instantiated based
on a) the particular approximation chosen there, as well as
b) choices for sharing of components between π0 and π. A
possible starting point when π0 contains latent variables is
the following lower bound to L:

L = Eπ[
∑
t r(st, at)]− KL[π(τ)||π0(τ)] (13)

≥ Eπ
[∑

t r(st, at) + Ef
[
log π0(τ,y)

f(y|τ)

]]
+ H[π(τ)]

(14)

= Eπ [
∑
t r(st, at) + Ef [log π0(τ |y)]

− KL[f(y|τ)||π0(y)]] + H[π(τ)]. (15)

If yt are discrete and take on a small number of values
we can compute f(y|τ) exactly (e.g. using the forward-
backward algorithm as in (Fox et al., 2017; Krishnan et al.,

2017)); in other cases we can learn a parameterized approxi-
mation to the true posterior or can conceivably apply mixed
inference schemes (e.g. Johnson et al., 2016).

Latent variables in the policy π can require an alternative
approximation discussed e.g. in (Hausman et al., 2018):

L ≥ Eπ
[∑

t r(st, at) + log π0(τ) + log g(z|τ)

+ H[π(τ |z)]
]

+ H[q(Z)],
(16)

where g is a learned approximation to the true posterior
π(z|τ). (But see e.g. (Haarnoja et al., 2018a) who con-
sider a parametric form for policies with latent variables
for which the entropy term can be computed analytically
and no approximation is needed.) This formulation bears in-
teresting similarities with diversity inducing regularization
schemes based on mutual information (e.g. Gregor et al.,
2017; Florensa et al., 2017) but arises here as an approx-
imation to trajectory entropy. This formulation also has
interesting connections to auxiliary variable formulations in
the approximate inference literature (Salimans et al., 2014;
Agakov & Barber, 2004).

When both π0 and π contain latent variables eqs. (15,16)
can be combined. The model described in Section 3 in the
main text then arises when the latent variable is “shared”
between π0 and π and we effectively use the policy itself
as the inference network for π0: f(y|τ) =

∏
t π(yt|xt). In

this case the objective simplifies to

L ≥ Eπ
[∑

t r(st, at) + log π0(τ |z)π0(z)
π(τ |z)π(z)

]
. (17)

When we further set π0(τ |z) = π(τ |z) we recover the
model discussed in the main text of the paper.

As a proof-of-concept for a model without a shared latent
space, with latent variables in π0 but not π, we consider a
simple humanoid with 28 degrees of freedom and 21 actu-
ators and consider two different tasks: 1) a dense-reward
walking task, in which the agent has to move forward, back-
ward, left, or right at a fixed speed. The direction is ran-
domly sampled at the beginning of an episode and changed
to a different direction half-way through the episode and
2) a sparse reward go-to-target task, in which the agent has
to move to a target whose location is supplied to the agent
as a feature vector similar to those considered in (Galashov
et al., 2019).

Figure 8 shows some exploratory results. In a first experi-
ment we compare different prior architectures on the direc-
tional walking task. We let the prior marginalize over task

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 8. Results with a latent variable prior. Left: Walking task with the simple humanoid Center: Relearning the walking task with
fixed priors. Right: Transfer to a go-to-target task.

condition. We include a feed-forward network, an LSTM,
and a latent variable model with one latent variable per time
step in the comparison. For the latent variable model we
chose an inference network f(zt|zt−1, τ) so that eq. (15)
decomposes over time. All priors studied in this comparison
gave a modest speed-up in learning. While the latent vari-
able prior works well, it does not work as well as the LSTM
and MLP priors in this setup. In a first set of transfer experi-
ments, we used the learned priors to learn the walking task
again. Again, the learned priors led to a modest speed-up
relative to learning from scratch.

We also experimented with parameter sharing for transfer as
in the main text. We can freeze the conditional distribution
π0(a|s, z) and learn a new policy π(z|s), effectively using
the learned latent space as an action space. In a second
set of experiments, we study how well a prior learned on
the walking task can transfer to the sparse go-to-target task.
Here all learned priors led to a significant speed up relative
to learning from scratch. Small return differences aside,
all three different priors considered here solved the task
with clear goal directed movements. On the other hand, the
baseline only learned to go to very close-by targets. Reusing
the latent space did not work well on this task. We speculate
that the required turns are not easy to represent in the latent
space resulting from the walking task.

B. Algorithm
We develop efficient off-policy learning algorithms for opti-
mizing hierarchically structured model with default policies.
Our off-policy learning algorithms are adapted from differ-
ent existing algorithms based on the environments. Specifi-
cally, the algorithm for continuous control environments is
based on SVG(0) (Heess et al., 2015) augmented with ex-
perience replay, and the algorithm for discrete action space
environments is based on IMPALA (Espeholt et al., 2018),

which is a framework for off-policy actor critic algorithm.
Note that the introduction of latent variables and default poli-
cies introduces additional challenges for off-policy learning
algorithms in terms of gradient estimation of hierarchical
policy, parameterization and estimation of value function,
off-policy correction of the target value estimation, and ap-
propriate incorporation of KL terms in the algorithm. We
describe how we address such challenges in this section.
Unless otherwise mentioned, we follow notations from the
main paper.

