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Abstract001

In Recent years, advances in Neural Machine002
Translation (NMT) heavily rely on large-scale003
parallel corpora. Within the context of China’s004
Belt and Road Initiative, there is increasing de-005
mand for improving translation quality from006
agglutinative languages (e.g., Mongolian, Ara-007
bic) to Chinese. However, the translation sce-008
narios for agglutinative languages (which form009
words by concatenating morphemes with clear010
boundaries) face significant challenges includ-011
ing data sparsity, quality imbalance, and in-012
active sample proliferation due to their mor-013
phological complexity and syntactic flexibil-014
ity. This study presents a systematic analysis015
of data distribution characteristics in aggluti-016
native languages and proposes a dual-module017
framework combining fine-grained inactive018
sample identification with target-side rejuve-019
nation. Our framework first establishes a multi-020
dimensional evaluation system to accurately021
identify samples exhibiting low-frequency mor-022
phological interference or long-range word or-023
der mismatches. Subsequently, the target-side024
rejuvenation mechanism generates diversified025
noise-resistant translations through iterative026
optimization of sample contribution weights.027
Experimental results on four low-resource ag-028
glutinative language tasks demonstrate signifi-029
cant performance improvements (BLEU +2.1–030
3.4) across mainstream NMT architectures.031
Architecture-agnostic validation further con-032
firms the framework’s generalizability.033

1 Introduction034

Neural Machine Translation (NMT) depends heav-035

ily on large-scale training data (Koehn and036

Knowles, 2017), yet issues like data noise and com-037

plex patterns hinder effective training. Though038

methods such as curriculum learning (Edunov039

et al., 2020), data diversification (Nguyen et al.,040

2020), and denoising (Wang et al., 2018) im-041

prove data quality, they fail to tackle inactive042

samples—instances that contribute little or neg-043

atively to model performance. These samples, of- 044

ten affected by morphological complexity or word- 045

order mismatches, are especially problematic in 046

agglutinative-to-Chinese translation tasks (Yatu 047

et al., 2024; Ji et al., 2019). The structural gap 048

between SOV agglutinative languages and SVO 049

Chinese limits sentence-level confidence metrics 050

(Kumar and Sarawagi, 2019) in detecting unstable 051

translations. 052

To address this challenge, we propose a data re- 053

juvenation framework for agglutinative language 054

translation. Specifically, we train a target-side data 055

augmentation model on active samples as the regen- 056

erator to relabel inactive samples, thereby obtain- 057

ing regenerated samples. First, multi-dimensional 058

metrics (e.g., sentence probability mean, stan- 059

dard deviation, and token-level extremal proba- 060

bilities) are designed to identify inactive samples 061

with low-frequency morphology or word-order 062

mismatches. Second, a target-side augmentation 063

mechanism based on latent space modeling gen- 064

erates diverse translations to mitigate data spar- 065

sity and word-order distortion. Finally, active 066

and regenerated samples are jointly trained (Guo 067

et al., 2024). Experiments on Mongolian–Chinese, 068

Uyghur–Chinese, and Arabic–Chinese tasks show 069

consistent improvements across LSTM (Domhan, 070

2018), Transformer (Vaswani et al., 2017), and Dy- 071

namicConv (Wu et al., 2019; Gehring et al., 2017) 072

architectures. 073

2 Related Work 074

Inactive Samples. Inactive samples refer to train- 075

ing instances with minimal or negative contribu- 076

tions to model performance, primarily due to in- 077

effective feature encoding. This phenomenon is 078

observed in both computer vision (e.g., 10% redun- 079

dancy in CIFAR-10/ImageNet (Krizhevsky et al., 080

2009; Deng et al., 2009)) and NMT (Jiao et al., 081

2020). However, agglutinative languages (Mongo- 082
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lian, Arabic) pose unique challenges in Chinese083

