
Conditioning Sparse Variational Gaussian Processes
for Online Decision-making

Wesley J. Maddox
New York University
wjm363@nyu.edu

Samuel Stanton
New York University
ss13641@nyu.edu

Andrew Gordon Wilson
New York University

andrewgw@cims.nyu.edu

Abstract

With a principled representation of uncertainty and closed form posterior updates,
Gaussian processes (GPs) are a natural choice for online decision making. However,
Gaussian processes typically require at least O(n2) computations for n training
points, limiting their general applicability. Stochastic variational Gaussian pro-
cesses (SVGPs) can provide scalable inference for a dataset of fixed size, but
are difficult to efficiently condition on new data. We propose online variational
conditioning (OVC), a procedure for efficiently conditioning SVGPs in an online
setting that does not require re-training through the evidence lower bound with
the addition of new data. OVC enables the pairing of SVGPs with advanced look-
ahead acquisition functions for black-box optimization, even with non-Gaussian
likelihoods. We show OVC provides compelling performance in a range of applica-
tions including active learning of malaria incidence, and reinforcement learning on
MuJoCo simulated robotic control tasks.

1 Introduction

Intelligent systems should be able to quickly and efficiently adapt to new data, adjusting their prior
beliefs in response to the most recent events. These characteristics are desirable whether the system
in question is controlling the actuators of a robot, tuning the power output of a laser, or monitoring
the changing preferences of users on an online platform. What these applications share in common
is a constant stream of new information. In this paper, we are interested in efficient conditioning,
meaning that we wish to efficiently update a posterior distribution after receiving new data.

The ability of Gaussian process (GP) regression models to condition on new data in closed form has
made them a popular choice for Bayesian optimization (BO), active learning, and control [24]. All
of these settings share similar characteristics: there is an “outer loop”, where new data is acquired
from the real world (e.g. an expensive simulator), interleaved with an “inner loop”, which chooses
where to collect data. In BO, for example, the “inner loop” is the optimization of an acquisition
function evaluated using a surrogate model of the true objective. Simple acquisition functions, e.g.
expected improvement (EI), consider only the current state of the surrogate, while more sophisticated
acquisition functions “look ahead” to consider the effect of hypothetical observations on future
surrogate states. One such acquisition function, batch knowledge gradient (qKG), defines the one-step
Bayes-optimal data batch as the batch that maximizes the expected surrogate maximum after the
batch has been acquired [2, 84]. Advanced acquisition functions like qKG require the surrogate to
have both efficient posterior sampling and efficient conditioning on new data.

GP regression has two major limitations that have prevented its large scale deployment for online
decision-making. First, the computational and memory consumption of exact GPs grows at least
quadratically with the amount of data [25, 65], generally limiting their usage to BO problems with
fewer than 1, 000 function evaluations [24, 2, 79]. Second, they are limited to applications that have
continuous real-valued responses, enabling modelling with solely a Gaussian likelihood. Stochastic

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Original GP Conditioned GP Original SVGP Conditioned SVGP True Latent Training Points New Points

(a) Exact GP (b) SVGP + OVC (c) SVGP + OVC volatility model

Figure 1: An exact GP updates its predictive distribution after conditioning on new data points
(a, moving from top row to bottom row). With OVC, we can condition SVGPs on both Gaussian
responses (b) and non-Gaussian models (c) such as the Gaussian copula volatility model [82].

variational Gaussian processes (SVGPs) [33] have constant computational and memory footprints
and are applicable to non-Gaussian likelihoods, but they sacrifice closed form expressions for updated
posteriors on receiving new data. The SVGP posterior is optimized through the evidence lower bound
(ELBO). In the online setting, training with the ELBO has two primary difficulties: the need to
specify a fixed number of observations to properly scale the ELBO gradient [8] and the need to adjust
the inducing points without looking at past data [3, 9]. Thus, we are presented with a choice between
the simplicity and analytic tractability of exact GPs and the scalability and flexibility of SVGPs.

In this work, we develop Online Variational Conditioning (OVC) to allow SVGPs to be conditioned
on-the-fly, as shown in Figure 1. In the top row of each subplot, we fit the data points shown in red,
shifting to another batch of data points in the bottom row. We use an exact GP in Figure 1a, with exact
conditioning shown in the bottom panel. The SVGP emulates the exact GP very well before seeing
the new data and again after conditioning on the new data by using OVC (Figure 1b). In Figure 1c,
we consider a non-Gaussian data model (a Gaussian copula volatility model [82]), where we cannot
use exact GPs; the SVGP is still able to update its posterior over the latent volatility in response to
new data without “forgetting” old observations. OVC is inspired by a new, simple rederivation of
streaming sparse GPs (O-SGPR), originally proposed by Bui et al. [9]. OVC makes SVGPs truly
compelling models for online decision-making, augmenting their existing strengths with efficient,
closed-form conditioning on new data points. In short, our contributions are:

• The development of OVC, a novel method to condition SVGPs on new data without re-
optimizing the variational posterior through an evidence lower bound.

• OVC provides both stable inducing point initialization for SVGPs while enabling the
inducing points and variational parameters to update in response to the new data.

• Enabling the effective application of SVGPs, through OVC, in look-ahead acquisitions in
BO for black-box optimization, controlling dynamical systems, and active learning.

Please see Appendix A for discussion of the limitations and broader impacts of our work. Our code
is available at https://github.com/wjmaddox/online_vargp.

2 Preliminaries and Related Work

In this section, we first review exact inference with Gaussian processes before reviewing variational
sparse Gaussian processes, introducing sparse Gaussian process regression (SGPR), sparse variational
Gaussian processes (SVGP), and streaming sparse GPs (O-SGPR). Please see Appendix B for further
background and Appendix B.1 specifically for further related work.

2.1 Gaussian Processes and Exact Inference

For a full introduction to GPs, see Rasmussen and Williams [65]. We begin by reviewing GP re-
gression, with inputs x 2 X and responses y 2 R. GP regression assumes y ⇠ N (f,�2), where

2

f ⇠ GP(0, k✓(x,x0)) is a GP characterized by the kernel function k✓ and corresponding hyperpa-
rameters ✓. Given Xtrain = [x1, . . . ,xn]> and Xtest = [x0

1
, . . . ,x0

k]
>, we denote the corresponding

function values as v = [f(x1), . . . , f(xn)]> and w = [f(x0
1
), . . . , f(x0

k)]
>, respectively. Note that

v and w are random variables with prior covariance Cov[v,w] = Kvw := k✓(Xtrain, Xtest). A
well-known identity for multivariate conditional Gaussians allows us to compute the GP predictive
posterior p(w|Xtest,D, ✓) = N (µ⇤

w|D,⌃
⇤
w|D) as follows:

µ⇤
w|D = Kwv(Kvv + �2I)�1y, ⌃⇤

w|D = Kww �Kwv(Kvv + ⌃y)
�1Kvw, (1)

where D := (Xtrain,y) and ⌃y = �2I .