B.1. Reparameterized latent for hierarchical policy

To estimate gradient for the hierarchical policy, we follow
a strategy similar to (Heess et al., 2016) and reparameter-
ize zt ∼ πH(zt|xt) as zt = fH(xt, εt), where εt ∼ ρ(εt)
is a fixed distribution. The fH(·) is a deterministic func-
tion that outputs distribution parameters. In practice this
means that the hierarchical policy can be treated as a flat pol-
icy π(at|εt, xt) = πL(at|fH(xt, εt), xt). We exploit the
reparameterized flat policy to employ existing distributed
learning algorithm with minimal modification.

B.2. Continuous control

In continuous control experiments, we employ distributed
version of SVG(0) (Heess et al., 2015) augmented with ex-
perience replay and off-policy correction algorithm called
Retrace (Munos et al., 2016). In the distributed setup,
behaviour policies in multiple actors are used to collect
off-policy trajectories and a single learner is used to opti-
mize model parameters The SVG(0) reparameterize a policy
p(a|s) and optimize it by backpropagating gradient from
a learned action value function Q(a, s) through a sampled
action a.

To employ this algorithm, we reparameterize action from
flat policy at ∼ πθ(at|εt, xt) with parameter θ as at =

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

hθ(εt, xt, ξt), where ξt ∼ ρ(ξt) is a fixed distribution, and
hθ(εt, xt, ξt) is a deterministic function outputting a sample
from the distribution πθ(at|εt, xt). We also introduce the
action value function Q(at, zt, xt). Unlike policies without
hierarchy, we estimate the action value depending on the
sampled action zt as well, so that it could capture the future
returns depending on zt. Given the flat policy and the action
value function, SVG(0) (Heess et al., 2015) suggests to use
following gradient estimate

∇θEπθ(a|εt,xt)Q(a, zt, xt)

= ∇θEρ(ξ)Q(hθ(εt, xt, ξ), zt, xt)

= Eρ(ξ)
∂Q

∂h

∂h

∂θ
≈ 1

M

M∑
i=1

∂Q

∂h

∂h

∂θ

∣∣∣∣
ξ=ξi

,

(18)

which facilitates using backpropagation. Note that policy
parameter θ could be learned through zt as well, but we
decide not to because it tends to make learning unstable.

To learn action value function Q(at, zt, xt) and learn policy,
we use off-policy trajectories from experience replay. We
use Retrace (Munos et al., 2016) to estimate the action
values from off-policy trajectories. The main idea behind
Retrace is to use importance weighting to correct for the
difference between the behavior policy µ and the online
policy π, while cutting the importance weights to reduce
variance. Specifically, we estimate corrected action value
with

Q̂Rt = Qt +
∑
s≥t γ

s−t′
(∏t

i=s ci

)
δsQ, (19)

where δsQ = rs + γ(V̂s+1 − αKLs+1) − Qs and Qt =
Q(at, zt, xt). V̂s = Eπ(a|εt,xt)[Q(a, zt, xt)] is estimated
bootstrap value, KLs = KL

[
πH(z|xs)‖πH0 (z|xs)

]
+

KL
[
πL(a|zs, xs)‖πL0 (a|zs, xs)

]
and γ is discount. ci =

λmin
(
π(ai|εi,xi)
µ(ai|xi)

)
is truncated importance weight called

traces.

There are, however, a few notable details that we adapt for
our method. Firstly, we do not use the latent zt sampled
from behaviour policies in actors. This is possible because
the latent does not affect the environment directly. Instead,
we consider the behavior policy as µ(a|x), which does not
depend on latents. This approach is useful since we do not
need to consider the importance weight with respect to the
HL policy, which might introduce additional variance in the
estimator. Another detail is that the KL term at step s is not
considered in δsQ because the KL at step s is not the result
of action as. Instead, we introduce close form KL at step
s as a loss to compensate for this. The pseudocode for the
resulting algorithm is illustrated in Algorithm 2.

B.3. Discrete action space

For discrete control problems, we use distributed learning
with V-trace (Espeholt et al., 2018) off-policy correction.
Similarly to the distributed learning setup in continuous
control, behaviours policies in multiple actors are used to
collect trajectories and a single learner is used to optimize
model parameters. The learning algorithm is almost identi-
cal to (Espeholt et al., 2018), but there are details that need
to be considered mainly because of hierarchy with stochas-
tic latent variable and temporal abstraction. Using negative
KL as reward introduces another complication as well.

We consider optimizing objective with infrequent latent

L(π, π0) ≥

Eτ
[∑

t≥1 γ
tr(st, at)− αγt1p(t)KL(zt|xt)

]
,

(20)

where 1p(t) is the indicator function whose value is 1 if
tmod p ≡ 1 with period p. This lower bound will be
discussed later in Appendix C.2. This infrequent latent case
is used for discrete action space experiment, by defining
period p to be equal to the effective step size of the body.

