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Abstract

We revisit the classical problem of Bayesian ensembles and address the challenge of learning
optimal combinations of Bayesian models in an online learning setting. To this end, we
reinterpret existing approaches such as Bayesian model averaging (BMA) and Bayesian
stacking through a novel empirical Bayes lens, shedding new light on the limitations and
pathologies of BMA. Further motivated by insights from online optimization, we propose
Online Bayesian Stacking (OBS), a method that optimizes the log-score over predictive
distributions to adaptively combine Bayesian models. A key contribution of our work is estab-
lishing a novel connection between OBS and portfolio selection, bridging Bayesian ensemble
learning with a rich, well-studied theoretical framework that offers efficient algorithms and
extensive regret analysis. We further clarify the relationship between OBS and online BMA,
showing that they optimize related but distinct cost functions. Through theoretical analysis
and empirical evaluation, we identify scenarios where OBS outperforms online BMA and
provide principled methods and guidance on when practitioners should prefer one approach
over the other.

1 Introduction

Combining the opinions of multiple models is a pervasive problem in the statistical sciences, with many
different names, approaches, and applications. In signal processing, for example, a commonly encountered
problem is one of sensor fusion, where information reported from several different sensors must be combined
to obtain the best possible estimate (Khaleghi et al., 2013). In econometrics, the problem is often known as
forecast combination, spurred by the seminal work of Bates & Granger (1969). The Bayesian literature often
refers to the problem as opinion pooling, whichreceived attention even in the early days of Bayesian statistics
(Stone, 1961; DeGroot, 1974; Genest & Zidek, 1986). While many of the above approaches originated in the
combination of point estimates, the combination of probability distributions has received significant attention
since (Koliander et al., 2022).

In machine learning, this issue is commonly known as ensembling, with much recent interest due to the
development of diverse models, architectures, and training modalities (Dietterich, 2000). Many ensembling
approaches exist, hinging on different assumptions and asymptotic guarantees. We will restrict our attention
to Bayesian machine learning, where the goal is to combine the estimates of K different probabilistic models
M1, . . . ,MK . The classical approach in this setting, known as Bayesian model averaging (BMA), is to weigh
the estimates of each model according to their marginal likelihood (Hoeting et al., 1999). When the data were
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generated by one of the models M1, . . . ,MK , this is the “correct” way to combine models from a Bayesian
perspective and is optimal, in the sense of choosing the correct model with probability 1 in the limit of infinite
data (Yao et al., 2018).

More recently, Yao et al. (2018) critically examined BMA in a more typical setting where the data are not
generated by any of the candidate models. They instead proposed Bayesian stacking, which optimizes a
log-score criterion; asymptotically, Bayesian stacking corresponds to choosing the optimal convex combination
of models, juxtaposed with the optimal singular model selected by BMA. Similar discussions and proposals
have previously appeared in the econometrics community for forecasting models (Hall & Mitchell, 2007;
Geweke & Amisano, 2012).

In this paper, we further study the online stacking problem, introducing a novel analysis via empirical Bayes
before moving to a new analysis of Bayesian stacking in the online setting. We summarize our contributions
as follows:

1. We show that Online Bayesian Stacking (OBS) corresponds exactly to the well-studied problem
of (universal) online portfolio selection (OPS). This connection allows us to reinterpret Bayesian
ensemble learning through the lens of online convex optimization and to leverage efficient, theoretically
grounded algorithms (e.g., Exponentiated Gradient and the Online Newton Step).

2. We show theoretically how one can choose between OBS and online BMA with constant regret.
Building on this connection, we discuss how regret bounds from the OPS literature can be applied to
OBS.

3. We introduce a simple yet compelling argument via empirical Bayes to explain why BMA collapses
and how Bayesian stacking aids in avoiding this common problem.

4. We perform an extensive empirical analysis of OBS using ensembles of state-of-the-art models, includ-
ing Gaussian processes, variational Bayesian neural networks, and stochastic volatility forecasting
models estimated with sequential Monte Carlo. We show that, in all cases tested, OBS significantly
outperforms online BMA (O-BMA) and dynamic model averaging (DMA), with additional computa-
tional cost that is often negligible in comparison to online training/prediction of ML models. We also
show that OBS can be particularly beneficial in non-stationary environments, often outperforming
any set of fixed weights.

The rest of this article is structured as follows: in Section 2, we review the problem of Bayesian ensembling,
discussing the BMA and stacking approaches. In Section 3, we show how the online variant of Bayesian
stacking corresponds to the well-known (universal, online) portfolio selection problem from online convex
optimization, and discuss corresponding insights that show OBS’s relation to O-BMA. In Section 4, we
exploit this connection to derive a novel comparison of BMA and Bayesian stacking from an empirical Bayes
perspective. In Section 5, we carry out a number of realistic experiments on synthesized and real data before
finally concluding in Section 6.

2 Bayesian Ensembles: A Review of Existing Methods

In this section, we review the ideas of BMA and Bayesian stacking Yao et al. (2018) and discuss some related
work.

2.1 Bayesian Model Averaging

Bayesian ensembling methods combine a set of Bayesian models for predictive inference. We will focus on
methods that create linear mixtures of posterior predictive distributions: given models M1, . . . ,MK each
mapping x ∈ X ⊆ Rd to a probability (density) over y ∈ Y ⊆ Rr, trained on a dataset D, the task of Bayesian
ensembling is thus to find a weight vector w in the (K−1)-dimensional simplex SK , which induces a posterior
predictive distribution

pens(y |x,D) :=
∑

k

wkpk(y |x,D), (1)
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where pk(y |x,D) is the posterior predictive distribution of model Mk on the dataset D.

The most common method for combining Bayesian models is BMA (Hoeting et al., 1999), which forms the
weight for a linear mixture of predictive distributions by simulating a posterior probability for model Mk

given data D for weighting,

wBMA
k := Pr(Mk | D) = pk(D) Pr(Mk)∑

k pk(D) Pr(Mk) , (2)

where pk(D) := p(D|Mk) is the evidence of Mk, and Pr(Mk) is the prior probability of Mk.

The appeal of BMA to a Bayesian is immediate: if Pr(M) has support over the data-generating distributions,
then the resulting mixture Equation (1) is a straightforward application of Bayes’ rule and is thus optimal in
an information-theoretic sense (Zellner, 1988).

Much of our work focuses on the online setting, where BMA has several additional advantages. In this setting,
we first obtain a new data point xt+1, with which we must make a prediction using the available data Dt.
After making a prediction, the value yt+1 is revealed and the dataset Dt+1 := D∪ {xt+1, yt+1} is updated. In
this case, we can compute wBMA

k recursively using posterior predictive distributions, which allows us to apply
exact BMA at time t using the currently-available information: denoting the weights at time t as wt,k, with
w0,k = Pr(Mk), (2) becomes

wBMA
t+1,k = wt,kpk(yt+1 |xt+1,Dt)∑

k wt,kpk(yt+1 |xt+1,Dt)
. (3)

Two main problems arise when using BMA: first, estimation via Equation (2) or Equation (3) requires access
to predictive distributions, either through the marginal likelihood (i.e., the prior predictive) or the posterior
predictive. This is often a surmountable problem, as marginal likelihoods are usually available in conjugate
models, and BMA with approximated marginal likelihoods has also performed well empirically (Gómez-Rubio
et al., 2020).

Perhaps more importantly, BMA is only optimal in terms of predictive error in the so-called “M-closed”
setting, where the data were generated by one of the models M1, . . . ,MK (Yao et al., 2018; Minka, 2000).
Indeed, in the limit of infinite data, BMA weights concentrate on the single model that most closely resembles
the data-generating process. We provide a novel empirical Bayes-based analysis of this fact in Section 4. This
may result in arbitrarily poor posterior predictive accuracy of an ensemble using wBMA relative to some other
set of weights w∗. Additionally, O-BMA can numerically collapse to the “wrong” model, never recovering
due to numerical underflow (Waxman & Djurić, 2024).

2.2 Bayesian Stacking

Bayesian stacking (Yao et al., 2018) (similarly explored by (Clyde & Iversen, 2013; Le & Clarke, 2017))
presents an alternative way to derive a weight vector w. In particular, Bayesian stacking finds the optimal
weight vector w∗ in the (K − 1)-dimensional simplex SK by maximizing some score S(w,D′) over a separate
dataset D′:

w∗ := arg max
w∈SK

S(w,D′). (4)

Particular attention is given to the log-score; for the predictive dataset (i.e., a holdout or validation set)
D′ = {(xn, yn)}N

n=1
1, the corresponding optimization problem is

w∗ := arg max
w∈SK

N∑
n=1

log
K∑

k=1
wkpk(yn |xn,D), (5)

where pk(yn |xn,D) is the predictive distribution of modelMk. This can be recognized as finding the mixture
of estimators with the highest predictive likelihood over D′. This, in turn, minimizes the KL divergence

1We will typically use n = 1, . . . , N to denote datasets that are not processed sequentially/online, and t = 1, . . . , T for their
sequential/online counterparts.
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between the mixture q(y |x) =
∑

k wkpk(y |x,D) and the predictive distribution, p(y |x), which represents
the (unknown) true generating mechanism of y (Yao et al., 2018).