translation: rich morphology (complex affixation)084

and free word order (SOV structure) induce dis-085

tinctive inactive patterns like low-frequency mor-086

phological interference and long-range syntax mis-087

matches. Traditional single-metric approaches088

(e.g., sentence-level probability) fail to capture089

these fine-grained features (Pan et al., 2020), moti-090

vating our multi-dimensional evaluation system in-091

tegrating sentence probability statistics (mean/std)092

and token-level confidence extremes.093

Data Manipulation. Existing methods fall into094

two categories: 1) Data purification/augmentation095

(Gao et al., 2024) including denoising (Wang et al.,096

2018) and forward translation (Nguyen et al., 2020;097

Jin, 2024; Li et al., 2022); 2) Sample weighting098

via self-paced learning (easy samples), hard ex-099

ample mining, or curriculum learning. While ef-100

fective for general NMT, these approaches inade-101

quately address agglutinative-specific issues. For102

instance, Jiao et al.’s (Jiao et al., 2020) forward103

translation method introduces word order errors104

during SOV-to-SVO conversion (Luo et al., 2024),105

amplifying translation noise. Our innovation lies in106

target-side data augmentation through latent space107

posterior distribution modeling, generating multi-108

ple noise-resistant translation variants to mitigate109

single-annotation dependency.110

Low-Resource Utilization. Recent advances111

leverage knowledge distillation and corpus refine-112

ment: Ding et al. (Ding et al., 2021, 2022)113

propose bidirectional distillation to enhance low-114

frequency word alignment, while Briakou et al.115

(Briakou and Carpuat, 2022) employ semantic116

equivalence classifiers for noise filtering. These117

methods synergistically complement our sample118

activation framework—bidirectional distillation ex-119

pands lexical coverage, corpus refinement ensures120

data purity, and our multi-metric evaluation opti-121

mizes sample utility weights—collectively enhanc-122

ing NMT robustness for agglutinative languages.123

3 Methodology124

This chapter presents the architecture of the data re-125

juvenation framework for agglutinative languages126

(Figure 1). The Identification Module implement-127

ing multi-metric evaluation (sentence-level proba-128

bility, standard deviation, min/max token probabili-129

ties) to detect inactive samples through fine-grained130

analysis of translation behaviors under complex131

morphological and syntactic structures; 2) Activa-132

tion Module employing target-side data augmen- 133

tation to generate diverse translations, thereby en- 134

hancing low-contribution samples’ utility. The re- 135

generated samples are combined with original ac- 136

tive data to train the final NMT model. 137

3.1 Identification Model 138

Current NMT approaches predominantly rely on 139

single metrics (e.g., sentence-level probability) to 140

evaluate sample activity. However, this paradigm 141

exhibits critical limitations in low-resource lan- 142

guage pairs with significant grammatical diver- 143

gence like agglutinative-to-Chinese translation. 144

Firstly, sentence-level metrics fail to account for: 145

(1) low-frequency token impacts (e.g., their prob- 146

abilities are masked by high-frequency counter- 147

parts), (2) long-range dependencies, (3) complex 148

syntactic structures—all crucial for capturing gram- 149

matical relationships and semantic coherence (Mo- 150

hamed and Al-Azani, 2025; Shaalan et al., 2019; 151

Refai et al., 2023). Additionally, the coarse-grained 152

nature of sentence-level metrics lacks token-wise 153

translation quality assessment, impairing both 154

model training efficacy and inactive sample identi- 155

fication. 156

To address these deficiencies, we propose a 157

multi-metric evaluation framework that compre- 158

hensively analyzes training samples through four 159

dimensions: 160

Sentence-level probability (psent_mean): The 161

trained Neural Machine Translation (NMT) model 162

evaluates the generation relationship between 163

source and target sentences by computing the 164

sentence-level probability p(y|x), which represents 165

the confidence of generating target sentence y given 166

source sentence x. Specifically, this probability 167

is derived by calculating the conditional probabil- 168

ity p(yt|x, y<t) at each time step, where T is the 169

length of the target sentence, yt denotes the t-th 170

word in the target sentence, x is the source sentence, 171

and y<t represents the first t− 1 target words. This 172

computation indicates that the model progressively 173

assesses the conditional probability of each word 174

during target sentence generation, ultimately de- 175

termining the overall sentence probability. A low 176

sentence-level probability for a training sample sug- 177

gests poor translation quality, weak alignment with 178

the source sentence, and low model confidence, 179

thereby contributing minimally to model perfor- 180

mance. 181
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Figure 1: The framework of data rejuvenation. The inactive samples are identified from the original training data,
reconstructed through a rejuvenation model, and then combined with active samples for NMT model training.