We learn latent conditional value function Vψ(zt, xt) and
reparameterized flat policy πθ(at|εt, xt). V-trace target is
computed as follows

vs = V sψ +
∑
t≥s γ

t−s
(∏t−1

i=s ci

)
δtV, (21)

where δtV = ρt(rt + γ(V t+1
ψ − KLpt+1) − V tψ), KLpt =

1p(t)KL
[
πHθ (z|xt)‖πh0,φ(z|xt)

]
, and V tψ := Vψ(zt, xt) is

bootstraped value at time step t. Importance weights are
computed by ci := min(c̄, wi) and ρi := min(ρ̄, wi),
where wi = πθ(ai|εi,xi)

µ(ai|xi) . c̄ and ρ̄ are truncation coeffi-
cient identical to ones from original V-trace paper (Espeholt
et al., 2018). Note that here we ignore latent sampled by
behaviour policy and just consider states and actions from
the trajectory. As discussed in Appendix B.2, we sample
latent on-policy and this helps avoiding additional variance
introduced with importance weight for HL policy.

Computed V-trace target is used for training both policy
and value function with actor-critic algorithm. For training
policy, we use policy gradient defined as∑

t≥1 ρt∇θ log πθ(at|zt, xt)δtv (22)

where δtv = r̂t + γ(vt+1 − KLpt+1) − V tψ and V tψ =
Vψ(zt, xt). We optimize negative KL for time step t by
adding an analytic loss function for HL policy πHθ (z|xt)
and default policy πHφ (z|xt)∑

t≥1∇θ,φ1p(t)KL[πHθ (z|xt)‖πH0,φ(z|xt)] (23)

For training value function, perform gradient descent over
l2 loss ∑

t≥1(vt − V tψ)∇ψVψ(zt, xt). (24)

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Algorithm 2 SVG(0) (Heess et al., 2015) with experience replay for hierarchical policy
Flat policy: πθ(at|εt, xt) with parameter θ
HL policy: πHθ (zt|xt), where latent is sampled by reparameterization zt = fHθ (xt, εt)
Default policies: πH0,φ(zt|xt) and πL0,φ(at|zt, xt) with parameter φ
Q-function: Qψ(at, zt, xt) with parameter ψ
Initialize target parameters θ′ ← θ, φ′ ← φ, ψ′ ← ψ.
Target update counter: c← 0
Target update period: P
Replay buffer: B
repeat

for t = 0,K, 2K, ...T do
Sample partial trajectory τt:t+K with action log likelihood lt:t+K from replay buffer B:
τt:t+K = (st, at, rt, ..., rt+K),
lt:t+K = (lt, ..., lt+K) = (log µ(at|xt), ..., logµ(at+K |xt+K))

Sample latent: εt′ ∼ ρ(ε), zt′ = fHθ (xt′ , εt′)

Compute KL: K̂Lt′ = KL
[
πHθ (z|xt′)‖πH0,φ′(z|xt′)

]
+ KL

[
πLθ (a|zt′ , xt′)‖πL0,φ′(a|zt′ , xt′)

]
Compute KL for Distillation:

K̂L
D
t′ = KL

[
πHθ (z|xt′)‖πH0,φ(z|xt′)

]
+ KL

[
πLθ (a|zt′ , xt′)‖πL0,φ(a|zt′ , xt′)

]
Compute action entropy: Ĥt′ = Eπθ(a|εt′ ,xt′)[log πθ(a|εt′ , xt′)]
Estimate bootstrap value: V̂t′ = Eπθ(a|εt′ ,xt′) [Qψ′(a, zt+K , xt+K)]− αK̂Lt+K
Estimate traces (Munos et al., 2016): ĉt′ = λmin

(
πθ(at′ |εt′ ,xt′)

lt′

)
Apply Retrace to estimate Q targets (Munos et al., 2016):
Q̂Rt′ = Qψ′(at′ , zt′ , xt′) +

∑
s≥t′ γ

s−t′
(∏t′

i=s ĉi

)(
rs + γ

(
V̂s+1 − αK̂Ls+1

)
−Qψ′(as, zs, xs)

)
Policy loss: L̂π =

∑t+K−1
i=t Eπθ(a|εi,xi)Qψ′(a, zi, xi)− αK̂Li + αHĤi

Q-value loss: L̂Q =
∑t+K−1
i=t ‖Q̂Ri −Qψ(a, zi, xi)‖2

Default policy loss: L̂πH0 =
∑t+K−1
i=t K̂L

D
i

θ ← θ + βπ∇θL̂π φ← φ+ βπH0 ∇φL̂πH0 ψ ← ψ − βQ∇ψL̂Q
Increment counter c← c+ 1
if c > P then

Update target parameters θ′ ← θ, φ′ ← φ, ψ′ ← ψ
c← 0

end if
end for

until

Additionally we include an action entropy bonus to encour-
age exploration (Mnih et al., 2016)

∑
t≥1∇θH[πθ(a|εt, xt)], (25)

where H[·] is close form entropy. We optimize the gradients
from all four objectives jointly. Unlike continuous control,
we do not maintain target parameters separately for the
discrete action space experiments.