The optimization problem (5) is convex and provides nice asymptotic guarantees, but “wastes” data by
requiring two separate datasets D and D′. Yao et al. (2018) address this by showing the score in (5) is
well-approximated by the leave-one-out (LOO) predictive density p(yn |xn,D−n), where D−n = D\{(xn, yn)}.
For many models, the LOO predictive density can be efficiently estimated with Pareto-smoothed importance
sampling (Vehtari et al., 2024), resulting in an efficient optimization problem with a single dataset D. The
resulting mixture of estimators has empirically shown performance superior to that of other combination
methods, leading to several recent applications.

2.3 Bayesian Stacking for Time Series & Online Bayesian Stacking

In the published discussion to Yao et al. (2018), Ferreira (2018) discusses Bayesian stacking for time series,
where forecasting densities naturally serve as predictive distributions, i.e., (5) becomes

w∗ := arg max
w∈SK

T∑
t=t∗+1

log
K∑

k=1
wkpk(yt |xt,D1:t−1), (6)

where the first t∗ data are devoted to (pre-)training each model, and D1:t−1 denotes the first t − 1 data
points. This has notable similarities to pooling methods described by Hall & Mitchell (2007); Geweke &
Amisano (2011), with the exception of the summation starting with index t = 1, reminiscent of the LOO
approach. This method was applied by Geweke & Amisano (2012), where optimal weights were computed
quarterly. “Windowed” approaches for autocorrelated time series data, where only the last Tp points are
considered, have also been deployed (Jore et al., 2010; Aastveit et al., 2014), but these are suboptimal in the
more general case where data may be exchangeable conditioned on xt. Related to windowed approaches is
dynamic model averaging, which is O-BMA with forgetting factors (Raftery et al., 2010). To the best of our
knowledge, Bayesian stacking and its time series variants have not been applied in the online setting, where
weights are estimated as new data become available. We will refer to approaches to the online problem as
online Bayesian stacking (OBS).

As we will see, OBS is a special case of online convex optimization (OCO) (Hazan, 2022), where “learning
from experts” is well-studied. We show that the popular Hedge algorithm (Freund & Schapire, 1997)
generalizes BMA with a learning rate, but optimizes a different loss function from OBS. Our proposed OBS
is differentiated from existing approaches in several ways. First, it directly emulates Bayesian stacking, of
recent interest to the Bayesian community. Second, our connection to OCO yields an extremely efficient
implementation, unlike methods based on data-driven portfolio selection (e.g., Baştürk et al. (2019)) that rely
on particle filtering. Finally, our approach is more general for online learning, whereas data-driven strategies
rely on the autocorrelation of time series data.

3 Insights from Online Convex Optimization

As Bayesian stacking is natively framed as an optimization problem, it is natural to study OBS from the
optimization perspective as well. It turns out that our studies here are fruitful: by interpreting posterior
predictive values as asset prices, OBS corresponds exactly to a classical problem of portfolio selection. An
OCO perspective additionally rediscovers a development of Vovk (2001), which shows that BMA is exactly
the Hedge algorithm with a specific choice of learning rate. We additionally discuss a hybrid approach meant
to detect whether the model class is M-open or M-closed (or, more precisely, if OBS mixtures will outperform
expert selection).

3.1 The Portfolio Selection Problem

We will first review the basic ideas of online portfolio selection (OPS), but our discussion will necessarily be
brief; the interested reader is referred to the recent survey of Li & Hoi (2014), or the excellent lecture notes
of Hazan (2022); Orabona (2019).
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Problem Statement Consider an investment manager overseeing K stocks, aiming to maximize total future
wealth. They create the best constantly rebalanced portfolio (BCRP), i.e., at each time step they re-allocate
current wealth such that wk is in stock k (classic portfolio selection assumes no transaction fees). Assets are
allocated based on price-relative vectors rt, where rt,k is stock k’s relative value increase from day t− 1 to t.
The goal is to maximize the (multiplicative) wealth at time T , or more conveniently, the (additive) log-wealth:

wealthT :=
T∏

t=1
w>rt ! log wealthT :=

T∑
t=1

log(w>rt). (7)

In the online version of the portfolio selection problem, we seek to find wt that minimizes the regret with
respect to the optimal weights w∗,

RT :=
T∑

t=1
log(w∗>rt)−

T∑
t=1

log(w>
t rt), (8)

where the weights wt are determined after observing rt−1.

Although many approaches explicitly model returns as stochastic processes, others allow rt,k to be chosen
arbitrarily, and indeed by an adversary. Algorithms that achieve sublinear regret with respect to any
non-negative sequence of returns rt,k are known as universal (Orabona, 2019, p. 144). We draw an analogy
between the price-relative vectors rt and the predictive likelihoods p(yt |xt,Dt−1), which make the adversarial
case of particular interest to us.

Algorithms The portfolio selection problem has an attractive structure from the optimization perspective:
the log wealth is a concave function defined over the simplex, a convex set. OPS therefore falls under
the (online) convex optimization (OCO) umbrella (Hazan, 2022; Orabona, 2019). To keep with standard
terminology, we will introduce each method as minimizing the convex loss function given by − log wealthT ,
which is equivalent to maximizing the concave function log wealthT .

The simplest OCO algorithm is online (sub)gradient descent (OGD), a straightforward extension of the
classical gradient descent algorithm to a sequence of losses `1, . . . , `T , each a function of some generic quantity
θ belonging to a convex set K. In our case, θt represents weights wt, `t is the negative log-return, − log(w>

t rt),
and K is the simplex SK . At each time instant, θt is updated in the direction of the gradient ∇`t and then
projected back onto the convex set K (e.g., (Hazan, 2022, Algorithm 2.3)).

In many problems, it turns out to be beneficial to consider regularizers that account for the geometry of K
explicitly, resulting in different update steps. This is an online form of the classical mirror descent (Nemirovsky
et al., 1983). When K is the simplex SK (as in OPS), one popular choice is entropic regularization (e.g.,
(Hazan, 2022, Section 5.4.2)). The resulting algorithm is known as Exponentiated Gradients (EG) (Helmbold
et al., 1998), which uses the update step

wt+1 = wt � exp(−η∇w`t)
‖wt � exp(−η∇w`t)‖1

, (9)

where � is the elementwise product, and η is a learning rate. For the cost function `t(w) = − log w>
t rt, we

have ∇w`t = −rt/w>
t rt, and therefore,

wt+1 = wt � exp(ηrt/w>
t rt)

‖wt � exp(ηrt/w>
t rt)‖1

. (10)

The EG algorithm is conceptually simple, with relatively good regret bounds whenever the gradient is
bounded. However, more modern algorithms, such as the online Newton step (ONS) (Hazan et al., 2007),
can provide tighter bounds on the regret.

Of note for applications in non-stationary environments are OCO algorithms designed for such environments.
In our experiments, for example, we will utilize discounted ONS (D-ONS) (Yuan & Lamperski, 2020), an
ONS variant that includes a forgetting factor over the second-order information.
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Algorithm 1 Online Ensemble Update: OBS with EG or OBS with Soft-Bayes or O-BMA.
1: Input: Data stream {(xt, yt)}T

t=1, models {Mk}K
k=1, initial weights w0 ∈ ∆K , learning rate η.

2: for t = 1 to T do
// Prediction Step

3: Receive xt and compute each model’s predictive density pk(y | xt,Dt−1) for k = 1, . . . , K
4: Form ensemble prediction via Equation (1)
5: Output prediction and receive true label yt.

// Update Step
6: Update model weights using OBS w/ EG (10) or OBS w/ Soft-Bayes (11) or O-BMA (3)
7: Update dataset: Dt ← Dt−1 ∪ {(xt, yt)}.
8: end for

Market Variability and Soft-Bayes In order to achieve optimal regret bounds with EG or ONS, we
must assume that the ratio α of the minimum return to maximum return at any time t — called the market
variability parameter — is bounded. In this case, `t is 1-exp-concave with bounded gradients, meaning that
exp(−`t) = w>

t rt is a concave function (Hazan, 2022). So long as this assumption holds, the ONS algorithm
provides tighter regret bounds than EG.