Psent_mean =
1

T

T∑
t=1

p(yt|x, y<t) (1)182

Sentence Probability Standard Deviation183

(psent_std): The trained NMT model computes184

the standard deviation Psent_std of sentence prob-185

abilities, where Psent_mean is the mean of se-186

quence conditional probabilities and T is the se-187

quence length. By calculating the square root of188

the mean squared deviation between each time189

step’s conditional probability p(yt|x, y<t) and the190

mean Psent_mean, we obtain Psent_std, which mea-191

sures the fluctuation degree of generation prob-192

abilities. A high Psent_std indicates significant193

confidence volatility during target sentence gen-194

eration, suggesting inconsistent translation quality.195

Consequently, such samples are less effective for196

model improvement and may be classified as low-197

contribution examples.198

Psent_std =

√√√√ 1

T

T∑
t=1

(p(yt|x, y<t)− Psent_mean)2 (2)199

Minimum Token Probability (Ptok_min): Rep-200

resents the lowest token-level confidence in gen-201

erating target sentence y from source sentence x.202

Intuitively, a low Ptok_min indicates that certain to-203

kens in the example are unlikely during generation,204

potentially providing insufficient information to en-205

hance translation performance. Here, p(yt|x, y<t)206

denotes the probability of generating the t-th token207

in the target sentence given the source sentence x:208

Ptok_min = min
t

p(yt|x, y<t) (3)209

Maximum Token Probability (Ptok_max): 210

Represents the highest confidence level for a sin- 211

gle token during target sentence generation. A high 212

Ptok_max indicates strong model confidence in gen- 213

erating a specific token: 214

Ptok_max = max
t

p(yt|x, y<t) (4) 215

Based on the multi-dimensional metric scores, 216

all training samples are ranked, and those with 217

lower composite scores are identified as low- 218

contribution samples. These samples typically ex- 219

hibit significant probability fluctuations, low token 220

probabilities, or excessively high token probabili- 221

ties, indicating either noise or difficulty in model 222

learning. Samples with composite scores below 223

a threshold τ are marked as inactive, providing 224

targeted data for subsequent optimization. 225

3.2 Rejuvenation Model 226

In current NMT tasks, traditional optimization 227

methods primarily rely on forward and backward 228

translation, which expands training data by gen- 229

erating new source or target translations. How- 230

ever, these approaches exhibit limitations in low- 231

resource agglutinative language translation: 1) For- 232

ward translation heavily depends on source lan- 233

guage word order and syntax, often causing seman- 234

tic drift when processing free-word-order aggluti- 235

native languages, thereby reducing data effective- 236

ness; 2) Backward translation increases target-side 237

samples but lacks diversity, especially in captur- 238

ing long-range dependencies, complex syntactic 239

structures, and low-frequency vocabulary, failing 240

to effectively model source-target alignment. Con- 241

sequently, generated samples inadequately improve 242
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Figure 2: The illustration of Target-Side Data rejuvenation: The rejuvenation model estimates translation distribu-
tions and samples data, optimizing MT model training through an intermediate latent variable.

model learning on inactive samples. To address243

these issues, we employ target-side data augmenta-244

tion for inactive sample rejuvenation. This method245

models the posterior distribution of target sentences246

to generate diverse potential translations, smooth-247

ing the training data distribution. Figure 2 illus-248

trates an example of target-side data augmentation249

for Mongolians.250

The core of target-side data augmentation lies251

in modeling the posterior distribution Pda(y|xi, yj)252

of target sentences. Given source sentence xi and253

target sentence yi, we introduce latent variable z,254

decomposing the posterior as:255

Pda(y|xi, yj) =
∑
z∈Zi

Pϕ(y|xi, z)Pa(z|yi) (5)256

The Zi is the latent space; Pϕ(y|xi, z) represents257

the conditional translation distribution, modeling258

target sentence generation from xi and z; Pa(z|yi)259

denotes the latent variable distribution given yi,260

describing the likelihood of generating z from yi.261

After posterior modeling, the augmentation pro-262

cess samples latent variables to generate diverse tar-263

get translations, enhancing data variety and model264

generalization. Specifically, for each xi, we first265

sample {zj} from Pa(z|yi), where each zj repre-266

sents a semantic feature guiding diverse translation267

generation. Then, we generate potential transla-268

tions yj by maximizing the translation probability:269

yj = argmax
y

Pϕ(y|xi, zj) (6)270

The final augmented set is:271

ŷi =

{
argmax

y
Pϕ(y|xi, zj)|zj ∼ Pa(z|yi)