Naïvely, computations with Kvv cost O(n2) space and O(n3) operations. When repeatedly com-
puting p(w|Xtest,D, ✓) at different sets of query points Xtest, it is more efficient to cache the terms
which depend only on the training data.1 Specifically, we store a := (Kvv + ⌃y)�1y (the predictive
mean cache) and RR> := (Kvv + ⌃y)�1 (the predictive covariance cache), resulting in simplified
forms for the predictive distribution, µ⇤

w|D = Kwva and ⌃⇤
w|D = Kww �KwvRR>Kvw. Adding

a new observation is equivalent to adding a single row and column to Kvv and an entry to y, which
enables efficient low-rank updates to the predictive caches [58, 25, 64, 39].2

2.2 Variationally Sparse Gaussian Processes

Variational sparse GPs reduce the computational burden of GP inference through sparse approxima-
tions of the kernel matrix. For further reference, see Matthews [50] and Van der Wilk [77]. These
methods define a variational distribution � over the inducing point values u = [f(z1), . . . , f(zp)]>,
defined at inducing point locations Z = [z1, · · · , zp]>, where zi 2 X . �(u) is parameterized as
a Gaussian with variational mean and covariance mu and Su. These methods assume the latent
function values f(x), f(x0) are conditionally independent given u and x,x0 /2 Z, so as to cheaply
approximate the predictive posterior p(w|Xtest,D, ✓) ⇡ q(w) = N (µ⇤

w|�,⌃
⇤
w|�). Like exact GP

regression, we can compute q(w) in closed form (given mu, Su),

µ⇤
w|� := KwuK

�1

uumu, ⌃⇤
w|� := Kww �KwuK

�1

uu (Kuu � Su)K
�1

uuKuw. (2)

Similarly the predictive mean and covariance caches are given by a = K�1
uumu and RR> =

K�1
uu (Kuu � Su)K�1

uu , reducing the complexity of inference from O(n3) to O(np2), which is a
significant improvement if p ⌧ n.

There are two common approaches to finding optimal variational parameters mu and Su. In seminal
work, Titsias [73] proposed sparse GP regression (SGPR), which optimizes mu and Su in closed
form, resulting in a "collapsed" evidence lower bound3 (ELBO) that only depends on ✓ and Z. The
computational cost of each gradient update to the remaining model parameters is still linear in n, and
like exact GP regression, SGPR requires a Gaussian likelihood. Stochastic variational GPs (SVGPs)
remedies both these limitations by using gradient-based optimization to learn mu and Su alongside
Z and ✓ [33, 34]. The SVGP objective is an “uncollapsed” ELBO which decomposes additively
across the training examples, allowing gradients to be estimated from minibatches of data, reducing
the complexity of each gradient update to O(bp2 + p3), where b is the minibatch size.

We emphasize the distinction between constant-time minibatch gradients, and constant-time condi-
tioning. Given an SVGP already trained on some existing data, conditioning jointly on both the old
and new data requires storing all the data and making multiple gradient updates to the variational
parameters. As the size of the dataset grows, so does the number of gradient steps needed. In contrast
by constant-time conditioning we mean a procedure that takes a posterior conditioned on existing
data and produces a new posterior conditioned jointly on the old and new data with a fixed amount of
compute and memory, regardless of the number of past observations.

One example of constant-time conditioning is found in Bui et al. [9], who proposed streaming sparse
GPs (which we call online SGPR, or O-SGPR, to distinguish from sparse spectrum GPs [44]) for

1Cached expressions will be written in orange
2What we use as the SGPR covariance cache is slightly different from the implementation in the prediction

strategy in GPyTorch, which stores R = KvuK
�1/2
uu . However, they reduce to the same strategy.

3A lower bound of the true GP marginal log-likelihood

3

Algorithm 1 Online Variational Conditioning (OVC)

Input: Data batch (Xbatch,y), SVGP with inducing points Z 0 and �(u0) = N (mu0 , Su0).
1. Compute c0, C 0 (Eq. 5).
2. Compute ŷ = K 0

u0u0C 0�1c0 and ⌃ŷ = K 0�1

u0u0C 0K 0�1

u0u0 (Eq. 8).
3. Construct GP with D = ([Xbatch Z 0], [y ŷ]) and ⌃ = blkdiag(⌃y,⌃ŷ).
4. Compute predictive mean and covariance caches, a and RR> as in Section 2.1.
5. Use caches to compute conditioned GP posterior on test points, Xtest.

incremental learning. We extend their work, providing an alternative, simpler derivation of their
model that highlights the connection with SGPR [73]. Furthermore, our perspective enables us to
construct a principled approach to updating inducing point locations as new data arrives, that prevents
the “forgetting” of old data induced by the resampling heuristic used by Bui et al. [9].

2.3 Bayesian Optimization and Monte Carlo Acquisitions

Bayesian optimization (BO) obtains x⇤ = argminx2X f(x) by constructing a probabilistic surrogate

model of f , which in turn is used to evaluate an acquisition function. GPs are favored for BO due
to their sample-efficiency and efficient posterior sampling that enables cheap, gradient based opti-
mization of the acquisition function to propose new query points [24]. Many interesting acquisition
functions look ahead into the future to see how the model will change if we query a specific point, a
procedure known as “fantasization” [32, 84, 39]. Fantasization is done by drawing samples from the
current surrogate posterior at some set of points and conditioning the surrogate on those samples. For
example, the batch knowledge gradient [qKG, 84, 2] is given by

a(x,D) := E
f(x)⇠p(·|D)

✓
max
x02X

E
f(x0)⇠p(·|D+x)

f(x0)

◆
� max

x02X
E

f(x0)⇠p(·|D)

f(x0), (3)

where D+x := D [{(x, f(x)}. The inner expectation in the first term requires conditioning the
surrogate model on posterior samples at x, before optimizing through predictions of the conditioned
surrogate model. The goal is to simulate the effect on the model if we had observed the batch of data.

Use of sparse GPs in BO: Sparse GPs have not seen wide adoption in the BO community, with
only several preliminary studies that have mostly used basic acquisitions. Nickson et al. [55] and
Krityakierne and Ginsbourger [43] used expected improvement (EI) with SGPR on several test
problems, while McIntire et al. [51] proposed a sparse GP method using EI to tune free electron lasers
[20]. Stanton et al. [70] proposed WISKI, an online implementation of a scalable kernel approach
called SKI [83], for low-dimensional BO problems using batch upper confidence bound (qUCB) [2].