Moving beyond the assumption of a bounded α is the more recent Soft-Bayes (Orseau et al., 2017). Soft-Bayes
proposes weight updates using a learning rate η ∈ (0, 1) as

wt+1 = wt �
(

1− η + η
rt

w>
t rt

)
. (11)

Orseau et al. (2017) provide an interpretation of Soft-Bayes in terms of “slowing down” O-BMA, and the
resulting algorithm provides state-of-the-art regret bounds without the assumption of bounded gradients. We
remark that while Soft-Bayes is in some aspects similar to our work, their focus is on developing algorithms
and theoretical bounds for log-loss mixtures of experts. In the current work, we focus on statistical insights,
connecting this online log-loss problem to the recently popular Bayesian stacking, and showing empirically
that OBS is viable for modern Bayesian machine learning.

3.2 Online Bayesian Stacking is Portfolio Selection

Our core insight in this section is that the utility of (6) becomes (7) when the market gain rt,k is defined by
the predictive density pk(yt |xt,Dt−1). Indeed, our only requirement in a universal portfolio algorithm is that
rt,k is nonzero, which is a rather mild and near-universally satisfied assumption for the predictive distribution
of a regression model. Furthermore, using a constant rebalanced portfolio in the regret (8) is appropriate, as
a constant rebalanced portfolio corresponds to the constant weights used in (offline) Bayesian stacking.

A point of nuance in applying OPS algorithms is the existence of a market variability parameter α, requiring
pre-determined maximum and minimum predictive densities. The maximum is clear for proper Bayesian
models, and a minimum may be assumed (e.g., via compact data spaces or bounded model error). However,
α may still be very small, which can be problematic for EG/ONS regret analysis. Bounding regret using
subgradient norms can produce tighter guarantees, since non-adversarial predictions from failing models
(i.e., wt,k ≈ 0) are unlikely to suddenly dominate. If such outliers are a concern, Soft-Bayes also provides
α-independent regret bounds.

We provide pseudocode for OBS and O-BMA in Algorithm 1. The pseudocode underscores the similarity
between OBS and O-BMA, replacing a single update equation. Other algorithms for OPS may be used by
changing Line 6.

3.3 Online Bayesian Model Averaging is the Hedge Algorithm with Learning Rate 1

Now that we have established an equivalence between OBS and the portfolio selection problem, one may
wonder if a similar connection holds for O-BMA. Indeed, it is classically known that O-BMA updates are a
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specific choice of the Hedge algorithm (Freund & Schapire, 1997), which performs expert selection. While
this connection is established (Vovk, 2001), we rederive it as a useful narrative tool to motivate O-BMA as a
model selection algorithm, which we show clearly using Proposition 3.1.

Close inspection reveals that wBMA
t+1,k is precisely recovered by EG when the learning rate is η = 1 and the loss

is
`t(wt) = −

∑
k

wt,k log pk(yt |xt,Dt−1), (12)

whose gradient is ∇wt,k
`t(wt) = − log pk(yt|xt,Dt−1). This suggests that O-BMA may act similarly to an

OCO algorithm that minimizes regret with respect to a different loss function,

L = −
T∑

t=1

K∑
k=1

wk log pk(yt |xt,Dt−1). (13)

This reveals a key insight: OBS aims for the best post-hoc expert mixture, while O-BMA targets the best
single expert. The corresponding bound achieves constant regret; in fact, in the typical proof of this regret
upper bound, we prove an equality regarding the regret. The following result is therefore known, but is
presented in a somewhat unorthodox way to allow us to show lower bounds on the regret.
Proposition 3.1. Let the regret of the BMA mixture with respect to the best individual model be defined
as RT =

∑
t log pk∗(yt |xt,Dt−1)−

∑
t log (

∑
k wt,kpk(yt |xt,Dt−1)) , where k∗ is the model with the largest

marginal likelihood. Then RT is related to an evidence gain in Mk∗ ,

RT = log Pr(Mk∗ | DT )/ Pr(Mk∗). (14)

Thus, if Pr(Mk∗ | D) is bounded below, so is the regret. In particular, Proposition 3.1 applied the following
theorem directly, which asserts O-BMA acts as an “optimizer” to Equation (13).
Corollary 3.2. Let the regret of the BMA mixture with respect to the best individual model be defined as
in Proposition 3.1. If the posterior probability of the optimal model Mk∗ exceeds its prior probability, i.e.,
Pr(Mk∗ | D) ≥ Pr(Mk∗), then RT is bounded both above and below,

0 ≤ RT ≤ − log Pr(Mk∗). (15)

Thus, under typical scenarios (e.g., uniform priors on Mk), Equation (15) becomes fairly tight, and the
solutions become strong online optimizers of Equation (15).

3.4 Regret Analysis

Connecting OBS with OPS makes regret bounds from the OCO literature available. Different choices of
algorithms and assumptions on the predictive densities pt affect the obtainable regret analysis (c.f. Van Erven
et al. (2020, Table 1)); however, without additional assumptions on pt, the most efficient algorithms typically
obtain regret of order O(

√
T ) (such as Soft-Bayes (Orseau et al., 2017)). If a bound on the norm of the

gradients may be assumed, ONS can provide regret on the order O(log T ) (with runtime scaling with K2).
Variants of simple OCO algorithms may even provide regret with respect to time-varying optimal parameters,
such as the D-ONS algorithm (Yuan & Lamperski, 2020).

We further discuss regret bounds in Appendix A. In Appendix A.3, we provide an example that shows that,
with mild additional assumptions, we can even recover regret bounds from O-BMA applications, albeit with
potentially worse constants - this is despite the fact that O-BMA cannot provide comparable bounds when
regret is measured against the mixture loss.

3.5 A Hybrid Approach

In the case where the M-closed scenario is plausible, but this fact is unknown, OBS still achieves vanishing
regret with respect to the singular best expert: this follows because the problem of determining an optimal
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mixture of densities is harder than the corresponding expert selection problem, which is included as a special
case.

Nevertheless, as determined in Proposition 3.1, the corresponding regret guarantees for O-BMA in the
M-closed setting are extremely strong, achieving constant regret as an upper bound. When a model extremely
close to the data generating process is available, OBS is thus potentially suboptimal.

One potential approach to ameliorate this is to consider a hybrid method, where O-BMA and OBS mixtures
are maintained and further averaged via a secondary layer of O-BMA. That is, we consider two sets of weights,
wO-BMA

t and wOBS
t , along with a secondary set of weights vt ∈ S2. The corresponding predictive distribution

is thus

phybrid(yt |xt,D1:t−1) = v1

(∑
k

wO-BMA
t,k pk(yt |xt,Dt−1)

)
︸ ︷︷ ︸

pO-BMA(yt | xt,Dt−1)

+v2

(∑
k

wOBS
t,k pk(yt |xt,Dt−1)

)
︸ ︷︷ ︸

pOBS(yt | xt,Dt−1)

. (16)

The predictive performance of this mixture achieves constant regret with respect to the best model, once
again, while maintaining the expressiveness of the corresponding OBS solution. In particular, we may obtain
the following bound:
Theorem 3.3. Let the regret of the hybrid mixture in Equation (16) for the best individual model be defined
as in Proposition 3.1, i.e., RT =

∑
t log pk∗(yt |xt,Dt−1)−

∑
t log phybrid(yt |xt,Dt−1), where k∗ is the model

with the largest marginal likelihood. Further assume uniform prior weights over v and wO-BMA. Then RT

may be bounded as
RT ≤ log K + log 2. (17)

Proof. From the “outermost” perspective of ensembling (i.e., with v), we have by Proposition 3.1 a regret
bound with respect to any “outer” expert (i.e., the O-BMA or OBS mixtures):∑

t

log pO-BMA(yt |xt,Dt−1)−
∑

t

log phybrid(yt |xt,Dt−1) ≤ log 2. (18)

Further, from Proposition 3.1, O-BMA achieves a bounded regret∑
t

log pk∗(yt |xt,Dt−1)−
∑

t

log pO-BMA(yt |xt,Dt−1) ≤ log K. (19)

Combining Equation (18) and Equation (19) completes the theorem.

We note by a symmetric argument that if the OBS mixture has a clearly stronger predictive likelihood, the
“outer” level of O-BMA will select the OBS mixture as the best expert, similarly incurring a simple additive
regret factor.

4 An Empirical Bayes Perspective

An empirical Bayes (EB) perspective (Robbins, 1964) elucidates BMA and Bayesian stacking properties,
offering direct arguments for their limitations. Recall that in EB, hyperparameters ψ are found by maximizing
the marginal likelihood, rather than being marginalized out. We show that O-BMA and OBS have subtly
distinct EB justifications. While we focus notationally on the online setting, similar results hold for batch
processing.