}M

j=1

(7) 272

This set of potential translations not only ex- 273

hibits formal diversity but also maintains semantic 274

consistency guided by the posterior distribution. 275

This augmentation process significantly expands 276

the possible target translations for each source sen- 277

tence, thereby enhancing both the diversity and 278

quality of the data. 279

4 EXPERIMENT 280

4.1 Experimental Setup 281

The experimental data in this paper is sourced 282

from in-house Mongolian-Chinese parallel corpora 283

and publicly available Arabic-Chinese and Korean- 284

Chinese datasets. The Mongolian-Chinese cor- 285

pus consists of 500K sentence pairs, covering di- 286

alogues, government documents, news texts, and 287

CCMT data, with 400K pairs selected for train- 288

ing. Additionally, we utilize two public corpora— 289

OpenSubtitles v2024 and MultiCCAligned v1.1— 290

to construct Arabic and Korean datasets. Open- 291

Subtitles v2024 contains movie and TV subtitles, 292

focusing on colloquial and multi-domain cover- 293

age, while MultiCCAligned v1.1 is derived from 294

automatically aligned multilingual web content, of- 295

fering diverse domains and large-scale data. Ap- 296

proximately 300K sentence pairs from each dataset 297

are used for Arabic-Chinese and Korean-Chinese 298

training. For each language pair, 5K sentence pairs 299

are reserved for validation and 5K for testing. All 300
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data undergoes tokenization and BPE processing,301

with results reported using BLEU.302

We implement the proposed data rejuvenation303

framework on representative NMT architectures:304

• LSTM: Integrated within the Transformer305

framework.306

• Transformer: Pure attention-based architec-307

ture.308

• DynamicConv: Lightweight dynamic convo-309

lutional architecture.310

All models are implemented using Fairseq (Ott311

et al., 2019). Training configurations:312

• LSTM: 300K steps with 32K tokens/batch313

(4096 × 8)314

• Transformer: 300K (BASE)/1M (BIG) steps315

with 32K tokens/batch316

• DynamicConv: 1M steps with 57K to-317

kens/batch (3584 × 16)318

Finally, this study conducts experimental investi-319

gations using DynamicConv on the identification320

module (§3.1) and activation module (§3.2), fol-321

lowed by reporting translation performance across322

diverse model architectures and language pairs.323

4.2 Inactive Examples324

This section validates the rationality and consis-325

tency of the identified inactive samples through a326

series of experiments.327

4.2.1 Rationality of Multi-Dimensional328

Evaluation329

Figure 3: Translation Performance of NMT Models
Trained on Data with Least Active Samples Removed:
Results are compared with models trained on the most
active samples and randomly sampled examples.

Figure 4: Comparison of the impact degree on transla-
tion performance between inactive samples identified
using a multi-dimensional evaluation system and those
identified solely by sentence-level probability.

This experiment validates the rationality of inac- 330

tive sample identification by analyzing their impact 331

on translation performance. Theoretically, remov- 332

ing inactive samples lacking effective information 333

should not significantly affect model performance. 334

Based on this hypothesis, we remove the lowest 335

probability samples (most inactive) and evaluate 336

NMT models trained on the remaining data. Figure 337

3 demonstrates the impact of removing the most in- 338

active samples from the Mongolian-Chinese paral- 339

lel corpus identified by our multi-dimensional eval- 340

uation system. Overall, translation performance 341

gradually declines with an increased removal ratio. 342

However, compared to random removal, inactive 343

sample removal shows milder performance degra- 344

dation, while active sample removal causes the 345

most significant deterioration. Notably, removing 346

10% of the most inactive samples slightly improves 347

performance, aligning with findings in computer 348

vision datasets. 349

Furthermore, we compare inactive samples iden- 350

tified by sentence-level probability methods and 351

our multi-dimensional evaluation system. As 352

shown in Figure 4, the multi-dimensional system 353

demonstrates a smaller performance impact and 354

slower decline rates under identical removal ratios, 355

proving its superior rationality in inactive sample 356

identification. 357

4.2.2 Validation of Inactive Sample Overlap 358

Rate 359

Since the identification of inactive samples re- 360

lies on trained NMT models, a critical question 361

arises: Are these identified inactive samples model- 362

dependent? In other words, do different NMT mod- 363
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els mark distinct portions of training data as inac-364

tive? To address this, we perform data binning and365

compute the proportion of samples shared among366

LSTM, Transformer, and DynamicConv models. A367

higher shared proportion indicates greater consis-368

tency across models, suggesting that these samples369

are not influenced by specific model architectures.370

Figure 5: Overlap Ratio of Sample Activity Levels
Identified by the Multi-Dimensional Evaluation Sys-
tem Across Model Variants