3 Methodology

We now briefly describe the key ideas behind OVC with the goal of devising an efficient and stable
method for updating the variational parameters with respect to newly observed data. We begin by
highlighting an alternative parameterization of SGPR that will prove useful. Then we describe the
OVC update to the variational distribution from two equivalent points of view, namely the projection

view and the pseudo-data view. The pseudo-data view is summarized in Algorithm 1. Next we
address a critical detail for good performance, which is how the inducing point locations should be
selected. We then demonstrate how OVC can be applied to compute updated posterior distributions,
e.g. p(f |D+x) in Eq. 3, and quantities of the posterior, during gradient-based acquisition function
optimization in BO, with reference to how this can be performed practically in Section 4. Finally, we
discuss how to apply OVC to models with non-Gaussian likelihoods.

3.1 Updating the Variational Posterior

We assume that we have trained a SVGP model (e.g. with the ELBO) on a fixed set of data and
have already trained the inducing point locations and variational parameters, mu, Su. Instead of
the traditional mu, Su parameterization used by Titsias [73], Hensman et al. [33, 34], we focus for
now on an alternative parameterization which was favored in early work on sparse GP inference

4

[67, 57]. The parameterization is also similar to those used in both dual space functional variational
inference [41] and expectation propagation [10]. More recently, Panos et al. [61] used a similar
parameterization in the context of large scale multi-label learning with SVGPs.

The SGPR predictive posterior q(w) relies on two terms dependent on the training data,

c = Kuv⌃
�1

y y, C = Kuv⌃
�1

y Kvu, (4)

where ⌃y is the covariance of the likelihood p(y|f). The optimal mu, Su are then given by

mu = Kuu(Kuu + C)�1c, Su = Kuu(Kuu + C)�1Kuu, (5)

which can be substituted into Eq. (2) to obtain q(w). Our first observation is that if ⌃y is block-
diagonal, then c and C are additive across blocks of observations. For some intuition, consider i.i.d.
Gaussian noise (i.e. ⌃y = �2In), which implies

ci =
X

j

��2yjk✓(zi,xj) = �(zi)
>
X

j

��2yj�(xj),

Cik =
X

j

��2k✓(zi,xj)k(xj , zk) = �(zi)
>
X

j

��2�(xj)�(xj)
>�(zk),

where � is the (potentially infinite-dimensional) feature map associated with k✓. Hence the entries of
c and C are both inner products between projected inducing points and weighted sums of features.
For fixed inducing points, Z, and hyper-parameters ✓, we can use these updates to produce a streaming
version of SGPR by exploiting the additive structure of c and C. Furthermore, this streaming version
of SGPR is exactly Gaussian conditioning for SGPR as we show in Appendix C.1. We can also allow
the inducing points and hyper-parameters to vary, which we address next.4

The projection view: We assume we have c0 = K 0
u0v0⌃�1

y0 y0 and C 0 = K 0
u0v0⌃�1

y0 K 0
v0u0 , computed

with inducing point locations Z 0 from data (X 0
batch

,y0) with kernel hyperparameters ✓0 (using
shorthand k✓0 = K 0).5 After obtaining the next parameters Z and ✓ (perhaps from gradient based
optimization of the ELBO), we observe new data (Xbatch,y) and would like to continue with
inference. One challenge is translating c0, C 0 (whose elements are inner products of the old features)
to the new feature space associated with ✓. To resolve this challenge, we construct a representative
set of responses, ŷ = P>c0 and likelihood covariance ⌃̂ŷ = P>C 0P to project from the old feature
space into the new feature space by passing back through data space. The choice that minimizes
reconstruction error is the pseudo-inverse P = (K 0

v0u0K 0
u0v0)�1K 0

v0u0 , but requires storage of the
full dataset, (X 0

batch
,y0). Instead we take P = K 0�1

u0u0 , resulting in the following modifications to Eq.
(4):

c = Kuv⌃
�1

y y +Kuu0K 0�1

u0u0c0, (6)

C = Kuv⌃
�1

y Kvu +Kuu0(K 0�1

u0u0C 0K 0�1

u0u0)Kuu0 , (7)

Note that K 0�1

u0u0c0 = ⌃�1

y0 y0 and K 0�1

u0u0C 0K 0�1

u0u0 = ⌃�1

y0 in the special case where X 0
batch

= Z 0. We
also want to emphasize that although we have only considered two batches of data for the sake of
clarity, the approach applies to any number of incoming batches.

The pseudo-data view: The above update is equivalent to having an SGPR model with a Gaussian
likelihood with covariance ⌃ = blkdiag(⌃ŷ,⌃y) on the data {cat(Z 0, Xbatch), cat(ŷ,y)}, where

ŷ = K 0
u0u0C 0�1c0, ⌃�1

ŷ = K 0�1

u0u0C 0K 0�1

u0u0 . (8)

This interpretation is reminiscent of prior online variational approaches of Csató and Opper [16] and
Opper [56]. That is, in the context of conditioning a SVGP, we can assume that we began with data
{Z 0, ŷ} and are now observing the new data {Xbatch,y}. See Appendix C.2 for a more details.

Extending to SVGPs: SGPR computes mu and Su as a function of c and C in Eq. (5). However
the equations can be reversed to solve for c and C given mu and Su, allowing us to condition any

variational sparse GP into an SGPR model, without touching any previous observations due to the
4For full generality, we allow the hyper-parameters to vary; however, in our BO experiments, we only

consider varying the inducing points as that’s all we need to update when computing acquisition functions.
5Cached computations that depend on (X 0

batch,y
0) are highlighted in blue.

5

conditional independence assumptions of variationally sparse GPs.6 Note that if the variational
parameters are not at the optimal solution when the variational distribution is projected back to the
pseudo-data, the projection will be to the targets and likelihood for which the current variational

parameters would be optimal, which may not correspond well to the data that originally created the
model. This potential pitfall is mitigated if the variational parameters are well optimized and is offset
by the practical advantages of SVGPs.

Connection to O-SGPR [9]: Formally, the updates described in Eqs. (6) and (7) are equivalent
to the O-SGPR approach of Bui et al. [9], as we show in Appendix C.2. The original derivation of
O-SGPR is very technical, and does not highlight the similarities between the batch and online SGPR
variants. Both the projection and pseudo-data views we have just described provide a much more
intuitive way to reason about the behavior of O-SGPR models. Our formulation also eliminates a
matrix subtraction operation, which is beneficial for numerical stability.