Let p(y1|ψ) be the prior predictive density of y1 (model parameters are integrated out), and p(yi|y1:i−1,ψ)
for i = 2, . . . , t are posterior predictive densities. Then the prequential principle (Dawid, 1984) studies a
model through a predictive decomposition, choosing ψ via p(y1:t|ψ) =

∏
τ p(yτ |y1:τ−1,ψ). Further selecting

ψ through the optimization problem

ψ? = arg max
ψ

t∑
i=1

log p(yi|y1:i−1,ψ) (20)

is termed empirical Bayes or type-II maximum likelihood estimate.
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4.1 BMA is Empirical Bayes over an Indicator Variable

It is well-known in the literature that BMA collapses to the model with the highest marginal likelihood when
the amount of data increases (Yao et al., 2018), but explanations of this fact are not often presented. Using
our insights that O-BMA is the Hedge algorithm, i.e., that it minimizes regret with the loss function (13),
this fact is straightforward to see: wk should be 1 for the model with the highest marginal likelihood and 0
for the others. In this sense, we may interpret BMA as performing empirical Bayes over an indicator variable
z in the corresponding mixture distribution. To see this, we note that (13) can be written as

L =
K∑

k=1
wk log

T∏
t=1

pk(yt |xt,Dt−1) =
K∑

k=1
wk log pk(DT ), (21)

and that
∑K

k=1 wk log pk(DT ) ≤ maxk log pk(DT ). Hence, the optimal weight vector corresponds to wk = 0
for all k except for the model k∗ = arg maxk pk(DT ) with the highest marginal likelihood, for which wk∗ = 1.
Note also that by Jensen’s inequality, (21) is a lower bound to log(

∑
k wkpk(DT )). If we set wk = Pr(Mk),

this is the log of the evidence of the BMA model, so we can interpret BMA as performing empirical Bayes on
the discrete prior probabilities of the models.

4.2 OBS is Empirical Bayes Estimation over Mixture Weights

On the other hand, OBS can be seen as performing empirical Bayes on the mixture weights themselves. To
see this, we interpret ψ as w, and the posterior predictive density

p(yi|y1:i−1, w) =
∑

k

wkpk(yi|y1:i−1), (22)

is the weighted mixture of the predictive densities of the individual models. The objective function that is
being maximized in stacking in Eq. (6) is

t∑
i=1

log
(∑

k

wkpk(yi|y1:i−1)
)

=
t∑

i=1
log p(yi|y1:i−1, w) = log pstack(Dt|w). (23)

Hence, in stacking, we obtain the weights by maximizing the log-evidence of the ‘stacking’ model,
log pstack(Dt|w), where the weights correspond to hyperparameters. Note the difference between this marginal
likelihood and the one in BMA, where the marginal likelihood is itself a mixture and each component is
independent of w.

5 Experiments

Thus far, we have primarily focused on the theoretical properties of OBS. In this section, we provide
empirical evidence that OBS can be beneficial. We consider four main scenarios: an illustrative toy example
(Section 5.1), variational Bayesian neural networks (Section 5.2), SMC-based stochastic volatility models
(Section 5.3), and dynamic Gaussian processes in non-stationary environments (Section 5.4). We provide
details on our experimental setup, baselines, and code in Appendix B.

5.1 Subset Linear Regression

We revisit a classical problem from Breiman (1996), also used by Yao et al. (2018), generating i.i.d. data from
a 15-dimensional Gaussian linear model with weak predictors, as in Yao et al. (2018, Section 4.2). We consider
two scenarios with an ensemble of 15 regression models. In the “Open” setting, the ensemble consists
of 15 univariate models (y ≈ θkxk), none of which match the true process, where performance depends on
combining models. In the “Closed” setting, model k uses features x1, . . . , xk, making model 15 the true
model. In both scenarios, hyperparameters were pre-trained using empirical Bayes on 1000 points, followed
by online deployment of OBS or O-BMA for 5000 points. Further experimental details are in Appendix C.
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Figure 1: The average predictive log-likelihood (higher is better) in the toy example. ‘EG” is exponentiated
gradients, “ONS” is the Online Newton Step, “BCRP” is the optimal constant rebalanced portfolio (offline
baseline), and “O-BMA” is O-BMA. Lines denote the median and shaded area represent the 10th to 90th
percentiles over 10 trials. The first 100 samples are suppressed for readability.
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Figure 2: The final weights in the “open” and “closed” subset linear regression experiment.

As shown in Figures 1a and 1b, OBS variants (EG, ONS) dramatically outperform O-BMA in the “open”
setting. In the “closed” setting, OBS performs nearly as well as the theoretically optimal O-BMA, with ONS
slightly outperforming EG.

As detailed in the theoretical section, one reason we may expect O-BMA to perform worse than OBS is
the weight collapse of BMA. We can empirically validate this property in our toy experiment, with the
expectation that O-BMA collapses to a single weight, and OBS retains a proper “mix” of models.

In Figure 2a, we show the final weights in the “open” subset linear regression experiment for O-BMA, OBS,
and the BCRP (i.e., the optimal pooling of Geweke & Amisano (2011), or Bayesian stacking from the
prequential principle (Yao et al., 2018)). In Figure 3a, we show the evolution of the BMA and OBS weights as
new data arrive. Finally, in Figure 2b and Figure 3b, we show the analogous final weights and the evolution
of weights for the “closed” subset linear regression experiment.

These results show promising evidence of our approach: OBS converges to a set of weights very similar to
the best retrospective weights within 5000 samples in both the “open” and “closed” variations. OBS with
ONS seems to exhibit more of the “collapsing” than OBS with EG, but these differences could be due to the
hyperparameter choices, which were set to the values, η = 10−2 for EG, and δ = 0.8, η = β = 10−2 for ONS.
We further observe the collapse of O-BMA, and that OBS can also “collapse” if appropriate.

5.2 Online Variational Inference

We now move to a more practical application in Bayesian machine learning, applying OBS to online Bayesian
neural networks. We use the recently proposed Bayesian online natural gradient (BONG), which optimizes
the expected log-likelihood with online mirror descent (Jones et al., 2024). Many different variants of BONG
and related approaches are tested, unifying them under a common framework; we make online predictions on
MNIST (LeCun et al., 2010) using the best variant tested, “bong-dlr10-ef_lin”. To create ensembles, we
train five Bayesian feedforward neural networks with different initializations. We provide more details on the
experimental setup in Appendix D.

10



Published in Transactions on Machine Learning Research (01/2026)

0 2000 4000
0.0

0.5

1.0
w

k

BMA

0 2000 4000

0.05

0.10

EG

0 2000 4000
0.0

0.2

ONS

(a) Toy Example: Open

0 2000 4000
0.0

0.5

1.0 BMA

0 2000 4000

EG

0 2000 4000

ONS

(b) Toy Example: Closed

Figure 3: The evolution of the weight vector wt as a function of t in the “open” and “closed” subset linear
regression experiment. Results are shown for a single trial due to the noisy nature of the plots. Dots on the
right side of a plot denote the final weights of the BCRP.

We visualize the resulting predictive log-likelihoods in Figure 4a. Although less dramatic than in the toy
example, we observe clear improvements in predictive performance using OBS instead of O-BMA and DMA.
Furthermore, the specific OCO algorithm used does not seem to matter much, with Soft-Bayes, EG, and
ONS all resulting in solutions similar to the BCRP. In Appendix D, we additionally visualize the evolution
and final weights, which show that BMA collapses to a single model, whereas OBS converges to the optimal,
more balanced weights.

5.3 Online Forecasting

We compare BMA and OBS variants for forecasting S&P data, which were used in an offline analysis by
Geweke & Amisano (2011; 2012), ensembling diverse GARCH models. Model parameters are estimated online
using sequential Monte Carlo (Doucet et al., 2001), where the typical “bank of filters” approach is equivalent
to BMA. Eight models (2 per class, with priors sampled from uniform hyperpriors) were generated – see
Appendix E for further details.

Table 1: Median reward (pre-
dictive log-likelihood; higher is
better) at the final time step in
the GARCH experiment with 100
models.

Method Median Reward
EG 3.46
BMA 3.44
ONS 3.46
Soft-Bayes 3.31

We visualize the resulting predictive log-likelihoods in Figure 4b. Again,
we observe clear improvements in the predictive performance of OBS over
O-BMA, with similar results obtained by Soft-Bayes, EG, and ONS. As
this is real-world financial data, we expect some amount of non-stationarity:
indeed, we find that DMA improves upon BMA, but remains inferior to
the OBS methods, and that D-ONS performs the best. We show that
BMA collapses once more in this example in Appendix E, which can be
seen in the evolution and final weights.