C. Derivations
This section includes derivations not described in the main
paper.

C.1. Upper bound of KL divergence

The upper bound of KL divergence in eq. (6) of the main
paper is derived as

KL(at|xt) ≤KL(at|xt) + Eπ(at|xt)[KL(zt|at, xt)]

=Eπ(at|xt)[log π(at|xt)
π0(at|xt)]

+ Eπ(at|xt)[Eπ(zt|at,xt)[log π(zt|at,xt)
π0(zt|at,xt)]

=Eπ(at,zt|xt)[log π(at,zt|xt)
π0(at,zt|xt)] = KL(zt, at|xt)

=Eπ(zt|xt)[log π(zt|xt)
π0(zt|xt)]

+ Eπ(zt|xt)[Eπ(at|zt,xt)[log π(at|zt,xt)
π0(at|zt,xt)]

=KL(zt|xt) + Eπ(zt|xt)[KL(at|zt, xt)] (26)

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

with the last expression being tractably approximated using
Monte Carlo sampling. Note that:

KL(zt|xt) = KL
(
πH(zt|xt)‖πH0 (zt|xt)

)
KL(at|zt, xt) = KL

(
πL(at|zt, xt)‖πL0 (at|zt, xt)

)
C.2. Trajectory based derivation of lower bound

This section derives lower bound of eq. (1) in the main paper.
We consider high level policy and default policy, whose
latent are sampled every p steps. As in the lower bound in
eq. (9) of the main paper, we consider a case where a latent
is shared between the policy and the prior. We derive lower
bound in trajectory level while considering both the period
of high level action p and the discount γ. Here we introduce
notation for trajectory including latent η = (s1, z1, a1, ...),
not including latent τ = (s1, a1, ...), and including only the
sequence of latent ζ = (z1, z1+p, ...). In this section, we
derive the following lower bound

L(π, π0) = Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(at|xt)

]
≥ Eη

[∑
t≥1 γ

tr(st, at)− αγt1p(t)KL(zt|xt)
− αγtKL(at|zp(t), xt)

]
,

(27)

where Eτ [·] is taken with respect to the distribution
over trajectories defined by the agent policy and
system dynamics: p(s1)

∏
t≥1 π(at|xt)p(st+1|st, at).

Eη[·] is taken with respect to the distribution over
trajectories of hierarchical policy including latent:
p(s1)

∏
t≥1 π(at|zp(t), xt)π(zt|xt)1p(t)p(st+1|st, at).

zp(t) is the latest latent sample before time step t based on
the period p and 1p(t) is the indicator function whose value
is 1 if tmod p ≡ 1 with period p.

Note that these equations are composed of reward maximiza-
tion and KL regularization term. We could show equality in
reward maximization, and derive lower bound with respect
to the KL regularization term. Therefore, we will present
equality and inequality with respects to these two terms
separately.

C.2.1. EQUALITY IN REWARD MAXIMIZATION

The equality of reward maximization term holds as follows

Eπτ
[∑

t≥1 γ
tr(st, at)

]
=
∫
τ
π(τ)

[∑
t≥1 γ

tr(st, at)
]
dτ

=
∫
τ

∫
ξ
π(η)dξ

[∑
t≥1 γ

tr(st, at)
]
dτ

=
∫
τ

∫
ξ
π(η)

[∑
t≥1 γ

tr(st, at)
]
dξdτ

=
∫
η
π(η)

[∑
t≥1 γ

tr(st, at)
]
dη

= Eπη
[∑

t≥1 γ
tr(st, at)

]
.

(28)

C.2.2. LOWER BOUND OF KL REGULARIZATION ON
TRAJECTORY

We can show inequality in eq. (27) by deriving it from KL
regularization term. We first derive lower bound of trajec-
tory level KL regularization without considering discount.

∫
τ
π(τ) log π0(τ)

π(τ) dτ

=
∫
τ
π(τ)

[
log
∫
ξ
π0(τ,ξ)
π(τ) dξ

]
dτ

=
∫
τ
π(τ)

[
log
∫
ξ
π(ξ|τ) π0(τ,ξ)

π(τ)π(ξ|τ)dξ
]
dτ

≥
∫
τ
π(τ)

[∫
ξ
π(ξ|τ) log π0(τ,ξ)

π(τ)π(ξ|τ)dξ
]
dτ

=
∫
η
π(η) log π0(η)

π(η) dη,

(29)

where the inequality holds by Jensen’s inequality.

C.2.3. LOWER BOUND OF KL REGULARIZATION WITH
DISCOUNT

To derive lower bound with discount, we first introduce the
following equation to handle discount in the derivation.

∑T
t≥1 γ

tat =
∑T−1
t≥1

[
(1− γ)γt

∑t
u≥1 au

]
+ γT

∑T
t≥1 at.

(30)

This equality is useful to derive lower bound from summa-
tion without discounting (

∑t
u≥1 au) and then recombine it

with the discounting terms.