3.2 Inducing Point Selection

Here, we describe inducing point selection during the conditioning procedure to enable better variance
reduction on new inputs. While heuristics including re-sampling [9] and data sufficient statistics [35]
have been proposed, they either require the number of inducing points to grow or gradually forget old
observations. We show in Appendix C.4 that relying exclusively on gradient-based optimization of
inducing locations works very poorly in the online setting.

Figure 2: Incremental learning
RMSE on the UCI protein dataset.
Pivoted cholesky initialization out-
performs resampling.

To update the inducing point locations during conditioning,
we extend Burt et al. [11]’s batch inducing point initialization
approach to heteroskedastic Gaussian likelihoods. They con-
sider theoretical bounds on the marginal likelihood, finding that
for homoscedastic Gaussian likelihoods a good strategy is to
minimize the trace of the error of a rank-p Nyström approxi-
mation, e.g. " = tr

⇣
⌃�1/2

y (Kvv �KvuK�1
uuKuv)⌃

�1/2
y

⌘
=

��1/2tr(Kvv �Qvv) for Qvv = KvuK�1
uuKuv. They follow

a classical approach of Fine and Scheinberg [23] by a greedy
minimiziation strategy: choosing as inducing points the pivots
of a rank p pivoted Cholesky factorization of Kvv.

We denote the function values over the batch+pseudo dataset
as v̂ = [f(x1), . . . , f(xb), f(z01), . . . , f(z

0
p)]

>. In our case the
covariance of the pseudo-likelihood is no longer homoscedastic,
so the slack term becomes " = tr(⌃�1/2(Kv̂v̂ �Qv̂v̂)⌃�1/2)
and hence the pivoted Cholesky decomposition is instead per-

formed over ⌃�1/2Kv̂v̂⌃�1/2 to select the top p pivots of the p+ nnew matrix. When compared to
re-sampling the inducing points [9], pivoted cholesky updates perform significantly better, as shown
in Figure 2 on the UCI protein dataset [19]. Experimental details are given in Appendix D.2.

Application to Bayesian Optimization: In the context of BO, we condition on hypothetical

observations, and the conditioned surrogates are discarded after each acquisition function evaluation.
Since the SVGP will not be conditioned on more than a few batches of observations, we can sidestep
the issue of updating inducing locations entirely by instead conditioning into an exact GP trained the
combined pseudo-data through the pseudo-likelihood. That is, we model the data as (y, ŷ) ⇠ N (f,⌃)
(Gaussian with block-diagonal covariance) assuming f ⇠ GP(µ✓, k✓(·, ·)). We reach the same model
by choosing X̂ as the inducing points in our conditioned SGPR (Section 3.1). For small nt, an exact
GP is not much slower, taking only (nt + p)3 computations instead of p3 computations, further
reduced by using low rank updates.

3.3 Local Laplace Approximations for Non-Gaussian Observations

Thus far, we have solely considered Gaussian observations. The introduction of a non-Gaussian
likelihood presents a new challenge, since it implies that the current observation batch and the

6Alternatively, we could construct SVGPs via direct optimization of c and C.

6

(a) Hartmann6 (b) Laser (c) Poisson-Hartmann6 (d) Preference Learning

Figure 3: (a) Hartmann6 test problem with one constraint. Here, SVGPs with noisy expected
improvement (qNEI) and KG match the performance of exact GPs with qNEI and qKG. (b) Free
electron laser problem from McIntire et al. [51]; SVGPs with knowledge gradient outperforming
weighted sparse GPs. (c) Constrained Hartmann6 test problem with count responses (Poisson
likelihood). Only SVGPs can be used here, and qKG outperforms qNEI. (d) Preference learning;
SVGPs with qKG are similar to Laplace approximations with NEI, and outperform qNEI with SVGPs.

pseudo-data are no longer jointly Gaussian. To adapt the conditioning procedure to the non-Gaussian
setting, we can simply perform a Laplace approximation of the likelihood at the new points [65,
Ch. 3]. Specifically, this gives us an approximate likelihood, p̂(y|f) = N (ỹ; f,H�1

⇤), where
H⇤ = r2

f log p(y|f)|f⇤(y) and f⇤(y) is the maximizer of log p(y|f) + f>K�1f , computed via
Newton iteration.7 When conditioning on new observations y, we substitute f⇤(y) instead. That
is, our new model has responses (f⇤(y), ŷ) instead of (y, ŷ), and the pseudo-likelihood remains
Gaussian with covariance ⌃ = blkdiag(H�1

⇤ ,⌃ŷ). We primarily consider natural parameterizations
of one-dimensional exponential families, so that H⇤ is positive, diagonal and depends solely on f .
Computing r log p(y|f) and H⇤ is possible by hand but one can also use automatic differentiation
[AD, 63].8 In Appendix D, Figure 8 we show the effect of repeated Laplace approximations across
several batches for online classification.

4 Experiments

Our experimental evaluation demonstrates that SVGPs using OVC can be successfully used as
surrogate models with advanced acquisition functions in Bayesian optimization, even in the large
batch and non-Gaussian settings. In keeping with the BO literature, we will refer to the query batch
size as q (not to be confused with the variational posterior q(f) in previous sections). All SVGP

models that use conditioning (or fantasization) require OVC to even be practical to implement.

Using OVC as a Building Block inside of BO

In all of our experiments, we use OVC as a building block to enable fantasization (Algorithm 1) within
a standard BO acquisition function that requires fantasiziation. These acquisitions are generally
“look-ahead" as a result; specifically, qKG [2, 39], LTSs, our version of qGIBBON which uses a
fantasy batch [54], and qMultiStepLookAhead [39] all use the fantasization model. After adding
in OVC as the condition_on_observations function within a BoTorch model class [2], we can
simply optimize qKG or qGIBBON with an SVGP exactly as an exact GP surrogate, by using
gradient based optimizers such as L-BFGS-B. In general, we need to differentiate through the fantasy
model with respect to the inputs and then use gradient based methods to find the optimum. Please
see Balandat et al. [2] and Frazier [24] for description of how a BO loop is constructed and how
acquisition functions are optimized.

Experimental Setup In general, a Bayesian optimization loop consists of the steps of training the
model and then using the trained model to optimize an acquisition function to acquire new data points,

7One could consider using the posterior covariance instead of K. Our experiments with the posterior
covariance produced more extreme values of f and thus less regularization.

8Specifically, we use PyTorch’s functional API, https://pytorch.org/docs/stable/autograd.html#
functional-higher-level-api.

7

which are then added into the training data for the next model. All experiments use PyTorch [62],
GPyTorch [25], and BoTorch [2]. Unless otherwise specified, we run each experiment 50 times and
report the mean and two standard deviations of the mean.