We additionally performed our online forecasting experiments with 25
models from each class, for a total of 100 models. Repeating across 3
random seeds, we obtain the results in Table 1. We used an EG learning
rate 10 times larger than that used in previous experiments, guided by the
logarithmic increase in the optimal theoretical learning rate as the number
of models increases. The results show that ONS and EG still outperform
BMA, while Soft-Bayes performs worse. We posit that the issues with Soft-Bayes are due to the relatively
short time horizon (on the order of 1000 time steps) relative to the number of models – we are fundamentally
trading off some fast adaptation for robustness when obtaining the gradient bound-free regret bounds of
Soft-Bayes.

5.4 Online Regression in Non-Stationary Environments

A common issue in the online setting is non-stationarity, possibly due to covariate shift or concept drift. To
illustrate the effectiveness of OBS in this setting, we apply OBS to the dynamic online ensemble of basis
expansions (DOEBE) (Waxman & Djurić, 2024), which uses O-BMA to ensemble several online Gaussian
process-based models. The DOEBE employs a linear basis approximation to GPs with random Fourier
features (Lázaro-Gredilla et al., 2010; Rahimi & Recht, 2007) and models non-stationary processes by imposing
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Figure 4: The average predictive log-likelihood (higher is better) in the MNIST and forecasting experiments,
respectively. The method descriptions follow those in Figure 1, with the addition of Soft-Bayes. Lines denote
the median and shaded area represents the 10th to 90th percentiles over 10 trials. The first 100 samples are
suppressed for readability.

Table 2: The average predictive log-likelihood (median with 10th and 90th percentiles) in the non-stationary
experiments; bolded values are best, and underlined values are second-best.

Method Type Method Elevators SARCOS Kuka #1 CaData CPU Small

Online Baselines O-BMA −0.59−0.58
−0.60 0.770.78

0.74 0.610.62
0.52 −0.84−0.83

−0.85 0.330.34
0.32

DMA −0.59−0.58
−0.59 0.790.80

0.77 0.690.70
0.63 −0.81−0.80

−0.81 0.330.34
0.33

Offline BCRP -0.57−0.57
−0.58 0.800.81

0.77 0.660.68
0.62 −0.81−0.81

−0.81 0.350.37
0.35

Online
Bayesian
Stacking

EG −0.58−0.57
−0.58 0.780.79

0.59 0.560.67
0.45 −0.81−0.81

−0.81 0.350.36
0.30

Soft-Bayes −0.58−0.58
−0.58 0.800.81

0.77 0.700.72
0.67 −0.81−0.81

−0.81 0.340.36
0.34

ONS −0.58−0.58
−0.59 0.800.82

0.78 0.700.72
0.66 −0.80−0.80

−0.81 0.340.35
0.34

D-ONS −0.58−0.58
−0.58 0.810.82

0.79 0.730.74
0.69 -0.80−0.80

−0.80 0.350.36
0.35

a random walk on these linear parameters, using variance σ2
rw. This parameter is set to a default value

in Waxman & Djurić (2024), but it is found to be quite important for performance on several real-world
datasets.

We apply OBS instead of O-BMA to ensemble RFF-GPs with σrw = 10−k, for k ∈ {0, 1, 2, 3, 4}. We use
the same datasets as Waxman & Djurić (2024) (excluding purely synthetic ones); a summary of datasets
and experimental details is in Appendix F. Of note are SARCOS and Kuka #1, both of which are robotics
datasets with covariate shift. For SARCOS and Kuka #1 only, we use the smoothed version of EG (Helmbold
et al., 1998) with hyperparameters η = 10−3 and δ = 10−2; otherwise, EG exhibits severe instabilities.

We include numerical results in Table 2 and figures in Appendix F. We again find OBS to be beneficial. Though
EG might be sensitive to outliers and occasionally performs poorly (particularly on SARCOS and Kuka
#1), ONS and Soft-Bayes are rather robust and consistently outperform O-BMA. DMA again outperforms
O-BMA, and D-ONS performs best on almost every dataset. Interesting future work includes analyzing
adaptive regret in non-stationary settings.

5.5 Additional Experiments

We include several additional experiments in the appendices. Namely, in Appendix G, we perform a sensitivity
analysis on the learning rate in OCO algorithms. We come to the general conclusion that the learning rate
does not significantly affect the results of our experiments for a set of a priori sensible values.

Similarly, in Table 5, we include ablation on the forgetting factor hyperparameter in DMA. We find that
more aggressive forgetting can help in highly non-stationary environments, but that OBS methods (and, in
particular, D-ONS) remain competitive, even without further hyperparameter tuning.
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6 Discussion & Conclusions

In this work, we critically study the idea of “Bayesian ensembles,” especially in the online setting. We focused
on two strategies for determining the weights in a linear ensemble: Bayesian model averaging (BMA) and
Bayesian stacking (BS). In particular, we introduced and discussed OBS through the prequential principle.
Through careful observation, we established a connection between the OBS problem and the OPS problem,
allowing us to leverage the rich literature on online convex optimization. Below, we provide some practical
guidance and limitations (Section 6.1), outlook (Section 6.2), and brief conclusions in Section 6.3).

6.1 Practical Guidance

When to Prefer OBS. Our theory and experiments suggest that OBS is preferable in M-open scenarios,
i.e., whenever the true data-generating model is not available, which we believe is typically the case in machine
learning. When the problem is known to be M-closed, we reiterate previously-known theoretical results
that O-BMA is optimal, though OBS, using many different online optimization algorithms, still provides
competitive performance. Under anticipated and extreme non-stationarity, DMA with small forgetting factors
is usually a viable approach, but otherwise, OBS using OCO algorithms designed for dynamic environments
should be preferred.

Choosing Your OCO Algorithm. The theoretical and practical properties of OBS depend on the OCO
algorithm used. Based on our experiments and analysis of the relevant theory, we provide the following
recommendations: (1) In scenarios with anticipated non-stationarities, D-ONS should be preferred. (2) In
more general scenarios where the anticipated non-stationarity is modest and gradual, guidance is somewhat
more subjective. Based on our empirical experiments, we recommend ONS if the computation is not
prohibitive, EG if the computation is extremely prohibitive and extreme non-stationarity is not a concern,
and Soft-Bayes otherwise; however, we encourage practitioners to experiment in their particular domains.

6.2 Outlook

We view OBS as providing a flexible framework, allowing for exciting research along two different axes.

First, the OBS connection provides an impactful application for new techniques developed in OCO. The
connection also motivates a set of potentially interesting assumptions to incorporate into future regret bound
analyses. For example, some recent work in OCO has focused on so-called “data-dependent bounds,” which
can provide more optimistic regret bounds depending on the statistics of the incoming data (Tsai et al.,
2023; Putta & Agrawal, 2025); understanding the statistics of predictive log-likelihoods in certain online
Bayesian learning settings could thus be a natural place to develop new bounds. Online learning also serves
as a natural place to apply research on switching regret (Pasteris et al., 2024).

Second, OBS is quite a general framework for ensembling Bayesian models. Though we considered a wide
range of models and applications in this paper (including variational Bayesian neural networks, GPs via basis
expansion approximations, and stochastic volatility models via sequential Monte Carlo), we anticipate many
more. For example, our sequential Monte Carlo experiment shows the benefits of OBS over the standard
“bank of filters” approach to ensembling particle filters, suggesting novel applications in filtering theory.

It is also interesting to consider connections to other probabilistic machine learning settings, including non-
Bayesian online deep learning methods (Valkanas et al., 2025), and applications of distributed or decentralized
OCO (Yan et al., 2012; Mateos-Núnez & Cortés, 2014) to decentralized Bayesian inference methods that rely
on O-BMA (Llorente et al., 2025).

6.3 Conclusions

Furthermore, we illustrate how O-BMA optimizes a different loss than OBS leading to a novel empirical
Bayesian analysis, and show how O-BMA-based regret bounds can often be adapted to OBS. Finally, we
empirically validate our theoretical claims with both synthetic and real datasets, showing that BMA collapses
and that the proposed OBS algorithms deliver better performance.

13



Published in Transactions on Machine Learning Research (01/2026)

The connection established in this work between OBS and the well-studied problem of portfolio selection
bridges optimization and statistics and suggests many interesting future directions. For example, in online
or continual learning, one is often concerned with properties under regime changes; a corresponding future
direction is to evaluate OBS with algorithms aimed at minimizing dynamic or adaptive regret (Hazan, 2022,
Chapter 10). Future statistical investigations include how to initialize ensembles well and whether the same
rules of thumb apply as in BMA.
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A More Details on Regret Analysis

One of the main benefits of connecting OBS with OPS is the numerous regret bounds available in the
literature. Stating regret bounds for applications of OBS in general is not possible, as the available regret
bounds depend on both the OCO algorithm and the class of models being ensembled. Below, we first state
some general bounds reflecting the state of the art in OPS. We then provide an example of how these bounds
may be applied, showing a regret analysis for OBS applied to an ensemble of approximate Gaussian processes.