To derive lower bound with respect to KL regularization
with discount, we first rewrite KL regularization term as a
trajectory based KL term. As α is a constant we will ignore
it in the derivation, but it is straightforward to include it. We
could turn KL regularization term as a trajectory based KL

Eπτ
[∑T

t≥1−KL
(
at|xt

)]
= −

∫
τ
π(τ)

[∑T
t≥1 KL

(
at|xt

)]
dτ

=
∫
τ
π(τ)

[∑T
t≥1
∫
at
π(at|xt) log π0(at|xt)

π(at|xt) dat
]
dτ

=
∫
τ
π(τ)

[∑T
t≥1 log π0(at|xt)

π(at|xt)
]
dτ

=
∫
τ
π(τ) log

∏T
t≥1

π0(at|xt)
π(at|xt) dτ

=
∫
τ
π(τ) log π0(τ)

π(τ) dτ.

(31)

We use eqs. (30) and (31) to rewrite discounted KL regular-

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

ization as a trajectory based equation.

Eπτ
[T∑
t≥1

−γtKL
(
at|xt

)]
= Eπτ

[
−
∑T−1
t≥1

[
(1− γ)γt

∑t
u≥1 KL

(
au|xu

)]
− γT

∑T
t≥1 KL

(
at|xt

)]
= −

∑T−1
t≥1

[
(1− γ)γtEπτ

[∑t
u≥1 KL

(
au|xu

)]]
− γTEπτ

[∑T
t≥1 KL

(
at|xt

)]
=
∑T−1
t≥1

[
(1− γ)γt

∫
τt
π(τt) log π0(τt)

π(τt)
dτt
]

+ γT
∫
τT
π(τT) log π0(τT)

π(τT)
dτT ,

(32)

where τt is trajectory until time step t. We derive lower
bound of this trajectory based representation using eq. (29).

∑T−1
t≥1

[
(1− γ)γt

∫
τt
π(τt) log π0(τt)

π(τt)
dτt
]

+ γT
∫
τT
π(τT) log π0(τT)

π(τT)
dτT

≥
∑T−1
t≥1

[
(1− γ)γt

∫
ηt
π(ηt) log π0(ηt)

π(ηt)
dηt
]

+ γT
∫
ηT
π(ηT) log π0(ηT)

π(ηT)
dηT ,

(33)

To rearrange this trajectory based representation with KL
regularization formulation, we use following equality

∫
η
π(η) log π0(η)

π(η) dη

=
∫
η
π(η) log

∏T
t≥1

π0(at|zp(t),xt)π0(zt|xt)1p(t)

π(at|zp(t),xt)π(zt|xt)1p(t)
dη

=
∫
η
π(η)

[∑T
t≥1 log

π0(at|zp(t),xt)
π(at|zp(t),xt)

+ 1p(t) log π0(zt|xt)
π(zt|xt)

]
dη

=
∫
η
π(η)

[∑T
t≥1−1p(t)KL

(
zt|xt

)
− KL

(
at|zp(t), xt

)]
dη

= Eπη
[∑T

t≥1−1p(t)KL
(
zt|xt

)
− KL

(
at|zp(t), xt

)]
,

(34)

where zp(t) is the latest latent sample before time step t
based on the period p.

We rearrange eq. (33) based on eqs. (30) and (34).∑T−1
t≥1

[
(1− γ)γt

∫
ηt
π(ηt) log π0(ηt)

π(ηt)
dηt
]

+ γT
∫
ηT
π(ηT) log π0(ηT)

π(ηT)
dηT

= −
∑T−1
t≥1

[
(1− γ)γtEπη

[∑t
u≥1 1p(u)KL

(
zu, xu

)
+ KL

(
au|zp(u), xu

)]]
− γTEπη

[∑T
t≥1 1p(t)KL

(
zt|xt

)
+ KL

(
at|zp(t), xt

)]
= −Eπη

[∑T−1
t≥1

[
(1− γ)γt

∑t
u≥1 1p(u)KL

(
zu|xu

)
+ KL

(
au|zp(u), xu

)]
+ γT

∑T
t≥1 1p(t)KL

(
zt|xt

)
+ KL

(
at|zp(t), xt

)]
= Eπη

[∑T
t≥1−1p(t)γtKL

(
zt|xt

)
− γtKL

(
at|zp(t), xt

)]
.

(35)

By combining all results, we obtain the following inequality.

L(π, π0) = Eτ
[∑

t≥1 γ
tr(st, at)− αγtKL(at|xt)

]
≥ Eη

[∑
t≥1 γ

tr(st, at)− αγt1p(t)KL(zt|xt)
− αγtKL(at|zp(t), xt)

]
.

(36)

D. Additional Experimental Results
D.1. Alternative training regimes

In the main paper, we present results based on learning
speed with respect to the number of time steps processed by
learner in distributed learning setup. Note that the number
of time steps processed by the learner does not necessarily
correspond to the number of collected trajectory time steps
because of the use of experience replay, which allows to
learning to proceed regardless of the amount of collected
trajectories. We also experimented with two alternative
training regimes to ensure that the speedup results reported
are consistent. In Figure 9a, we compare the learning curves
for our method against the SVG-0 and DISTRAL baselines
in a quasi on-policy training regime similar to that of (Es-
peholt et al., 2018). In Figure 9b, we perform a similar
comparison in the original replay based off-policy training
regime but with a single actor generating the data. In both
cases, our method learns faster than both baselines.