In the first step, we first train the inducing points, variational distribution, and kernel hyper-parameters
using the evidence lower bound given in Eq. A.3. As all components are differentiable, we use the
Adam optimizer with a learning rate of 0.1 and optimize for 1000 steps or until the loss converges,
whichever is shorter. To initialize the inducing points, we compute a pivoted cholesky factorization on
the initial kernel on the training data (described in Section 3.2 following Burt et al. [11]). The kernel
hyper-parameters are initialized to GPyTorch defaults (which sets all lengthscales to one), while
the variational distribution is initialized to mu = 0, Su = I (again, GPyTorch defaults). Further
experimental details and dataset descriptions are in the Appendix.

4.1 Knowledge Gradient with SVGPs

These experiments use the one-shot formulation of the batch knowledge gradient (qKG) (Eq. 3) from
Balandat et al. [2], who demonstrated that qKG outperforms other acquisitions due to being able
to plan two steps into the future. Using and optimizing qKG has only been available for exact GPs

previously. By using OVC, we have enabled SVGPs to also efficiently and tractably optimize qKG,
even for non-Gaussian observations. We compare to batch noisy expected improvement [qNEI, 45]
which is myopic and does not use fantasization (e.g. conditioning). Here, for the SVGPs we used
min(N, 25) inducing points.

Gaussian observations: We use the Hartmann6 test function, with one black box constraint,
maximizing f(x) = �

P
4

i=1
↵i exp{�

P
6

j=1
Aij(xj � Pij)2} subject to the constraint that c(x) =

||x||1  3 for fixed A,P,↵. We use 10 initial points and a batch size of 3 optimizing for 50 iterations,
comparing to SVGPs and exact GPs using qNEI. We show the results in Figure 3a where SVGPs
with qKG match exact GPs with both qNEI and qKG, and outperform SVGPs using qNEI.

Second, we mimic the laser tuning experiment of [51, 20], demonstrating that SVGPs outperform
even weighted online GPs (WOGP), which were designed for this task. Here, we use 100 initial
points, with d = 14, and and wish to tune a laser’s output energy as a function of the magnet settings
that produce the beam. Like McIntire et al. [51] we treat a pretrained GP fit on experimental data
as a simulator. We use a batch size of 1, finding that SVGPs + KG outperform WOGP (Figure 3b).
However, exact GPs outperform the variational approaches (Appendix Fig. 9b).

Non-Gaussian likelihoods: Next, we extend the knowledge gradient to problems with non-Gaussian
likelihoods. First, we take the constrained Hartmann6 test function from the previous section, and
use Poisson responses, y ⇠ Poisson(exp{f(x)}), repeating the same settings as for the Gaussian
case. Now, the data is non-Gaussian and cannot be well-modelled by a Gaussian likelihood, so we
compare to only SVGPs with qNEI. qNEI is outperformed by qKG, as shown in Figure 3c.

Second, in Figure 3d, we consider a preference learning problem inspired by Lin et al. [46]. Here,
the latent data is described by f(x) = �10�1/2

P
10

i=1

p
i cos(2⇡xi) for x 2 [0, 1]10, comparing to

Laplace approximations [15]. Again, we see that SVGPs with qKG outperform qNEI with both
SVGPs and Laplace approximations.

4.2 Active Learning of Disease Incidence

We next present results for two active learning tasks governing the collection of disease incidence
data. In both tasks the acquisition functions again require efficient conditioning on hypothetical
data, and the second task has Binomial responses, so exact GPs cannot be applied. In both settings,
applying OVC to SVGPs gives strong results competitive with either exact GPs or random forests.

Modelling of Malaria Incidence: We consider data from the Malaria Global Atlas [81] describing
the infection rate of a parasite known to cause malaria in 2017. We wish to choose spatial locations
to query malaria incidence in order to make the best possible predictions on a withheld test set,
the entire country of Nigeria. Following Stanton et al. [70], we minimize the negative integrated
posterior variance [NIPV, 68], defined as a(x;D) := �

R
X E(V(f(x)|D+x)|D)dx, again with

D+x = D [{(x, y)}. Intuitively, the minimizer of this acquisition will be the batch of data points
that when added into the model will most reduce the total posterior uncertainty across the domain,

8

(a) Malaria incidence in Nigeria (b) Hotspot prediction accuracy (c) Prevalence modelling

Figure 4: (a) Active learning of malaria incidence from satellite data. Using qNIPV outperforms
randomly selecting points, while the SVGPs slightly outperform both exact GPs and WISKI. (b,c)
Active learning of schistomiasis incidence in Cote d’Ivoire from Andrade-Pacheco et al. [1]. Compar-
ison is to the random forest based approach using active sampling. While the GP based models are
somewhat less accurate at predicting hotspots (b), they are better as a global model of prevalence (c).

requiring efficient conditioning to do so in a tractable manner. The results are shown for a batch size
of q = 6 across 15 trials in Figure 4a where we see that each method outperforms random baselines.
Perhaps due to the optimization freedom, the SVGP outperforms both the exact GP and WISKI [70].

Hotspot Modelling: We follow Andrade-Pacheco et al. [1] and model the prevalence of schisto-
miatosis in Côte d’Ivoire using simulated responses from 1500 villages in that country, and taking
into account six other demographic variables. We model the responses y (incidence) at locations
x with population n(x) with a Binomial likelihood p(y|f,x) ⇠ Binomial(n(x), r(f)), where
r(f) = (1 + exp{�f})�1. Letting ⌧ 2 (0, 1) be a threshold on the prevalence for a location to be
considered a “hotspot" [1], we compute the entropy:

h⌧ (x,D) := Ep(f |D)(H(Bernoulli(f > logit(⌧)))) ⇡ 1

K

KX

i=1

1f>logit(⌧)H(Bernoulli(f)),

taking the acquisition value to be the reduction in the entropy of the posterior predictive distribution
over the incidence under the hotspot-focused likelihood.

a⌧ (x,D) :=

Z

x02X

�
h⌧ (x

0,D+x)� h⌧ (x
0,D)

�
dx0. (9)

A location is given a high acquisition value if observing the incidence at that location reduces the
uncertainty of the model on the predicted set of hotspots. In Figure 4b, we compare to Andrade-
Pacheco et al. [1] who use spatial kriging on the residuals of a random forest model. Both their
random baseline and their exploration based procedure (a variant of UCB) start off with higher
prediction accuracy; however our SVGP models ultimately outperform the kriging approach with
random selection. The SVGP is a better predictor of true prevalence, as shown in Figure 4c. In both
cases, our acquisition function significantly outperforms random selection with a SVGP surrogate.