Figure 6: Overlap Ratio of Sample Activity Levels Iden-
tified by Sentence-Level Probability Across Model Vari-
ants

Following Wang et al. (Jiao et al., 2020),371

we partition the data into 10 equal deciles (each372

containing 10% of training samples). Figure 5373

presents results from the multi-dimensional evalua-374

tion method across three model architectures. For375

inactive samples (first decile), the overlap ratio con-376

sistently exceeds 80% across architectures, with377

highly active samples (tenth decile) also showing378

strong consistency. This high consistency suggests379

that inactive sample identification depends more380

on data distribution than specific model architec-381

tures. Figure 6 compares results from sentence-382

level probability methods across the same architec- 383

tures. The overlap ratios for the least and most ac- 384

tive samples are 60% and 57%, respectively, signifi- 385

cantly lower than those from the multi-dimensional 386

method. This indicates poorer identification perfor- 387

mance, greater susceptibility to model architecture, 388

and reduced stability. 389

4.3 Activation of Inactive Samples 390

This section first evaluates all samples using the 391

identification model’s multi-metric assessment, 392

computing composite scores. The lowest-scoring 393

R% (Ratio) samples are marked as inactive, and the 394

impact of activating varying proportions of inactive 395

samples on translation performance is analyzed. 396

Experimental results demonstrate that activating 397

inactive samples consistently outperforms the non- 398

activated control, validating the effectiveness and 399

necessity of data activation. As shown in Figure 7, 400

BLEU scores exhibit a declining trend with increas- 401

ing R% values. This trend is expected, as some 402

relatively higher-scoring samples still contribute 403

to the NMT model, and their rejuvenation may de- 404

grade translation quality. Therefore, in subsequent 405

experiments, the lowest-scoring 10% of samples 406

are treated as inactive. 407

Figure 7: Effect of Activating different proportions of
inactive samples on translation performance.

4.4 Main Result 408

This section presents experimental results of the 409

Data Rejuvenation method on four agglutinative-to- 410

Chinese translation tasks: Mongolian-Chinese (mn- 411

zh) (Qing-dao-er ji et al., 2020), Uyghur-Chinese 412

(ug-zh) (Wang et al., 2019; Xu et al., 2021), Korean- 413

Chinese (ko-zh), and Arabic-Chinese (ar-zh). As 414

shown in Table 1, Data Rejuvenation consistently 415
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Model mn-zh ug-zh ko-zh ar-zh

Existing NMT Systems

LSTM 26.82 27.10 24.43 28.17

Transformer-Base 27.34 28.21 30.45 33.35

Transformer-Big 31.78 33.41 31.42 35.14

Transformer + CSGAN 34.81 32.64 31.84 35.64

DynamicConv 33.25 32.32 31.69 37.28

GCN 30.41 30.23 31.52 32.45

GCN+att 31.62 32.34 31.95 33.74

Our NMT Systems (with Data Rejuvenation)

LSTM + Agglutinative Language Data Rejuvenation 28.74↑ (+1.92) 29.26↑ (+2.16) 27.13↑ (+2.70) 30.18↑ (+2.01)

Transformer-Base + Agglutinative Language Data Rejuvenation 30.65↑ (+3.31) 31.52↑ (+31.1) 32.58↑ (+2.13) 36.84↑ (+3.49)

Transformer-Big + Agglutinative Language Data Rejuvenation 35.54↑ (+3.76) 34.91↑ (+1.50) 34.53↑ (+3.7) 39.81↑ (+4.67)

DynamicConv + Agglutinative Language Data Rejuvenation 36.58↑ (+3.33) 35.20↑ (+2.88) 34.22↑ (+2.53) 40.54↑ (+3.26)

Table 1: Evaluation of translation performance (BLEU scores) across model architectures and language pairs. “↑”:
indicates statistically significant improvement over the corresponding baseline.