A.1 Regret Bounds from Portfolio Selection

Different choices of algorithm and different assumptions on the predictive densities pt affect the obtainable
regret analysis (c.f. Van Erven et al. (2020, Table 1)). However, what is generally possible in streaming
algorithms (i.e., those whose runtime is linear in T ) without making further assumptions on the loss is regret
proportional to O(

√
T ).

By making further assumptions on the loss function — and in particular, assuming that a market variability
parameter α exists — we can obtain even sharper bounds, often for simple algorithms. For example, let Gp

be a bound on the p-norm of the gradients (which follows from the existence of a bounded market variability
parameter α). Then EG guarantees regret proportional to

√
T with an appropriate choice of learning rate

(Helmbold et al., 1998, Theorem 4.1). ONS provides even better logarithmic regret (Agarwal et al., 2006,
Theorem 1).

In the absence of a market variability parameter α, both EG and ONS may be modified with a “smoothing”
analysis, which artificially bounds the gradients, with the resulting EG regret bounds being proportional
to T 3/4 (Helmbold et al., 1998, Theorem 4.2), and the resulting ONS regret bounds being proportional to√

T log T (Agarwal et al., 2006, Theorem 1). Soft-Bayes can provide regret bounds independent of G and
without prior knowledge using time-varying learning rates, reducing dependence on T to

√
T .

How to apply these bounds to achieve results for learning algorithms is an interesting question and depends
on the learning algorithm and the type of bound to prove. Below, we provide a simple example that shows
OBS may preserve the asymptotic properties of existing regret bounds, even when regret is measured with
respect to a single expert rather than a mixture.

A.2 Regret of Online BMA

We now prove Proposition 3.1.
Proposition 3.1. Let the regret of the BMA mixture with respect to the best individual model be defined as

RT =
∑

t

log pk∗(yt |xt,Dt−1)−
∑

t

log
(∑

k

wt,kpk(yt |xt,Dt−1)
)

, (24)

where k∗ is the best model. Then RT is related to an evidence gain in Mk∗ ,

RT = log Pr(Mk∗ | DT )
Pr(Mk∗) . (25)

Proof. This follows quickly from the definition of the O-BMA weights Equation (3). Denoting `
(BMA)
t =

−
∑

t log (
∑

k wt,kpk(yt |xt,Dt−1) and l
(k∗)
t = − log pk∗(yt |xt,Dt−1), note that

w
(k)
t

w
(k)
t−1

= exp(−l
(k∗)
t )

exp(−`t)
.

Therefore, we arrive at a telescoping term,

exp
(

T∑
t=1

`
(BMA)
t − l

(k)
t

)
= ���w

(k∗)
1

w
(k∗)
0

���w
(k∗)
1

�
��w
(k∗)
2
· · ·

w
(k∗)
T

�
��w
(k∗)
T −1

= w
(k∗)
T

w
(k∗)
0

.

Taking the logarithm and plugging in the closed form values Equation (2) proves the proposition.
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A.3 Example: Online Ensembles of Basis Expansions

A recent example of O-BMA being applied in machine learning is in the ensembling of (approximate) Gaussian
processes (GPs). In particular, Lu et al. (2022) proposes ensembling approximate GPs with O-BMA, with
Waxman & Djurić (2024) generalizing the algorithm and bounds to more general linear basis expansions.
They both prove regret bounds relative to any expert with fixed parameters, a setting in which BMA is the
appropriate optimizer.

It will first be useful to state the following lemma:
Lemma A.1 (Kakade & Ng (2004), Theorem 2.2). Let `(·; yτ ) denote the negative log-likelihood, and assume
it is C2 with second derivatives bounded by c ∈ R. We are concerned with the negative predictive log-likelihood
`t of a Bayesian linear model with basis expansion φ(·) : Rd → RF , using prior p(θ) = N (θ; 0, σ2

θ, IF ).

Let x1, . . . , xT be a sequence of inputs such that ‖φ(xt)‖ is bounded by 1 for all t. Then we have the following
bound between the cumulative log-loss of the Bayesian estimator and the log-loss for any fixed value θ∗:

T∑
t=1

`t − `
(
φ(xt)>θ∗; yt

)
≤ ‖θ∗‖2

2σ2
θ

+ F

2 log
(

1 + Tcσ2
θ

F

)
.

In terms of the time horizon, the bound promised by Lemma A.1 is clearly O(log T ) in T .

We now formally state and prove the theorem.
Theorem A.2. Let the negative log-likelihood `(·; yτ ) be C2 with second derivatives bounded by c ∈ R.
We then consider an online ensemble of basis functions (Waxman & Djurić, 2024) with basis expansions
φ(k) : RdX → RFk and priors p(θ(k)) = N (θ(k); 0, σ

(k)
θ

2
IFk

) for k ∈ {1, . . . , K}. Further, assume that ‖φ(k)‖
is bounded by 1.

We will consider the log-loss of the ensemble at some pre-selected time T , denoted `T , and its regret with
respect to the performance of any single expert k with a fixed parameter θ(k)

∗ . Then (a) using O-BMA, the
resulting regret is O(log T ) in T ; (b) if we further assume that the log-loss is bounded, then the resulting
regret remains O(log T ) using OBS with ONS as the optimizer.

Proof. The result (a) is proved directly in Waxman & Djurić (2024, Theorem 1), which is adapted from Lu
et al. (2022, Lemma 2). What remains to show is (b). To emphasize the similarity in proving the O-BMA
and OBS results, we will present them side by side.

Let l
(k)
t denote the log-loss of the kth expert at time t. The proof then proceeds in two steps: first, bounding

the loss of the ensemble estimate to any individual expert, and then applying Lemma A.1 and combining the
bounds.

Bounding Ensemble Losses to Experts We proceed by first bounding the ensemble loss to the loss
of any individual expert. Beginning with O-BMA, and proceeding identically to Proposition 3.1, Lu et al.
(2022) make the observation that

w
(k)
t−1

w
(k)
t

= exp(−`t)
exp(−l

(k)
t )

.

Therefore, using initial weights w(k) = 1/K,

exp
(
−

T∑
t=1

`
(BMA)
t + l

(k)
t

)
= w

(k)
0

�
��w
(k)
1

�
��w
(k)
1

�
��w
(k)
2

· · ·�
��w
(k)
T −1

w
(k)
T

= 1
Mw

(k)
T

.

Thus, we can bound the regret of O-BMA with any individual expert as

T∑
t=1

`
(O-BMA)
t − l

(k)
t ≤ log M.
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For OBS, we apply the bound of Hazan et al. (2007, Theorem 2), yielding

T∑
t=1

`
(OBS)
t − l

(k)
t ≤

T∑
t=1

`
(OBS)
t −

(∑
m

w∗
ml

(k)
t

)
≤ O(log T ),

where Big O notation absorbs constants related to M and the maximum gradient norm.

Bounding Expert Loss Now, we bound the cumulative loss
∑T

t=1 l
(k)
t to the loss using the fixed parameter

θ(k)
∗ . This is achieved by applying Lemma A.1 to the kth expert, which results in

T∑
t=1

l
(k)
t − `

(
φ(k)(xt)>θ∗; yt

)
≤ ‖θ∗‖2

2σ
(k)
θ

2 + Fk

2 log

1 + Tcσ
(k)
θ

2

Fk

 ∈ O(log T ).

Combining the two bounds completes the proof.

B Experimental Setup

In this appendix, we discuss our experimental setup, including the OCO algorithms and hyperparameters
used throughout.

B.1 Experimental Setup

All experiments were conducted using Ubuntu 22.04 with an Intel i9-9900K CPU with 128 GB of RAM and
two NVIDIA Titan RTX GPUs. Code for our methods and experiments is available online under an MIT
License. 2 Implementations were in Jax/Objax (Bradbury et al., 2018; Objax Developers, 2020)3 based
on modifying the codes of Waxman & Djurić (2024)4 and Jones et al. (2024)5. Optimization algorithm
implementations were adapted from and tested against the Universal Portfolios library (Vinkler, 2024)6.

B.2 Baselines

Best Constantly Rebalanced Portfolio The BCRP is the so-called “static” solution to our stacking
problem, equivalent to the offline versions of Bayesian stacking presented in Hall & Mitchell (2007); Geweke
& Amisano (2011). The resulting weights are a solution to Equation (6), i.e.,

w∗ := arg max
w∈SK

T∑
t=1

log
K∑

k=1
wkpk(yt |xt,D1:t−1). (26)

In regression problems without concept drift, this forms a reasonable baseline against which to measure
regret.