4.3 Rollouts within Thompson Sampling for High Dimensional BO

For our final set of experiments, we solve control problems using trust region Bayesian optimization
[TurBO, 22]. Inspired by multi-step look-aheads [39, 4], we propose h-step look-ahead Thompson
sampling (LTS-h). In BO, Thompson sampling (TS) is often implemented by drawing samples from
the posterior at points all over the domain, then selecting the q best to form a query batch [71, 22].
LTS-h extends the idea by conditioning the surrogate independently on each posterior sample in the
original TS query batch, Thompson sampling again from the updated posterior with a new set of
points, and appending the best sample to its predecessor to form a path. The process is repeated h
times. Finally, we condition the original surrogate jointly on each path, then perform TS again to
choose the new query batch. Informally, each path corresponds to a distinct, coherent draw from
p(f |D), allowing the inner-loop to refine its guess of the global optimum for different f , and the
final round of TS chooses the query batch based on those guesses. See Appendix C.5 for a formal
description. Like other look-ahead acquisitions, LTS-h is only practical if posterior conditioning and
samples are very efficient and numerically stable. LTS-h is conceptually similar to path sampling for
look-ahead in Jiang et al. [39] and kriging believer [26].

9

Exact TS SVGP TS Exact LTS-4 SVGP LTS-4 Reward Threshold ARS

(a) Wall-Clock time, rover,
d = 60

(b) rover,
d = 60

(c) swimmer,
d = 16

(d) hopper,
d = 33

Figure 5: Multi-step rollouts with OVC and SVGPs provides sample-complexity and wall-clock
time improvements on high dimensional BO problems when using TurBO and LAMCTS [22, 78].
SVGP rollouts are as time efficient (to 150 iterations) as standard TS (a) on lunar rover, d = 60. (c-d)
MuJoCo environments using LAMCTS + TurBO. Also shown is the reward threshold (dashed grey
lines) and augmented random search (ARS)’s performance (dotted red lines) [49]. The median and
its 95% confidence interval are shown over 24 trials for rover and 10 trials for swimmer and hopper.

For validation, we consider tuning the 60 dimensional path that a lunar rover takes across a field
stacked with obstacles [79, 22]. We use batches of q = 100 with 200 initial points, and use trust
region Bayesian optimization (TurBO) to split up the space effectively [22], comparing to TurBO
with Thompson sampling (TS) as the acquisition [71]. We show the wall clock times per iteration
in Figure 5a, where we see that the TurBO + LTS approaches compare well in wallclock time to
TurBO+TS, while being more function efficient (Figure 5b).

Finally, we consider MuJoCo problems using the OpenAI gym [75, 7] with LTSs inside of TurBO
with trust regions generated by Monte Carlo Tree Search following the procedure of Wang et al. [78].
Following Wang et al. [78], we learn a linear policy and consider the swimmer-v2, hopper-v2
environments over 10 trials displaying the median and its 95% confidence band due to high variance.
On both problems, SVGP with LTSs tend to be the most sample efficient, with SVGP + TS performing
at least as well on swimmer-v2. We also show the reward threshold and the performance achieved by
augmented random search (ARS), which is a strong baseline reinforcement learning method that uses
random search to tune linear controllers [49]. Our results suggest that LTSs are promising overall;
however, more work needs to be done for high dimensional kernels on these problems.

5 Discussion

In conclusion, we have demonstrated how to efficiently condition on new data points with stochastic
variational Gaussian processes via closed form updates to the variational distribution. Our condi-
tioning approach generalizes exact GP conditioning via Laplace approximations for non-Gaussian
likelihoods. As a result, we have decoupled look-ahead BO acquisition functions from their depen-
dence on exact GP inference through a Gaussian likelihood, increasing the range, scale, and efficiency
of BO applications. In the future, we hope to extend OVC to multi-task and deep Gaussian processes
for use in Bayesian optimization [31, 17].

Acknowledgements

WJM, SS, AGW are supported by an Amazon Research Award, NSF I-DISRE 193471, NIH R01
DA048764-01A1, NSF IIS-1910266, and NSF 1922658 NRT-HDR: FUTURE Foundations, Transla-
tion, and Responsibility for Data Science. WJM was additionally supported by an NSF Graduate
Research Fellowship under Grant No. DGE-1839302. SS is additionally supported by the United
States Department of Defense through the National Defense Science & Engineering Graduate (ND-
SEG) Fellowship Program. We’d like to thank Greg Benton for setting up the volatility experiment
and for helpful discussions and Nate Gruver and Eytan Bakshy for helpful comments.

10

References
[1] Andrade-Pacheco, R., Rerolle, F., Lemoine, J., Hernandez, L., Meïté, A., Juziwelo, L., Bibaut,

A. F., van der Laan, M. J., Arnold, B. F., and Sturrock, H. J. (2020). Finding hotspots: development
of an adaptive spatial sampling approach. Scientific reports, 10(1):1–12.

[2] Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E.
(2020). BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in

Neural Information Processing Systems, volume 33.

[3] Bauer, M., Van Der Wilk, M., and Rasmussen, C. (2016). Understanding probabilistic sparse gaus-
sian process approximations. In Advances in Neural Information Processing Systems, volume 29,
pages 1533–1541.

[4] Bertsekas, D. P. (2020). Rollout, Policy Iteration, and Distributed Reinforcement Learning.
Athena Scientific.

[5] Bijl, H., Schön, T. B., van Wingerden, J.-W., and Verhaegen, M. (2016). Online sparse gaussian
process training with input noise. arXiv preprint arXiv 1601.08068.

[6] Boedecker, J., Springenberg, J. T., Wülfing, J., and Riedmiller, M. (2014). Approximate real-time
optimal control based on sparse gaussian process models. In 2014 IEEE Symposium on Adaptive

Dynamic Programming and Reinforcement Learning (ADPRL), pages 1–8. IEEE.

[7] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym. arXiv preprint arXiv:1606.01540.

[8] Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. (2013). Streaming
variational bayes. In Advances in Neural Information Processing Systems, volume 26.

[9] Bui, T. D., Nguyen, C. V., and Turner, R. E. (2017a). Streaming sparse Gaussian process
approximations. In Advances in Neural Information Processing Systems, volume 31, pages
3301–3309, Long Beach, California, USA. Curran Associates Inc.

[10] Bui, T. D., Yan, J., and Turner, R. E. (2017b). A unifying framework for gaussian process
pseudo-point approximations using power expectation propagation. The Journal of Machine

Learning Research, 18(1):3649–3720.

[11] Burt, D., Rasmussen, C. E., and Van Der Wilk, M. (2019). Rates of convergence for sparse
variational Gaussian process regression. In Proceedings of the 36th International Conference on

Machine Learning, volume 97, pages 862–871. PMLR.