D.2. Information asymmetry in task transfer

Figure 10 illustrates the necessity of information asymmetry
and KL regularization during transfer. Here we train the
agent on the Move box Or Go to Target task with different
information given to the LL and then transfer to Move Box
and GTT. Therefore the distributions of the trajectories dur-
ing training and those required for transfer should be similar.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

(a) Learning curves with quasi on-policy training. (b) Learning curves with a single actor.

Figure 9. Experiments with alternative training regimes. (a) Locomotion with Ant. AR-1 process. (b) Locomotion with Ant. AR-1
process.

Figure 10. Analysis on task transfer results. Transfer from
Combined task (OR) to Combined task (AND) with Ant and AR-1
process.

As the figure shows, we observe successful transfer only
when the box position is given to the LL controller and KL
regularization is used during transfer. Failed approaches
usually converge to suboptimal policies, where the agent
succeeds on the go to target task, but cannot move the box
appropriately. In this transfer scenario, giving box position
as input to LL controller is one way to specify inductive bias,
which turns out to be useful to move box appropriately in
target task. Interestingly, the unstructured DISTRAL prior
performs comparatively to our method in this experiment.
We hypothesize that for tasks that take longer to learn, the
benefit of the immediate parameter transfer in our approach
is not as strong since this also leads to a fixed lower level
behavior that cannot be adapted to the task. In this sense,
the DISTRAL baseline is expected to be asymptotically
stronger.

D.3. Additional body transfer experiments

We explore body transfer setup both in discrete and continu-
ous environments. We compare performance to learning the
hierarchical policy from scratch and analyze the effects of
the KL regularization. The experimental setup in the con-
tinuous case is the same as before, and Figure 11 provides
results for different types of bodies and tasks. Generally

transferring the HL component and relying on both the task
reward and the KL term as a dense shaping reward signal
for LL controller works best in these settings.

In the discrete case, we construct a discrete go to target
task in a 2D grid world. An agent and goal are randomly
placed in an 8×8 grid and the agent is rewarded for reaching
the goal. The body agnostic task observation is the global x,
y coordinates of the agent and goal. The different bodies in
this case must take different numbers of actions to achieve
an actual step in the grid. For instance the 4-step body needs
to take 4 consecutive actions in the same direction to move
forward by one step in that direction. We assume that the
latent zt is sampled every n steps, where n is the number
of actions required to take a step. Details for models in
which latent variables are sampled with a period > 1 are
provided in Appendix B. The environment is described in
Appendix E.

Figure 12 illustrates the result for transfering behavior from
the 1-step to the 8-step body with AR-learned prior. (We
were only able to solve the challenging 8-step version
through body transfer with a KL reward.) In Figure 12, we
visualize the negative KL divergence (KL reward) along the
agent’s movement in every location of the grid. The size and
the colour of arrows denotes the expected KL reward. This
illustrates that the KL reward forms a vector field that guides
the agent toward the goal, which provides a dense reward
signal when transferring to a new body. This observation
explains the gain from KL regularization, which can lead to
faster learning and improve asymptotic performance.

E. Environments
E.1. Discrete control

We construct a discrete go to target task in 2D grid world.
An agent and goal are randomly placed in an 8 × 8 grid

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 11. Body transfer with the AR-1 Prior. Column 1: Ball to Ant, Locomotion. Column 2: Ball to Ant, Manipulation (easy).
Column 3: Ant to Quadruped, Locomotion. Column 4: Ant to Quadruped, Manipulation(easy).

Figure 12. Body transfer in 2D grid world, AR-1 prior. Left
Transfer from 1-step to 8-step body. Right KL reward visualiza-
tion. The size and the color of arrows denotes KL reward (negative
KL) for corresponding agents’ movement.

and the agent is given a reward of 1.0 for reaching the goal.
The episode terminates when the agent reaches the goal
or after 400 time steps. Additionally, the agent receives a
penalty of -0.1 for every time step and a penalty of -0.2 if it
collides with the walls. The body agnostic tasks observation
is global x, y coordinate of agent and goal.

We consider a body that moves in any of 4 directions in
the grid (up, down, left, right). We define different bodies
based on their effective step size. The effective step size
is the number of consecutive movements required to make
a single displacement in the grid. Specifically, a body has
2 dimensional internal coordinate [−n + 1, n − 1]2 with
effective step size n. Agent’s action primarily affect the
internal coordinate and it brings displacement to the external
coordinate only if a value exceed its minimum or maximum.
In this case, agent move 1 step in external coordinate and
internal coordinate for the corresponding dimension is reset
to 0. We denote different bodies with their step size (e.g.
1-step). We assume that the latent zt is sampled every n
steps, where n is the effective step size.

E.2. Continuous control

In this section, we describe detailed configuration of the
continuous control tasks and bodies.