Online Bayesian Model Averaging Our main baseline is O-BMA, which we consider to be the standard
online ensembling approach in Bayesian applications. The weights are updated as Equation (3), i.e.,

wBMA
t+1,k = wt,kpk(yt+1 |xt+1,Dt)∑

k wt,kpk(yt+1 |xt+1,Dt)
. (27)

2https://github.com/DanWaxman/OnlineBayesianStacking, MIT License
3https://github.com/google/objax, Apache 2.0 License
4https://github.com/DanWaxman/DynamicOnlineBasisExpansions, MIT License
5https://github.com/petergchang/bong/tree/main, MIT License
6https://github.com/Marigold/universal-portfolios, MIT License
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Dynamic Model Averaging In potentially non-stationary environments, we also compare to dynamic
model averaging (DMA) (Raftery et al., 2010), which is essentially O-BMA with a forgetting factor γ ∈ (0, 1):

wDMA
t+1,k =

wγ
t,kpk(yt+1 |xt+1,Dt)∑

k wγ
t,kpk(yt+1 |xt+1,Dt)

. (28)

While DMA loses some of the nice statistical properties of O-BMA, it can be more robust in non-stationary
scenarios, where the best expert may change over time. For the forgetting factor, we follow Raftery et al.
(2010) and use a value of γ = 0.99.

B.3 Portfolio Selection Algorithms

We include several OPS algorithms in our comparisons. We provide brief overviews of each and our default
set of hyperparameters, below.

Exponentiated Gradients The EG algorithm (Helmbold et al., 1998) for portfolio selection follows the
updates in Equation (10), i.e.,

wt+1 = wt � exp(ηrt/w>
t rt)

‖wt � exp(ηrt/w>
t rt)‖1

, (29)

where η is a learning rate parameter. We choose a default value of η = 10−2 in our experiments.

Soft-Bayes The Soft-Bayes algorithm (Orseau et al., 2017) provides several different potential updates, with
regret guarantees independent of a market variability parameter α. For our purposes, one useful formulation
is the “online” variant of Orseau et al. (2017, Section 6), which updates weights using a time-varying learning
rate ηt as

wt+1,k = wt,k

(
1− ηt + ηt

rk
t∑

k wt,krt,k

)
ηt+1

ηt
+
(

1− ηt+1

ηt

)
w0,k. (30)

Square-root regret is then guaranteed (Orseau et al., 2017, Theorem 10) with the learning rate

ηt = log K

2Kt
, (31)

which we use in our experiments.

Online Newton Step In our experiments, we use the form of ONS specialized for the OPS problem in
Agarwal et al. (2006). This algorithm requires parameters η, β, δ and keeps track of quantities At and bt,
defined as

At =
t∑

τ=1
−∇2 [log(wτ · rt)] + IK ; (32)

bt =
(

1 + 1
β

) t∑
τ=1
∇ [log(wτ · rt)] . (33)

Weights are then obtained at each iteration by projecting onto the simplex,

wt+1 = ΠAt

SK

(
δA−1

t bt

)
, (34)

where the projection operator ΠAt

SK is defined as

ΠAt

SK (v) = arg min
w

(w− v)>A(w− v). (35)

Additionally, to help with very small market variability parameters, gradients may be artificially “smoothed”
as

w̃t = (1− η)wt + 1
K

1. (36)

We use default values of δ = 0.8 and β = η = 10−2.
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Discounted Online Newton Step The D-ONS algorithm (Yuan & Lamperski, 2020; Ding et al., 2021) is
similar to the ONS algorithm (as in Hazan et al. (2007)), but it uses a forgetting factor for the second-order
information. We use the formulation of Ding et al. (2021), which the authors claim is more numerically stable
than the discounting factor used in Yuan & Lamperski (2020). The D-ONS algorithm depends on parameters
η > 0 and γ ∈ (0, 1) and keeps track of a quantity

Pt+1 = (1− γ)P0 + γPt −∇2
t [log(wτ · rt)] . (37)

Updates are performed as

wt+1 = ΠPt

SK

(
wt −

1
η

P −1
t ∇ [log(wτ · rt)]

)
. (38)

We use default values of η = 1.0 and γ = 0.99.

C Details and Weights for the Subset of Linear Regressors Experiment

In this appendix, we provide more details on the experimental setup and results for the subset of the linear
regression experiment in Section 5.1.

C.1 Experimental Details

Data Generation Following Breiman (1996) and Yao et al. (2018, Section 4.2), we generate 6000 data
points i.i.d. according to:

xt ∼ N (5 · 115, I15),
yt |xt ∼ N (x>

t θ, 1).

The ground truth parameters θ ∈ R15 are generated such that all 15 components are individually weak
predictors, and the signal-to-noise ratio is 0.8; refer to Yao et al. (2018, Section 4.2) for the precise procedure
used to generate θ.

Model Descriptions We consider two ensembles, each comprising K = 15 Bayesian linear regression
models:

• “Open” setting: Model k (k = 1, . . . , 15) is a univariate regression attempting to learn the function
y = θkxk, using only the k-th component of xt.

• “Closed” setting: Model k (k = 1, . . . , 15) uses the first k components of xt, i.e., attempting to
learn y =

∑k
j=1 θjxj . Model k = 15 uses all features and corresponds to the true data-generating

family.

Standard conjugate priors were used for the parameters θk (or vectors thereof) in each model.

Hyperparameter Specification For both scenarios, the first 1000 data points were used to set the
hyperparameters of the base linear regression models (e.g., prior variances) via empirical Bayes (type-II
maximum likelihood on the marginal likelihood over these 1000 points). The subsequent 5000 points were
processed online. This was accomplished by modifying the code of Waxman & Djurić (2024).

The OCO hyperparameters for OBS were set to reasonable default values and were not tuned further:

• Exponentiated Gradients (EG): Learning rate η = 10−2.

• Online Newton Step (ONS): Parameters δ = 0.8, η = 10−2, β = 10−2.
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Figure 5: The final weights in the online variational inference experiment.
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Figure 6: The evolution of the weight vector wt as a function of t in the online variational inference experiment.
Results are shown for the last trial. Dots on the right side of a plot denote the final weights of the BCRP.

D Details and Weights for the Online Variational Inference Experiment

In this appendix, we provide more details on the experimental setup and results for the online variational
inference experiment in Section 5.2.

D.1 Experimental Details

As mentioned in the main text, we use the bong-dlr10-ef_lin model from Jones et al. (2024), which had the
best performance among the variants tested in their experiments. The BONG performs variational inference
using natural gradients, updating variational parameters ψt as

ψt+1 = ψt + F−1
ψt
∇ψt

Eθt∼qψt
[log p(yt |xt,θt)],

where Fψt
is the Fisher information matrix and qψt

is the variational posterior. The bong-dlr10-ef_lin
variant uses a variational family of Gaussians with low-rank covariance matrices (diagonal + a rank 10 matrix)
and approximates the predictive likelihood through a linearization using the empirical Fisher information
matrix. We use the authors’ implementation of BONG.7

Our experimental setup generally mirrors that of Jones et al. (2024), with the following exceptions: we use a
feedforward neural network with layers of width 64 and 32. The prior mean is sampled from the default flax
initialization, and we form an ensemble over the prior variances σ2

0 ∈ {10−2, 10−1, 100, 101}. Each “trial”
corresponds to a different random shuffling of the training data, with the first 2000 data points used for
inference.

D.2 Weight Evolutions and Final Weights

Once again, we visualize the resulting weights in Figure 5 and Figure 6. We find a remarkable similarity
between the final weights in all OCO algorithms tested and the BCRP solution, and that once again, BMA
incorrectly collapses to a single model.

7https://github.com/petergchang/bong/, MIT License
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E Details and Weights for the Forecasting Experiment

In this appendix, we provide more details on the experimental setup and results for the forecasting experiment
in Section 5.3.

E.1 Experimental Details

In the forecasting experiment, we use real data corresponding to the daily returns of the S&P 500 index from
2015 through 2020, consisting of 1257 unique observations. In econometrics, such data are often modeled using
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) approaches, which provide probabilistic
predictions for time series. We refer the reader to Engle (2001) for a more detailed introduction to GARCH
models.

Specification of Models In Geweke & Amisano (2011; 2012), the application of GARCH models to stock
index data is also used to test the ensembling of probabilistic models. In GARCH, the conditional variance of
the process is modeled as an autoregressive process depending on the lagged values of the conditional variance
and the squared “innovations.” For instance, the GARCH(1, 1) model with Gaussian innovations is given by:

yt = σtεt, εt ∼ N (0, 1) (39)
σ2

t+1 = α0 + α1ε2
t + βσ2

t , (40)

where εt are the innovations and σt is the conditional variance of the process. For brevity, we only discuss
the GARCH(1, 1) with Gaussian innovations. The variants differ in the assumed process for the conditional
variance.