[12] Canu, S. and Smola, A. (2006). Kernel methods and the exponential family. Neurocomputing,
69(7):714–720. New Issues in Neurocomputing: 13th European Symposium on Artificial Neural
Networks.

[13] Cheng, C.-A. and Boots, B. (2016). Incremental variational sparse Gaussian process regression.
In Advances in Neural Information Processing Systems, volume 30, pages 4410–4418, Barcelona,
Spain. Curran Associates Inc.

[14] Chowdhary, G., Kingravi, H. A., How, J. P., and Vela, P. A. (2014). Bayesian nonparametric
adaptive control using gaussian processes. IEEE transactions on neural networks and learning

systems, 26(3):537–550.

[15] Chu, W. and Ghahramani, Z. (2005). Preference learning with gaussian processes. In Proceed-

ings of the 22nd International Conference on Machine learning, pages 137–144.

[16] Csató, L. and Opper, M. (2002). Sparse on-line gaussian processes. Neural computation,
14(3):641–668.

[17] Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J. (2019). Deep gaussian
processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320.

11

[18] Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on Machine Learning, pages
465–472.

[19] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[20] Duris, J., Kennedy, D., Hanuka, A., Shtalenkova, J., Edelen, A., Baxevanis, P., Egger, A., Cope,
T., McIntire, M., Ermon, S., et al. (2020). Bayesian optimization of a free-electron laser. Physical

review letters, 124(12):124801.

[21] Eriksson, D. and Jankowiak, M. (2021). High-dimensional bayesian optimization with sparse
axis-aligned subspaces. arXiv preprint arXiv:2103.00349.

[22] Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and Poloczek, M. (2019). Scalable global
optimization via local bayesian optimization. In Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc.

[23] Fine, S. and Scheinberg, K. (2001). Efficient svm training using low-rank kernel representations.
Journal of Machine Learning Research, 2(Dec):243–264.

[24] Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811.

[25] Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018). GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. In Advances in

Neural Information Processing Systems, volume 31.

[26] Ginsbourger, D., Le Riche, R., and Carraro, L. (2010). Kriging is well-suited to parallelize
optimization. In Computational intelligence in expensive optimization problems, pages 131–162.
Springer.

[27] Girard, A., Rasmussen, C. E., Candela, J. Q., and Murray-Smith, R. (2002). Gaussian process
priors with uncertain inputs-application to multiple-step ahead time series forecasting. In Advances

in Neural Information Processing Systems, volume 15.

[28] Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling,
B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A.
(2018). Automatic chemical design using a data-driven continuous representation of molecules.
ACS central science, 4(2):268–276.

[29] Groot, P., Lucas, P., and Bosch, P. (2011). Multiple-step time series forecasting with sparse
gaussian processes. In Causmaecker, P. De (ed.), Proceedings of the 23rd Benelux Conference on

Artificial Intelligence, pages 1–8. [Sl: sn].

[30] Hagan, P. S., Kumar, D., Lesniewski, A. S., and Woodward, D. E. (2002). Managing smile risk.
The Best of Wilmott, 1:249–296.

[31] Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2021). Bayesian optimiza-
tion using deep gaussian processes with applications to aerospace system design. Optimization

and Engineering, 22(1):321–361.

[32] Hennig, P. and Schuler, C. J. (2012). Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13(6).

[33] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13,
page 282–290, Arlington, Virginia, USA. AUAI Press.

[34] Hensman, J., Matthews, A., and Ghahramani, Z. (2015). Scalable Variational Gaussian Process
Classification. In Proceedings of the Eighteenth International Conference on Artificial Intelligence

and Statistics, pages 351–360, San Diego, California, USA. PMLR.

[35] Hoang, T. N., Hoang, Q. M., and Low, B. K. H. (2015). A unifying framework of anytime
sparse gaussian process regression models with stochastic variational inference for big data. In
International Conference on Machine Learning, volume 37, pages 569–578. PMLR.

12

[36] Huber, M. F. (2013). Recursive gaussian process regression. In 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 3362–3366. IEEE.

[37] Huber, M. F. (2014). Recursive gaussian process: On-line regression and learning. Pattern

Recognition Letters, 45:85–91.

[38] Jankowiak, M., Pleiss, G., and Gardner, J. (2020). Parametric gaussian process regressors. In
International Conference on Machine Learning, volume 119, pages 4702–4712. PMLR.

[39] Jiang, S., Jiang, D., Balandat, M., Karrer, B., Gardner, J., and Garnett, R. (2020). Efficient
Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees. In Advances in Neural

Information Processing Systems, volume 33.

[40] Kapoor, S., Karaletsos, T., and Bui, T. D. (2020). Variational auto-regressive gaussian processes
for continual learning. arXiv preprint arXiv:2006.05468.

[41] Khan, M. and Lin, W. (2017). Conjugate-computation variational inference: Converting
variational inference in non-conjugate models to inferences in conjugate models. In Artificial

Intelligence and Statistics, pages 878–887. PMLR.

[42] Knudde, N., van der Herten, J., Dhaene, T., and Couckuyt, I. (2017). GPflowOpt: A Bayesian
Optimization Library using TensorFlow. arXiv preprint arXiv:1711.03845.

[43] Krityakierne, T. and Ginsbourger, D. (2015). Global optimization with sparse and local gaussian
process models. In International Workshop on Machine Learning, Optimization and Big Data,
pages 185–196. Springer.

[44] Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen, C. E., and Figueiras-Vidal, A. R.
(2010). Sparse spectrum gaussian process regression. The Journal of Machine Learning Research,
11:1865–1881.

[45] Letham, B., Karrer, B., Ottoni, G., Bakshy, E., et al. (2019). Constrained bayesian optimization
with noisy experiments. Bayesian Analysis, 14(2):495–519.

[46] Lin, J., Obeng, A., and Bakshy, E. (2020). Preference learning for real-world multi-objective
decision making. ICML 2020 Workshop on Real World Experiment Design and Active Learning.

[47] Ling, C. K., Low, K. H., and Jaillet, P. (2016). Gaussian process planning with lipschitz
continuous reward functions: Towards unifying bayesian optimization, active learning, and beyond.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

[48] MacKenzie, D. and Spears, T. (2014). ‘the formula that killed wall street’: The gaussian copula
and modelling practices in investment banking. Social Studies of Science, 44(3):393–417.

[49] Mania, H., Guy, A., and Recht, B. (2018). Simple random search of static linear policies is
competitive for reinforcement learning. In Advances in Neural Information Processing Systems,
volume 31, pages 1805–1814.