E.2.1. TASKS

Locomotion (Go to 1 of 3 targets) On a fixed 8× 8 area,
an agent and 3 targets are randomly placed at the begin-
ning of episodes. In each episode, one of the 3 targets
are randomly selected, and the agent should reach the se-
lected target within 400 time steps. When the agent reach
the selected target, the agent receives a reward of 60 and
the episode terminates. Egocentric coordinates of 3 targets
and an onehot vector representing one of the 3 targets are
provided as task observations.

Locomotion (Gap) The task consists of a corridor with
one gap in the middle. The length of the gap is chosen
randomly at the start of each episode uniformly between 0.3
and 2.5. In order to successfully solve the task, the ant needs
to jump across the gap and reach the end of the corridor.
The ant recieves a reward proportional to its velocity at
each timestep. The observations given to the agent include
proprioceptive information regarding the joint positions and
velocities of the walker as well as the position and length of
the gap for the current episode.

Maniputation (Move 1 of N boxes to 1 of K targets) On
a fixed 3× 3 area, an agent, N boxes and K targets are ran-
domly placed at the beginning of episodes. In each episode,
one of N boxes and one of the K targets are randomly se-
lected, and the agent should move the box to the selected
target within 400 time steps. When the box is placed on the
selected target, the agent receives a reward of 60 and the
episode terminates. Egocentric coordinates of K targets and
6 corner of the N boxes are provided as task observations
with an onehot vector representing one of the K targets.

Manipulation (gather) On a fixed 3 × 3 area, an agent
and 2 boxes are randomly locate at the beginning of episodes.
In each episode, the agent should gather all the boxes within
400 time steps so that the boxes are contacted to each other.
The agent receives a reward of 60 when it successfully
gathers boxes. Egocentric coordinates of 6 corners of boxes
are provided as task observations.

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

Figure 13. Vision input for Go to target from vision.

Combined task (Or) This task is a combination of the go
to 1 of 2 targets task and the move box to 1 of 2 targets task.
On each episode one of the two tasks is randomly sampled
so that with probability 0.5 the agent must go to one of
the 2 targets and with probability 0.5 it must push a box
to a specific target. The agent receives a reward of 60 for
successfully completing the corresponding task. Egocentric
coordinates of both targets as well as the corners of the box
are provided as task observations along with an encoding
describing the specific task instance.

Combined task (And) This task contains the move box
to 1 of 2 targets and go to 1 of 2 targets as two sub-tasks.
In each episode, the walker must push the box to a target
and then go to another target. A reward of 10 is awarded for
each sub task that is completed and a bonus reward of 50 is
awarded for completing both tasks. Egocentric coordinates
of both targets as well as the corners of the box are provided
as task observations.

Manipulation (vision) This task is identical to the Ma-
nipulation, but the task observation is egocentric vision.
Instead of egocentric target coordinates, the agent observes
a 64× 64 image captured by the agent’s egocentric camera.
The agent needs to recognize visual patterns of the targets
and figure out the correct target (always colored black in this
case). Figure 13 illustrates the egocentric visual observation
before being rescaled to 64× 64.

E.2.2. BODIES

We use three different bodies: Ball, Ant, and Quadruped.
Ball and Ant have been used in several previous
works (Heess et al., 2017; Xie et al., 2018; Galashov et al.,
2019), and we introduce Quadruped as a more complex
variant of the Ant. The Ball is a body with 2 actuators
for moving forward or backward, turning left, and turn-
ing right. The Ant is a body with 4 legs and 8 actuators,
which moves its legs to walk and to interact with objects.
The Quadruped is similar to Ant, but with 12 actuators.
Each body has different proprioception (proprio) as a body

Task Walker LL information
Go to 1 of K Tar-
gets

Ant Proprioception

Move box to tar-
get

Ant Proprioception + Box

2 Boxes and 2
Targets

Ball Proprioception + Boxes +
Targets

Move Box or Go
to Target (I)

Ant Proprioception

Move Box or Go
to Target (II)

Ant Proprioception + Box

Gather Boxes Ball Proprioception + Boxes +
Targets

Table 1. Information provided to the lower level controller for each
task.

specific observation.

E.2.3. DETAILS OF INPUT TO THE LOWER LEVEL

1 illustrates the information provided to the lower level for
each of the tasks for the speedup and transfer settings con-
sidered in the main text. In these cases, the HL received full
information. For the tasks where the body was transferred,
the LL was only given propioceptive information while the
HL received all other information relevant to the task.

F. Experimental Settings
F.1. General settings

Throughout the experiments, we use 32 actors to collect
trajectories and a single learner to optimize the model. We
plot average episode return with respect to the number of
steps processed by the learner. Note that the number of
steps is different from the number of agent’s interaction
with environment, because the collected trajectories are
processed multiple times by a centralized learner to update
model parameters. When learning from scratch we report
results as the mean and standard deviation of average returns
for 5 random seeds. For the transfer learning experiments,
we use 5 seed for the initial training, and then transfer all
pretrained models to a new task, and train two new HL
or LL controllers (two random seeds) per model on the
transfer task. Thus, in total, 10 different runs are used
to estimate mean and standard deviations of the average
returns. Hyperparameters, including KL cost and action
entropy regularization cost, are optimized on a per-task
basis. More details are provided in Appendix G.