outperforms baseline models across LSTM, Trans-416

former, and DynamicConv architectures.417

For Mongolian-Chinese (mn-zh), the LSTM418

model improves from 26.8 to 28.7 BLEU (+1.9),419

Transformer-Base from 27.3 to 30.6 (+3.3),420

Transformer-Big from 31.7 to 35.5 (+3.8), and421

DynamicConv from 33.2 to 36.5 (+3.3). Simi-422

lar improvements are observed in other language423

pairs: DynamicConv achieves 37.8 BLEU (+3.0)424

for Uyghur-Chinese, Transformer-Big reaches 36.7425

(+4.4) for Korean-Chinese, and DynamicConv at-426

tains 40.5 (+3.3) for Arabic-Chinese.427

These results demonstrate the effectiveness and428

generalization capability of Data Rejuvenation429

across agglutinative languages. Notably, these im-430

provements are achieved without additional data431

or significant model modifications, highlighting its432

practicality in resource-constrained scenarios.433

4.5 Comparative Experiment434

Training Data BLEU ∆

Raw Data 32.3 -
- 10% mul_Inactive Examples 35.58 +3.28
+ Rejuvenated Examples 36.47 +4.17
- 10% mul_Inactive Examples 35.58 +3.28
+ Forward Translation 34.1 +1.8
- 10% sent_Inactive Examples 33.6 +1.3
+ Rejuvenated Examples 34.87 +2.57
- 10% sent_Inactive Examples 33.6 +1.3
+ Forward Translation 33.2 +0.9

Table 2: A comparison is made between different meth-
ods of identifying and activating low-contribution sam-
ples and their resulting impact on the final NMT model
training outcomes.

This section designs a comparative experiment 435

to evaluate the combined effects of different in- 436

active sample identification and activation meth- 437

ods in Mongolian-Chinese translation. We analyze 438

their impact on final NMT model training and ex- 439

plore the role of two distinct models in data op- 440

timization. Experimental results (Table 2) show 441

that: 1) sentence-level probability identification 442

combined with target-side data augmentation im- 443

proves translation quality; 2) multi-dimensional 444

evaluation paired with forward translation also en- 445

hances model training. However, our proposed 446

method—combining multi-dimensional evaluation 447

with target-side data augmentation for inactive sam- 448

ple activation—achieves the best overall perfor- 449

mance. This demonstrates that our approach signif- 450

icantly improves inactive sample activation quality 451

in Mongolian-Chinese translation, establishing a 452

solid foundation for low-resource language data 453

optimization. 454

5 Conclusion 455

This study proposes a data rejuvenation method 456

for agglutinative language-to-Chinese NMT, com- 457

bining multi-dimensional evaluation for precise in- 458

active sample identification with target-side data 459

augmentation for rejuvenation. Experiments show 460

significant performance improvements across NMT 461

architectures (LSTM, Transformer, DynamicConv) 462

and language pairs (Mongolian-Chinese, Uyghur- 463

Chinese, Korean-Chinese, Arabic-Chinese), while 464

enhancing model stability and generalization. Com- 465

pared to sentence-level probability methods, our 466

approach better captures local confidence fluctu- 467

ations in agglutinative translation and mitigates 468
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forward-translation instability. The framework op-469

timizes data distribution without additional training470

data, offering a universal solution for low-resource471

scenarios. Future work will explore deep feature472

learning for inactive sample identification and ex-473

tend applications to more agglutinative languages.474

6 Limitation475

First, the multi-dimensional evaluation system re-476

lies on heuristic thresholds (e.g., τ ) to identify in-477

active samples. Although experiments validate the478

rationality of these thresholds, their optimal values479

may vary across languages or datasets, requiring480

manual calibration. Automating threshold selec-481

tion through dynamic adaptation or reinforcement482

learning could enhance robustness in diverse low-483

resource scenarios.484

Second, the target-side rejuvenation mechanism485

introduces additional computational overhead dur-486

ing training. While decomposition mitigates mem-487

ory costs, latent space modeling and iterative sam-488

pling increase inference latency, particularly for489

long sentences with complex morphology. Future490

work could explore lightweight latent representa-491

tions or parallel sampling strategies to balance effi-492

ciency and diversity.493

Finally, our experiments focus on agglutinative494

languages (Mongolian, Uyghur, Korean, Arabic)495

under similar syntactic divergence (SOV-to-SVO).496

However, agglutinative languages exhibit signifi-497

cant typological diversity (e.g., polysynthetic struc-498

tures in Inuktitut, templatic morphology in He-499

brew). Generalizing the framework to such lan-500

guages may require further adaptations to address501

unique morphological granularity or alignment pat-502

terns.503
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