[50] Matthews, A. G. d. G. (2017). Scalable Gaussian process inference using variational methods.
PhD thesis, University of Cambridge.

[51] McIntire, M., Ratner, D., and Ermon, S. (2016). Sparse gaussian processes for bayesian
optimization. In Uncertainty in Artifical Intelligence, volume 32. Association for Uncertainty in
Artifical Intelligence (AUAI).

[52] Moreno-Muñoz, P., Artés-Rodríguez, A., and Álvarez, M. A. (2019). Continual multi-task
gaussian processes. arXiv preprint arXiv:1911.00002.

[53] Moreno-Muñoz, P., Artés-Rodríguez, A., and Álvarez, M. A. (2020). Recyclable gaussian
processes. arXiv preprint arXiv:2010.02554.

[54] Moss, H. B., Leslie, D. S., Gonzalez, J., and Rayson, P. (2021). Gibbon: General-purpose
information-based bayesian optimisation. arXiv preprint arXiv:2102.03324.

13

[55] Nickson, T., Osborne, M. A., Reece, S., and Roberts, S. (2014). Automated machine learning
using stochastic algorithm tuning. In NIPS Workshop on Bayesian Optimization.

[56] Opper, M. (1998). A bayesian approach to online learning. On-line learning in neural networks,
pages 363–378.

[57] Opper, M. and Archambeau, C. (2009). The variational gaussian approximation revisited.
Neural computation, 21(3):786–792.

[58] Osborne, M. A. (2010). Bayesian Gaussian processes for sequential prediction, optimisation

and quadrature. PhD thesis, Oxford University, UK.

[59] Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E. (2020). Contin-
ual deep learning by functional regularisation of memorable past. arXiv preprint arXiv:2004.14070.

[60] Pan, Y., Yan, X., Theodorou, E. A., and Boots, B. (2017). Prediction under uncertainty in sparse
spectrum gaussian processes with applications to filtering and control. In International Conference

on Machine Learning, volume 70, pages 2760–2768. PMLR.

[61] Panos, A., Dellaportas, P., and Titsias, M. K. (2018). Fully scalable gaussian processes using
subspace inducing inputs. arXiv preprint arXiv:1807.02537.

[62] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc.

[63] Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural computation,
6(1):147–160.

[64] Pleiss, G., Gardner, J. R., Weinberger, K. Q., and Wilson, A. G. (2018). Constant-Time
Predictive Distributions for Gaussian Processes. In Artificial Intelligence and Statistics, volume 84.
PMLR.

[65] Rasmussen, C. E. and Williams, C. K. I. (2008). Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, Mass., 3. print edition.

[66] Sæmundsson, S., Hofmann, K., and Deisenroth, M. (2018). Meta reinforcement learning with
latent variable gaussian processes. In 34th Conference on Uncertainty in Artificial Intelligence,
volume 34, pages 642–652. Association for Uncertainty in Artificial Intelligence (AUAI).

[67] Seeger, M. W., Williams, C. K., and Lawrence, N. D. (2003). Fast forward selection to speed
up sparse gaussian process regression. In International Workshop on Artificial Intelligence and

Statistics, pages 254–261. PMLR.

[68] Seo, S., Wallat, M., Graepel, T., and Obermayer, K. (2000). Gaussian process regression: Active
data selection and test point rejection. In Neural Networks, IEEE-INNS-ENNS International Joint

Conference on, volume 3, pages 3241–3241.

[69] Shi, J., Titsias, M., and Mnih, A. (2020). Sparse orthogonal variational inference for gaussian
processes. In International Conference on Artificial Intelligence and Statistics, volume 108, pages
1932–1942. PMLR.

[70] Stanton, S., Maddox, W. J., Delbridge, I., and Wilson, A. G. (2021). Kernel Interpolation for
Scalable Online Gaussian Processes. In Artificial Intelligence and Statistics, volume 130. PMLR.

[71] Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294.

[72] Titsias, M. (2008). Variational Model Selection for Sparse Gaussian Process Regression.
www.aueb.gr/users/mtitsias/papers/sparseGPv2.pdf, page 20.

[73] Titsias, M. (2009). Variational Learning of Inducing Variables in Sparse Gaussian Processes. In
Artificial Intelligence and Statistics, pages 567–574. PMLR. ISSN: 1938-7228.

14

[74] Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2019). Functional
regularisation for continual learning with gaussian processes. In International Conference on

Learning Representations.

[75] Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE.

[76] Tripp, A., Daxberger, E., and Hernández-Lobato, J. M. (2020). Sample-efficient optimization in
the latent space of deep generative models via weighted retraining. Advances in Neural Information

Processing Systems, 33.

[77] Van der Wilk, M. (2019). Sparse Gaussian process approximations and applications. PhD
thesis, University of Cambridge.

[78] Wang, L., Fonseca, R., and Tian, Y. (2020). Learning search space partition for black-box
optimization using monte carlo tree search. In Advances in Neural Information Processing Systems,
volume 33.

[79] Wang, Z., Gehring, C., Kohli, P., and Jegelka, S. (2018). Batched large-scale bayesian opti-
mization in high-dimensional spaces. In International Conference on Artificial Intelligence and

Statistics, volume 84, pages 745–754. PMLR.

[80] Wang, Z. and Jegelka, S. (2017). Max-value entropy search for efficient bayesian optimization.
In International Conference on Machine Learning, volume 70, pages 3627–3635. PMLR.

[81] Weiss, D. J., Lucas, T. C., Nguyen, M., Nandi, A. K., Bisanzio, D., Battle, K. E., Cameron,
E., Twohig, K. A., Pfeffer, D. A., Rozier, J. A., et al. (2019). Mapping the global prevalence,
incidence, and mortality of plasmodium falciparum, 2000–17: a spatial and temporal modelling
study. The Lancet, 394(10195):322–331.

[82] Wilson, A. and Ghahramani, Z. (2010). Copula Processes. In Advances in Neural Information

Processing Systems, volume 23, page 9.

[83] Wilson, A. and Nickisch, H. (2015). Kernel Interpolation for Scalable Structured Gaussian
Processes (KISS-GP). In International Conference on Machine Learning, pages 1775–1784. ISSN:
1938-7228 Section: Machine Learning.

[84] Wu, J. and Frazier, P. I. (2016). The parallel knowledge gradient method for batch Bayesian
optimization. In Advances in Neural Information Processing Systems, volume 30 of NIPS’16,
pages 3134–3142, Red Hook, NY, USA. Curran Associates Inc.

[85] Xu, N., Low, K. H., Chen, J., Lim, K. K., and Ozgul, E. (2014). Gp-localize: Persistent mobile
robot localization using online sparse gaussian process observation model. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 28.

15