F.2. DISTRAL with parameter sharing

We introduced two baselines as variants of DISTRAL prior
sharing parameters between the agent policy and the default

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

policy. DISTRAL prior 2 cols uses a 2-column architec-
ture (see (Teh et al., 2017)), where the default policy network
is reused in combination with another network (column) to
output the final policy distribution. In this configuration, the
default policy network does not access to task information,
but another network (column) access to the full information.
In DISTRAL shared prior, the policy network is reused to
output the default policy distribution based on an additional
branch on top of it. As default policy is constructed on
policy network, information asymmetry is not used in this
baseline.

G. Hyper parameters
Fully connected neural networks are used as function ap-
proximators for both the actor and the critic in the agent. In
case of tasks with boxes, a separate common single layer
MLP was used as a box encoder torso. Separate processing
networks were implemented for proprioception for the base-
lines. For all tasks, multiple values were swept for actor
networks and torso sizes with 5 random seeds each. ELU ac-
tivations were used throughout. We use separate optimizers
and learning rates for the actor and critic networks. For the
hierarchical networks, fully connected MLP networks were
used for the higher level and lower level policy cores. The
relative contribution of the KL regularization to the reward
was controlled by a posterior entropy cost which we denote
α.

Below we provide the default hyperparameters used across
tasks followed by the best parameters from the baselines
and the hierarchical networks for each task.

G.1. Default parameters

Actor learning rate, βpi = 1e-4.

Critic learning rate, βpi = 1e-4.

DISTRAL baseline default policy learning rate, βpi = 5e-4.

Target network update period = 100.

DISTRAL policy target network update period = 100.

Baseline Actor network: MLP with sizes (200, 100).

Baseline Critic network: MLP with sizes (400, 300).

DISTRAL baseline default policy network: MLP with sizes
(200, 100).

HL policy network: MLP with sizes (200, 10).

LL policy network: MLP with sizes (200, 100).

Box encoder network: MLP with sizes (50).

Batch size: 512.

Unroll length: 10.

Entropy bonus, λ = 1e-4.

Posterior Entropy cost for HL, α = 1e-3.

Posterior Entropy cost for DISTRAL default policy, α = 0.01

Distillation cost for DISTRAL default policy, α = 0.01

Number of actors: 32

G.2. Per-task parameters

Ant: Move Box to Target

Entropy bonus, λ = 1e-3.

Policy network for Gaussian Prior: MLP with sizes (200,
100).

Action Entropy cost for Isotropic Gaussian Prior: = 0.

Action Entropy cost for AR-1 Prior: = 0.

AR Parameter: = 0.9

Posterior Entropy cost for AR-1 Prior, α = 1e-4.

Ant: Go to 1 of 3 Targets

Action Entropy cost for DISTRAL default policy = 0.

AR Parameter: = 0.95

Distillation cost for DISTRAL default policy, α = 1.0

Ball: 2 Boxes to 2 Targets

Distillation cost for DISTRAL default policy, α = 0.1

Box encoder network: MLP with sizes (100, 20).

HL policy network for AR-Learned Prior: MLP with sizes
(200, 4).

Ant: Move Box to 1 of 3 Targets

AR Parameter for baseline: = 0.9

Policy network for AR-1 Transfer Prior: MLP with sizes
(200, 10).

Policy network for Gaussian Transfer Prior: MLP with
sizes (200, 4).

Policy network for AR-Learned Transfer Prior: MLP with
sizes (200, 4).

Posterior Entropy cost for AR-Learned Transfer Prior, α =
1e-2.

Action Entropy cost for AR-Learned Transfer Prior: = 1e-4.

Ball: Gather boxes

Policy network for Gaussian Transfer Prior: MLP with
sizes (200, 4).

Policy network for AR-Learned Transfer Prior: MLP with

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL

sizes (200, 4).

DISTRAL Actor learning rate, βpi = 5e-4.

DISTRAL default policy distillation cost = 0.01.

Ant: Move Box and Go to Target

Policy network for AR-1 Prior: MLP with sizes (200, 10).

Ball to Ant: Go to Target

Unless otherwise specified, for all the body transfer tasks an
action entropy cost of 1e-4 worked best across tasks.

HL Policy network for agent from scratch: MLP with sizes
(100, 4)

Ball to Ant: Move Box to Target

HL Policy network for agent from scratch: MLP with sizes
(100, 4)

Posterior entropy cost for transfer agent: 1e-5

Ant to Quadruped: Move Box to Target

Posterior entropy cost for transfer agent: 1e-2

Action entropy cost for transfer agent: 1e-5

Ant to Quadruped: Go To Target:

HL Policy network for agent from scratch: MLP with sizes
(20)

Ant to Quadruped: Go To Target From Vision:

HL Policy network: Residual Network with an embedding
size of (256,)