We assign truncated Gaussian prior densities to θt = [α0, α1, β, σt], and we are interested in sequential
estimation of the posterior distribution p(θt|y1:t). Sequential Monte Carlo (SMC) algorithms are very well
suited for this task Doucet et al. (2001). An SMC algorithm recursively computes a particle approximation
of the posterior,

p(θt|y1:t) ≈
∑

i

ρ
(i)
t δ(θ(i)

t − θt), (41)

where θ(i)
t and ρ

(i)
t denote, respectively, the particles and weights. After the arrival of yt+1, the weights are

recomputed, and the particles are propagated to form the particle approximation of the posterior at t + 1.
Using this particle approximation, we can obtain an approximation of the posterior predictive density,

p(yt+1|y1:t) ≈
∑

i

ρ
(i)
t p(yt+1|y1:t,θ

(i)
t+1), (42)

where θ(i)
t+1 only differs from θ

(i)
t in the component σ

(i)
t+1, which is obtained by substituting the previous set

of particles in Eq. (40).

We create ensembles using several different variants of the GARCH model, namely GARCHt (Student-t
innovations), GARCHNormal (Normal innovations), GJR-GARCHNormal (GJR-GARCH with Normal
innovations), and EGARCHNormal (EGARCH with Normal innovations) Engle (2001).

Inference and Hyperparameter Specification With each variant, we sample two sets of hyperparameters
and perform online posterior inference using an SMC algorithm with 1000 particles and 5 Markov Chain
Monte Carlo (MCMC) rejuvenation steps. At each iteration, the ensemble weights are used to evaluate,

8∑
k=1

wk,tpk(yt+1|yt) ≈
8∑

k=1
wk,t

∑
i

ρ
(i)
t pk(yt+1|y1:t,θ

(i)
t+1), , (43)

where wk,t is the weight of model k obtained at time t using the approaches discussed in the paper. We ran
10 independent simulations of this experiment, considering 10 different random seeds.
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E.2 Weight Evolutions and Final Weights

We visualize the resulting weights in Figure 7 and Figure 8.
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Figure 7: The final weights in the forecasting experiment.
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Figure 8: The evolution of the weight vector wt as a function of t in the forecasting experiment. Results are
shown for the last trial. Dots on the right side of a plot denote the final weights of the BCRP.

F Details and Weights for the Non-Stationary Environment Experiment

In our experiment in non-stationary environments, we use the real or semi-real datasets in Waxman & Djurić
(2024). This comprises the Elevators dataset (Torgo, 2024), which originates from tuning elevators on an
aircraft; the SARCOS dataset (Rasmussen & Williams, 2005), which is simulated data corresponding to an
inverse kinematics problem on a robotic arm; the Kuka #1 dataset (Meier et al., 2014), which is real data
from a task similar to SARCOS; CaData (Pace & Barry, 1997) which has housing data, and CPU Small
(Delve Developers, 1996), which includes various performance properties in a database of CPUs.

As mentioned in the main text, the models considered all belong to the dynamic online ensembles of basis
expansions (DOEBE) family, which perform online GP regression using Kalman filtering and the random
Fourier feature approximation Lázaro-Gredilla et al. (2010). Waxman & Djurić (2024) find that adding a
random walk to the model parameters is important in capturing “dynamic” (i.e., nonstationary) behavior
when applying approximate GPs to several real-world datasets, which can be related to “back-to-prior
forgetting” (Van Vaerenbergh et al., 2012).

We create ensembles using an RFF GP with 100 features, trained on the first 1000 data points
using the marginal likelihood. We then use different values of the random walk scale (σrw ∈
{10−4, 10−3, 10−2, 10−1, 100}) and ensemble them using O-BMA and various OBS algorithms.

In the interest of space, we only report the weight evolutions for SARCOS, Kuka #1, and Elevators in
Figure 10. The other dataset results are qualitatively similar to Elevators.

F.1 Cumulative Reward Plots

We show the cumulative reward plots (i.e., the average PLL as a function of t) in Figure 9.
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(a) Elevators (b) SARCOS (c) Kuka #1

(d) CaData (e) CPU Small

Figure 9: The average predictive log-likelihood (higher is better) in the non-stationary experiments. Lines
denote the median and shaded area represents the 10th to 90th percentiles over 10 trials. The first 250
samples are suppressed for readability.

G Sensitivity to the Learning Rate

The learning rate marks an important hyperparameter in online convex optimization, with regret bounds
often being quite sensitive to the learning rate. In this section, we investigate the practical effects of the
learning rate parameter in EG and ONS.

For the experiment using the BONG (Section 5.2 & Appendix D), we performed additional experiments using
differing hyperparameters in OCO algorithms. Specifically, we vary η in EG and β in ONS for values 10−k

and k ∈ {0, 1, 2, 3, 4}. Results can be found in Table 3. We find that the results are not particularly sensitive
to the learning rate, with all results except for EG with a high learning rate (100) and ONS with a small
learning rate (10−4) outperforming O-BMA.

Results are similar in the forecasting example (Section 5.3 & Appendix E), where the results in Table 4
suggest largely comparable performance across learning rate values. The performance of EG degrades at very
large or very small learning rates, but ONS seems fairly stable in this setting.

H Dynamic Model Averaging With Differing Forgetting Factors

In our experiments in Section 5.4, we used a default “forgetting factor” for DMA, as recommended in
Raftery et al. (2010). This is similar to our other experiments, in which we leave OBS hyperparameters at
reasonable defaults and do not otherwise tune them. Nevertheless, to further understand the impacts of
this hyperparameter, we repeated our experiments with more aggressive and more conservative values of the
forgetting factor. We report results in Table 5.

Overall, we find that DMA with extremely low forgetting factors performs well in highly nonstationary
environments (Kuka #1, CaData), but it is still comparable to D-ONS, which has more robust guarantees
regarding predictive performance. Moreover, this is without tuning the hyperparameters of D-ONS. In other
datasets tested, OBS methods are still superior to DMA (CPU Small, SARCOS, Elevators). We additionally
remark that DMA has much similarity with a sliding window approach and loses many of the statistical
properties of O-BMA; on the other hand, adaptive/dynamic OCO algorithms D-ONS still come with robust
theoretical guarantees.
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(a) Elevators

(b) SARCOS

(c) Kuka #1

Figure 10: The evolution of the weight vector wt as a function of t in the non-stationary environment
experiment in the Elevators, SARCOS, and Kuka #1 datasets. Results are shown for the first trial. Dots on
the right side of a plot denote the final weights of the BCRP.

Table 3: Comparison of the average predictive log likelihood value (higher is better) for the BONG experiment
(Section 5.2) while varying the learning rates of EG and ONS. Results are reported as the median ± 1
standard deviation across five trials.

Method Learning Rate Average PLL ± Std. Dev.
EG (η) 100 −1.012± 0.04

10−1 −0.850± 0.02
10−2 −0.850± 0.02
10−3 −0.862± 0.02
10−4 −0.865± 0.02

ONS (β) 100 −0.878± 0.03
10−1 −0.859± 0.03
10−2 −0.860± 0.02
10−3 −0.900± 0.03
10−4 −0.948± 0.03

Soft-Bayes – −0.847± 0.02
O-BMA – −0.932± 0.02
BCRP – −0.843± 0.02
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Table 4: Comparison of the average predictive log likelihood value (higher is better) for the GARCH
experiment (Section 5.3) while varying the learning rates of EG and ONS. Results are reported as the median
± 1 standard deviation across ten trials.

Method Learning Rate Average PLL ± Std. Dev.
EG 100 2.776± 0.23

10−1 3.188± 0.13
10−2 3.249± 0.13
10−3 2.978± 0.14
10−4 2.858± 0.17

ONS 100 3.256± 0.12
10−1 3.330± 0.13
10−2 3.300± 0.13
10−3 3.229± 0.10
10−4 3.159± 0.12

Soft-Bayes – 3.296± 0.13
O-BMA – 3.040± 0.24
BCRP – 3.296± 0.12

Table 5: Comparison of methods on non-stationary datasets (c.f. Table 2), including DMA with additional
forgetting factors.

Method Elevators SARCOS Kuka #1 CaData CPU Small
O-BMA -0.59 0.77 0.61 -0.84 0.33
DMA -0.59 0.79 0.69 -0.81 0.33
DMA-0.9 -0.60 0.80 0.75 -0.80 0.33
DMA-0.95 -0.59 0.80 0.73 -0.80 0.33
EG -0.58 0.78 0.56 -0.81 0.35
Soft-Bayes -0.58 0.80 0.70 -0.81 0.34
BCRP -0.57 0.80 0.66 -0.81 0.35
ONS -0.58 0.80 0.70 -0.80 0.34
D-ONS -0.58 0.81 0.73 -0.80 0.35
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